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 A B S T R A C T

Background and Objective: Calcium serves as the bidirectional link between the heart’s electrical excitation 
and contraction. Electrical excitation induces an influx of Calcium across the sarcolemma and T-tubular 
membrane, triggering calcium release from the sarcoplasmic reticulum. Calcium sparks, the fundamental events 
of calcium release from the SR, are initiated in specialized microdomains where Ryanodine Receptors and L-
type calcium channels co-locate. The spatial heterogeneity of Calcium release and the random occurrence of 
strong release fluxes render simulations challenging. Developing mathematical models and efficient simulations 
of detailed calcium spark models is crucial to understanding heart function. In this paper, we introduce space–
time adaptivity within a parallel computing framework into the multiscale simulation of calcium sparks in 
cardiac myocytes to improve the stability and performance of these simulations.
Methods: We model intracellular calcium concentrations in both the cytoplasm and the SR domains using 
a set of coupled reaction–diffusion equations. Spatial grid adaptivity is implemented through multilevel 
finite element methods to account for the spatial heterogeneity of intracellular Ca2+ release. Rosenbrock-type 
techniques handle small time steps for simulating stochastic channel opening and closing in the Ca2+ release 
units (CRUs).
Results: Our test cases demonstrate the superior efficiency of the space–time adaptive approach in optimizing 
computational resources. The parallel space–time adaptive method accelerates simulations of calcium sparks 
by a factor of 16.07.
Conclusions: The efficiency and speed gains in Calcium spark simulations are significant and enable modeling 
based research into previously difficult to tackle questions with regard to sub-micrometer scale models, e.g 
with respect to local interactions between the Sodium Calcium Exchanger and RyR clusters.
1. Introduction

Biomedical research often relies on understanding the functional 
implications of molecular changes on the entire biological system. This 
necessitates a mechanistic comprehension of the interactions between 
different scales from molecular to cellular behavior, often achieved by 
multi-scale simulations. Calcium (Ca2+) is central to heart contraction, 
acting as the bidirectional link between the heart’s electrical excita-
tion and contraction. Electrical excitation triggers Ca2+ influx across 
the sarcolemma and T-tubular membrane, leading to calcium release 
from the sarcoplasmic reticulum (SR), a membrane-bound Ca2+ storage 
compartment. Ca2+ sparks, the fundamental events of this calcium 
release, are crucial for understanding heart function. Sparks are  brief, 
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lasting 10 to 100 ms. They are generated by clusters of Ryanodine 
receptor channels (RyRs) which release Ca2+ from the SR inside dyadic 
clefts, which are formed by SR- and T-tubule membrane being as 
close as 15 nm inside CRUs (see Fig.  1). Consequently, computational 
modeling efforts to explore such multi-scale systems must incorporate 
various spatial and temporal scales to be effective. This study focuses 
on space–time adaptivity exemplified by a multi-scale model of the 
excitation–contraction coupling process of cardiomyocytes.

Cardiomyocytes contract when Ca2+ binds to the sarcomeres. These 
are longitudinally arranged protein structures that are bounded by z-
discs on either end. T-tubules are invaginations of the extracellular 
space into the myocytes. Specialized junctional subvolumes of the SR 
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Fig. 1. Structures within z-discs involved in Ca2+ dynamics and the currents 
defining the rat electrophysiology model. T-tubules are invaginations of the 
plasma membrane reaching deep into the bulk of the cell. The sarcoplasmic 
reticulum (SR) stores Ca2+ and consists of network SR (nSR) and junctional SR 
(jSR) compartments. Ca2+ release units (CRUs) with their L-type Ca2+ channels 
(LCCs) and Ryanodine receptor channels (RyRs) are formed by T-tubule and 
jSR membrane. RyRs release Ca2+ from the jSR. The Na+/Ca2+-exchanger 
(NCX) and the plasma membrane Ca2+-ATPase (PMCA) transport Ca2+ across 
the sarcolemma and T-tubule membrane. The electrophysiology model in-
cludes additionally the Na+ current I𝑁𝑎, the background Na+ current I𝑁𝑎𝑏, 
the Ca2+-independent transient outward K+ current I𝑡𝑜, the inward rectifier 
K+ current I𝐾1, the background K+ current I𝐾𝑏, the steady state outward K+

current I𝑠𝑠, the hyperpolarisation activated K+ current I𝑓 , the Na+/K+-ATPase 
I𝑁𝑎𝐾 , and the background Ca2+ current I𝐶𝑎𝑏.

(jSR) come in close proximity to T-tubule membrane and form CRUs. 
CRUs are concentrated in the z-discs (see Fig.  1). The jSR wraps 
around the T-Tubules, leaving clefts of around 15 nm between the 
two membranes. In these narrow dyadic clefts, two groups of channels 
form clusters opposite each other: On the sarcolemmal side are the L-
type Ca2+ channels (LCCs). They are voltage gated and Ca2+ inhibited 
channels that allow Ca2+ to enter the dyadic space upon depolarization 
of the plasma membrane. Opposite the LCCs in the jSR membrane is a 
cluster of RyRs. They are activated by dyadic Ca2+ and release Ca2+
from the jSR store. The triplet of dyadic space, the Ca2+ channels, and 
the jSR compartment is called a Calcium Release Unit (CRU). During 
electrical stimulation, a small Ca2+ influx into the dyadic space by LCCs 
triggers a much larger release of Ca2+ by the RyRs. The released Ca2+
diffuses out of the dyadic space and through the cytosol towards the 
sarcomeres to trigger contraction. The process in the CRUs is called 
Calcium induced Calcium Release (CICR). It is the essential transla-
tion and amplification step from electric to Ca2+ signal that enables 
excitation–contraction coupling (ECC) in cardiac myocytes. Each z-disc 
contains around 400 CRUs, and each cardiomyocyte consists of around 
50 z-discs with gaps of ∼ 2µm between them.

Ca2+ gradients inside and around CRUs during sparks are steep 
and local Ca2+ concentrations reach many times the base level. Sparks 
are highly random events. Locally, they can be considered as shot-
noise-like events due to the large concentration amplitudes and the 
temporal randomness. Hence, we cannot approximate sparks by spatial 
averaging and deterministic dynamics. Simulating the initiation, termi-
nation, and regulation of calcium sparks typically requires significant 
computational resources. This study aims to reduce computational 
time and memory usage by leveraging space–time adaptivity, which 
is particularly efficient given the infrequent channel events in spark 
simulations.

Sparks are of special interest for research on ECC since they allow 
for studying RyR, jSR, and LCC dynamics [1–3]. Additionally, sparks 
may occur as perturbations of SR Ca2+ cycling during the contraction 
2 
cycle, causing pathological arrhythmogenic membrane depolarizations. 
In particular, the latter role requires multi-scale simulation skills.

Constructing a multiscale model to represent these processes across 
different temporal and spatial scales is challenging [4]. Our multi-
scale model encompasses the various biophysical processes involved 
in excitation–contraction coupling in cardiomyocytes. It includes ion 
channel transitions that occur in tenths of milliseconds and spatial 
scales of tens of nanometers, as well as whole-cell electrophysiology 
spanning several seconds and spatial scales up to 100 micrometers (see 
Fig.  2).

Various adaptivity approaches have been demonstrated to signifi-
cantly reduce the computational cost of simulating reaction–diffusion 
models compared to the use of structured grids [5–12]. Furthermore, 
the dynamic load balancing of such space–time adaptivity has been 
discussed in previous studies [12,13]. Nagaiah et al. used adaptivity 
in both space and time for the numerical simulation of stochastic 
and deterministic equations for intracellular calcium dynamics in non-
muscle cells and in two dimensions [14]. However, limited work has 
focused on the simulation of calcium dynamics in cardiac myocytes. 
This paper aims to enhance numerical simulations of calcium dynam-
ics by focusing on this critical ability. In our recent work [15], we 
presented a mathematical modeling and computational approach for 
simulating intracellular calcium dynamics in cardiac myocytes using
static mesh and adaptive time-stepping strategies for multiple action 
potential simulations.

This study utilizes a conforming multilevel finite element method 
for spatial discretization and higher-order Rosenbrock methods for 
temporal discretization. Spatial grid adaptivity is achieved through 
Zienkiewicz and Zhu’s error estimator [16], which computes the av-
erage of local solution gradients. An automatic step-size selection al-
gorithm based on classical embedding ensures optimal accuracy. The 
simulation framework is developed based on the open source FEM 
framework DUNE [17].

The remainder of the paper is organized as follows: In Section 2.1.1, 
we begin by discussing the mathematical modeling of calcium dynam-
ics, providing a comprehensive overview of the key components that 
drive the system. This includes a detailed formulation of the dynamics 
of the calcium release unit (CRU) and an in-depth description of the 
membrane potential model, which are critical to understanding the 
underlying processes governing calcium signaling. Section 2.2 presents 
the numerical methodologies employed for the space–time discretiza-
tion. We provide a thorough explanation of the discretization tech-
niques, with a particular focus on the space adaptivity, which allows 
for efficient resolution of localized phenomena, and the paralleliza-
tion strategies implemented to improve computational performance. 
In Section 3, we present the results of the numerical simulations 
demonstrating the effectiveness of the space–time adaptivity in calcium 
spark simulations. A comparison of the simulation outcomes with and 
without space–time adaptivity is provided. Finally, in the last section, 
we summarize the study’s key findings and discuss potential directions 
for future research.

2. Methods

2.1. Mathematical modeling

2.1.1. PDE model
We denote the cell volume by 𝛺 ⊂ R3 and the plasma membrane, 

i.e., its boundary, by 𝛤 . The space–time cylinder of the computational 
domain is denoted by 𝑄 = 𝛺 × (0, 𝑇 ].

Cytosolic calcium model: The dynamics of the cytosolic Ca2+
concentration, 𝑐, comprise plasma membrane transport, release, and 
uptake by the SR and binding to buffers. Plasma membrane transport 
is carried by the voltage-controlled ion channels and the Na+/Ca2+-
exchanger. The T-tubule network is an interface to extracellular fluid 
in the bulk of the cytosol, enabling membrane molecules like the 
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Fig. 2. The multiscale model covers several scales of biophysical processes 
during excitation–contraction coupling in cardiomyocytes. These include ion 
channel transitions in the order of 10th of milliseconds and on spatial scales 
of 10th of micrometers, as well as whole cell electrophysiology in the order 
of several seconds and spatial scales of up to 100 μm. Using an experimentally 
measured approach, spontaneous calcium release events called spark-up to 
whole cell calcium waves can be simulated.

Table 1
Variables and fluxes of the PDE system. Plasma membrane Ca2+ ATPase flux 
and Ca2+ background flux are set to 0 in the version of the model simulated 
in this study.
 Variable Description  
 𝑐 free cytosolic [Ca2+]  
 𝑏𝑠 concentration of Ca2+ bound stationary buffer in the cytosol  
 𝑏𝑚 concentration of Ca2+ bound mobile buffer in the cytosol  
 𝑏𝑓 concentration of Ca2+ bound fluorescent buffer in the cytosol 
 𝑆 free SR lumenal [Ca2+]  
 Flux Description  
 𝐽𝑐𝑟𝑢 Ca2+ bulk cytosol flux caused by CRUs  
 𝐽𝑁𝑎𝐶𝑎 bulk NCX Ca2+ flux  
 𝐽 𝑝𝑚

𝑁𝑎𝐶𝑎 plasma membrane NCX Ca2+ flux  
 𝐽𝑙𝑒𝑎𝑘 network SR Ca2+ leak flux  
 𝐽𝑝𝑢𝑚𝑝 network SR Ca2+ uptake by SERCAs  
 𝐽𝐽𝑆𝑅 Ca2+ flux between network SR and JSR compartments  
 𝑅𝑗 reactions of free Ca2+ with buffers 𝑗 = 𝑠, 𝑚, 𝑓  

Na+/Ca2+-exchanger to contribute to bulk concentration dynamics 
(𝐽NaCa). The term 𝐽pump describes the pumping of Ca2+ by SERCAs into 
the SR. The Ca2+ -binding molecules (𝑏𝑗 , 𝑗 = 𝑠, 𝑚, 𝑓 ) in the cytosol 
include stationary (𝑠), mobile (𝑚), and fluorescent (𝑓 ) Ca2+ buffers. The 
total concentration 𝑏tot𝑗  is conserved for all buffers. The reaction terms 
𝑅𝑗

(

𝑐, 𝑏𝑗
) describe buffering of cytosolic Ca2+. For a short glossary of 

the used variables see Table  1. The partial differential equations for the 
cytosolic concentration fields read
𝜕𝑐
𝜕𝑡

= ∇ ⋅ (𝐃𝐜∇𝑐) + 𝐽cru + 𝐽NaCa + 𝐽leak − 𝐽pump −
∑

𝑗=𝑚,𝑠,𝑓
𝑅𝑗

(

𝑐, 𝑏𝑗
)

in 𝑄,

(1)
𝜕𝑏𝑗
𝜕𝑡

= ∇ ⋅ (𝐃𝐛𝐣∇𝑏𝑗 ) + 𝑅𝑗
(

𝑐, 𝑏𝑗
)

, 𝑗 = 𝑚, 𝑠, 𝑓 in 𝑄. (2)

where 𝐃𝐜 = diag(𝐷𝑐 , 𝐷𝑐 , 𝐷𝑐 ) and 𝐃𝐛𝐣 = diag(𝐷𝑏𝑗 , 𝐷𝑏𝑗 , 𝐷𝑏𝑗 ) are diagonal 
diffusion matrices. The expressions for the fluxes are

𝐽cru =
𝑁𝑐
∑

𝑖=1
𝛩(|

|

𝑟 − 𝑟𝑖|| − 𝑟𝑐𝑟𝑢,𝑖)𝐽 𝑖
𝑐 (𝑐, 𝑉 , 𝑡) , (3)

𝐽leak = 𝑉𝑙(𝑆 − 𝑐), (4)

𝐽pump =
𝑉 max
𝑃 𝑐

𝐾𝑃 + 𝑐
𝑆0
𝑆

, (5)

𝑅𝑗
(

𝑐, 𝑏𝑗
)

= 𝑘+𝑗
(

𝑏𝑡𝑜𝑡𝑗 − 𝑏𝑗
)

𝑐 − 𝑘−𝑗 𝑏𝑗 ,  where 𝑗 = 𝑠, 𝑚, 𝑓 . (6)
3 
Ca2+ influx through LCC (𝐽 𝑖
LCC) and release through RyR (𝐽 𝑖

RyR) chan-
nels occurs mainly in dyadic clefts, see [15] for more details. They 
behave in a highly stochastic manner and will be described in detail 
in Section 2.1.2. The dependence on time of 𝐽cru is caused by this 
stochastic behavior.

We included a fluorescent buffer to emulate the approximation of 
[Ca2+]𝑖 as it would be measured by a single wavelength Fluo-4 exper-
imental recording using an in vitro calibration approach as described 
in [18] 

[Ca2+]𝑒𝑥𝑝𝑖 = 𝐾𝑑
𝐹 − 𝐹min
𝐹max − 𝐹

, (7)

where 𝐾𝑑 is the dissociation constant of Fluo-4, 𝐹  is the experimentally 
measured fluorescence intensity, which is here set to the spatial average 
of 𝑏𝑓 , 𝐹max is the measured fluorescence intensity in Ca2+-saturated 
dye, which is here set to 𝑏tot𝑓 , and 𝐹min is the measured fluorescence 
intensity in the absence of Ca2+, which is here set to zero.

We describe the space inside CRUs as a flat cylinder in the detailed 
CRU model explained in Section 2.1.2. The interface between dyadic 
space and cytosol through which Ca2+ leaves the CRU is a band twisted 
in 3 dimensions since the junctional SR wraps around T-tubules. Since 
we cannot represent the shape of this interface for each CRU on the 
level of PDEs, we approximate its geometry as spherical source volumes 
centered at 𝑟𝑖 with radius 𝑟cru,𝑖 and random fluxes 𝐽 𝑖

𝑐
(

𝐶(𝑟𝑖), 𝑉 , 𝑡
)

. The 
flux 𝐽 𝑖

𝑐 (𝑐, 𝑉 , 𝑡) is the sum of all single channel LCC- and RyR-currents 
in the ith CRU divided by 4𝜋𝑟3cru,𝑖∕3.

The boundary conditions for the above PDEs are given by the 
plasma membrane Ca2+-currents and are described by the following 
equations

𝑛 ⋅ 𝐃𝐜∇𝑐 = 𝐽 𝑝𝑚
𝑁𝑎𝐶𝑎on 𝛤 × [0, 𝑇 ], (8)

𝑛 ⋅ 𝐃𝐛𝐣∇𝑏𝑗 = 0on 𝛤 × [0, 𝑇 ] , (9)

where 𝐽 𝑝𝑚
𝑁𝑎𝐶𝑎 is the plasma membrane part of the Na+/Ca2+-exchanger 

flux [19].
Sarcoplasmic Reticulum (SR) calcium model: Ca2+ is released 

into dyadic clefts from individual jSR compartments. They are coupled 
by a diffusional flux 

𝐽𝐽𝑆𝑅 =
𝑁𝑐
∑

𝑖=1
𝛩(|

|

𝑟 − 𝑟𝑖|| − 𝑟𝑠,𝑖)𝐼refill,𝑖∕(4𝜋𝑟3𝑠,𝑖∕3) (10)

to the network SR, which will be explained in more detail in Sec-
tion 2.1.2. 𝐼refill,𝑖 is defined in Eq. (13) and denotes the current from 
the network SR to the ith jSR. The radius of the sink volume in the 
lumen of the SR is 𝑟𝑠,𝑖. This flux contributes to SR Ca2+ concentration 
(𝑆) dynamics 
𝜕𝑆
𝜕𝑡

= ∇ ⋅ (𝐃𝑆∇𝑆) − 𝐽JSR +
𝜈SR
𝜈𝑐𝑦𝑡

(𝐽pump − 𝐽leak)  in 𝑄, (11)

𝐃𝑆 = diag(𝐷𝑆 , 𝐷𝑆 , 𝐷𝑆 ) is the diffusion matrix for the SR Ca2+ concen-
tration . We use the bidomain approximation for cytosol and SR [20]. In 
this concept, both compartments occupy the same computational vol-
ume continuously with volume ratio 𝜈SR∕𝜈cyt. We impose homogeneous 
Neumann boundary conditions for the SR Ca2+

𝑛 ⋅ 𝐃𝑆∇𝑆 = 0 on 𝛤 × [0, 𝑇 ],

2.1.2. Detailed CRU model
In our computational framework, we used a previously developed 

model for individual CRUs [21], which is briefly summarized below. It 
features a spatially resolved description of the dyadic cleft with chan-
nel placement based on nanometer-scale microscopy studies [22,23] 
and representation of the junctional sarcoplasmic reticulum (jSR). The 
dyadic cleft is modeled as a cylindrical compartment with a height of 
15 nm, where the RyRs at the jSR membrane are colocalized with the 
LCCs at the T-tubule membrane. The behavior of the CRU is mainly gov-
erned by three different dynamics: the gating of the main Ca2+-channels 
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(LCCs and RyRs), the Ca2+-profile within the dyadic cleft, and the Ca2+-
content-dynamics of the jSR. Each individual channel is modeled as 
a Markov process representing different conformal states, which may 
either be conductive or non-conductive. Ca2+ concentrations inside the 
dyadic cleft are computed under a quasi-steady-state assumption, which 
allows for efficient computations of Ca2+concentrations inside the space 
whenever either a channel changes state, jSR content changes, or 
external parameters change. The dynamics for each individual CRU are 
computed for a small timestep 𝛥𝑡, and the fluxes through the channels 
are averaged over this timestep and then used as source terms in the 
PDEs. (3) and (10).

𝐽 𝑖
𝑐 =

1
𝛥𝑡

⎛

⎜

⎜

⎜

⎝

𝑁 𝑖
RyR
∑

𝑗=1
∫

𝑡+𝛥𝑡

𝑡
𝐽 𝑖,𝑗
RyR(𝑡)𝑑𝑡 +

𝑁 𝑖
LCC
∑

𝑗=1
∫

𝑡+𝛥𝑡

𝑡
𝐽 𝑖,𝑗
LCC(𝑡)𝑑𝑡

⎞

⎟

⎟

⎟

⎠

(12)

𝐽 𝑖
jSR = 1

𝛥𝑡

(

∫

𝑡+𝛥𝑡

𝑡

𝑐𝑖NSR − 𝑐𝑖jSR(𝑡)

𝜏Refill
𝑑𝑡

)

(13)

Here, 𝐽 𝑖,𝑗
𝑋  is the current through the 𝑗th channel of type 𝑋 in CRU 𝑖, 

𝑁 𝑖
𝑋 is the number of channels of type 𝑋 in CRU 𝑖, 𝑐𝑖NSR is the free 

Ca2+ concentration in the sarcoplasmic reticulum at the location of the 
connection to the jSR compartment of the 𝑖th CRU and 𝑐𝑖jSR is the Ca2+
concentration in the corresponding jSR compartment. 

2.1.3. Membrane potential model
Our model includes two variants for computing membrane poten-

tial and non-diffusive ion concentrations. The first variant simulating 
rabbit cells based on a model by Mahajan et al. [19] has been pre-
sented [22,24]. Additionally, we implemented a model for rat cells, 
based on an adapted version of the rat electrophysiology model by 
Stevenson-Cocks [25]. In both cases, all Ca2+-related dynamics and 
currents in the original are replaced with the computations described 
above. This includes the release currents from LCCs and the sodium–
calcium-exchanger (NCX), whose values are computed in our model as 
follows:

𝐼NCX =
𝑉cell
|𝛺|

∫𝛺
𝐽NCX +

𝐴cell
|𝜕𝛺|

∫𝜕𝛺
𝐽pmNCX

𝐼LCC = 20000
𝑁CRU

𝑁CRU
∑

𝑖=1
𝐼 𝑖LCC

2.2. Numerical approach

2.2.1. Spatial discretization and adaptivity
We denote the inner product and norm in 𝐿2(𝛺) by (⋅, ⋅) and | ⋅ |, 

respectively, and similarly the inner product and norm on 𝐻1(𝛺) are 
denoted by (⋅, ⋅)𝐻1  and ‖⋅‖. It is assumed throughout that for a constant 
0 < 𝑘 < 𝐾

𝑘|𝜉|2 ≤ 𝜉𝑇𝐷𝑖𝜉 ≤ 𝐾|𝜉|2 , for all 𝜉 ∈ R𝑑 . (14)

The spatial discretization is based on the conforming finite element 
method. The variational form is obtained by multiplying the state 
equations by arbitrary test functions 𝜙1, 𝜙2, 𝜙3, 𝜙4, 𝜙5 ∈ 𝐻1(𝛺), and 
integrating over the computational domain 𝛺: find 𝑐, 𝑏𝑠, 𝑏𝑚, 𝑆, 𝐵𝑚 ∈
𝐻1(𝛺)

∫𝛺
𝜕𝑐
𝜕𝑡

𝜙1d𝑥 = −∫𝛺
(𝐷𝑐∇𝑐) ⋅ ∇𝜙1d𝑥 − ∫𝛺

𝜙1𝐽𝑐 (𝑐, 𝑏𝑠, 𝑏𝑚, 𝑆)d𝑥

∫𝛺
𝜕𝑏𝑠
𝜕𝑡

𝜙2d𝑥 = −∫𝛺
(𝐷𝑠∇𝑏𝑠) ⋅ ∇𝜙2d𝑥 + ∫𝛺

𝜙2𝑅𝑠(𝑐, 𝑏𝑠)d𝑥

∫𝛺
𝜕𝑏𝑚
𝜕𝑡

𝜙3d𝑥 = −∫𝛺
(𝐷𝑚∇𝑏𝑚) ⋅ ∇𝜙3d𝑥 + ∫𝛺

𝜙3𝑅𝑚(𝑐, 𝑏𝑚)d𝑥 (15)

∫𝛺
𝜕𝑆
𝜕𝑡

𝜙4d𝑥 = −∫𝛺
(𝐷𝑆∇𝑆) ⋅ ∇𝜙4d𝑥 + ∫𝛺

𝜙4𝐽𝑠(𝑐, 𝐵𝑠)d𝑥

𝜕𝐵𝑚 𝜙4d𝑥 = − (𝐷𝑚∇𝐵𝑚) ⋅ ∇𝜙4d𝑥 + 𝜙4𝐻𝑚(𝑆,𝐵𝑚)d𝑥
∫𝛺 𝜕𝑡 ∫𝛺 ∫𝛺

4 
where 𝐽𝑐 (𝑐, 𝑏𝑠, 𝑏𝑚, 𝑆) is the sum of the fluxes from Eq. (1) and 𝐽𝑠(𝑐, 𝐵𝑠)
is the total flux from Eq. (11). Let 𝑉ℎ ⊂ 𝐻1(𝛺) be the finite-dimensional 
subspace of piecewise linear basis functions with respect to the spatial 
grid.

The approximate solutions 𝑐ℎ, 𝑏ℎ𝑠 , 𝑏ℎ𝑚 and 𝑏ℎ𝑑 can be expressed in the 
form

𝑐ℎ(𝑡, 𝑥) =
𝑁
∑

𝑖=1
𝑐 𝑖(𝑡)𝜙𝑖(𝑥), (16)

𝑏ℎ𝑠 (𝑡, 𝑥) =
𝑁
∑

𝑖=1
𝑏 𝑖
𝑠(𝑡)𝜙𝑖(𝑥), (17)

𝑏ℎ𝑚(𝑡, 𝑥) =
𝑁
∑

𝑖=1
𝑏 𝑖
𝑚(𝑡)𝜙𝑖(𝑥), (18)

𝑆ℎ(𝑡, 𝑥) =
𝑁
∑

𝑖=1
𝑏 𝑖
𝑑 (𝑡)𝜙𝑖(𝑥) (19)

𝐵ℎ
𝑚(𝑡, 𝑥) =

𝑁
∑

𝑖=1
𝐵 𝑖
𝑚(𝑡)𝜙𝑖(𝑥), (20)

respectively where {𝜙𝑖(𝑥)}𝑁𝑖=1 denote the basis functions and 𝑁 is the 
number of nodal points. We use the standard definitions of the mass 
matrix 𝑀 ∈ R𝑁×𝑁  whose elements are defined by 𝑀𝑘𝑙 = ∫𝛺 𝜙𝑘𝜙𝑙d𝑥 and 
the stiffness matrix 𝐴 ∈ R𝑁×𝑁  with 𝐴𝑘𝑙 = ∫𝛺 ∇𝜙𝑘∇𝜙𝑙d𝑥. Finally, the 
above-mentioned semi-discretization in space results in the ordinary 
differential equation system in block matrix form 

𝐌 𝜕𝐮
𝜕𝑡

= −𝐀𝐮 + 𝐅(𝐮) (21)

where 𝐮 = (𝐜,𝐛𝐬,𝐛𝐦,𝐒,𝐁𝐦)
𝑇  and 𝐅(𝐮) is a vector based on the reac-

tion terms from the state equations Eq. (1), (2) and (11). The global 
mass and stiffness matrices are 𝐌 = diag(𝑀,𝑀,𝑀,𝑀,𝑀) and 𝐀 =
diag(𝐴,𝐴,𝐴,𝐴,𝐴).

In our computational framework, the adaptive mesh refinement 
(AMR) technique is built upon gradient-type error estimators, specif-
ically the 𝑍2 error indicator introduced by Zienkiewicz and Zhu [16]. 
To provide a concise overview, we describe the essential components 
of the 𝑍𝑍 error indicator. Let 𝑊ℎ be the space of all piecewise linear 
vector fields, and define the subspace 𝑋ℎ ∶= 𝑊ℎ ∩ 𝐶(𝛺,R3), where 
𝐶(𝛺,R3) represents the space of continuous vector fields on the domain 
𝛺.

Let 𝑣 and 𝑣ℎ denote the exact solution and the numerical so-
lution, respectively, of the state equations (Eqs. (1)–(11)) and the 
semi-discretized state equations (Eq. (15)) at a fixed time 𝑡. The error 
between the numerical and exact solutions can be estimated using the 
𝐿2 norm of the difference between the gradients, ‖𝐺𝑣ℎ − ∇𝑣ℎ‖𝐿2(𝑇 ), 
where 𝐺𝑣ℎ is a computed approximation of the gradient ∇𝑣ℎ. This 
approximation is obtained by averaging the local gradients ∇𝑣ℎ|𝑇 (𝐱𝑖)
over neighboring elements, as described by Zienkiewicz and Zhu [16]. 
Specifically, the gradient approximation 𝐺𝑣ℎ at a point 𝐱𝑖 is computed 
as follows: 

𝐺𝑣ℎ(x𝑖) =
∑

𝑇⊂𝐷𝑥

|𝑇 |
|

|

𝐷𝑥
|

|

∇𝑣ℎ|𝑇 (x𝑖) . (22)

where 𝐷𝑥 represents the union of tetrahedra sharing the vertex 𝐱𝑖, and 
|𝑇 | and |𝐷𝑥| are the volumes of the tetrahedron 𝑇  and the region 𝐷𝑥, 
respectively. This local averaging approach allows for a more robust 
and reliable estimation of the gradient.

The local error indicator 𝜂𝑍,𝑇  at an element 𝑇  is defined as the 
𝐿2 norm of the difference between the averaged gradient 𝐺𝑣ℎ and the 
exact gradient ∇𝑣ℎ: 

𝜂𝑍,𝑇 ∶= ‖

‖

𝐺𝑣ℎ − ∇𝑣ℎ‖‖𝐿2(𝑇 ) , (23)

which quantifies the error within the element 𝑇 . The global error 
indicator 𝜂  is then computed by summing the squared local error 
𝑍
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indicators over all elements in the mesh ℎ and taking the square root: 

𝜂𝑍 ∶=

⎧

⎪

⎨

⎪

⎩

∑

𝑇∈ℎ

𝜂2𝑍,𝑇

⎫

⎪

⎬

⎪

⎭

1∕2

. (24)

This global error indicator provides a measure of the overall ap-
proximation accuracy across the entire computational domain. The 𝑍2

indicator 𝜂𝑍,𝑇  serves as an estimate for the error in the gradient of the 
solution, specifically ‖∇𝑢𝑡ℎ(⋅, 𝑡𝑖)−∇𝑢𝑡(⋅, 𝑡𝑖)‖𝐿2(𝑇 ), where 𝑢𝑡ℎ(⋅, 𝑡𝑖) and 𝑢𝑡(⋅, 𝑡𝑖)
are the numerical and exact solutions at time 𝑡𝑖, respectively. For a more 
detailed discussion of these error indicators, refer to Verfürth [26].

2.2.2. Temporal discretization and adaptivity
In this section, we discuss the time discretization approach to solve 

the semi-discretized equations Eqs. (21). For the time discretization, 
we use linearly implicit Runge–Kutta methods, specifically Rosenbrock-
type methods. This class of methods avoids solving the nonlinear 
system and replaces it with a sequence of linear ones. Moreover, a 
straightforward embedding technique is applied to estimate the error 
introduced by the time discretization, which is then used to compute 
adaptive time steps. The semi-discretized equations can be expressed in 
the following general coupled formulation of ODEs, 

𝐌𝑑𝐮
𝑑𝑡

= 𝐅(𝐮), 𝐮(𝑡0) = 𝐮0. (25)

We further set 𝜏 𝑖 = 𝑡𝑖+1 − 𝑡𝑖 and denote by 𝐮𝑖 the numerical solution at 
time 𝑡𝑖.

For brevity, an 𝑠-stage Rosenbrock method, see [27] for details, of 
order 𝑝 with embedding of order 𝑝̂ ≠ 𝑝 has the form,

( 1
𝜏 𝑖𝛾

𝐌 − 𝐉)𝐤𝑗 = 𝐅(𝑡𝑖 + 𝜏 𝑖𝛼𝑗 ,𝐮𝑖 +
𝑗−1
∑

𝑙=1
𝑎𝑗𝑙𝐤𝑙) −𝐌

𝑗−1
∑

𝑙=1

𝑐𝑙𝑗
𝜏 𝑖

𝐤𝑙 , 𝑗 = 1,… , 𝑠 ,

(26)

𝐮𝑖+1 = 𝐮𝑖 +
𝑠
∑

𝑙=1
𝑚𝑙𝐤𝑙 , (27)

𝐮̂𝑖+1 = 𝐮𝑖 +
𝑠
∑

𝑙=1
𝑚̂𝑙𝐤𝑙 . (28)

The coefficients 𝛾, 𝛼𝑗 , 𝑎𝑗𝑙 , 𝑐𝑗𝑙 , 𝑚𝑙, and 𝑚̂𝑙 are chosen in such a way that 
certain consistency order conditions are fulfilled to obtain a sufficiently 
high convergence order. For the construction of the Jacobian matrix 𝐉, 
we used exact derivatives of the vector 𝐅(𝐮). A second solution 𝐮̂𝑖+1
of lower order 𝑝̂ is constructed to estimate the error part to predict 
the future time step 𝜏 𝑖+1, where we assume that 𝑝 > 𝑝̂. Specifically, 
we use the ROWDA method, see [27], which is a 3(2) order method 
with three internal stages. The parameters appearing in Eqs. (26)–(28) 
can be found in [27]. We tested this method previously and found 
it to be highly efficient [7,28]. ROWDA was chosen based on those 
results because of its computational efficiency and to ensure stability 
and accuracy for the present system. In our numerical computations, 
a new time step 𝜏𝑖+1 is computed based on the idea of Gustafsson 
et al. [29].

We employed a BiCGSTAB method with block Jacobi precondi-
tioning to solve the system of equations that appears after the time 
discretization of (26) at each internal stage of the ROWDA method.

2.2.3. Parallel implementation
In our numerical experiments, we implemented the parallel space–

time dynamic adaptivity code using the public domain software pack-
age DUNE [17] and Dune-PDELab [30]. Our implementation employs 
a non-overlapping decomposition for mesh partitioning. Briefly, the 
computational domain 𝛺 is divided into several sub-domains 𝛺𝑛, where 
𝑛 is the number of computing cores, and each subdomain is assigned 
to one computing core. Although domain decomposition techniques are 
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beyond the scope of this work, further details on the parallel implemen-
tation can be found in [31]. In our implementation, we use the ALUGrid 
interface [32] for grid construction and the METIS graph partitioning 
software [33] for dynamic load balancing of the grid. For this purpose, 
we utilize the serial 𝑘-way multilevel graph partitioning algorithm, 
which facilitates the partitioning of the computational mesh at each 
time step, ensuring efficient load balancing across the computational 
cores.

Parallel and space–time adaptivity approach. Let us assume that the 
simulation begins with a relatively coarse mesh, denoted as 𝐿0, which 
serves as the central mesh at the root level of the hierarchical system. 
Finer mesh levels, 𝐿𝑖 for 𝑖 > 0, are recursively generated from the 
coarser level 𝐿𝑖−1 by refining the computational grid. In our numerical 
experiments, the spatial grid refinement tolerance is set to 𝑇 𝑜𝑙𝑥 =
10−3. The 𝑍2 error estimator is invoked at every proposed time step, 
following the solution of the deterministic–stochastic solver. The grid 
is adapted if either the spatial error exceeds the prescribed tolerance 
𝑇 𝑜𝑙𝑥 or if the error falls below 0.001 ⋅ 𝑇 𝑜𝑙𝑥. Once the grid is adapted, 
the solution is updated on the new grid using linear interpolation or 
restriction. To ensure proper load balancing, the grid is redistributed, 
and the solution data is reallocated accordingly.

After the solution data is redistributed to the newly adjusted grids, 
the time discretization step is applied to compute the new solution. 
If the error at the suggested time step, computed using a simple em-
bedding time-stepping technique, is less than the prescribed tolerance, 
the proposed step size is accepted. Otherwise, the time step is reduced 
according to the time step controller. This process is repeated until 
an appropriate step size is determined. In this way, our numerical 
framework simultaneously applies both dynamic mesh refinement and 
time step control, ensuring efficient and accurate simulations. The 
complete parallel space–time adaptivity strategy for simulating sparks 
is detailed in Algorithm A1.

3. Results

In this section, first, we demonstrate the numerical convergence 
tests based on the space–time adaptivity grids and fixed finer grids 
for the single CRU setup and then for one complete action potential 
simulation on reasonable geometries.

3.1. Adaptivity versus non-adaptivity

Results with one CRU
In this section, we examine the numerical convergence of solutions 

for a single CRU setup. This test case serves as a foundation for 
determining the grid sizes used in subsequent simulations. The com-
putational domain (𝛺) for this simulation is a cube [0, 2] × [0, 2] × [0, 2], 
with a volume of 8 µm3. The CRU is positioned in the center of the 
domain, with a fixed radius of 0.144853 µm. The number of LCC and 
RyR channels is set to 4 and 23, respectively, with constant channel 
fluxes applied when the channels open. These fluxes are derived from 
a stochastic simulation conducted on a similar setup. The total simu-
lation time is 2 ms. The CRU opens deterministically during the first 
millisecond and remains open until 1 millisecond, after which it closes 
until the end of the 2-millisecond simulation period. The coarsest grid 
in the simulation consists of 16 × 16 × 16 elements, referred to as the 
level-0 grid, corresponding to the smallest edge size of 216 nm.

The convergence of the cytosolic solution Ca2+ over time is illus-
trated on the left side of Fig.  3, while its convergence with respect 
to the distance from the CRU center is shown on the right side of the 
same figure. These results are presented for different maximum levels 
of mesh refinement. The reference solution used for comparison is com-
puted on a structured uniform grid with dimensions 256 × 256 × 256, 
corresponding to the smallest edge size of 7.8 nm. It is evident that 
the solutions computed on the level-8 and level-9 grids closely match 
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Fig. 3. Convergence of solutions for different spatial grid refinement levels. Shown are Ca2+ concentrations at a reference point at the center of the computational 
domain in the left panel and along a line through the center of the domain at 1 ms simulation time in the right panel. The reference solution (labeled structured 
grid) and a range of solutions obtained by limiting the maximum grid refinement to the given levels are shown. Note that the lines for refinement levels eight 
and nine are identical to the reference solution. The solution has converged.
Table 2
Accuracy in space adaptivity. The maximum relative errors for the different diffusive ion species in the 
model are shown, depending on the maximum allowed grid refinement.
 Mesh size Min edge Relative errors
 size (in nm) 𝑒𝑟𝑟𝑐 𝑒𝑟𝑟𝑏𝑚 𝑒𝑟𝑟𝑏𝑠 𝑒𝑟𝑟𝑆 𝑒𝑟𝑟𝐵𝑚

 
 level - 5 54.1 0.6613 0.1011 0.4123 0.8613 0.1862 
 level - 6 27.0 0.4106 0.0617 0.2506 0.5809 0.0899 
 level - 7 15.6 0.1001 0.0108 0.0883 0.2003 0.0354 
 level - 8 13.1 0.0094 0.0021 0.0090 0.0302 0.0045 
 level - 9 7.6 0.0010 0.0003 0.0011 0.0071 0.0009 
the results obtained from the finer-structured, uniform grid solution in 
both cases. This alignment indicates that the numerical solution has 
converged to the reference solution as the mesh refinement increases.

In the following discussion, we evaluate the accuracy of numerical 
solutions in the context of spatial grid adaptivity by comparing them 
with the solution obtained from a fine-structured grid, which has a 
minimum edge length of 7.8 nm. The relative error of the finite element 
(FE) solutions in the 𝐿2 norm is calculated as follows. 

𝑒𝑟𝑟𝑋 (𝑡) =

‖

‖

‖

𝑋(., 𝑡) − 𝑌𝑓 (., 𝑡)
‖

‖

‖𝐿2(𝛺)
‖

‖

‖

𝑌𝑓 (., 𝑡)
‖

‖

‖𝐿2(𝛺)

. (29)

Let 𝑋(., 𝑡) represent the spatially distributed FE solution of the state 
variables at the simulation time instance 𝑡 = 1ms, which corresponds 
to the point when the CRU opens. The solution obtained on the finer 
structured grid at a given level is denoted by 𝑌𝑓 (., 𝑡). Since the exact 
solution is unknown, this finer grid solution is treated as the reference 
solution. It is computed using a fixed small time step size, 𝜏 = 0.001ms. 
The simulation employs adaptive time steps, enabling the computation 
of the solution on spatially adaptive grids. The relative errors for the 
state variables are presented in Table  2. The second column of the 
table indicates the minimum edge length of the elements in the level’s 
mesh computations. From the table, we observe that the relative errors 
for the level-7 to level-9 grid computations are significantly smaller 
compared to those for the computations on coarser grids, highlighting 
the improved accuracy with finer meshes. 

The number of elements, nodes, and adaptive time steps involved in 
the simulation of the single CRU setup is illustrated in Fig.  4. For the 
setup with a maximum of 9 levels of mesh refinement, the number of el-
ements and nodes increases to 273,260 and 49,053, respectively, at the 
simulation time of 1 millisecond. In contrast, when using a maximum of 
8 levels of mesh refinement, the number of elements and nodes reaches 
257,854 and 46,538, respectively, at the same time point. At the 1 
ms mark, the space–time algorithm achieves the maximum number of 
elements, with the largest time step being 0.1 ms. After the CRU has 
been open for the first millisecond, the simulation switches to a closed 
state, and the space adaptivity algorithm gradually reduces the number 
of refined elements, returning the computational grid to the coarsest 
6 
mesh level. This approach ensures that computational resources are 
efficiently utilized, focusing on refinement when the system is more 
dynamic and less so when it is steady. The computational mesh at 
various times during the simulation is shown in Fig.  5, highlighting the 
transition of mesh refinement over time, as dictated by the adaptive 
strategy.

Next, we analyze the CPU times for the deterministic opening of 
a single CRU setup. The absolute computational times on a single 
core for different mesh levels are provided in Table  3. From these 
results, we observe that assembling the matrices consumes the largest 
portion of the computational time, surpassing other components of the 
simulation. Additionally, the grid adaptivity process, which includes 
the error estimator and the transfer of solutions between finer and 
coarser grid levels, also contributes significantly to the overall CPU 
time. Adaptive time steps, which allow for the computation of the 
solution on structured grid simulations, further influence the computa-
tional time. Despite these factors, the space–time adaptive simulations 
are notably faster compared to simulations using fixed uniform grids. 
To quantify this, we calculate the speedup factor, which compares the 
time taken by the space–time adaptive simulations to that of the fixed 
structured grid simulations. The speedup factor is found to be 6.91 for 
the level-8 setup and 6.09 for the level-9 setup. 

3.2. Action potential simulation

For the action potential simulations, the computational domain is 
consists of a quarter z-disc with dimensions of 10×10×2 μm3. The coarse 
grid consists of 1,200,000 tetrahedral elements and 214,221 nodes 
structured as a 100 × 100 × 20 element grid. Here, we set the maximum 
grid refinement level to 6, ensuring that the refined grid reduces the 
element’s minimum edge size to approximately 6 nm. The simulations 
were run on a Padmanabha cluster, IISER Thiruvananthapuram, India, 
which consists of 88 computing nodes. Each node is configured with 
two Intel Xeon Gold 6132 CPUs, each with 14 cores (28 cores per node 
in total), running at 2.60 GHz, and equipped with 128 GB of RAM. 
Various time-stepping strategies for independent sequences of channel 
events have been discussed in Chamakuri et al. [15], and we apply the 
same strategies in our space–time adaptive simulations. Three action 
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Fig. 4. The number of elements and nodes over the simulation time for a single CRU setup computation. The reference simulation used more than 1.6 ⋅ 107

elements and a similar amount of nodes and can therefore not be included in the graph.
Fig. 5. Computational mesh at different time instances 𝑡 = 0.0002, 0.002 and 0.998 during the simulation of a single CRU setup illustrating the evolution and 
refinement of the grid.
Table 3
The absolute CPU timings and speedup factors for the simulation of the deterministically opening of a 
single CRU setup at different mesh refinement levels.
 Mesh size CPU times (in seconds) Speedup 
 Linear Grid  
 Assembly solver adaptivity Total  
 level - 5 275.74 82.90 140.60 533.27 15.78  
 level - 6 327.60 106.45 174.26 642.45 13.01  
 level - 7 522.76 191.34 300.16 1043.65 8.06  
 level - 8 599.56 240.92 365.62 1218.01 6.91  
 level - 9 671.14 278.67 421.04 1390.21 6.05  
 Structured grid 5943.64 2445.51 – 8418.14 1  
potential time courses are illustrated in Fig.  7(a). Initially, there is a 
rapid upstroke from the resting potential of approximately -85 mV to a 
peak of about 40 mV. Following this, the membrane potential enters 
a plateau phase before repolarizing back to the resting potential at 
around 140 ms. During the rapid upstroke of the action potentials, 
many CRUs (calcium release units) open, and the mesh within the 
cluster area and its surroundings undergo refinement. This refinement 
leads to the maximum number of elements being reported during this 
phase. As the action potential progresses into the repolarization phase, 
fewer CRUs are activated, resulting in a coarsening of most elements. 
This results in reduced computational demand, as only a small number 
of elements are needed during the repolarization phase, where a few 
channels open randomly within the clusters, as shown clearly in Fig. 
7(b). This refinement and coarsening strategy significantly reduces the 
CPU time required to solve the hybrid simulations, particularly during 
the less active phases. The maximum number of elements recorded 
during the simulations occurred at 40.90 ms of simulation time, reach-
ing a total of 4,396,710 elements. A similar reduction in the number 
of elements was observed during the other action potential upstroke 
phases, further demonstrating the efficiency of the space–time adaptive 
approach in optimizing computational resources (see Fig.  6).

In the context of the parallel implementation of the space–time 
adaptive approach across 168 CPU cores, the total computational 
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time required to complete the three action potential simulations is 
37.41 h. On the other hand, when utilizing a structured grid of 
size 600 × 600 × 80, the computation across the same 168 cores 
takes significantly longer, requiring a total of 79.68 h. This represents 
a time increase, making the structured grid simulation 2.13 times 
slower compared to the adaptive spatial simulation. The difference 
in computational efficiency highlights the increased performance of 
the space–time adaptive approach when implemented in parallel on a 
large number of cores. The overall computational process was divided 
into several key stages, each requiring specific amounts of time. The 
assembly of the matrices was completed in 7.04 h. Following this, 
the solution of the linear systems, a critical step for obtaining the 
desired results, took 16.32 h. Additionally, the ZZ error estimator and 
guiding the grid adaptivity process took 9.56 h to execute. Lastly, the 
dynamic load balancing of the grid, which ensures an even distribution 
of computational tasks across processors, required 2.61 h.

Parallel performance results
For this benchmark simulation, the total duration of the simulation 

is 2 ms. During the first millisecond, the CRU opens in a deterministic 
manner and remains open until the 1-millisecond mark. Afterward, 
it closes and remains shut for the remainder of the 2-millisecond 
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Fig. 6. The space–time adaptive computational grid and the corresponding contour plots illustrating the spatial distribution of cytosolic Ca2+ concentration 
during a single full Z-disc action potential simulation at the time points 𝑡 = 9.10, 174.10, 369.10, and 674.10 ms. Results are shown on the mid-plane (𝑧 = 1 μm), 
corresponding to the full 𝑥𝑦-plane of the domain with a size of 10 μm × 10 μm.
 
(a) Action potential

  
(b) No of nodes and elements

 

Fig. 7. Space–time adaptive simulation of a single full Z-disc action potential over the entire time period. The left panel depicts action potential dynamics, and 
the right panel shows the number of computational elements and nodes used, illustrating the dynamic adjustment of mesh resolution in response to changing 
physiological conditions.
simulation period, following the same behavior as observed in the 
convergence tests of the single CRU setup. For these deterministic sim-
ulations, the fluxes are derived from a stochastic simulation conducted 
on a similar setup. The coarse grid used in the simulation comprises 
1,200,000 tetrahedral elements and 214,221 nodes, arranged in a grid 
with dimensions of 100×100×20 elements. This benchmark simulation 
illustrates the strong scaling properties of both the Jacobian matrix 
assembly and the overall simulation time. The results are presented in 
Fig.  8. Notably, we observed that the maximum number of elements 
reported during the simulations occurred at the 1-millisecond point, 
reaching a total of 5,831,664 elements.

3.3. Spark simulation

Investigating spontaneous Ca2+ release events (called sparks) is a 
core feature of our model. Sparks and their formation, termination, 
and morphology are of interest in cardiac research and modeling [34,
35]. They allow insights into the core mechanics of CICR in cardiac 
myocytes and are experimentally comparable and easy to observe and 
measure as opposed to single-channel currents. The methods described 
in this paper enable the simulation of sparks at a timescale and compute 
expense that makes both long-term as well as collections of a large 
variety of shorter simulations, such as for parameter scans, viable. The 
stochastic nature of sparks and their low frequency (even at patholog-
ically increased rates) necessitate either long simulated timescales or 
8 
Fig. 8. Parallel speedup for up to 168 cores.

large simulated areas. Both are significant cost factors, either in time 
or memory. Using local space–time adaptivity, we can run simulations 
for varied parameter sets on an efficient time scale. Our results with 
these new methods introduced here are consistent with previous results 
(see Fig.  9), but are computed at a fraction of the time (see Table  4). 
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Fig. 9. Relating mean occupancies to spark morphological characteristics yields results consistent with prior research. Mean occupancy characterizes RyR cluster 
structure (compare Cosi et al. [22], also for a complete definition of the terms).
Table 4
The absolute CPU timings and speedup factors for the simulation of a 
quarter Z-disc setup with or without space–time adaptivity.

 Mesh-size Total time Speedup 
 level - 6 14341 s 16.07  
 Structured grid 230389 s 1  

These simulations were conducted on the same machine with a 64-core 
AMD Threadripper PRO 5995WX CPU with 512 GB RAM. Their domain 
was a quarter z-disc of 10 × 10 × 2 μm3 with a rectangular structured 
grid of 600 × 600 × 80 nodes. The coarsest level of the space–time 
adaptive grid was 100 × 100 × 40. More detailed comparisons of spark 
simulations in our model with experimental results are presented in 
Neubert et al. [36] 

4. Discussion

We have demonstrated the efficiency of our simulation techniques 
for multi-scale simulations of Ca2+ dynamics in ventricular cardiomy-
ocytes. Speedups by a factor of 16 enable simulations over time courses 
and scopes that would not be feasible without space–time adaptivity.

This speed of simulations opens the door to further model develop-
ment responding to current medical research. Structural aspects and, 
consequently, the importance of gradients of cytosolic and dyadic Ca2+
are the subject of ongoing discussions, for example, in relation to heart 
failure with preserved ejection fraction (HFpEF). Animal models of 
HFpEF exhibit insufficient relaxation in diastole  and the NCX has 
been identified as a potential drug target for ameliorating myocyte 
relaxation [37,38]. The NCX has been found to be colocalized with 
CRUs in most species, including rat [39] and rabbit [40], but some 
microscopy studies seem to contradict this [41]. Modeling suggests 
that the arrhythmogenic potential of NCX in conjunction with delayed 
after-depolarizations is stronger with NCX inside the dyadic space 
compared to NCX being close to CRUs [42]. Sub-dyadic modeling 
showed substantial concentration gradients inside dyadic clefts [21,
24,43]. Hence, these structural details are relevant. Modeling them 
requires solving the reaction–diffusion equations on the length scale 
of RyR distances inside the cleft and of CRU size in the vicinity of 
CRUs. Investigating the effect of NCX localization on action potentials 
and myocyte relaxation requires simulating cell behavior at the same 
time. The space–time adaptivity established in this study allows for 
those multi-scale simulations and enables modeling to investigate these 
disease-related questions.
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Table 5
A full list of all named parameters in this paper, including their values. All other parameter values are as they are listed 
in [15,24]. Species-specific parameters for rat membrane potential dynamics are taken from [25].
 Parameter Description Value  
 𝐷𝑐 Diffusion constant for unbound Ca2+ in the cytosol 0.220 μm2∕ms  
 𝐷𝑚 Diffusion constant for Ca2+ bound mobile buffers in the cytosol 0.04 μm2∕ms  
 𝐷𝑠 Diffusion constant for Ca2+ bound immobile buffers in the cytosol 0 μm2∕ms  
 𝐷𝑓 Diffusion constant for Ca2+ bound fluorescent buffer in the cytosol 0.033 μm2∕ms  
 𝑏𝑡𝑜𝑡𝑚 Total concentration of mobile Ca2+ buffer in the cytosol 25.0 μM  
 𝑏𝑡𝑜𝑡𝑠 Total concentration of immobile Ca2+ buffer in the cytosol 70 μM  
 𝑏𝑡𝑜𝑡𝑓 Total concentration of fluorescent Ca2+ buffer in the cytosol 25 μM  
 𝑉 max

𝑃 SERCA maximum pump speed 1. μM∕ms  
 𝐾𝑃 SERCA half maximum concentration 0.2 μM  
 𝜈SR Volume ratio of SR compartment 0.1  
 𝜈cyt Volume ratio of cytosolic compartment 0.9  
 𝐾𝑑 Dissociation constant of the fluorescent buffer 345 nM  
 𝜏Refill jSR Refill flux time constant 3.9 ms  
 𝑉cell Total volume of a rat cardiomyocyte 2.58 × 104 μm3 
 𝐴cell Total surface area of a rat cardiomyocyte 7290 μm2  
Appendix A. Algorithm

1. Initialization

• Set 𝐮𝑜𝑙𝑑 = 𝐮0, 𝑡𝑜𝑙𝑑 = 0 and 𝛥𝑡 > 0. Here the solution 𝐮
represents all unknown quantities from the state equations.

2. Stochastic CRU dynamics

• Compute the event times (𝑡𝑜𝑙𝑑 + 𝛥𝑡𝑖) ∈ [𝑡𝑜𝑙𝑑 , 𝑡𝑜𝑙𝑑 + 𝛥𝑡] for all 
CRUs 𝑖 = 1,… , 𝑁𝑐 by applying the single CRU dynamics as 
described in [22,24].

• Compute average RyR and LCC fluxes, jSR Ca2+ content 
and individual Channel States at time 𝑡𝑜𝑙𝑑 + 𝛥𝑡

3. Update Bulk Calcium Cycling Dynamics

• Compute new solution 𝐮𝑛𝑒𝑤 based on the available old 
solution 𝐮𝑜𝑙𝑑 the time step 𝛥𝑡 and the fluxes from the CRUs 
averaged over the timestep 𝛥𝑡.

• If the time step integrator (Rosenbrock type) of the dis-
cretized PDE system rejects the current time step, then 
determine the new time step 𝛥𝑡𝑛𝑒𝑤 according to local error 
criterion of the time step integrator and assign 𝛥𝑡 ∶= 𝛥𝑡𝑛𝑒𝑤
and go to 2.

4. Update membrane potential dynamics

• Compute the new solution of 𝑉𝑛𝑒𝑤 based on the 𝐮𝑛𝑒𝑤 and 
the current LCC, RyR and NCX fluxes.

5. Adapt the grid at time 𝛥𝑡

• Apply the 𝑍2 error estimator to find the error at the 
computational mesh and adapt the grid accordingly.

• Call re-load balance of the grid using ALUGrid space-
filling curve approach package if it has changed and then 
assemble the matrices and vectors accordingly.

6. Set 𝑡𝑜𝑙𝑑 ∶= 𝑡𝑜𝑙𝑑 + 𝜏𝑠𝑡𝑜𝑐 and go to 2.

Appendix B. Parameters

See Table  5.

Appendix C. Supplementary data

Supplementary material related to this article can be found online 
at https://doi.org/10.1016/j.cmpb.2025.109154.
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