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Keywords: Background and Objective: Calcium serves as the bidirectional link between the heart’s electrical excitation
Calcium release units and contraction. Electrical excitation induces an influx of Calcium across the sarcolemma and T-tubular
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membrane, triggering calcium release from the sarcoplasmic reticulum. Calcium sparks, the fundamental events
of calcium release from the SR, are initiated in specialized microdomains where Ryanodine Receptors and L-
type calcium channels co-locate. The spatial heterogeneity of Calcium release and the random occurrence of
strong release fluxes render simulations challenging. Developing mathematical models and efficient simulations
of detailed calcium spark models is crucial to understanding heart function. In this paper, we introduce space—
time adaptivity within a parallel computing framework into the multiscale simulation of calcium sparks in
cardiac myocytes to improve the stability and performance of these simulations.

Methods: We model intracellular calcium concentrations in both the cytoplasm and the SR domains using
a set of coupled reaction—diffusion equations. Spatial grid adaptivity is implemented through multilevel
finite element methods to account for the spatial heterogeneity of intracellular Ca** release. Rosenbrock-type
techniques handle small time steps for simulating stochastic channel opening and closing in the Ca’* release
units (CRUs).

Results: Our test cases demonstrate the superior efficiency of the space-time adaptive approach in optimizing
computational resources. The parallel space-time adaptive method accelerates simulations of calcium sparks
by a factor of 16.07.

Conclusions: The efficiency and speed gains in Calcium spark simulations are significant and enable modeling
based research into previously difficult to tackle questions with regard to sub-micrometer scale models, e.g
with respect to local interactions between the Sodium Calcium Exchanger and RyR clusters.

1. Introduction lasting 10 to 100 ms. They are generated by clusters of Ryanodine
receptor channels (RyRs) which release Ca®* from the SR inside dyadic

Biomedical research often relies on understanding the functional clefts, which are formed by SR- and T-tubule membrane being as
implications of molecular changes on the entire biological system. This close as 15 nm inside CRUs (see Fig. 1). Consequently, computational
necessitates a mechanistic comprehension of the interactions between modeling efforts to explore such multi-scale systems must incorporate
different scales from molecular to cellular behavior, often achieved by various spatial and temporal scales to be effective. This study focuses

multi-scale simulations. Calcium (Ca®*) is central to heart contraction,
acting as the bidirectional link between the heart’s electrical excita-
tion and contraction. Electrical excitation triggers Ca’* influx across
the sarcolemma and T-tubular membrane, leading to calcium release
from the sarcoplasmic reticulum (SR), a membrane-bound ca** storage
compartment. Ca>* sparks, the fundamental events of this calcium
release, are crucial for understanding heart function. Sparks are brief,

on space-time adaptivity exemplified by a multi-scale model of the
excitation—contraction coupling process of cardiomyocytes.
Cardiomyocytes contract when Ca>* binds to the sarcomeres. These
are longitudinally arranged protein structures that are bounded by z-
discs on either end. T-tubules are invaginations of the extracellular
space into the myocytes. Specialized junctional subvolumes of the SR
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Fig. 1. Structures within z-discs involved in Ca?* dynamics and the currents
defining the rat electrophysiology model. T-tubules are invaginations of the
plasma membrane reaching deep into the bulk of the cell. The sarcoplasmic
reticulum (SR) stores Ca>* and consists of network SR (nSR) and junctional SR
(jSR) compartments. Ca** release units (CRUs) with their L-type Ca®* channels
(LCCs) and Ryanodine receptor channels (RyRs) are formed by T-tubule and
jSR membrane. RyRs release Ca’* from the jSR. The Na*/Ca®'-exchanger
(NCX) and the plasma membrane Ca?*-ATPase (PMCA) transport Ca** across
the sarcolemma and T-tubule membrane. The electrophysiology model in-
cludes additionally the Na* current I,, the background Na* current I,
the Ca?*-independent transient outward K* current I,,, the inward rectifier
K* current I, the background K* current I,, the steady state outward K*
current I, the hyperpolarisation activated K* current I, the Na*/K*-ATPase
Iy.x»> and the background Ca** current I,

(jSR) come in close proximity to T-tubule membrane and form CRUs.
CRUs are concentrated in the z-discs (see Fig. 1). The jSR wraps
around the T-Tubules, leaving clefts of around 15 nm between the
two membranes. In these narrow dyadic clefts, two groups of channels
form clusters opposite each other: On the sarcolemmal side are the L-
type Ca>* channels (LCCs). They are voltage gated and Ca’* inhibited
channels that allow Ca®* to enter the dyadic space upon depolarization
of the plasma membrane. Opposite the LCCs in the jSR membrane is a
cluster of RyRs. They are activated by dyadic Ca’* and release Ca’*
from the jSR store. The triplet of dyadic space, the Ca’* channels, and
the jSR compartment is called a Calcium Release Unit (CRU). During
electrical stimulation, a small Ca>* influx into the dyadic space by LCCs
triggers a much larger release of Ca?* by the RyRs. The released Ca?*
diffuses out of the dyadic space and through the cytosol towards the
sarcomeres to trigger contraction. The process in the CRUs is called
Calcium induced Calcium Release (CICR). It is the essential transla-
tion and amplification step from electric to Ca>* signal that enables
excitation—contraction coupling (ECC) in cardiac myocytes. Each z-disc
contains around 400 CRUs, and each cardiomyocyte consists of around
50 z-discs with gaps of ~ 2pum between them.

Ca?* gradients inside and around CRUs during sparks are steep
and local Ca** concentrations reach many times the base level. Sparks
are highly random events. Locally, they can be considered as shot-
noise-like events due to the large concentration amplitudes and the
temporal randomness. Hence, we cannot approximate sparks by spatial
averaging and deterministic dynamics. Simulating the initiation, termi-
nation, and regulation of calcium sparks typically requires significant
computational resources. This study aims to reduce computational
time and memory usage by leveraging space-time adaptivity, which
is particularly efficient given the infrequent channel events in spark
simulations.

Sparks are of special interest for research on ECC since they allow
for studying RyR, jSR, and LCC dynamics [1-3]. Additionally, sparks
may occur as perturbations of SR Ca’* cycling during the contraction
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cycle, causing pathological arrhythmogenic membrane depolarizations.
In particular, the latter role requires multi-scale simulation skills.

Constructing a multiscale model to represent these processes across
different temporal and spatial scales is challenging [4]. Our multi-
scale model encompasses the various biophysical processes involved
in excitation—contraction coupling in cardiomyocytes. It includes ion
channel transitions that occur in tenths of milliseconds and spatial
scales of tens of nanometers, as well as whole-cell electrophysiology
spanning several seconds and spatial scales up to 100 micrometers (see
Fig. 2).

Various adaptivity approaches have been demonstrated to signifi-
cantly reduce the computational cost of simulating reaction-diffusion
models compared to the use of structured grids [5-12]. Furthermore,
the dynamic load balancing of such space-time adaptivity has been
discussed in previous studies [12,13]. Nagaiah et al. used adaptivity
in both space and time for the numerical simulation of stochastic
and deterministic equations for intracellular calcium dynamics in non-
muscle cells and in two dimensions [14]. However, limited work has
focused on the simulation of calcium dynamics in cardiac myocytes.
This paper aims to enhance numerical simulations of calcium dynam-
ics by focusing on this critical ability. In our recent work [15], we
presented a mathematical modeling and computational approach for
simulating intracellular calcium dynamics in cardiac myocytes using
static mesh and adaptive time-stepping strategies for multiple action
potential simulations.

This study utilizes a conforming multilevel finite element method
for spatial discretization and higher-order Rosenbrock methods for
temporal discretization. Spatial grid adaptivity is achieved through
Zienkiewicz and Zhu’s error estimator [16], which computes the av-
erage of local solution gradients. An automatic step-size selection al-
gorithm based on classical embedding ensures optimal accuracy. The
simulation framework is developed based on the open source FEM
framework DUNE [17].

The remainder of the paper is organized as follows: In Section 2.1.1,
we begin by discussing the mathematical modeling of calcium dynam-
ics, providing a comprehensive overview of the key components that
drive the system. This includes a detailed formulation of the dynamics
of the calcium release unit (CRU) and an in-depth description of the
membrane potential model, which are critical to understanding the
underlying processes governing calcium signaling. Section 2.2 presents
the numerical methodologies employed for the space-time discretiza-
tion. We provide a thorough explanation of the discretization tech-
niques, with a particular focus on the space adaptivity, which allows
for efficient resolution of localized phenomena, and the paralleliza-
tion strategies implemented to improve computational performance.
In Section 3, we present the results of the numerical simulations
demonstrating the effectiveness of the space-time adaptivity in calcium
spark simulations. A comparison of the simulation outcomes with and
without space-time adaptivity is provided. Finally, in the last section,
we summarize the study’s key findings and discuss potential directions
for future research.

2. Methods
2.1. Mathematical modeling

2.1.1. PDE model

We denote the cell volume by 2 ¢ R? and the plasma membrane,
i.e., its boundary, by I'. The space-time cylinder of the computational
domain is denoted by QO = Q2 x (0,T1].

Cytosolic calcium model: The dynamics of the cytosolic Ca>*
concentration, ¢, comprise plasma membrane transport, release, and
uptake by the SR and binding to buffers. Plasma membrane transport
is carried by the voltage-controlled ion channels and the Na*/Ca®*-
exchanger. The T-tubule network is an interface to extracellular fluid
in the bulk of the cytosol, enabling membrane molecules like the
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Fig. 2. The multiscale model covers several scales of biophysical processes
during excitation—contraction coupling in cardiomyocytes. These include ion
channel transitions in the order of 10th of milliseconds and on spatial scales
of 10th of micrometers, as well as whole cell electrophysiology in the order
of several seconds and spatial scales of up to 100 pm. Using an experimentally
measured approach, spontaneous calcium release events called spark-up to
whole cell calcium waves can be simulated.

Table 1

Variables and fluxes of the PDE system. Plasma membrane Ca>* ATPase flux
and Ca** background flux are set to 0 in the version of the model simulated
in this study.

Variable Description

¢ free cytosolic [Ca%*]

by concentration of Ca** bound stationary buffer in the cytosol
b,, concentration of Ca** bound mobile buffer in the cytosol

by concentration of Ca** bound fluorescent buffer in the cytosol
S free SR lumenal [Ca%*]

Flux Description

Joru Ca”* bulk cytosol flux caused by CRUs

Jyaca bulk NCX Ca* flux

A ca plasma membrane NCX Ca* flux

Jiear network SR Ca’* leak flux

Jpump network SR Ca’* uptake by SERCAs

Jysr Ca** flux between network SR and JSR compartments

R reactions of free Ca’* with buffers j = s,m, /

Na*/Ca?*-exchanger to contribute to bulk concentration dynamics
(JNaca)- The term Jy,,, describes the pumping of Ca®* by SERCAs into
the SR. The Ca** -binding molecules (bj, j = s,m, f) in the cytosol
include stationary (s), mobile (m), and fluorescent (/) Ca2* buffers. The
total concentration b;"t is conserved for all buffers. The reaction terms
R; (c,bj) describe buffering of cytosolic Ca®*. For a short glossary of
the used variables see Table 1. The partial differential equations for the
cytosolic concentration fields read

dc

=5 =V VO + Ty + Inaca + Jieak ~ Jpump ~ Y R;(cb) inQ,
J=m.s.f
@
db ,
5 =V Oy Vb)+R; (e.b;), Jj=ms,f inQ. 2

where D, = diag(D,, D., D,) and Dy, = diag(Db/, Dy, Dy,) are diagonal
diffusion matrices. The expressions for the fluxes are

N,

Jcru = 26(|F_F;| _rcru,i)']ci (c,V,1), (3)
i=1
Jieak = Vi(S —©), Q)]
y/max . Ky
Joump = mo— =, (5)
Kp+c S
R, (cb,) =kt (b = b;) e~ k;b,, where j=s.m.f. )
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Ca’* influx through LCC (J{CC) and release through RyR (Jl;yR) chan-
nels occurs mainly in dyadic clefts, see [15] for more details. They
behave in a highly stochastic manner and will be described in detail
in Section 2.1.2. The dependence on time of J., is caused by this
stochastic behavior.

We included a fluorescent buffer to emulate the approximation of
[Ca?*]; as it would be measured by a single wavelength Fluo-4 exper-
imental recording using an in vitro calibration approach as described
in [18]

F — Fy;
[Ca** ] = Ky —=, @
Fmax -F

where K is the dissociation constant of Fluo-4, F is the experimentally
measured fluorescence intensity, which is here set to the spatial average
of by, Fp,y is the measured fluorescence intensity in Ca’*-saturated
dye, which is here set to btf"t, and F,;, is the measured fluorescence
intensity in the absence of Ca’>*, which is here set to zero.

We describe the space inside CRUs as a flat cylinder in the detailed
CRU model explained in Section 2.1.2. The interface between dyadic
space and cytosol through which Ca®* leaves the CRU is a band twisted
in 3 dimensions since the junctional SR wraps around T-tubules. Since
we cannot represent the shape of this interface for each CRU on the
level of PDEs, we approximate its geometry as spherical source volumes
centered at 7, with radius r.,,; and random fluxes J! (C(r)),V.1). The
flux J " (¢, V,1) is the sum of all single channel LCC- and RyR-currents
in the ith CRU divided by 4”rgru,i /3.

The boundary conditions for the above PDEs are given by the
plasma membrane Ca®*-currents and are described by the following
equations

i-D.Ve =Jyon I'x[0,T], ®)

ji- Dy, Vb =0on I' x [0,T] . ©)

\évhere J ]’:,";Ca is the plasma membrane part of the Nat/Ca?*-exchanger
ux [19].

Sarcoplasmic Reticulum (SR) calcium model: Ca2t is released
into dyadic clefts from individual jSR compartments. They are coupled
by a diffusional flux

Nf
Tysg = 2, O(F = 7| = r ) reini /(4r) /3) 10)
i=1

to the network SR, which will be explained in more detail in Sec-
tion 2.1.2. Igy; is defined in Eq. (13) and denotes the current from
the network SR to the ith jSR. The radius of the sink volume in the
lumen of the SR is r,;. This flux contributes to SR Ca** concentration
(S) dynamics

aa_s =V (DsVS) — Jysp + —R (o — Jieald i1 O, an

t Veyt

Dg = diag(Dy, Dy, Dy) is the diffusion matrix for the SR Ca>* concen-
tration . We use the bidomain approximation for cytosol and SR [20]. In
this concept, both compartments occupy the same computational vol-
ume continuously with volume ratio vgg /v,y We impose homogeneous
Neumann boundary conditions for the SR Ca’*

A-DgVS =0 on I'x[0,T],

2.1.2. Detailed CRU model

In our computational framework, we used a previously developed
model for individual CRUs [21], which is briefly summarized below. It
features a spatially resolved description of the dyadic cleft with chan-
nel placement based on nanometer-scale microscopy studies [22,23]
and representation of the junctional sarcoplasmic reticulum (jSR). The
dyadic cleft is modeled as a cylindrical compartment with a height of
15 nm, where the RyRs at the jSR membrane are colocalized with the
LCCs at the T-tubule membrane. The behavior of the CRU is mainly gov-
erned by three different dynamics: the gating of the main Ca*-channels
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(LCGCs and RyRs), the Ca®*-profile within the dyadic cleft, and the Ca2*-
content-dynamics of the jSR. Each individual channel is modeled as
a Markov process representing different conformal states, which may
either be conductive or non-conductive. Ca?* concentrations inside the
dyadic cleft are computed under a quasi-steady-state assumption, which
allows for efficient computations of Ca>* concentrations inside the space
whenever either a channel changes state, jSR content changes, or
external parameters change. The dynamics for each individual CRU are
computed for a small timestep 47, and the fluxes through the channels
are averaged over this timestep and then used as source terms in the
PDEs. (3) and (10).

) RyR 1+A4At LCC t+At
Ji= / RyR(t)dt + Z / Tl 12)

t+4t ¢k —cl (1)
S =~ / NSRWSRT gy a3)
J At \ J, TRefill

Here, J)iéj is the current through the jth channel of type X in CRU i,
N} is the number of channels of type X in CRU i, ¢\, is the free
Ca?* concentration in the sarcoplasmic reticulum at the location of the
connection to the jSR compartment of the ith CRU and cjiSR is the Ca2t

concentration in the corresponding jSR compartment.

2.1.3. Membrane potential model

Our model includes two variants for computing membrane poten-
tial and non-diffusive ion concentrations. The first variant simulating
rabbit cells based on a model by Mahajan et al. [19] has been pre-
sented [22,24]. Additionally, we implemented a model for rat cells,
based on an adapted version of the rat electrophysiology model by
Stevenson-Cocks [25]. In both cases, all Ca**-related dynamics and
currents in the original are replaced with the computations described
above. This includes the release currents from LCCs and the sodium—
calcium-exchanger (NCX), whose values are computed in our model as
follows:

Fow = Vee Acell pm
YR Jo TN T 100 Jag "N

CRU
20000
hee=w—
Neru g:‘ ree

2.2. Numerical approach

2.2.1. Spatial discretization and adaptivity

We denote the inner product and norm in L2(2) by (-,-) and | - |,
respectively, and similarly the inner product and norm on H'(&Q) are
denoted by (-,-) ;1 and ||-||. It is assumed throughout that for a constant
0<k<K

ke <ETDie < K[>, forall ¢ eRY. a4

The spatial discretization is based on the conforming finite element
method. The variational form is obtained by multiplying the state
equations by arbitrary test functions ¢;,$,,ds, s, ps € H'(L2), and
integrating over the computational domain €: find ¢, b,,b,,S,B,, €
H'(Q)

@q&ldx

/ ()b ¢2dx

Q

/ ab LW
Q
/—¢4dx
Q

/‘)i¢4dx
Q

—/(DCVC)~V¢1dx—/qleC(c,bS,bm,S)dx
Q Q

—/(DSVbS)~V¢2dx+/ ®R,(c, by)dx
Q Q

—/(Dmem)~V¢3dx+/ B3R, (c, b,)dx 15)
Q Q

—/(DSVS)-V¢4dx+/dJ4JS(c, B,)dx
Q Q

—/(DmVBm)~V¢4dx+/ ¢y H, (S, B,)dx
Q Q
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where J (c, b, b,,, S) is the sum of the fluxes from Eq. (1) and J(c, B,)
is the total flux from Eq. (11). Let V,, ¢ H!(£2) be the finite-dimensional
subspace of piecewise linear basis functions with respect to the spatial
grid.

The approximate solutions c”, b, b" and bfi‘ can be expressed in the
form

N

Mix) = Y i), (16)
i=1
N

B x) = ) L), a7
i=1
N

B = 3 B0, as)
i=1
N

S"(t,x) = Y bh (O (x) 19
i=1
N

B(t.x) = Y Bi (). (20)

i=1

respectively where {¢; (x)}N denote the basis functions and N is the
number of nodal points. We use the standard definitions of the mass
matrix M € R¥*N whose elements are defined by M,; = /,, ¢,¢,dx and
the stiffness matrix A € RN*N with A4;; = [, V¢, V¢,dx. Finally, the
above-mentioned semi-discretization in space results in the ordinary
differential equation system in block matrix form

M?}—u = —Au+ F(u) 21)

where u = (¢, by, by,. S, Bm)T and F(u) is a vector based on the reac-
tion terms from the state equations Eq. (1), (2) and (11). The global
mass and stiffness matrices are M = diag(M,M,M,M,M) and A =
diag(A, A, A, A, A).

In our computational framework, the adaptive mesh refinement
(AMR) technique is built upon gradient-type error estimators, specif-
ically the Z 2 error indicator introduced by Zienkiewicz and Zhu [16].
To provide a concise overview, we describe the essential components
of the ZZ error indicator. Let W), be the space of all piecewise linear
vector fields, and define the subspace X, := W, n C(2,R3), where
C(2,R%) represents the space of continuous vector fields on the domain
Q.

Let v and v, denote the exact solution and the numerical so-
lution, respectively, of the state equations (Egs. (1)-(11)) and the
semi-discretized state equations (Eq. (15)) at a fixed time ¢. The error
between the numerical and exact solutions can be estimated using the
L? norm of the difference between the gradients, ||Gv, — Vu,|| 12(T)
where Gv, is a computed approximation of the gradient Vv,. This
approximation is obtained by averaging the local gradients Vo, |r(x;)
over neighboring elements, as described by Zienkiewicz and Zhu [16].
Specifically, the gradient approximation Guv, at a point x; is computed
as follows:

Guy(x) = Y, il VU r(X,). (22)
TcD, |D |
where D, represents the union of tetrahedra sharing the vertex x;, and
IT| and |D,| are the volumes of the tetrahedron T' and the region D,,
respectively. This local averaging approach allows for a more robust
and reliable estimation of the gradient.
The local error indicator 1, at an element T is defined as the
L? norm of the difference between the averaged gradient Gv, and the
exact gradient Vu,:

nzr = ||Gu, = V”h”LZ(T) > (23)

which quantifies the error within the element 7. The global error
indicator 5, is then computed by summing the squared local error
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indicators over all elements in the mesh 7, and taking the square root:

1/2

Ny = Z "2sz . 24
TeT,

This global error indicator provides a measure of the overall ap-
proximation accuracy across the entire computational domain. The Z>
indicator 17,  serves as an estimate for the error in the gradient of the
solution, specifically || Vu} (-, 7,)=Vu' (-, 1)l ;2(r), Where ), (-, 1;) and (-, 1,)
are the numerical and exact solutions at time ¢;, respectively. For a more
detailed discussion of these error indicators, refer to Verfiirth [26].

2.2.2. Temporal discretization and adaptivity

In this section, we discuss the time discretization approach to solve
the semi-discretized equations Egs. (21). For the time discretization,
we use linearly implicit Runge-Kutta methods, specifically Rosenbrock-
type methods. This class of methods avoids solving the nonlinear
system and replaces it with a sequence of linear ones. Moreover, a
straightforward embedding technique is applied to estimate the error
introduced by the time discretization, which is then used to compute
adaptive time steps. The semi-discretized equations can be expressed in
the following general coupled formulation of ODEs,

du
M— =F(u),
dt )

We further set 7/ = *+! —¢' and denote by u’ the numerical solution at
time .

For brevity, an s-stage Rosenbrock method, see [27] for details, of
order p with embedding of order p # p has the form,

u(@®) =u’. (25)

Jj—1

=1
([I—M—J)kj =F({ + 7,0 + ) a;k)-M Y Cij,, i=1...s,
tly = =17
(26)
S
utl =u + Z mk; , 27)
le
@t =+ Y ik, (28)
=1

The coefficients y, a s @15 Cps My and s, are chosen in such a way that
certain consistency order conditions are fulfilled to obtain a sufficiently
high convergence order. For the construction of the Jacobian matrix J,
we used exact derivatives of the vector F(u). A second solution w'*!
of lower order p is constructed to estimate the error part to predict
the future time step z'*!, where we assume that p > p. Specifically,
we use the ROWDA method, see [27], which is a 3(2) order method
with three internal stages. The parameters appearing in Egs. (26)—(28)
can be found in [27]. We tested this method previously and found
it to be highly efficient [7,28]. ROWDA was chosen based on those
results because of its computational efficiency and to ensure stability
and accuracy for the present system. In our numerical computations,
a new time step 7;,,; is computed based on the idea of Gustafsson
et al. [29].

We employed a BiCGSTAB method with block Jacobi precondi-
tioning to solve the system of equations that appears after the time
discretization of (26) at each internal stage of the ROWDA method.

2.2.3. Parallel implementation

In our numerical experiments, we implemented the parallel space—
time dynamic adaptivity code using the public domain software pack-
age DUNE [17] and Dune-PDELab [30]. Our implementation employs
a non-overlapping decomposition for mesh partitioning. Briefly, the
computational domain  is divided into several sub-domains £2,, where
n is the number of computing cores, and each subdomain is assigned
to one computing core. Although domain decomposition techniques are

Computer Methods and Programs in Biomedicine 274 (2026) 109154

beyond the scope of this work, further details on the parallel implemen-
tation can be found in [31]. In our implementation, we use the ALUGrid
interface [32] for grid construction and the METIS graph partitioning
software [33] for dynamic load balancing of the grid. For this purpose,
we utilize the serial k-way multilevel graph partitioning algorithm,
which facilitates the partitioning of the computational mesh at each
time step, ensuring efficient load balancing across the computational
cores.

Parallel and space-time adaptivity approach. Let us assume that the
simulation begins with a relatively coarse mesh, denoted as L, which
serves as the central mesh at the root level of the hierarchical system.
Finer mesh levels, L; for i > 0, are recursively generated from the
coarser level L,_; by refining the computational grid. In our numerical
experiments, the spatial grid refinement tolerance is set to Tol, =
1073, The Z? error estimator is invoked at every proposed time step,
following the solution of the deterministic—stochastic solver. The grid
is adapted if either the spatial error exceeds the prescribed tolerance
Tol, or if the error falls below 0.001 - Tol,. Once the grid is adapted,
the solution is updated on the new grid using linear interpolation or
restriction. To ensure proper load balancing, the grid is redistributed,
and the solution data is reallocated accordingly.

After the solution data is redistributed to the newly adjusted grids,
the time discretization step is applied to compute the new solution.
If the error at the suggested time step, computed using a simple em-
bedding time-stepping technique, is less than the prescribed tolerance,
the proposed step size is accepted. Otherwise, the time step is reduced
according to the time step controller. This process is repeated until
an appropriate step size is determined. In this way, our numerical
framework simultaneously applies both dynamic mesh refinement and
time step control, ensuring efficient and accurate simulations. The
complete parallel space-time adaptivity strategy for simulating sparks
is detailed in Algorithm Al.

3. Results

In this section, first, we demonstrate the numerical convergence
tests based on the space-time adaptivity grids and fixed finer grids
for the single CRU setup and then for one complete action potential
simulation on reasonable geometries.

3.1. Adaptivity versus non-adaptivity

Results with one CRU

In this section, we examine the numerical convergence of solutions
for a single CRU setup. This test case serves as a foundation for
determining the grid sizes used in subsequent simulations. The com-
putational domain (£) for this simulation is a cube [0, 2] x [0, 2] X [0, 2],
with a volume of 8 um?. The CRU is positioned in the center of the
domain, with a fixed radius of 0.144853 um. The number of LCC and
RyR channels is set to 4 and 23, respectively, with constant channel
fluxes applied when the channels open. These fluxes are derived from
a stochastic simulation conducted on a similar setup. The total simu-
lation time is 2 ms. The CRU opens deterministically during the first
millisecond and remains open until 1 millisecond, after which it closes
until the end of the 2-millisecond simulation period. The coarsest grid
in the simulation consists of 16 x 16 x 16 elements, referred to as the
level-0 grid, corresponding to the smallest edge size of 216 nm.

The convergence of the cytosolic solution Ca’* over time is illus-
trated on the left side of Fig. 3, while its convergence with respect
to the distance from the CRU center is shown on the right side of the
same figure. These results are presented for different maximum levels
of mesh refinement. The reference solution used for comparison is com-
puted on a structured uniform grid with dimensions 256 x 256 x 256,
corresponding to the smallest edge size of 7.8 nm. It is evident that
the solutions computed on the level-8 and level-9 grids closely match



W. Neubert et al.

60
_50
§ structured grid
I 40 level - 9
NS level - 8
© 30 level - 7
2 level - 6
%20 level - 5
10
6%.8 0.9 1.0
0
0.0 0.5 1.0 1:5 2.0
time (ms)

Computer Methods and Programs in Biomedicine 274 (2026) 109154

60
_.50
§_ —— structured grid
+ 40 —=— level -9
8 —— level -8
© 30 level -7
E —— level -6
£20 —— level -5
[®)

0

1.0 1.0

0.5 0 0.5
distance from CRU center (nm)

Fig. 3. Convergence of solutions for different spatial grid refinement levels. Shown are Ca** concentrations at a reference point at the center of the computational
domain in the left panel and along a line through the center of the domain at 1 ms simulation time in the right panel. The reference solution (labeled structured
grid) and a range of solutions obtained by limiting the maximum grid refinement to the given levels are shown. Note that the lines for refinement levels eight

and nine are identical to the reference solution. The solution has converged.

Table 2

Accuracy in space adaptivity. The maximum relative errors for the different diffusive ion species in the
model are shown, depending on the maximum allowed grid refinement.

Mesh size Min edge Relative errors

size (in nm) err, erry, erry, errg errg
level - 5 54.1 0.6613 0.1011 0.4123 0.8613 0.1862
level - 6 27.0 0.4106 0.0617 0.2506 0.5809 0.0899
level - 7 15.6 0.1001 0.0108 0.0883 0.2003 0.0354
level - 8 13.1 0.0094 0.0021 0.0090 0.0302 0.0045
level - 9 7.6 0.0010 0.0003 0.0011 0.0071 0.0009

the results obtained from the finer-structured, uniform grid solution in
both cases. This alignment indicates that the numerical solution has
converged to the reference solution as the mesh refinement increases.

In the following discussion, we evaluate the accuracy of numerical
solutions in the context of spatial grid adaptivity by comparing them
with the solution obtained from a fine-structured grid, which has a
minimum edge length of 7.8 nm. The relative error of the finite element
(FE) solutions in the L? norm is calculated as follows.

“X(.,t) - Y,-(.,z)”
o

Let X(., 1) represent the spatially distributed FE solution of the state
variables at the simulation time instance ¢+ = 1ms, which corresponds
to the point when the CRU opens. The solution obtained on the finer
structured grid at a given level is denoted by Y,(.,1). Since the exact
solution is unknown, this finer grid solution is treated as the reference
solution. It is computed using a fixed small time step size, 7 = 0.001ms.
The simulation employs adaptive time steps, enabling the computation
of the solution on spatially adaptive grids. The relative errors for the
state variables are presented in Table 2. The second column of the
table indicates the minimum edge length of the elements in the level’s
mesh computations. From the table, we observe that the relative errors
for the level-7 to level-9 grid computations are significantly smaller
compared to those for the computations on coarser grids, highlighting
the improved accuracy with finer meshes.

The number of elements, nodes, and adaptive time steps involved in
the simulation of the single CRU setup is illustrated in Fig. 4. For the
setup with a maximum of 9 levels of mesh refinement, the number of el-
ements and nodes increases to 273,260 and 49,053, respectively, at the
simulation time of 1 millisecond. In contrast, when using a maximum of
8 levels of mesh refinement, the number of elements and nodes reaches
257,854 and 46,538, respectively, at the same time point. At the 1
ms mark, the space-time algorithm achieves the maximum number of
elements, with the largest time step being 0.1 ms. After the CRU has
been open for the first millisecond, the simulation switches to a closed
state, and the space adaptivity algorithm gradually reduces the number
of refined elements, returning the computational grid to the coarsest

L2(Q)

erry(t) = (29)

L2(2)

mesh level. This approach ensures that computational resources are
efficiently utilized, focusing on refinement when the system is more
dynamic and less so when it is steady. The computational mesh at
various times during the simulation is shown in Fig. 5, highlighting the
transition of mesh refinement over time, as dictated by the adaptive
strategy.

Next, we analyze the CPU times for the deterministic opening of
a single CRU setup. The absolute computational times on a single
core for different mesh levels are provided in Table 3. From these
results, we observe that assembling the matrices consumes the largest
portion of the computational time, surpassing other components of the
simulation. Additionally, the grid adaptivity process, which includes
the error estimator and the transfer of solutions between finer and
coarser grid levels, also contributes significantly to the overall CPU
time. Adaptive time steps, which allow for the computation of the
solution on structured grid simulations, further influence the computa-
tional time. Despite these factors, the space-time adaptive simulations
are notably faster compared to simulations using fixed uniform grids.
To quantify this, we calculate the speedup factor, which compares the
time taken by the space-time adaptive simulations to that of the fixed
structured grid simulations. The speedup factor is found to be 6.91 for
the level-8 setup and 6.09 for the level-9 setup.

3.2. Action potential simulation

For the action potential simulations, the computational domain is
consists of a quarter z-disc with dimensions of 10x10x2 um?. The coarse
grid consists of 1,200,000 tetrahedral elements and 214,221 nodes
structured as a 100 x 100 x 20 element grid. Here, we set the maximum
grid refinement level to 6, ensuring that the refined grid reduces the
element’s minimum edge size to approximately 6 nm. The simulations
were run on a Padmanabha cluster, IISER Thiruvananthapuram, India,
which consists of 88 computing nodes. Each node is configured with
two Intel Xeon Gold 6132 CPUs, each with 14 cores (28 cores per node
in total), running at 2.60 GHz, and equipped with 128 GB of RAM.
Various time-stepping strategies for independent sequences of channel
events have been discussed in Chamakuri et al. [15], and we apply the
same strategies in our space-time adaptive simulations. Three action
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Fig. 4. The number of elements and nodes over the simulation time for a single CRU setup computation. The reference simulation used more than 1.6 - 107
elements and a similar amount of nodes and can therefore not be included in the graph.

Fig. 5. Computational mesh at different time instances ¢ = 0.0002,0.002 and 0.998 during the simulation of a single CRU setup illustrating the evolution and

refinement of the grid.

Table 3

The absolute CPU timings and speedup factors for the simulation of the deterministically opening of a

single CRU setup at different mesh refinement levels.

Mesh size CPU times (in seconds) Speedup
Linear Grid

Assembly solver adaptivity Total
level - 5 275.74 82.90 140.60 533.27 15.78
level - 6 327.60 106.45 174.26 642.45 13.01
level - 7 522.76 191.34 300.16 1043.65 8.06
level - 8 599.56 240.92 365.62 1218.01 6.91
level - 9 671.14 278.67 421.04 1390.21 6.05
Structured grid 5943.64 2445.51 - 8418.14 1

potential time courses are illustrated in Fig. 7(a). Initially, there is a
rapid upstroke from the resting potential of approximately -85 mV to a
peak of about 40 mV. Following this, the membrane potential enters
a plateau phase before repolarizing back to the resting potential at
around 140 ms. During the rapid upstroke of the action potentials,
many CRUs (calcium release units) open, and the mesh within the
cluster area and its surroundings undergo refinement. This refinement
leads to the maximum number of elements being reported during this
phase. As the action potential progresses into the repolarization phase,
fewer CRUs are activated, resulting in a coarsening of most elements.
This results in reduced computational demand, as only a small number
of elements are needed during the repolarization phase, where a few
channels open randomly within the clusters, as shown clearly in Fig.
7(b). This refinement and coarsening strategy significantly reduces the
CPU time required to solve the hybrid simulations, particularly during
the less active phases. The maximum number of elements recorded
during the simulations occurred at 40.90 ms of simulation time, reach-
ing a total of 4,396,710 elements. A similar reduction in the number
of elements was observed during the other action potential upstroke
phases, further demonstrating the efficiency of the space-time adaptive
approach in optimizing computational resources (see Fig. 6).

In the context of the parallel implementation of the space-time
adaptive approach across 168 CPU cores, the total computational

time required to complete the three action potential simulations is
37.41 h. On the other hand, when utilizing a structured grid of
size 600 x 600 x 80, the computation across the same 168 cores
takes significantly longer, requiring a total of 79.68 h. This represents
a time increase, making the structured grid simulation 2.13 times
slower compared to the adaptive spatial simulation. The difference
in computational efficiency highlights the increased performance of
the space-time adaptive approach when implemented in parallel on a
large number of cores. The overall computational process was divided
into several key stages, each requiring specific amounts of time. The
assembly of the matrices was completed in 7.04 h. Following this,
the solution of the linear systems, a critical step for obtaining the
desired results, took 16.32 h. Additionally, the ZZ error estimator and
guiding the grid adaptivity process took 9.56 h to execute. Lastly, the
dynamic load balancing of the grid, which ensures an even distribution
of computational tasks across processors, required 2.61 h.

Parallel performance results

For this benchmark simulation, the total duration of the simulation
is 2 ms. During the first millisecond, the CRU opens in a deterministic
manner and remains open until the 1-millisecond mark. Afterward,
it closes and remains shut for the remainder of the 2-millisecond
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Fig. 7. Space-time adaptive simulation of a single full Z-disc action potential over the entire time period. The left panel depicts action potential dynamics, and
the right panel shows the number of computational elements and nodes used, illustrating the dynamic adjustment of mesh resolution in response to changing

physiological conditions.

simulation period, following the same behavior as observed in the
convergence tests of the single CRU setup. For these deterministic sim-
ulations, the fluxes are derived from a stochastic simulation conducted
on a similar setup. The coarse grid used in the simulation comprises
1,200,000 tetrahedral elements and 214,221 nodes, arranged in a grid
with dimensions of 100 x 100 x 20 elements. This benchmark simulation
illustrates the strong scaling properties of both the Jacobian matrix
assembly and the overall simulation time. The results are presented in
Fig. 8. Notably, we observed that the maximum number of elements
reported during the simulations occurred at the 1-millisecond point,
reaching a total of 5,831,664 elements.

3.3. Spark simulation

Investigating spontaneous Ca>* release events (called sparks) is a
core feature of our model. Sparks and their formation, termination,
and morphology are of interest in cardiac research and modeling [34,
35]. They allow insights into the core mechanics of CICR in cardiac
myocytes and are experimentally comparable and easy to observe and
measure as opposed to single-channel currents. The methods described
in this paper enable the simulation of sparks at a timescale and compute
expense that makes both long-term as well as collections of a large
variety of shorter simulations, such as for parameter scans, viable. The
stochastic nature of sparks and their low frequency (even at patholog-
ically increased rates) necessitate either long simulated timescales or

I ideal
HEl matrix assembly
N simulation

28 56 84 112
number of processors

140 168

Fig. 8. Parallel speedup for up to 168 cores.

large simulated areas. Both are significant cost factors, either in time
or memory. Using local space-time adaptivity, we can run simulations
for varied parameter sets on an efficient time scale. Our results with
these new methods introduced here are consistent with previous results
(see Fig. 9), but are computed at a fraction of the time (see Table 4).
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Table 4
The absolute CPU timings and speedup factors for the simulation of a
quarter Z-disc setup with or without space-time adaptivity.

Mesh-size Total time Speedup
level - 6 14341 s 16.07
Structured grid 230389 s 1

These simulations were conducted on the same machine with a 64-core
AMD Threadripper PRO 5995WX CPU with 512 GB RAM. Their domain
was a quarter z-disc of 10 x 10 x 2 um® with a rectangular structured
grid of 600 x 600 x 80 nodes. The coarsest level of the space-time
adaptive grid was 100 x 100 x 40. More detailed comparisons of spark
simulations in our model with experimental results are presented in
Neubert et al. [36]

4. Discussion

We have demonstrated the efficiency of our simulation techniques
for multi-scale simulations of Ca>* dynamics in ventricular cardiomy-
ocytes. Speedups by a factor of 16 enable simulations over time courses
and scopes that would not be feasible without space-time adaptivity.

This speed of simulations opens the door to further model develop-
ment responding to current medical research. Structural aspects and,
consequently, the importance of gradients of cytosolic and dyadic Ca>*
are the subject of ongoing discussions, for example, in relation to heart
failure with preserved ejection fraction (HFpEF). Animal models of
HFpEF exhibit insufficient relaxation in diastole and the NCX has
been identified as a potential drug target for ameliorating myocyte
relaxation [37,38]. The NCX has been found to be colocalized with
CRUs in most species, including rat [39] and rabbit [40], but some
microscopy studies seem to contradict this [41]. Modeling suggests
that the arrhythmogenic potential of NCX in conjunction with delayed
after-depolarizations is stronger with NCX inside the dyadic space
compared to NCX being close to CRUs [42]. Sub-dyadic modeling
showed substantial concentration gradients inside dyadic clefts [21,
24,43]. Hence, these structural details are relevant. Modeling them
requires solving the reaction—diffusion equations on the length scale
of RyR distances inside the cleft and of CRU size in the vicinity of
CRUs. Investigating the effect of NCX localization on action potentials
and myocyte relaxation requires simulating cell behavior at the same
time. The space-time adaptivity established in this study allows for
those multi-scale simulations and enables modeling to investigate these
disease-related questions.
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A full list of all named parameters in this paper, including their values. All other parameter values are as they are listed
in [15,24]. Species-specific parameters for rat membrane potential dynamics are taken from [25].

Parameter Description Value

D, Diffusion constant for unbound Ca>* in the cytosol 0.220 ym?/ms
D, Diffusion constant for Ca?* bound mobile buffers in the cytosol 0.04 pm?/ms
D, Diffusion constant for Ca®* bound immobile buffers in the cytosol 0 pm?/ms

D, Diffusion constant for Ca>* bound fluorescent buffer in the cytosol 0.033 pm?/ms
bl Total concentration of mobile Ca** buffer in the cytosol 25.0 pM

b Total concentration of immobile Ca** buffer in the cytosol 70 pM

b’f‘” Total concentration of fluorescent Ca®* buffer in the cytosol 25 uM

vy SERCA maximum pump speed 1. pM/ms

K, SERCA half maximum concentration 0.2 yM

Vsr Volume ratio of SR compartment 0.1

Veyt Volume ratio of cytosolic compartment 0.9

K, Dissociation constant of the fluorescent buffer 345 nM

TRefill jSR Refill flux time constant 3.9 ms

Veell Total volume of a rat cardiomyocyte 2.58 x 10* pm’
Acenl Total surface area of a rat cardiomyocyte 7290 pm?

Appendix A. Algorithm

1. Initialization

« Set u,,; = uy, t,; = 0 and Ar > 0. Here the solution u
represents all unknown quantities from the state equations.

2. Stochastic CRU dynamics

+ Compute the event times (7., + 4t;) € 1,14, 1,4 + At] for all
CRUs i =1,..., N, by applying the single CRU dynamics as
described in [22,24].

+ Compute average RyR and LCC fluxes, jSR Ca>* content
and individual Channel States at time ¢,,, + At

3. Update Bulk Calcium Cycling Dynamics

+ Compute new solution u,,, based on the available old
solution u,,, the time step At and the fluxes from the CRUs
averaged over the timestep Az.

If the time step integrator (Rosenbrock type) of the dis-
cretized PDE system rejects the current time step, then
determine the new time step 4t,,,, according to local error
criterion of the time step integrator and assign 4t := Ar,,,,
and go to 2.

4. Update membrane potential dynamics

+ Compute the new solution of V,,,, based on the u,,, and

the current LCC, RyR and NCX fluxes.

new

5. Adapt the grid at time At

 Apply the Z? error estimator to find the error at the
computational mesh and adapt the grid accordingly.

+ Call re-load balance of the grid using ALUGrid space-
filling curve approach package if it has changed and then
assemble the matrices and vectors accordingly.

6. Set 1y, =1,y + Tgo and go to 2.
Appendix B. Parameters

See Table 5.
Appendix C. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.cmpb.2025.109154.

10

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[91]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

J.A.E. Alvarez, M.S. Jafri, A. Ullah, Local control model of a human ventricular
myocyte: An exploration of frequency-dependent changes and calcium sparks,
Biomolecules 13 (8) (2023).

W. Chen, J.A. Wasserstrom, Y. Shiferaw, Role of coupled gating between cardiac
ryanodine receptors in the genesis of triggered arrhythmias, Am. J. Physiol-Heart
Circ. Physiol. 297 (1) (2009) H171-H180, PMID: 19429830.

H. Cheng, W.J. Lederer, Calcium sparks, Physiol. Rev. 88 (4) (2008) 1491-1545,
PMID: 18923188.

M.M. Maleckar, A.G. Edwards, W.E. Louch, G.T. Lines, Studying dyadic structure—
function relationships: a review of current modeling approaches and new
insights into Ca2+ (mis) handling, Clin. Med. Insights: Cardiol. 11 (2017)
1179546817698602.

E.M. Cherry, H.S. Greenside, C.S. Henriquez, A space-time adaptive method for
simulating complex cardiac dynamics, Phys. Rev. Lett. 84 (6) (2000) 1343-1346.
P.C. Franzone, P. Deuflhard, B. Erdmann, J. Lang, L.F. Pavarino, Adaptivity
in space and time for reaction-diffusion systems in electrocardiology, SIAM J.
Numer. Anal. 28 (3) (2006) 942-962.

C. Nagaiah, S. Riidiger, G. Warnecke, M. Falcke, Adaptive numerical solution
of intracellular calcium dynamics using domain decomposition methods, Appl.
Numer. Math. 58 (11) (2008) 1658-1674.

N. Chamakuri, K. Kunisch, Higher order optimization and adaptive numerical so-
lution for optimal control of monodomain equations in cardiac electrophysiology,
Appl. Numer. Math. 61 (2011) 53-65.

J.A. Trangenstein, C. Kim, Operator splitting and adaptive mesh refinement for
the Luo-Rudy I model, J. Comput. Phys. 196 (2) (2004) 645-679.

W. Ying, A Multilevel Adaptive Approach for Computational Cardiology (Ph.D.
thesis), Duke University, 2005.

Y. Belhamadia, A. Fortin, Y. Bourgault, On the performance of anisotropic mesh
adaptation for scroll wave turbulence dynamics in reaction—diffusion systems, J.
Comput. Appl. Math. 271 (2014) 233-246.

D. Krause, T. Dickopf, M. Potse, R. Krause, Towards a large-scale scalable
adaptive heart model using shallow tree meshes, J. Comput. Phys. 298 (2015)
79-94.

J. Southern, G. Gorman, M. Piggott, P. Farrell, Parallel anisotropic mesh
adaptivity with dynamic load balancing for cardiac electrophysiology, J. Comput.
Sci. 3 (1) (2012) 8-16.

C. Nagaiah, S. Riidiger, G. Warnecke, M. Falcke, Adaptive space and time numer-
ical simulation of reaction-diffusion models for intracellular calcium dynamics,
Appl. Math. Comput. 218 (20) (2012) 10194-10210.

N. Chamakuri, W. Neubert, S. Gilbert, J. Vierheller, G. Warnecke, M. Falcke,
Multiscale modeling and numerical simulation of calcium cycling in cardiac
myocytes, Multiscale Model. Simul. 16 (3) (2018) 1115-1145.

0.C. Zienkiewicz, J.Z. Zhu, A simple error estimator and adaptive procedure for
practical engineering analysis, Int. J. Num. Meth. Eng 24 (1987) 337-357.

P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klofkorn, R. Kornhuber, M.
Ohlberger, O. Sander, A generic grid interface for parallel and adaptive scientific
computing. Part II: implementation and tests in DUNE, Computing 82 (2) (2008)
121-138.

A. Takahashi, P. Camacho, J.D. Lechleiter, B. Herman, Measurement of
intracellular calcium, Physiol. Rev. 79 (4) (1999) 1089-1125.

A. Mahajan, Y. Shiferaw, D. Sato, A. Baher, R. Olcese, L.-H. Xie, M.-J. Yang,
P.-S. Chen, J.G. Restrepo, A. Karma, A. Garfinkel, Z. Qu, J.N. Weiss, A rabbit
ventricular action potential model replicating cardiac dynamics at rapid heart
rates, Biophys. J. 94 (2) (2008) 392-410.

J. Keener, J. Sneyd, Mathematical Physiology I: Cellular Physiology, second
ed. Springer, 2009.


https://doi.org/10.1016/j.cmpb.2025.109154
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb1
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb1
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb1
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb1
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb1
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb2
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb2
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb2
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb2
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb2
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb3
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb3
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb3
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb4
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb4
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb4
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb4
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb4
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb4
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb4
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb5
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb5
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb5
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb6
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb6
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb6
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb6
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb6
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb7
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb7
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb7
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb7
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb7
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb8
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb8
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb8
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb8
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb8
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb9
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb9
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb9
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb10
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb10
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb10
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb11
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb11
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb11
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb11
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb11
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb12
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb12
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb12
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb12
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb12
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb13
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb13
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb13
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb13
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb13
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb14
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb14
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb14
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb14
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb14
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb15
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb15
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb15
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb15
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb15
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb16
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb16
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb16
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb17
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb17
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb17
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb17
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb17
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb17
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb17
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb18
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb18
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb18
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb19
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb19
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb19
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb19
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb19
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb19
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb19
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb20
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb20
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb20

W. Neubert et al.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

T. Schendel, R. Thul, J. Sneyd, M. Falcke, How does the ryanodine receptor in
the ventricular myocyte wake up - by a single or by multiple open L-type Ca**
channels? Eur. Biophys. J. 41 (2012) 27-39.

F.G. Cosi, W. Giese, W. Neubert, S. Luther, U. Parlitz, M. Falcke, Multiscale
modeling of dyadic structure-function relation in ventricular cardiac myocytes,
Biophys. J. 117 (2019) 2409-2419.

1. Jayasinghe, A.H. Clowsley, R. Lin, T. Lutz, C. Harrison, E. Green, D. Baddeley,
L. Di Michele, C. Soeller, True molecular scale visualization of variable clustering
properties of ryanodine receptors, Cell Rep. 22 (2) (2018) 557-567.

J. Vierheller, W. Neubert, M. Falcke, S. Gilbert, N. Chamakuri, A multiscale
computational model of spatially resolved calcium cycling in cardiac myocytes:
from detailed cleft dynamics to the whole cell concentration profiles, Front.
Physiol. 6 (2015) 255.

H. Stevenson-Cocks, Biophysical Modelling of Rat Cardiac Electrophysiology and
Calcium Handling (Ph.D. thesis), The University of Leeds, 2019.

R. Verfiirth, A Review of A Posteriori Error Estimation and Adaptive
Mesh-Refinement Techniques, 1996,

J. Lang, Adaptive multilevel solution of nonlinear parabolic PDE systems, in: Lec-
ture Notes in Computational Science and Engineering, vol. 16, Springer-Verlag,
Berlin, 2001.

C. Nagaiah, S. Riidiger, G. Warnecke, M. Falcke, Parallel numerical solution
of intracellular calcium dynamics, in: U. Langer, M. Discacciati, D. Keyes, O.
Widlund, W. Zulehner (Eds.), Domain Decomposition Methods in Science and
Engineering XVII, in: Lecture Notes in Computational Science and Engineering,
vol. 60, Heidelberg, 2008, pp. 155-164.

K. Gustafsson, M. Lundh, G. Soderlind, A PI stepsize control for the numerical
solution of ordinary differential equations, BIT 28 (2) (1988) 270-287.

P. Bastian, F. Heimann, S. Marnach, Generic implementation of finite ele-
ment methods in the distributed and unified numerics environment (DUNE),
Kybernetika 46 (2) (2010) 294-315.

A. Quarteroni, A. Valli, Domain Decomposition Methods for Partial Differential
Equations, Oxford University Press, Oxford, 1999.

M. Alkdmper, A. Dedner, R. Klofkorn, M. Nolte, The DUNE-ALUGrid module,
Arch. Numer. Softw. 4 (1) (2016) 1-28.

11

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Computer Methods and Programs in Biomedicine 274 (2026) 109154

G. Karypis, V. Kumar, A fast and high quality multilevel scheme for partitioning
irregular graphs, SIAM J. Sci. Comput. 20 (1) (1998) 359-392.

M. Lindner, T. Bohle, D.J. Beuckelmann, Ca2+ handling in heart failure=a review
focusing on Ca2+ sparks, Basic Res. Cardiol. 97 (1) (2002).

E.D. Fowler, N. Wang, M. Hezzell, G. Chanoit, J.C. Hancox, M.B. Cannell,
Arrythomgenic late Ca2+ sparks in failing heart cells and their control by action
potential configuration, Proc. Natl. Acad. Sci. USA 117 (5) (2020) 2687-2692.
W. Neubert, J. Hiittemeister, P. Sander, N. Chamakuri, F. Hohendanner, M.
Falcke, F. Heinzel, When NCX switches sides: Experimental and computational
insights into Ca?* regulation in the heart, in review, J. Physiol. (2025).

U. Primessnig, P. Schonleitner, A. Holl, S. Pfeiffer, T. Bracic, T. Rau, M. Kapl,
T. Stojakovic, T. Glasnov, K. Leineweber, P. Wakula, G. Antoons, B. Pieske, F.R.
Heinzel, Novel pathomechanisms of cardiomyocyte dysfunction in a model of
heart failure with preserved ejection fraction, Eur. J. Hear. Fail. 18 (8) (2016)
987-997.

U. Primessnig, T. Bracic, J. Levijoki, L. Otsomaa, P. Pollesello, M. Falcke, B.
Pieske, F.R. Heinzel, Long-term effects of Na*/Ca’* exchanger inhibition with
ORM-11035 improves cardiac function and remodelling without lowering blood
pressure in a model of heart failure with preserved ejection fraction, Eur. J.
Hear. Fail. 21 (12) (2019) 1543-1552.

S. Despa, F. Brette, C. Orchard, D. Bers, Na/Ca exchange and Na/K-ATPase func-
tion are equally concentrated in transverse tubules of rat ventricular myocytes,
Biophys. J. 85 (5) (2003) 3388-3396.

P. Dan, E. Lin, J. Huang, P. Biln, G.F. Tibbits, Three-dimensional distribution
of cardiac Na+-Ca2+ Exchanger and ryanodine receptor during development,
Biophys. J. 93 (7) (2007) 2504-2518.

D.R. Scriven, P. Dan, Distribution of proteins implicated in excitation-contraction
coupling in rat ventricular myocytes, Biophys. J. 79 (5) (2000) 2682-2691.

D. Sato, S. Despa, D.M. Bers, Can the sodium-calcium exchanger initiate or
suppress calcium sparks in cardiac myocytes? Biophys. J. 102 (8) (2012) L31
- L33.

T. Schendel, R. Thul, J. Sneyd, M. Falcke, How does the ryanodine receptor in
the ventricular myocyte wake up: by a single or by multiple open L-type Ca2+
channels? Eur. Biophys. J. 41 (1) (2012) 27-39.


http://refhub.elsevier.com/S0169-2607(25)00570-X/sb21
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb21
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb21
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb21
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb21
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb22
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb22
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb22
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb22
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb22
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb23
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb23
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb23
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb23
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb23
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb24
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb24
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb24
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb24
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb24
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb24
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb24
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb25
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb25
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb25
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb26
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb26
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb26
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb27
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb27
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb27
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb27
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb27
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb28
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb28
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb28
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb28
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb28
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb28
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb28
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb28
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb28
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb29
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb29
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb29
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb30
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb30
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb30
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb30
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb30
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb31
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb31
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb31
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb32
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb32
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb32
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb33
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb33
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb33
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb34
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb34
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb34
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb35
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb35
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb35
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb35
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb35
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb36
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb36
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb36
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb36
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb36
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb37
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb37
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb37
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb37
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb37
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb37
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb37
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb37
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb37
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb38
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb38
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb38
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb38
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb38
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb38
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb38
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb38
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb38
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb39
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb39
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb39
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb39
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb39
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb40
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb40
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb40
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb40
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb40
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb41
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb41
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb41
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb42
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb42
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb42
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb42
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb42
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb43
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb43
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb43
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb43
http://refhub.elsevier.com/S0169-2607(25)00570-X/sb43

	Multiscale simulation and parallel space–time adaptivity of calcium sparks in cardiac myocytes
	Introduction
	Methods
	Mathematical modeling
	PDE model
	Detailed CRU model
	Membrane potential model

	Numerical approach
	Spatial discretization and adaptivity
	Temporal discretization and adaptivity
	Parallel implementation


	Results
	Adaptivity versus non-adaptivity
	Results with one CRU

	Action potential simulation
	Parallel performance results

	Spark simulation

	Discussion
	CRediT authorship contribution statement
	Ethics approval
	Declaration of Generative AI and AI-assisted technologies in the writing process
	Declaration of competing interest
	Acknowledgments
	Appendix A. Algorithm
	Appendix B. Parameters
	Appendix C. Supplementary data
	References


