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tissues were studied by applying a recently developed cellular
interaction mapping framework. Results: Our paired approach
revealed significant local enrichment of immature and acti-
vated NK cells in SF, characterized by elevated markers of early
differentiation, immune-checkpoint regulation, and tissue-
residency, highlighting tightly controlled immune activation
at inflamed sites. Single-cell analysis confirmed heterogeneity
within SF-NK cells, suggesting multiple co-existing activation
states and developmental stages. PB-NK cells from patients
differed profoundly compared to healthy controls, showing
less immature NK cell subsets and an enrichment of mature,
pro-inflammatory subsets indicative of systemic immune
activation. Cellular interaction mapping revealed mainly NK/
neutrophil interactions of patients’ NK cells, while interactions
with B-cells, T-cells, or monocytes were negligible. T-cells also
displayed profound local and systemic alterations. Cellular
interaction mapping revealed that next to NK/neutrophil
interactions, interactions between B-cells with monocytes
and T-cells with neutrophils characterize joint inflammation.
Conclusion: This paired high-dimensional analysis revealed
systemic and local alterations in NK cell subsets shaped by co-
existing developmental stages and immune regulatory
mechanisms. Cellular interaction mapping indicated that
neutrophils are a main interaction-partner of NK cells in

inflamed joints. © 2025 The Author(s).
Published by S. Karger AG, Basel

Introduction

Natural killer (NK) cells represent an important com-
ponent of the innate immune system in tissues and pe-
ripheral blood (PB; 5-20% of lymphocytes [1]). NK cells
are known primarily for their cytotoxic functions against
virus-infected and malignant cells, as well as their ability to
regulate adaptive immune responses through cytokine
production [2]. These cells are broadly divided into two
major subsets: the CD56%™CD16"8% subset, known for
potent cytotoxicity, and the CD56°ri8hCD]edim/negative
subset, characterized by cytokine secretion and immuno-
modulatory functions [3, 4]. This functional diversity
enables NK cells to play both protective and potentially
pathogenic roles in chronic inflammatory diseases. How-
ever, there are substantial knowledge gaps regarding the
role of NK cells in human non-infectious inflammatory
diseases such as inflammatory arthritis (IA).

IA encompasses a spectrum of autoimmune and
autoinflammatory disorders characterized by joint in-
flammation leading to tissue damage and disability. A
common feature in these disorders is the accumulation
of various immune cells in the synovial fluid (SF), which
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drives local inflammation and joint destruction [5].
Although T-cells and macrophages have been tradi-
tionally emphasized in arthritis pathogenesis, increasing
evidence suggests that innate lymphocytes, particularly
NK cells, contribute to both systemic inflammation and
localized inflammatory responses in affected joints [6].

NK cells infiltrate inflamed joints and undergo phe-
notypic and functional shifts influenced by the local
inflammatory environment [6-8]. An increase in acti-
vated synovial NK cells with high regulatory potential
has been reported [6-8]. IFNy-producing NK cells were
associated with erosions in rheumatoid arthritis (RA)
[7]. We recently showed that NK cells interact with
synovial fibroblasts [8]. NK cells contribute to the de-
velopment of a highly inflammatory subtype in synovial
fibroblasts, characterized by MHC-II-expression,
antigen-presentation, and IL-6 production [8, 9]. Con-
ventional flow cytometry analyses in RA showed that SF-
NK cells belong to the CD56""*8 phenotype, marked by
elevated expression of activation markers such as CD69
and reduced cytotoxic potential compared to PB NK cells
[3, 6, 10]. In psoriatic and other arthritides, similar al-
terations of SF-NK cells have been reported, indicating a
tailored local adaptation as a general feature in synovial
inflammation [11].

Notably, substantial knowledge gaps and controver-
sies remain regarding the developmental origin, func-
tional plasticity, and precise contributions of NK cells to
arthritis pathogenesis. One prominent debate centres
around the identity and function of immature versus
mature NK cell subsets within inflamed joints. Specifi-
cally, the potential differentiation trajectory of SF-NK
cells remains unclear [3, 6]. Lacking analysis of paired
samples, the compartment effect also remains under-
studied precluding a direct comparison of blood vs.
synovial NK cells. These questions remain unanswered
to date, partly due to limitations in non-human mod-
elling of these diseases and limited access to human
tissue of patients suffering from these diseases. Impor-
tantly, comprehensive high-dimensional analyses of
paired PB and SF samples from the same patients are
needed but remain rare [12]. Paired blood-SF datasets
have the potential to provide essential insights into
systemic versus localized immune activation and -reg-
ulation. Moreover, such datasets allow description of
localization- and disease-specific NK cell changes that
are not secondary to treatments, as the comparator (PB)
is equally exposed to those treatments. These paired
analyses are therefore crucial to delineate the relation-
ship between peripheral immune dysfunction and joint-
specific inflammatory responses, offering potential
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therapeutic targets tailored to specific activation states or
lymphocyte subsets [5, 7].

Our investigation described here aimed to elucidate
common systemic versus local NK cell alterations, fo-
cusing particularly on developmental stages, activation
states, and immune regulatory mechanisms operative in
inflamed joints. We performed detailed spectral flow
cytometry analyses of paired PB and SF samples from
patients with active IA, including diverse disease entities,
and compared these profiles with healthy controls. In
addition, we leverage interact-omics [13], a recently
published innovative interaction mapping framework
that analyses cell doublets as surrogate parameters for
cell-cell interactions. We use this framework to delineate
cell-cell interactions in inflamed joints compared to PB
and healthy controls. Further, we use an innovative
approach of developmental trajectory mapping to de-
termine the maturity and activation status of SF-NK
cells. This paired, comprehensive approach allows in-
sights into compartment-specific alterations of NK cells
in joint inflammation.

Material and Methods

Patients and Materials

Informed written consent was obtained from all
donors of PB and SF. Clinical data were gathered from
patient records, and the local institutional review
board approved this study (University of Heidelberg,
§-272/2021). Data and samples were pseudonymized.
Patient and healthy donor characteristics are detailed
in Table 1.

Sample Asservation and Preparation

PB mononuclear cells (PBMCs) were isolated from
heparinized blood from healthy volunteers using
density gradient centrifugation with Pancoll separat-
ing solution (Pan Biotech) and frozen immediately
after isolation in Kryosafe (c.c.pro) or FCS (foetal calf
serum) + 10% dimethyl sulfoxide (DMSO). PB whole
leukocytes from IA patients were prepared by ACK
lysis at RT for 5 min, followed by a centrifugation at
300 g for 5 min. The supernatant was removed and the
pellet was resuspended in ACK and lysed for 5 min at
4°C. The lysate was centrifuged again at 300 g for 5 min
and the cells were finally frozen in Kryosafe medium.
SF from IA patients with highly active arthritis was
taken from diagnostic or therapeutic punctures after
written informed consent. The SF was aspirated into
syringes, subsequently diluted 1:10 in phosphate buffer
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solution and centrifuged for 10 min at RT at 300 g. The
cell pellet was resuspended in Kryosafe and frozen
immediately.

Spectral Flow Cytometry Analysis

Immediately before staining, cells were slowly thawed
and counted. A total of 500.000 cells were washed and
stained with Zombie NIR and the staining master mix
containing all antibodies, True-Stain Monocyte Blocker
(Biolegend) and Brilliant Stain Buffer (BD Biosciences).
After 30 min at 4°C, cells were washed again and re-
suspended in phosphate buffer solution with 2% human
serum. For flow cytometry analysis, the BD Cytek Au-
rora Spectral cytometer was used. Quality control was
performed according to the manufacturer’s instructions
daily before measuring.

Preprocessing and Gating of Flow Cytometry Data

Raw.fcs files were exported from the CyTEK Aurora
cytometer with concurrent normalization and de-
multiplexing according to the manufacturer’s instruc-
tions. The demultiplexed files were gated using FlowJo
(BD Biosciences, v. 10.9.0) and read using FlowIO (v.
1.1.1). The gating strategy is illustrated in online sup-
plementary Figure S1A (for all online suppl. material, see
https://doi.org/10.1159/000548548). The individual files
were concatenated into an AnnData (v. 0.10.2) [14]
object in Python (v. 3.10.9). Firstly, the data were
arcsinh-transformed using manually assigned cofactors
that separate the marker-positive from marker-negative
events. To gate CD45+ cells, the transformed data were
clustered using the Leiden algorithm (v. 0.10.1) [15] and
projected in uniform manifold approximation and
projection (UMAP; v. 0.5.0) [16] space. The clusters with
expression of lineage-defining markers were selected and
classified as the respective cell type. NK cells were de-
fined as cells belonging to clusters with an expression of
CD45, CD16, and CD56. Monocytes were classified by
the expression of CD45 and CD14. The expression of the
T-cell receptor CD3 identified T-cells, while these cells
were further grouped into CD8+T-cells and
CD4+T-cells (online suppl. Fig. S1B-D).

Diffusion Map and Differentiation Rank Analysis

Diffusion maps were calculated using the ScanPy
implementation [17-19]. Firstly, 20 principal compo-
nents and the resulting neighbourhood graph were
calculated as described in the dimensionality reduction
paragraph. For diffusion maps, 15 components were
calculated. Differentiation ranks were determined using
a two-step computational approach. Initially, the
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Table 1. Patient cohort

Donor Material Sex Age, Diagnosis Immunosuppressive treatment Disease Serology Cells/
years duration nL SF
P1 SF, F 36 JIA Adalimumab 40 mg s.c./14d, 17 years  HLA-B27+, ANA 1: 45
PBWL sulfasalazine 1,500 mg/d, 5,120
prednisolone 10 mg/d
P2 SF F 78 RA Prednisolone 10 mg/d N/A RF+ (100 IU/mL), 23.25
PBWL ACPA+ (340 1U/
mL), ANA neg
P3 SF, M 67 Gout None 2 weeks CRP 370 mg/L N/A
PBWL
P4 SF, M 73 PMR Leflunomide 20 mg/d, prednisolone 17 years  RF neg. ANA neg 1.25
PBWL 4 mg/d
P5 SF, M 49 PSA Prednisolone 50 mg/d 11 years  RF neg., ACPAneg., 5.8
PBWL CRP 223 mg/L
P6 SF, F 46 iraE (breast Abemaciclib 300 mg/d 1 month N/A 16.15
PBWL cancer)
DD PsA
P7 SF, F 50 RA (erosive)  Upadacitinib 15 mg/d, leflunomide 28 years  RF neg., ACPA neg., 14.0
PBWL 15 mg/d, methylprednisolone ANA 1:320
8 mg/d
HD1 PBMC F 23 - - - - -
HD2 PBMC F 24 - - - - -
HD3 PBMC F 20 - - - - -
HD4 PBMC F 20 - - - - -
HD5 PBMC F 23 - - - - -
HD6 PBMC F 33 - - - - -
HD7 PBMC F 24 - - - - -
HD8 PBMC F 20 - - - - -
HD9 PBMC F 22 - - - - -

P, patient; HD, healthy donor; SF, synovial fluid; PBWL, peripheral blood whole leukocytes; PBMC, peripheral blood mono-
nuclear cells; F, female; M, male; JIA, juvenile idiopathic arthritis; RA, rheumatoid arthritis; PMR, polymyalgia rheumatica; PSA,
psoriatic arthritis; Ca, carcinoma; DD, differential diagnosis; CTD, connective tissue disease; ILD, interstitial lung disease; s.c.,
subcutaneous; /d, per day; N/A, not available; ANA, antinuclear antibody; RF, rheumatoid factor; ACPA, anti-citrullinated protein
antibody; CRP, C-reactive protein; SSA/SSB, antibodies against SS-A/SS-B.

expression levels of markers CD16, CD56, and CD57
within each cell were standardized. These markers were
weighted (CD56: —1.0, CD16: 0.5, CD57: 1.0) to compute
arank score, which was then normalized to a (0, 1) range.
Subsequently, we assigned differentiation rank values to
all cells in the dataset by averaging the differentiation
rank of their nearest healthy control neighbours. This
process began by considering the five closest neighbours
and expanded up to fifty neighbours if sufficient control
cells were not initially found. For full implementation
details, refer to the source code.

Specific NK Cell Phenotypes Reveal
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Interact-Omics Analysis

The analysis of physically interacting cells was per-
formed according to the guidelines outlined in Vonficht
et al. [13]. Initially, raw.fcs files were preprocessed using
PeacoQC [20] to remove artefact events and anomalies.
Populations of interest (live cells) were exported using
channel values as.csv files. Further analyses were performed
in R (v. 4.3.0) using the PICtR package (https://github.com/
agSHaas/PICtR). In brief, the sketch_wrapper function was
used for the classification of cells according to their FSC-
area to FSC-height ratio, for downsampling using the
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atomic sketching approach [21], dimensionality reduction
using principal component analysis and clustering with the
Louvain algorithm [22]. Finally, the data were visualized
using a UMAP embedding [16]. Clusters were manually
annotated using established marker expression profiles and
expert curation. Clusters with interacting cells were se-
lected and clustered using the Leiden algorithm [15] and
re-annotated as described above. Clusters with more than
two interacting partners were excluded from the display
item but not from the calculations. For cells not included in
the initial sketching, cluster identities were assigned using
Linear Discriminant Analysis as implemented in the MASS
R package.

Statistical Analysis

The boxplots display the median and the 25th/75th
percentile (box), while the whiskers extend from mini-
mum to maximum values (0-100%). Statistics were
calculated as a pairwise the Kruskal-Wallis test, applied
to two independent conditions at a time, as implemented
in SciPy. For two groups, this test is mathematically the
same as the Wilcoxon rank-sum (Mann-Whitney U) test
and yields identical two-sided p values when the same tie
correction is used; we, therefore, report these results as
Wilcoxon where helpful. Comparisons with p values
exceeding 0.05 have been considered non-significant.

Results

In order to delineate the phenotypes of NK cells in IA,
we isolated leukocytes from PB and paired SF samples from
7 patients with active IA of different disease entities. As a
control for the phenotypes of circulating mononuclear
cells, PBMC:s of nine healthy donors were amended to the
dataset (Fig. 1a; Table 1). We used spectral flow cytometry
with a panel of 28 markers, covering markers for viability,
cell type identification, activation, and ontogeny (online
suppl. Fig. S1; Table 2). NK cells, CD8+T-cells,
CD4+T-cells, and monocytes were all detectable in all SF
samples, and there were no significant changes in the
relative frequency of these cells among gated mononuclear
cells in PB of patients with IA compared to healthy controls
(Fig. 1b). NK cell frequencies were slightly lower in in-
flamed SF compared to PB (Fig. 1b).

NK Cells Display Compartment- and

Arthritis-Associated Phenotypes in IA

Hierarchical clustering and principal component
analysis of NK cells based on the marker expression on a
pseudo-bulk-level revealed a clear phenotypic separation
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of SE-NK cells compared to paired PB-NK cells of the
same patients (Fig. 1c, d). Interestingly, PB-NK cells
from patients were phenotypically distinct from healthy
controls (Fig. 1c, d). In PB, patient NK cells exhibited a
significantly increased expression of CD161, KLRGI,
TIGIT, and 41BB as well as a decreased expression of
CTLA4, CD56, CD38, and PD-1 as compared to healthy
controls (Fig. le). In contrast, SF-NK cells were char-
acterized by a significantly increased expression of
NKG2A, CD56, CTLA4, CD69, 41BB, and HLA-DR and
an accompanied downregulation of CD16 and CD57
compared to paired PB-NK cells from the same patients
(Fig. le). Per-sample analysis of protein expression levels
on NK cells comparing all three groups is shown in
online supplementary Figure S2.

Phenotypic Heterogeneity of NK Cells in PB and SF

in IA

Projection of single NK cells into UMAP-space
suggested a clear distinction of NK cells originating
from PB and SF of patients with IA (Fig. 2a). SF-NK cells
were characterized by a higher expression of CDS56,
CD69, and NKG2A with a notably lower expression of
CD16 and CD57 when compared to PB-NK cells of both
healthy donors and patients (Fig. 2b, n = 7 IA patients,
n = 9 healthy controls). We noticed visually discernible
subtypes within SF-NK cells. These subtypes were
characterized by a differential CD56 and CD16 as well as
CD69 expression, the latter of which was unique to, but
did not cover all SF-NK cells (Fig. 2b). To confirm these
NK cell-subsets in SF, we used unsupervised Leiden
clustering on exclusively SF-NK cells. Leiden clustering
identified a total of seven clusters of SF-NK cells which
were subsequently merged into three metaclusters
(Fig. 2c). These metaclusters were characterized by
differential expression of NKG2A, CD16, CD56, CD69,
CD57, and CTLA4, likely representing different acti-
vation states or maturation stages of SF-NK cells (Fig. 2d,
e, online suppl. Fig. S3).

Maturation Analysis Suggests the Presence of less

Differentiated NK Cells in SF

Several differentially expressed surface markers on SE-
NK cell metaclusters (including CD16, CD56, and CD69)
are recognized markers for NK cell activation, tissue-
residency, maturation, and ontogeny at the same time,
depending on the experimental condition. This limits the
interpretation of earlier studies suggesting the presence of
immature NK cells in inflamed joints and requires alter-
native approaches for confirmation. In order to overcome,
these limitations and to alternatively delineate the
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developmental stages of NK cell subsets in arthritis pa-
tients, we calculated a proportional differentiation rank of
PB-NK cells of healthy donors (n = 9) using the weighted
expression of CD56, CD16, and CD57. We then mapped
patient NK cells (n = 7) onto this differentiation spectrum
and visualized them in a combined diffusion map em-
bedding [19] to visualize the differentiation trajectory on
NK cells on our dataset (Fig. 3a; online suppl. Fig. S4 and
Methods). In SF, we observed an enrichment of NK cells of
which the cell surface proteome was similar to the po-
tentially earliest maturation stages found in PB in healthy
controls (Fig. 3b). In parallel, the frequency of CD57"iht
cells was reduced in PB of IA patients, confirming an
accumulation of potentially immature NK cells in SF
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(Figure continued on next page.)

(Fig. 3b). These immature cells were associated with a
lower expression of CD161, KLRG1, CD45, and TIGIT as
well as a higher expression of CD27, NKG2A, and CTLA4
across compartments (online suppl. Fig. S5). We con-
firmed the analysis by excluding the three markers CD16,
CD56, and CD57 in the mapping (not shown), thus
confirming the immaturity of SF-NK cells independent of
these markers.

Differential Phenotypes of CD8+- and CD4+T-Cells

in IA

Following our approach as described above, we
found clear shifts in the marker profile of both
cytotoxic (CD8+) and helper (CD4+) T-cells in
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Fig. 1. NK cells display phenotypic changes in PB and synovial
fluid in patients with inflammatory arthritis. a Graphical ex-
perimental design. Of note, from patients, only paired blood
and synovial fluid samples were used in this study. b Cell
frequencies. Frequencies of the indicated cell types were
plotted as a percentage of mononuclear cells. Wilcoxon test was
used to compute statistical significance. p > 0.05: n.s., p < 0.05:
*,p <0.01: **, p < 0.001: ***c Sample correlation analysis on a
pseudo-bulk level. NK cells were correlated as described in the
(online suppl) Methods section. Hierarchical clustering re-
vealed three subgroups which correspond to cells of different
tissue and patient group (healthy and IA). d Sample-wise
principal component analysis (PCA). Samples were grouped
by PCA and coloured by tissue and patient group (left) and the
metaclusters (right) as calculated in C. e Differential expres-

PB from patients compared to healthy controls:
Both subsets showed higher TIGIT, KLRGI1, and
CD16 expression together with a common decrease
of CD27. Further downregulated markers in
CD8+T-cells included CTLA4, NKG2A, and CD69,
while CD38 was downregulated in CD4+T-cells
(Fig. 4; online suppl. Fig. S6-S88, n = 7 IA patients,
n = 9 healthy controls). Compared to paired PB-
T-cells, SE-T-cells were characterized by further up-
regulation of PD-1, TIGIT, and HLA-DR in both
subsets, alongside raised CD69 on CD4" cells,
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sion analysis. Fold-changes (x-axis, asinh_fc) were calculated
as described in the (online suppl) Methods section. Notably,
NK cells analysed from PB show significant phenotypic dif-
ferences comparing healthy controls and patients with IA,
including expression changes of CD161, KLRG1, PD-1 and
CD56. Comparison of NK cells extracted from PB and SF show
a differential phenotype with the elevation of activation
markers such as NKG2A and CD69 and the corresponding
downregulation of CD16 and CD57. p-values were calculated
as described in the Methods section (Kruskal) where p values
above 0.05 were considered not significant (n.s.). For com-
parison, the data are presented as boxplots in online supple-
mentary Figure S2. Healthy controls n = 9, IA patients n = 7.
PB: peripheral blood, SF, synovial fluid; IA, inflammatory
arthritis.

yielding several clusters that differed mainly in PD-1,
CD69, HLA-DR, and TIGIT expression (Fig. 4a-e;
online suppl. Fig. S6-S8).

Mapping of Physically Interacting Cells in

Inflamed SF

The analyses described above indicated a unique
phenotype of SE-NK cells. Under the premise that direct
intercellular communications shape phenotypes and vice
versa, we next wanted to elucidate which other cell types
NK cells interact with in arthritis. Instead of using

Deicher et al.



Table 2. Twenty-eight-colour-antibody panel

Target Fluorophore Dilution Distributor Catalogue No. Clone
CD38 BUV395 1:100 BD Biosciences #563811 HB7 (RUO)
CD159¢ (NKG2C) BUV496 1:50 BD Biosciences #749844 134,591 (RUO)
CD3 BUV563 1:200 BD Biosciences #748569 UCHT1
CD16 BUV615 1:400 BD Biosciences #751572 3G8
cD161 BUV661 1:100 BD Biosciences #750596 HP-3G10
CD32 BUV737 1:50 BD Biosciences #741835 FLI8.26
CD56 BUV805 1:500 BD Biosciences #742022 B159
CD137 (41BB) BV421 1:50 Biolegend #309820 4B4-1

CDh4 V450 1:200 BD Biosciences #560345 RPA-T4
CD64 BV480 1:200 BD Biosciences #566129 10.1
KLRG1 BV510 1:50 Biolegend #138421 2F1/KLRG1
CD45 BV570 1:400 Biolegend #304034 HI30
HLA-DR BV605 1:50 Biolegend #307640 L243
cD19 BV650 1:200 Biolegend #302238 HIB19
NKp44 BV711 1:200 BD Biosciences #744303 p44-8
CD69 BV750 1:400 Biolegend #310954 FN50
TIGIT BV786 1:100 BD Biosciences #747838 741,182
CD57 FITC 1:400 Biolegend #359604 HNK-1
cb8 AF532 1:200 ThermoFischer Scientific #58-0088-42 RPA-T8
CD14 BB700 1:1,000 BD Biosciences #566465 MeP9
CD27 PerCp-Cy5.5 1:50 BD Biosciences #560612 M-T271
CD159a (NKG2A) PE 1:100 Beckman Coulter #IM3291U Z199
CD152 (CTLAA4) PE-Dazzle 1:100 Biolegend #369616 BNI3
CD253 (TRAIL) PE-Cy7 1:50 Biolegend #109312 N2B2
CD279 (PD-1) AF647 1:100 BD Biosciences #560838 EH12.1
CD18 AF700 1:800 Biolegend #302124 TS1/18
Zombie NIR Zombie NIR 1:700 Biolegend #423106 -

CD66b APC-Fire 750 1:400 Biolegend #396908 QA17A51

indirect bioinformatics-based analyses as known from
single-cell RNA-seq-studies that rely on inference of cell-
cell communication, we mapped physically interacting
cells by applying the analytical interact-omics framework
[13] on the spectral flow cytometry dataset (Fig. 5, n =7
IA patients, n = 9 healthy controls). Interact-omics le-
verages multi-parameter flow cytometry to generate an
unbiased map of physically interacting cells. This adds a
critical layer of information that conventional single-cell
approaches, which provide only static snapshots, often
overlook and offers novel insights into the complex

Specific NK Cell Phenotypes Reveal
Distinct Maturation and Activation States

cellular networks underlying IA. Given that cell-cell
interactions may result from both biological and tech-
nical factors, we sought to limit technical influences by
focusing on interactions within, rather than across
compartments.

In healthy blood, we found that NK cells have the
potential to interact with several cell types, even
though event counts in specific subsets were low and
require careful interpretation. In patient blood and SF,
NK cells were found to be predominantly interacting
with neutrophils (Fig. 5a). Interestingly, in SF, the
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interactome was overall dominated by interactions
between monocytes and B-cells, whereas in healthy
blood, monocytes rather interacted with T-cells. Al-
though our study design does not allow for a direct
tissue comparison, these findings highlight how the
cellular interaction landscape differs by condition
(Fig. 5b).

Discussion

In this study, we analysed lymphocyte phenotypes
using paired samples of PB and SF from patients with
IA. Despite various underlying diseases with po-
tentially differing mechanisms, every patient ex-
hibited severe joint swelling combined with high cell
counts in the SF, indicating a consistent clinical
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(Figure continued on next page.)

phenotype of intense inflammation. Although the
current data do not allow for conclusions regarding
individual diseases, they show similarities and
common features of IA. The differences of lym-
phocyte subsets in blood found in patients compared
to healthy controls may be partially secondary to
treatment and cell purification (see Methods), pre-
senting a potential limitation of our study. It is in
contrast a strength of our dataset that the differences
within paired samples, the focus of our study, cannot
be confounded by treatment.

The spectral flow cytometry panel was primarily
designed to study NK cell biology, but also the most
common lineage markers were included. Given
overlaps of important cell surface receptors between
NK cells and T-cells, we were also able to describe
T-cells.

Deicher et al.
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Fig. 2. Subgroups of NK cells in synovial fluid. a Left: UMAP
representation of NK cells in PB and SF. Right: UMAP col-
oured by tissue and patient cohort. b Embedding as in A,
coloured by the indicated marker proteins. Notably, a diver-
sification of NK cells was observed in SF, characterized by the
contrastive expression of CD56 and NKG2A for one subset of
cells and expression of CD69 for another subset of cells.
Corresponding boxplot representations are shown in online
supplementary Figure S2. ¢ UMAP embedding of SF-NK cells
only. Left: coloured by Leiden clusters. Right: coloured by
metacluster which were obtained by merging the Leiden

Differential T-Cell Immunophenotypes in IA:

Elevated Checkpoint and Differentiation Markers in

PB and SF

We noticed phenotypic changes within PB cells in
patients with IA compared to healthy controls. The
observed changes in CD8+T-cells and CD4+T-cells
accompanied an increased expression of KLRGI,
CD16, and TIGIT in IA. This suggests a more fre-
quent abundance of terminally differentiated effector
cells with signs of exhaustion in our cohort [23-27].
These cells also showed signs of inhibitory mecha-

Specific NK Cell Phenotypes Reveal
Distinct Maturation and Activation States

clusters. d Embedding as in C, coloured by the indicated
marker proteins. Three subsets can be observed, which are
characterized by differential expression of CD56, CD16 and
CD69, together with other activation markers (e.g., TIGIT).
e Differential expression of metaclusters as shown in C. p
values were calculated as described in the Methods section
(Kruskal) where p values above 0.05 were considered not
significant (n.s.). For comparison, the data are presented as
boxplots in online supplementary Figure S3. Healthy controls
n=9,IA patients n = 7. PB, peripheral blood; SF, synovial fluid;
IA, inflammatory arthritis.

nisms, suggesting a tightly controlled activation and
suppression balance as observed for the NK cells as
discussed below. The presence of these cells has been
linked to various forms of inflammation in the past
[27-29] and points to high burden of inflammation in
the patients of our cohort. SF-CD8+T-cells and SF-
CD4+T-cells were characterized by the increased
expression of PD-1, TIGIT, CD69, and HLA-DR,
suggesting the presence of a subset of activated,
potentially exhausted CD8+- and CD4+T-cells [12,
30-33].
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Fig. 3. Differentiation analysis of NK cells suggests the influx of
immature NK cells into the inflamed synovium. a Diffusion
Map embedding coloured by CD56, CD16 and CD57 as well as
the differentiation rank along the three markers (compare
Methods section). b Left: diffusion map embedding as in A
coloured for the patient group. Right: histogram analysis shows
an accumulation of less mature NK cells in the SF with con-
current reduction of these cells in PB of the same patients.

Phenotypic Differences of PB-NK Cells in IA

Previous studies evaluating the phenotypic differences
of PB-NK cells comparing healthy donors and patients
with TA are scarce and often describe distinct pop-
ulations as differentially abundant [7, 10, 34-36]. Here,
our high-dimensional approach allowed us to delineate
striking differences of NK cells from PB comparing
healthy individuals and patients with IA. Our analyses
suggest that PB-NK cells in IA are characterized by a
higher expression of CD161 and 41BB, indicating a pro-
inflammatory and activated cell state [37], and a lower
CD56, PD-1, and CTLA4 expression compared to NK
cells from healthy controls. As CD56""8" NK cells are
generally associated with less maturity [38], our results
indicated a specific loss of immature NK cells in the PB of
IA patients. This might be caused by a slower production
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Notably, a subset of NK cells with very high differentiation
rank values, characterized by a low expression of CD16 and a
high expression of CD57, are present in cells from PB of
healthy donors, but not in patients with IA. Marker expression
across the differentiation rank has been included as online
supplementary Figures S4 and S5. Healthy controls (n = 9), IA
patients (n = 7). PB, peripheral blood; SF, synovial fluid; IA,
inflammatory arthritis.

of NK cells, a preferential trafficking of these cells to the
inflamed site, or both. The paired approach allowed us to
test the hypothesis if phenotypically immature NK cells
were enriched at the site of inflammation. Indeed, we
confirmed the preponderance of immature NK cells in
SE. Our study therefore expands previous studies
[6, 7, 10, 35, 39] by showing the immaturity of SF-NK
cells using the unbiased differentiation rank approach
discussed in the following section.

Differentiation Rank Analysis Suggests the Presence of

Immature NK Cells in the Inflamed Joint

Some of the frequently used markers of NK cell mat-
uration and activation, especially CD56, CD16, and CD69,
are contemporarily influenced by cell activation, ho-
moeostasis, ontogeny, and tissue localization. Therefore, it
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remained uncertain whether the SF-NK cell phenotype is
rather influenced by inflammation-dependent activation or
developmental stages. In order to better classify NK cell
subsets, we calculated a differentiation rank score based on
a composite measure of CD56, CD16, and CD57 [12,
40-43] on healthy NK cells that allowed us to have a
more unbiased and continuous measure of NK cell mat-

Specific NK Cell Phenotypes Reveal
Distinct Maturation and Activation States

(Figure continued on next page.)

uration. This approach is further backed by recent single-
cell RNA-seq data that proposed the presence of three
distinct NK cell subgroups, distinguished, among others,
by the expression of CD56, CD16, and CD57 [44]. Our
approach confirms that a difference in maturation states
contributes to the differences between healthy and diseased
blood and between PB and SF, with enriched immature NK
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Fig. 4. Phenotypic heterogeneities of cytotoxic T lymphocytes
in PB and SF of patients with IA. a Sample correlation analysis.
Samples were correlated as described in the online supple-
mentary Methods section. Hierarchical clustering revealed
three subgroups which correspond to cells of different tissue
and patient cohort. b Sample-wise PCA. Samples were grouped
by PCA and coloured by tissue and patient cohort (left) and the
metaclusters (right) as calculated in C. ¢ Differential expression
analysis. Fold-changes (x-axis, asinh_fc) were calculated as
described in the online supplementary Methods section. No-
tably, CD8+T-cells analysed from PB show significant phe-
notypic differences comparing healthy controls and patients
with IA, including expression changes of TIGIT, CD16, and
CD27. Comparison of cells extracted from PB and SF show a
differential phenotype with the elevation of activation markers

cells in SF and depleted immature NK cells in patient
blood. Furthermore, the absence of the CD57°"8h pop-
ulation in the PB of arthritis patients indicates that the full
maturation spectrum and ageing of NK cells is impaired in
IA patients. This could be caused by the consumption of
earlier NK cells at the site of inflammation, although we
cannot rule out that changes in the cytokine signature or
the general state of inflammation reduces NK cell matu-
ration, in line with previous results [41]. Our results
therefore suggest that maturation together with local ac-
tivating stimuli drive the heterogeneity of SF-NK cells as
indicated by metacluster analysis.

Elevated CTLA4, NKG2A, and CD69 Characterize

SF-NK Cells and Indicate a Complex Immune

Regulation

SF-NK cells exhibited complex phenotypes partly
characterized by the up-regulation of immune
checkpoints, especially NKG2A. NKG2A acts as an
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such as PD-1, CD69, and HLA-DR and the corresponding
downregulation of CD27 and CD57. For comparison, the data
are presented as boxplots in online supplementary Figure S6.
d UMAP representation of cytotoxic T lymphocytes. Colouring
by tissue and patient cohort suggests substantial differences of
cells obtained from the different conditions. e Marker ex-
pression showed that SF-CD8+T-cells were characterized by
lower expression of CD27 while elevating activation markers
such as PD-1, HLA-DR, TIGIT, and CD69. p values were
calculated as described in the Methods section (Kruskal) where
p values above 0.05 were considered not significant (n.s.).
Corresponding boxplot representations are shown in online
supplementary Figure S6. Healthy controls (n = 9), IA patients
(n = 7). PB, peripheral blood; SF, synovial fluid; IA, inflam-
matory arthritis.

inhibitory receptor and has been shown to limit
excessive activation and cytokine production as well
as promoting NK cell expansion [45, 46]. Here,
NKG2A was found to be mostly expressed on im-
mature, CD568"t NK cells in line with previous
studies [47, 48]. At the same time, NK cells from SF
showed a significantly higher expression of CTLA4
compared to patient blood. CTLA4 functions as an
inhibitory receptor on NK cells, similar to its role on
T-cells [49-51]. Whether elevated CTLA4 on SF-NK
cells modulates the therapeutic effect of abatacept, a
CTLA4-Ig fusion protein used to treat RA, needs to
be addressed in future studies. In addition to CD69, a
marker for NK cell proliferation and cytotoxic ac-
tivity [12, 52], we found further activation markers
on SF-NK cells (HLA-DR, 41BB), suggesting that
both differences in maturation and local cell acti-
vation concurrently drive NK cell phenotypes in
inflamed SF.
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Fig. 5. Interact-omics across cell types in inflamed arthritis.
a Interacting cells were selected by cluster annotation (left
UMAP), reclustered (middle UMAP), and re-annotated (right
UMAP). The stacked bar chart (right) shows the percentage of
cell-cell interactions for each condition: healthy PB, inflamed
arthritis SF, and inflamed arthritis PB. Samples to the left of the

Cellular Interaction Landscape Reveals Mainly NK

Cell/Neutrophil Interactions in Patients

As NK cells are clearly influenced by surrounding
cells, we intended to identify neighbour cells that un-
dergo tight binding as a surrogate of direct cell-cell
interactions. Hypothesizing that tight intercellular
binding is not disrupted during the applied conservation
procedures, we leveraged a novel approach that allows
cellular interaction mapping [13]. Using this approach,
we were able to detect cell-cell interactions between
T-cells and monocytes in healthy PB, while diseased
patients were enriched for NK cell/neutrophil interac-
tions and interactions between monocytes and B-cells,
respectively. While slightly different cell isolation pro-
cedures preclude a direct comparison between patients
and healthy controls in this study, it is still noteworthy
that we were able to detect cell-cell interactions between
T-cells and monocytes in healthy PB. The pathophysi-
ologic relevance of cell-cell interactions between NK cells

Specific NK Cell Phenotypes Reveal
Distinct Maturation and Activation States

black bar consisted of purified PBMC, while samples to the
right were purified whole leukocytes. b Boxplots illustrating
the fraction of selected interactions in each tissue. Each dot
represents an individual sample. Healthy controls (n = 9), IA
patients (n = 7). PB, peripheral blood; SF, synovial fluid; IA,
inflammatory arthritis.

and neutrophils and the potential difference in cellular
interactions between specific diseases and controls needs
to be substantiated in future studies and in functional
experiments.

Taken together, our paired analysis of lymphocyte
surface proteomes showed profound differences between
PB and SF. In SF, maturation stages and activation
contribute to complex and heterogeneous NK cell
subsets which are also characterized by enhanced
checkpoint molecules like CTLA4 and NKG2A. While
previous work indicated existence of immature synovial
NK cells based on individual surface markers, we con-
firm this finding using more detailed phenotypic de-
scriptions and differentiation rank mapping. This study
further provides novel insights by implementing the
interact-omics framework elucidating crosstalk of NK
cells with other immune cells in blood and SF from
patients. The extent to which NK cell/neutrophil in-
teractions contribute to the pathophysiology of arthritis
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and their potential as therapeutic targets need to be
addressed in future investigations. Modulation of this
crosstalk, either by immune-checkpoint-blockade or by
disrupting critical mediators of pathogenic NK cell/
neutrophil interaction holds promise to ameliorate
joint inflammation without broadly compromising in-
nate immune function.
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