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[bookmark: _inizhhohzcsb]S1 Neuroimaging datasets 
	ADNI
	CN
	MCI
	AD
	FTD

	Age 
	72.48 ± 6.99
	73.20 ± 7.92
	74.94 ± 7.90
	

	MMSE 
	29.11 ± 1.13
	27.70 ± 1.93
	22.68 ± 3.25
	

	Sex (M/F)
	239/341
	224/174
	142/107
	

	AIBL
	
	
	
	

	Age 
	72.44 ± 6.18
	74.33 ± 6.85
	73.18 ± 7.26
	

	MMSE 
	28.73 ± 1.23
	27.04 ± 2.19
	21.24 ± 5.31	
	

	Sex (M/F)
	188/260
	49/47
	26/36
	

	DELCODE
	
	
	
	

	Age 
	68.25 ± 5.43
	72.46 ± 5.72
	74.66 ± 6.24
	

	MMSE 
	29.47 ± 0.83
	27.80 ± 1.97
	23.09 ± 3.25
	

	Sex (M/F)
	120/162
	81/72
	42/61
	

	EDSD
	
	
	
	

	Age 
	68.59 ± 6.00
	71.11 ± 7.41
	72.69 ± 8.29
	

	MMSE 
	28.61 ± 3.18
	26.34 ± 2.99
	20.86 ± 5.28
	

	Sex (M/F)
	98/97
	94/76
	56/78
	

	NIFD
	
	
	
	

	Age 
	62.67 ± 7.25
	
	
	63.01 ± 7.08

	MMSE 
	29.38 ± 0.77
	
	
	23.79 ± 7.21

	Sex (M/F)
	58/74
	
	
	75/57

	DESCRIBE
	
	
	
	

	Age 
	60.57 ± 13.40
	
	
	64.08 ± 9.50

	MMSE 
	29.07 ± 1.15
	
	
	23.04 ± 6.87

	Sex (M/F)
	29/29
	
	
	37/24

	
	
	
	
	

	NIFD
	CN
	BV
	SV
	PFNA

	Age 
	62.67 ± 7.25
	60.97 ± 6.59
	62.65 ± 6.10
	67.44 ± 7.29

	MMSE 
	29.38 ± 0.77
	23.87 ± 5.66
	22.59 ± 9.57
	25.03 ± 6.78

	Sex (M/F)
	58/74
	42/21
	21/16
	12/20

	DESCRIBE
	CN
	BV
	
	

	Age 
	60.57 ± 13.40
	64.08 ± 9.50
	
	

	MMSE 
	29.07 ± 1.15
	23.04 ± 6.87
	
	

	Sex (M/F)
	29/29
	37/24
	
	


Supplementary Table S1: Patient statistics separated by the diagnosis group. The statistics are reported for each of the seven data cohorts. The patients were pooled from the following study cohorts: ADNI phase 2 and phase 3, AIBL, DELCODE, DESCRIBE, EDSD, and NIFD. CN: cognitively normal, MCI: mild cognitive impairment, AD: dementia due to Alzheimer’s disease, FTD: Frontotemporal dementia, where phenotypes include, BV: behavioral variant of FTD, SV: semantic variant of FTD, and PFNA: progressive nonfluent aphasia. MMSE: mini-mental state examination score, F: female, M: male. Numbers are reported as (mean ± sd).


[bookmark: _aptyu7w56jyk]S2 Model Training

We trained a DenseNet model, using a stratified five-fold cross-validation (see Supplementary Figure S1). The models were trained for a three-way classification - AD-vs-CN-vs-FTD. Here Alzheimer’s dementia (AD) patients and patients with amnestic mild cognitive impairment (MCI) were merged into one disease-positive class, while multiple phenotypes of frontotemporal dementia (FTD) - behavioral variant (bvFTD), semantic dementia (SD), and progressive nonfluent aphasia (PNFA) were also clubbed under one FTD class. These two classes were compared against the cognitively normal (CN) participants, i.e., the control class. 

Categorical cross-entropy was chosen as the loss function. The models were optimized using the Adam optimizer with a learning rate of 0.0001, and other parameter settings were set to default. We trained the models for 100 epochs, using a batch size of 128. To reduce model over-fitting, an early stopping regularization method was applied, monitoring the validation set loss as a performance metric over epochs, with patience of 5 epochs and a minimum change threshold of 0.01. To avoid overfitting, we also weighted the model’s error with the label’s class weight. During each cross-validation run, only the best-performing model was saved.

For training, the data augmentations were generated using AUCMEDI Python package, where 3D volumes were randomly left/right-flipped with a 50% probability, and rescaled with a 50% probability within the zooming in or out limits of 90% and 110%. These augmentations were only applied during model training and were disabled on validation and test sets.
[image: ]
Supplementary Figure S1 Schematics representation of the data splitting for CNN model training.



Based on the results from the 5-fold cross-validation training of the models (see Supplementary Table S2), we chose fold 1 as the default model for further analysis in our study. The model training results from fold 1 are illustrated in Supplementary Figure S2.





	Fold
	Acc
ADvsCN
	Acc
FTDvsCN
	Acc
ADvsFTD
	AUC
ADvsCN
	AUC
FTDvsCN
	AUC
ADvsFTD

	1
	78.18
	96.89
	88.24
	0.90
	0.96
	0.97

	2
	78.24
	92.94
	43.79
	0.80
	0.90
	0.78

	3
	84.16
	96.61
	61.27
	0.89
	0.99
	0.91

	4
	83.77
	95.76
	60.26
	0.88
	0.94
	0.87

	5
	69.13
	92.63
	15.12
	0.78
	0.95
	0.84

	Mean(sd)
	78.7±6.07
	94.97±2.04
	53.73±26.83
	0.85±0.05
	0.95±0.03
	0.87±0.07


Supplementary Table S2: Performance metrics on the test set. Acc: simple accuracy, AUC: Area under the (ROC) curve. CN: cognitively normal, AD: dementia due to Alzheimer’s disease (which due to design choices, also includes the amnestic mild cognitive impairment (MCI) subjects), and FTD: frontotemporal dementia.
[image: ]
Supplementary Figure S2. Model training results from fold 1: (a) (simple) Accuracy metric on train and validation set, (b) loss metric on train and validation set, and (c) binarized ROC-AUC curves on the test set. CN: cognitively normal, AD: dementia due to Alzheimer’s disease (which due to design choices, also includes the amnestic mild cognitive impairment (MCI) subjects), and FTD: frontotemporal dementia.

The mean relevance maps for the test set of fold 1 are visualized below. For relevance attribution, we employed the compositional LRP rule (𝛼 = 1, 𝛽 = 0), as established in our previous work for generating clinically meaningful explanations1. To enhance the signal-to-noise ratio during visualization, we re-scaled the relevance intensities based on the 99.99th percentile (𝑞 = 0.9999) and clipped the resulting values to the range [−1, 1]. A Gaussian smoothing filter with a standard deviation of 0.8 was then applied to further improve interpretability.

The mean relevance maps of Alzheimer's disease (AD) dementia and mild cognitive impairment (MCI) patients appeared visually similar; however, distinct patterns emerged when comparing across disease groups. In the AD group, supplementary figure S3, relevance was concentrated in the hippocampus (slices [-20, -10]) and bilaterally in the thalamus (slices [-30, -20]). In contrast, the frontotemporal dementia (FTD) group, supplementary figure S4, exhibited prominent relevance in the frontal lobes, particularly the right insula and frontal opercular cortex in slice -8, as well as the pregenual anterior cingulate cortex (pACC) in slices [37, 44]. Notably, insular involvement was also reported in our prior study2, suggesting consistency across different model training strategies and relevance attribution techniques in identifying clinically relevant brain regions.
 
[image: ]
Supplementary Figure S3: Mean relevance maps for the AD group of the test dataset obtained using the LRP𝛼=1, 𝛽=0 relevance propagation method overlaid on MNI brain template. Coronal slices show Y=[-10,-20,-30] mm in MNI reference space are shown. The most relevant input regions are highlighted. Relevance maps were created following proportional scaling of the activations.

[image: ]
Supplementary Figure S4: Mean relevance maps for the FTD group of the test dataset obtained using the LRP𝛼=1, 𝛽=0 relevance propagation method overlaid on MNI brain template. Coronal slices show Y=[-8,17,37,44] mm in MNI reference space are shown. The most relevant input regions are highlighted. Relevance maps were created following proportional scaling of the activations.
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[bookmark: _7kjlwq8a03yg]
S3 Feature Selection with Mutual Information

All features used in the mutual information analysis were derived from w-scores, representing age, sex, brain size and MRI scanner strength adjusted residualized values. Average cortical thickness measures were only estimated for cortical regions (e.g., superior temporal gyrus, frontal lobe areas) and not for subcortical structures (e.g., hippocampus, thalamus, or basal ganglia), which explains the absence of cortical thickness values in these regions.

To enhance transparency and accessibility, we have uploaded the intermediate results from our analysis pipeline to GitHub. The repository includes a CSV file that specifies, for each of the 120 regions, which of the three feature types (CNN relevance, volumetry, or cortical thickness) passed the mutual information threshold and were included in downstream analysis. This is process outcome is also visualized in Supplementary Figure S5.


[image: ]
Supplementary Figure S5: Mutual Information-Based Feature Selection: This figure illustrates the mutual information values computed across three different w-score features - CNN relevance, volumetry, and cortical thickness w-scores, representing their shared information content in comparison to the disease diagnosis label. The w-score features were sorted according to their mutual information on the volumetry features. The w-score features with mutual information above the threshold of  0.1 were retained as relevant and were selected for further analysis. For a vector graphic rendering, please refer to the GitHub version of the plot.





[bookmark: _atb94ajo9l6g]S4 Mixed-Effects Models of Cognitive Trajectories

Mixed-effects model experiments were done to investigate cognitive decline in patients, while accounting for repeated measures and inter-individual variability. The analysis was conducted using data from two groups:  the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and the DZNE Longitudinal Study on Cognitive Impairment and Dementia (DELCODE) cohorts. These datasets contain repeated cognitive assessments for each patient for up to 6 years, allowing for a longitudinal investigation of cognitive decline. 

We tested a series of increasingly complex mixed-effects models. By incrementally adding predictors and interaction terms, we assessed model fit and explanatory power. The best-fitting model was determined using likelihood ratio tests via ANOVA.

Model 1 (Base Model): Includes age, sex, and the interaction between cluster membership and follow-up months (FUMonths) while accounting for repeated measures per participant.

CDRi (or MMSEi) = β0 + β1 agei + β2 sexi + β3 clusteri + β4 FUMonthsi + β5 (cluster × FUMonths)i + ui + εi

where  represents the random intercept for each participant, and  is the residual error term.

Model 2 (Expanded Diagnosis Model): Adds baseline diagnosis as a fixed effect.
CDRi (or MMSEi)  = β0 + β1 agei + β2 sexi + β3 baseline_diagi + β4 clusteri + β5 FUMonthsi + β6 (cluster × FUMonths)i + ui + εi
Model 3 (Final Model): Introduces an interaction between baseline diagnosis and follow-up months.
CDRi (or MMSEi)  = β0 + β1 agei + β2 sexi + β3 baseline_diagi + β4 clusteri + β5 FUMonthsi + β6 (baseline_diag  × FUMonths)i  + β7 (cluster × FUMonths) i + ui + εi

[bookmark: _lo4u0domh350]To compare model fit, ANOVA tests were performed, evaluating the nested model comparisons. The results indicated that Model 3 provided the best fit, suggesting that the interaction between baseline diagnosis and follow-up time significantly improves the model’s explanatory power. Specifically, for the CDR global (Supplementary Figure S6), the high-risk converter group showed an annual increase of 0.074 points, while the low-risk group remained relatively stable with an increase of 0.007 points per year.
[bookmark: _7hcmxy2ksant][image: ]
[bookmark: _dt3lb1n8mvdc]Supplementary Figure S6: Longitudinal cognitive trajectories of different clusters of patients. Values on Clinical Dementia Rating (CDR) global are obtained from mixed effects regression models which included the age, sex, baseline disease diagnosis, and the interaction between cluster membership and follow-up time in months (FU Months), as well as the interaction between baseline disease diagnosis and follow-up months. The model also included random intercepts for each patient to account for repeated measurements. The shaded regions represent 95% confidence intervals. 
[bookmark: _s2eq80h726r9][bookmark: _4c9i93lu3bk0] S5 Explanation-by-example plots for Clinical Dementia Rating (CDR) 
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Supplementary Figure S7: Explanation-by-examples: Within the context-enriched explanation space, the longitudinal cognitive trajectories of k=10 nearest neighbors of a query patient, from the DELCODE cohort, are shown. Patient IDs of the nearest neighbors are pseudonymised, and the nearest neighbors are listed in the order of increasing Euclidian distance from the query sample. Scores on the cognitive test Clinical Dementia Rating (CDR) global were observed on follow-up examinations for up to 6 years. The cognition trajectories are additionally color-coded by the baseline disease diagnosis.    
S6 Explanation-by-example plots, each participant colored individually
[image: ] Supplementary Figure S8: Explanation-by-examples: Longitudinal MMSE trajectories of the k = 10 nearest neighbors of a query participant from the DELCODE cohort, observed for up to 6 years. Here, each cognitive trajectory is shown in a unique color for more detail.

[image: ]
Supplementary Figure S9: Explanation-by-examples: Longitudinal CDR trajectories of the k = 10 nearest neighbors of a query participant from the DELCODE cohort, observed for up to 6 years. Here, each cognitive trajectory is shown in a unique color for more detail.   
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