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AI-powered spatial cell phenomics enhances
risk stratification in non-small cell
lung cancer
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Risk stratification remains a critical challenge in non-small cell lung cancer
patients for optimal therapy selection. In this study, we develop an artificial
intelligence-powered spatial cellomics approach that combines histology,
multiplex immunofluorescence imaging and multimodal machine learning to
characterize the complex cellular relationships of 43 cell phenotypes in the
tumor microenvironment in a real-world retrospective cohort of 1168 non-
small cell lung cancer patients from two large German cancer centers. The
model identifies cell niches associated with survival and achieves a 14% and
47% improvement in risk stratification in the two main non-small cell lung
cancer subtypes, lung adenocarcinoma and squamous cell carcinoma,
respectively, combining niche patterns with conventional cancer staging. Our
results show that complex immune cell niche patterns identify potentially
undertreated high-risk patients qualifying for adjuvant therapy. Our approach
highlights the potential of artificial intelligence powered multiplex imaging
analyses to better understand the contribution of the tumor microenviron-
ment to cancer progression and to improve risk stratification and treatment
selection in non-small cell lung cancer.

In the last two decades, advanced lung cancer treatment has been
revolutionized by targeted therapies against oncogenic kinases and
immune checkpoints have significantly improved cancer-specific sur-
vival rates1–4. Despite this progress, lung cancer remains the leading
cause of cancer-related deaths with an estimated 1.8 million fatalities
worldwide in 20205.

Current initial patient stratification relies on the Union for Inter-
national Cancer Control (UICC) TNM staging system. This system

evaluates three key factors: tumor size (T); regional lymph node
involvement (N), and distantmetastasis (M). It is widely recognized for
its objectivity and reproducibility and is the current gold standard in
clinical practice6,7.

While earlier UICC stages (I-III) are treated by surgery with cura-
tive intent, patients may receive adjuvant chemotherapy to improve
survival because about half of these patients relapse and have an
unfavorable prognosis. Between 21 and 71%ofpatients succumbwithin
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5 years of diagnosis7–12. So far, the search for novel prognostic and
predictive biomarkers to effectively stratify these early-stage patients
for potential adjuvant treatment options has remained inconclusive,
even with next-generation sequencing.

In contrast to the established staging and grading systems, as well
as current mutational profiling focus on cancer cells, our study
explores the impact of the tumormicroenvironment (TME) on disease
progression and its potential clinical value. The TME is a multifaceted
ecosystem that includes a wide variety of immune and stromal cells
embedded in a vascularized extracellular matrix and their spatial
relationships among each other and with the cancer cells13. In recent
years, the pivotal role of the TME in cancer initiation, progression, and
therapeutic response has been recognized14,15, and several studies have
shown the prognostic significance of specific immune cell subsets16–21.
In NSCLC specifically, the TME has emerged as a key prognostic factor.
For instance, Backman et al. recently demonstrated that the individual
densities of lymphocyte subsets, the combined abundance of distinct
immune cell populations, and their distances to one another each
contribute independently to prognostic information regarding clinical
outcomes22. More recent studies further support this view by showing
that the spatial distribution of regulatory and cytotoxic T cells is clo-
sely associatedwith tumor stage anddiseaseprogression inNSCLC23,24.
However, most of these studies have mainly focused on selected cell
types, cell counts, or cellular function within the TME, not taking into
account their complex spatial relationships and heterogeneous
distribution15,25. This, however, is critical for understanding the role of
the TME in tumor pathology. In a landmark study, Galon et al.26 for
instance, showed that the localization of immune cells influences the
outcome in colorectal cancer patients. This finding was subsequently
validated in a large international multicenter study27. Similarly, Loi
et al.28 and Issa-Nummer et al.29 associated a high degree of immune
infiltration in the tumor stroma with an increased treatment response
rate in breast cancer patients. The limitations of these studies are that
they only analyzed a limited number of cell types or compared tumor
and stroma regions at an aggregated level.

It is hypothesized that capturing and understanding the com-
plexity of the TME requires a data-driven, integrated AI-based analysis.
Exemplary, Keren et al.30 explore this path on a small cohort by com-
bining multiplex imaging with AI-driven image analysis and expanding
the number of cell types analyzed at spatial resolution, allowing for a
more comprehensive understanding of the composition and organi-
zation of the TME. While previous work has unraveled remarkable
insights into the TME on smaller cohorts of well-selected, contrasting
patients, these studies were limited in scope and patient diversity.

In this work, we cover the full routine spectrumof patients as they
arrive in the clinic, allowing us to inspect the current tumor staging
system and its interaction with the spatial cellular composition of the
tumors. We show that complex spatial cellular relationships can be
systematically analyzed to identify “cell niches” that provide clinically
relevant information beyond the Union for International Cancer Con-
trol (UICC8) staging system and guide treatment decisions. Our
study leverages a large bicentric NSCLC cohort, multiplex
immunofluorescence-based (mIF) cell characterization, and AI-driven
multimodal modeling. The approach combines classical histomor-
phology with multiplex immunofluorescence microscopy, including
carcinoma and immune cell antigens, allowing for the classification of
43 distinct cell phenotypes. Our study comprises 1168 patients with
surgically resected stage I-IVNSCLC forwhichwedeveloped a scalable,
AI-based automated analysis pipeline. The approach incorporates 14
distinct AI models for tissue segmentation, cell detection, and cell
classification, followed by an explainable machine learning approach
that combines cell phenotypes and cell localization to predict patient
outcome. In total, we identify 53 million cells whose types and spatial
locations are incorporated in the clinical AI model. Our analysis shows
pronounced variations in cell density and composition between the

major lung cancer subtypes adenocarcinomas (LUADs) and squamous
cell carcinomas (LUSCs), as well as among patients within each sub-
type. Based on the cell density, we identify different carcinoma sub-
types with specific immune states. For example, carcinomas with high
cancer cell density and very low inflammatory activity, so-called “cold
tumors”, immunosuppressive carcinomas with or without inflamma-
tion, and carcinomas with B-cell-dominant inflammation. By combin-
ing cell phenotypes with cell localization, we identify 10 distinct
spatially resolved cell neighborhoods, termed “cell niches”, in LUADs
and LUSCs. Using the cell niches, we finally train a predictor of patient-
survival on the Berlin subcohort and validate it on the Cologne sub-
cohort. Our study highlights the potential of combining a large clinical
cohort, histology, multiplex immunofluorescence, and an integrated
multimodal AI approach. This enables high-resolution spatial
exploration of the TME and facilitates improved risk stratification for
adjuvant therapy selection in lung cancer patients.

Results
Development of an AI-powered multimodal cellomics assay
For each of the 1168 NSCLC patients, four 1.5mm tissue cores from
representative tumor regions were selected and assembled to tissue
microarrays (TMA) to enable high-throughput imaging. All patients
had undergone surgical tumor resection between 2006 and 2019 in
Berlin or Cologne with available information on histological tumor
type, UICC8 stage, treatment, and clinical outcome (Supplemen-
tary Data 1).

A 12-plex immuno-fluorescence panel was used for TME char-
acterization, including immune-related proteins (CD3, CD4, CD8,
CD20, CD56, CD68, CD163, FOXP3, Granzyme B (GrB)), immune-
checkpoints (PD-1, PD-L1), and cytokeratin (CK) as epithelial cell mar-
ker allowing for the distinction of 43 different cell types (see Methods
section for details; Supplementary Data 2 and Supplementary
Figs. 1–3). For an integrated analysis of the tumor histomorphology,
the same sections were additionally stained with Hematoxylin & Eosin
(H&E) and re-scanned. Subsequently, TMAs were split into individual
spots and registered to single-cell precision, yielding a database of
57,000 tissue images (Fig. 1 and Supplementary Fig. 4).

While smaller-scale studies can be performed with off-the-shelf
models, the scale of the data and its diversity in batch effects made
custom model training necessary.

To this end, we trained a deep convolutional neural network with
UNet architecture to segment carcinoma, necrosis, tumor stroma and
healthy tissue31. Training was carried out iteratively in an active learn-
ing fashion with pathologists in the loop. The final model achieved a
macro-averaged F1-score of 0.92 on tissue spots of hold-out cases.
Recall and precision within each region are shown in Fig. 1B.

Cell detection was based on an optimized in-house version of
StarDist32—a UNet-based object detection model using a star-convex
polygon prediction layer to detect cell nuclei—that was fine-tuned on
over 100,000 pathologist-annotated cell nuclei across several tissue
types. The cell detection achieved an object-based test-set F1-score of
0.91 (Fig. 1C, Supplementary Fig. 5 and SupplementaryTable 1). Finally,
the cell classification task was modeled as a multi-label classification
task with twelve independent models—one per mIF channel—using a
ConvNext33 architecture. We chose independent models per mIF
channel to counteract “Clever Hans” effects34, which we observed
when using jointmodels that exploitedmarker correlations among the
mIF channels. The cell classification models were applied to a total of
53 million cells and achieved an average F1-score of 0.91 on indepen-
dent test cases (Fig. 1D). The resulting binary predictions were aggre-
gated into a multi-hot vector per cell, which formed the basis for
downstream niche classification. As outlined in Fig. 1E, niche compo-
sitionwasderived by comparing the localmarker frequencies (within a
34 µm radius) to prototype distributions obtained via clustering. Full
implementation details are provided in the Methods section.
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Fig. 1 | Cohort description and cell phenomics analysis pipeline. A Patient
selection and data integration flow-chart. B Tissue segmentation model. Upper
row: Original image (H&E), bottom row: AI-derived tissue segmentation with car-
cinoma in red, stroma in yellow, necrosis in blue and healthy tissue (uncolored).
C Cell detection model. Upper row: Original image (H&E), bottom row: AI-derived
cell detection (red polygons). D Twelve individual mIF-based cell classification

models. E Niche detection: Upper box: For each cell, the number of cells within its
34 µm neighborhood was counted. Center box: All 53 million cell neighborhoods
were clustered into ten distinct niches using neighborhood vectors separately for
LUAD and LUSC. Lower box: The niche distributions were determined for every
tumor. Scale bars: (B +C) 500 µm (tissue spots) and 30 µm (magnified
regions); (D) 20 µm.
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Difference in immune composition of LUAD and LUSC on a
cohort-level
We characterized the cellular landscape of NSCLC by quantifying the
cellular composition based on the 43 mIF-derived cell types for both
LUAD (Fig. 2A) and LUSC (Fig. 2B) separately (see Methods section for
detailed explanation). Considerable variability in the quantitative

composition of carcinoma and different immune cells could be
observed in both carcinoma types (Fig. 2A, B). The spectrum ranges
from immune cell-rich “hot” to immune cell-poor “cold” carcinomas
(Fig. 2C, D). The observed diversity and extreme ends are in line with
previous work on other cancer types, such as the work on triple-
negative breast cancer from Keren et al.30.
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The impact of interactions between immune cells on cancer
prognosis and response to checkpoint therapy is well recognized35,36.
However, it remains a challenge to understand how specific (spatial)
relationships among immune cell types impact clinical outcomes. This
uncertainty is partly due to the limited accuracy of traditional manual
scoring methods used in previous research. Our study addresses this
issue with an AI-based analysis pipeline, improving the accuracy of our
results.

To categorize LUAD and LUSC according to their unique immune
states, hierarchical clustering was performed (Fig. 2E for LUAD and 2G
for LUSC). Examples of tumor samples with different immune states
are shown in Fig. 2F (LUAD) and 2H (LUSC). Cellular compositions
differed between LUAD and LUSC, reflecting their different histologi-
cal types (Supplementary Table 2). In LUSC, carcinomas showed on
average a higher density of carcinoma cells than in LUAD (1731.12/mm2

vs. 1475.09/mm2; Chi-squared test, p < 0.0001****), which is consistent
with the predominantly solid growth pattern of LUSC compared to the
glandular growth of LUAD. Additionally, carcinoma groups with spe-
cific immune states were assembled that differed in their quantitative
distribution betweenLUADandLUSC (Chi-squared test,p <0.0001****;
for detailed cell phenotype density per cluster see Supplementary
Data 3–6.). The classification of carcinomas by their specific immune
status for prognosis and treatment response has been established by
Mahmoud et al. 201137 and Taube et al. 201238. Cluster group 6 in LUAD
and cluster group 1 in LUSCwere characterized by large proportions of
immunosuppressive carcinoma cells (645.51/mm2; 878.65/mm2),
alongside a lower frequency of T cells (307.71/mm2; 138.71/mm2) and B
cells (9.16/mm2; 13.10/mm2), which is consistent with TME type 3 to
tailoring cancer immunotherapeuticmodules (PD-L1+/ TIL−), as defined
in the literature38–40. TME type 3 represents a group of tumors for
which PD-L1 positivity cannot be used as a predictive factor for
response to Immuno-Oncology (IO) therapy. Instead, combination
therapies including radiotherapymight beused to recruit lymphocytes
into the tumor40–44. In contrast, cluster group 4 in LUAD and cluster
group 3 in LUSC revealed TME type 1 (PD-L1+; TIL+) with a high fre-
quency of both immunosuppressive carcinoma cells (726.65/mm2;
857.37/mm2) and lymphocytes (989.64/mm2; 1034.28/mm2). This
tumor group shows response to IO therapy11,33,34,36–38.

Cluster group 5 in LUAD and cluster group 2 in LUSC showed a
high density of carcinoma cells (2340.06/mm2; 2116.97/mm2), with
limited lymphocyte infiltrates (61.31/mm2; 94.07/mm2) and low fre-
quency of immunosuppressive carcinoma cells (8.07/mm2; 4.85/mm2).
This signature is consistent with the characterization of tumors with
immunological ignorance (TME type 2) or “cold tumors”, defined by a
lack of T cells in the TME (PD-L1−; TIL−)39,40,45. The categorization of
tumors into “hot” and “cold” types is increasingly recognized as a
prognostic indicator for patient survival and as a predictor of response
to immunotherapies26,46–50. Notably, LUSC had a higher proportion of
“cold” tumors compared to LUAD (14.8% vs. 5.6%; Chi-squared test,
p <0.0001****).

Furthermore, the clustering identified a carcinoma group (LUAD
cluster group 2; LUSC cluster 5)with higher lymphocyte ratios (435.34/

mm2; 585.89/mm2), alongside a low frequency of immunosuppressive
carcinoma cells (10.57/mm2; 19.24/mm2), which is consistent with TME
type 4 (PD-L1-/ TIL+)39.

LUAD cluster group 3 and LUSC cluster 4 in particular were
characterized by a high proportion of B cells (201.59/mm2; 156.74/
mm2). While immuno-oncology has primarily focused on T lympho-
cytes, there is growing evidence that tumor-infiltrating B cells (TIL-B)
and plasma cells also play an important role in tumor biology,
including NSCLC51–58. The higher frequency of B-cell-rich carcinoma
subtypes in LUAD compared to LUSC (Chi-squared test, p <0.0001****)
aligns with current research findings58,59.

Moreover, LUAD cluster 1 revealed low lymphocyte infiltration
(182.56/mm2), accompanied with elevated levels of tumor infiltrating
macrophages (TAM+) (184.51/mm2; monocyte-to-lymphocyte ratio =
1.01), whereas LUSC cluster 6 showed higher proportions of immu-
nosuppressive carcinoma cells (71.51/mm2) and B cells (28.61/mm2),
both of which are associated with patients’ survival and treatment
response60,61. We also identified a seventh cluster in LUSC that was less
specifically defined, showing low levels of immunosuppressive carci-
noma cells (9.17/mm2) and moderate B cell (19.73/mm2) and T cell
infiltration (260.56/mm2).

The orthogonal validation of PD-L1 status via immunohis-
tochemistry (IHC) and the lymphocyte count validation by H&E-based
cell classification (Pearson correlation coefficient of r = 0.8418/
r =0.891) underlines the accuracy of the approach (Supplementary
Figs. 6, 7).

In summary, the results have shown that our multimodal AI-
powered phenomics approach facilitates the automated, comprehen-
sive, and accurate identification of prognostically relevant immune
states within the TME at the cellular level.

Composition and distribution of AI-derived spatial cell niches
in LUAD
While the association of the non-spatially resolved cellular composi-
tion and clinical outcome is well established in the literature as
described above, we hypothesized that analyzing the exact spatial
relationships among cells in local cellular neighborhoods or “niches”
may provide additional insights into biological behavior and clinical
outcome.

To assess the spatial organization of the cellular landscape in
LUAD, we computed the number of cells of the different cell types
within a 34 micron neighborhood (Fig. 1E). The radius was selected to
include both directly adjacent (first-order) and second-order neigh-
bors in line with previous studies (see “Methods” for details)30,62,63.
Using this approach, we identified 10 distinct cell neighborhoods,
termed “cell niches”. The composition of each niche was visualized
using radar plots highlighting the proportions of the underlying
expression markers (Fig. 3A–J).

Niche 1 was dominated by CK expressors with moderate levels
of CD4+ and CD68+ cells (Fig. 3A). Niches 2 and 4 (Fig. 3B, D)
exhibited a medium to high proportion of CK+ cells and an
increased number of CD3+, CD4+, CD8+, and PD-1+ cells. In addition,

Fig. 2 | Cell phenomics overview. A Stacked bar plots of the abundances of cell
phenotypes* for each tumor sample (n = 2233 from n = 663 patients) in LUAD,
showing the highly variable distribution of immune cells and cancer cells across
tumors. B Same as (A) but for LUSC (n = 1659 from n = 462 patients). In contrast to
LUAD, a noticeable higher number of tumors exhibited high densities of immu-
nosuppressive carcinoma cells (iCC). C Examples of tumors with high and low
infiltration of immune cells and relatively low and high carcinoma cell content in
LUAD. D Same as (C) but for LUSC. E Heatmaps sorted with hierarchical clustering
in LUAD (z-scored and log-transformed for improved visibility; n = 2233 tumor
samples from n = 663 patients. Horizontal axis: tumor samples; vertical axis: cell
types. Arabic numbers highlight clusters corresponding to different clinically

relevant immune states (cf. F). Visual annotations highlight key patterns within the
immune states. F Tumor examples with different clinically relevant immune states
in LUAD.GHeatmaps sortedwith hierarchical clustering in LUSC (z-scored and log-
transformed for improved visibility; n = 1659 tumor samples from n = 462 patients.
Horizontal axis: tumor samples; vertical axis: cell types. Arabic numbers highlight
clusters corresponding to different clinically relevant immune states (cf. H). Visual
annotations highlight key patterns within the immune states. H Tumor examples
with different clinically relevant immune states in LUSC. Scale bars: (C +D + F +H)
500 µm. *Figure shows cell phenotype name abbreviations. For full names, see
Supplementary Data 2. Source data are provided as a Source data file.
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niche 2 had a higher proportion of CD68+ cells compared to niche 4.
Cells of niche 3 expressed almost exclusively CK (Fig. 3C), whereas
niche 5 was characterized by a higher number of CD3+, CD4+, CD8+,
CD20+, CD68+, CD163+, and FOXP3+ cells as well as the expression of
activation and exhaustion markers (PD-1+, GrB+) (Fig. 3E). Niche 6
showed an increased proportion of CD3+ and CD4+ cells, along with

a low number of CK+ cells (Fig. 3F). High proportions of cells within
Niche 7 expressed CK and PD-L1 (Fig. 3G), while CK+, PD-L1+, CD3+,
CD4+, CD8+, CD68+, and CD163+ cells were moderately present in
niche 8 (Fig. 3H). Niche 9 was characterized by high numbers of CK+

cells in combinationwith lownumbers of CD3+, CD4+, or CD68+ cells
(Fig. 3I). In contrast to all the other niches, niche 10 displayed a high
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proportion of CD68+ cells, alongside a moderate number of CD163+

cells (Fig. 3J).
To further compare the composition of the niches, we performed

clustering based on the expressed markers (Fig. 3K). Firstly, we iden-
tified a group of three carcinoma cell-enriched niches with a low to
moderate immune reaction (LUAD niches 1, 7, 9), characterized by a
predominant presence of CK+ cells alongside a low to moderate
number of cells expressing lymphocyte-,macrophage-, and activation/
exhaustion markers (e.g., CD3, CD20, CD68, PD-1, GrB). Secondly,
another cluster comprising three niches revealed high CK expression,
alongside high proportions of T cell markers (CD3, CD4, CD8), mac-
rophagemarkers (CD68, CD163) and activation or exhaustionmarkers
(PD-1, GrB), classified as carcinoma niches with strong immune reac-
tion (LUAD niches 2, 4, 8). Furthermore, we found one carcinoma cell-
dominant niche, in which cells expressed almost exclusively CK, clus-
tered separately to each other niche (LUAD niche 3). Finally, three
immune cell-dominant niches were identified, characterized by a high
prevalence of immune cell markers and a low number of CK-positive
cells (LUAD niches 5, 6, and 10). These were further categorized into
twodistinct lymphocyte-rich nicheswith predominant CD3 expression
(LUAD niches 5 and 6) and one macrophage-rich niche with a high
density of CD68+ cells (LUAD niche 10).

The evaluation of niche type distribution across tumor samples
showed considerable heterogeneity in LUAD (Fig. 3L). The tumors
showed a broad spectrum of niche compositions ranging from a high
prevalence of the lymphocyte-rich niche 5 (left side of the histogram;
see exemplary H&E-stained tumor sample and niche overlay in Fig. 3M
left) via mixed-niche type tumors to a high prevalence of the carci-
noma cell-dominant niche 3 (right side of the histogram; see exemp-
lary H&E-stained tumor sample and niche overlay in Fig. 3M right).

To evaluate the carcinomas in terms of their niche patterns,
defined as the niche compositions within each tumor, we performed
another hierarchical clustering analysis, this time over tumor samples
and cell niches and identified four characteristic cluster groups
(Fig. 3N). Cluster group I showed amixture of carcinoma cell-dominant
and carcinoma cell-enriched niches as well as niches with a strong
immune reaction (niches 1–4, 8, and 9), whereas lymphocyte-rich and
macrophage-rich niches were less frequent (exemplary tumor sample
on the left in Fig. 3O). In contrast, cluster groups II and III exhibited a
higher proportion of lymphocyte-rich niche 6 and macrophage-rich
niche 10. Compared to cluster group III, cluster group II revealed a
relatively low proportion of carcinoma cell-dominant or -enriched
niches (niches 1, 3, and 9), with a higher proportion of niche 8, char-
acterized by a strong immune reaction (exemplary tumor samples of
cluster groups II and III in themiddle left and right sections of Fig. 3O).
Cluster group IV differed primarily in its higher proportion of carci-
noma cell-enriched niche 7 and niche 8 (exemplary tumor sample on
the right in Fig. 3O).

To obtain a comprehensive overview of the distribution and
concentration of niche patterns, we visualized the tumor samples in a
niche atlas—a two-dimensional UMAP projection in which the location
of each tumor sample was determined by its niche pattern (Fig. 3P).
Distinct groups of tumor samples with similar niche patterns became
apparent that matched the groups as well as the clusters described
above. For instance, groups of tumor samples showed enrichments of
niche 5 (I), predominance of niche 3 (III) or were characterized by a

prevalence of niches 1–4, 8, and 9 (II), consistent with niche groups of
the histogram (Fig. 3L) or cluster group 1 of the heatmap (Fig. 3N).

Composition and distribution of AI-derived spatial cell niches
in LUSC
Using the same approach as described above, we identified 10 dif-
ferent cell niches in LUSC. Niche 1 was characterized by high
expression levels of CK along with moderate expression levels of
CD3, CD4, CD68, and PD-L1, as well as activation and exhaustion
markers PD-1 and GrB (Fig. 4A), while cells within niche 2 showed
predominant CK expression, mixed with low proportions of CD68,
CD3, and CD4 (Fig. 4B). Niche 3 had an intermediate number of cells,
characterized by cells expressing CK, PD-L1, CD3, CD4, CD8, CD68, or
CD163 (Fig. 4C). Niche 4 contained predominantly CK+ carcinoma
cells (Fig. 4D), while niche 5 showed an abundance of CD3+ and CD4+

cells (Fig. 4E). Within niche 6, most cells expressed CK and PD-L1
(Fig. 4F). Niche 7 showed a higher number of immune cell markers
(e.g., CD3, CD20, CD68) as well as expression of activation and
exhaustion markers (PD-1, GrB) (Fig. 4G). Niches 9 and 10 differed
from the other niches in the high expression of macrophage markers
(CD68, CD163) (Fig. 4I, J). Cells from niche 10 showed a mixture of
CD68+ and CD163+ macrophages, whereasmacrophages from niche 9
expressed predominantly CD163.

Similar to LUAD niche groups were found when comparing niche
composition using cluster analysis (Fig. 4K). In contrast, we identified
only two carcinoma-enriched niches with a low to moderate immune
reaction (LUSCniches 2 and 6) and only twocarcinomacell nicheswith
strong immune reaction (LUSC niches 1 and 3), characterized by a high
expression of CK alongside low to high expression of immune cell,
activation- or exhaustion markers, respectively. In addition, we again
found one carcinoma cell-dominant niche (LUSC niche 4), consistent
with LUAD niche 3. We further found five immune cell-dominant
niches with a high proportion of immune cell markers and a low pro-
portionof carcinoma cells (LUSCniches 5, 7, 8–10). These niches could
be subdivided into three lymphocyte-dominant niches (LUSC niches 5,
7, and 10) and two macrophage-dominant niches (LUSC niches 8
and 9).

When analyzing the distribution of niches across tumor samples,
we also found a pronounced heterogeneity in LUSC (Fig. 4L). In
contrast to LUAD, fewer tumors showed only one dominant niche,
but more combinations of two or three niches were observed
(entropy within samples/clusters, scipy.stats.permutation_test,
p < 0.001***/p < 0.05*). However, consistent with LUAD, a distinct
group of carcinomas with a high prevalence of carcinoma-dominant
niches (niches 2 and 4) was detected (left side of the histogram; see
exemplary tumor sample in Fig. 4M left) as well as carcinomas
with an enrichment of immune cells (niches 3 and 7) were found
(right side of the histogram; see exemplary tumor sample in
Fig. 4M right).

Similarly to LUAD, LUSC could be categorized into four cluster
groups based on their niche patterns (Fig. 4N). Cluster group I was
characterized by a higher proportion of the lymphocyte-dominant
niches 5 and 7, macrophage-dominant niche 10, as well as niches
with strong immune reaction (niches 1 and 3), and a lower occur-
rence of carcinoma cell-enriched and carcinoma cell-dominant
niches 2, 4, and 6 (exemplary tumor sample on the left in Fig. 4O).

Fig. 3 | Niche composition, distribution and patterns in LUAD. A–J Visualization
of niche compositions via radar plots highlighting the proportions of the under-
lying marker expressions. K Heatmap of cell niches sorted with hierarchical clus-
tering for similarity in marker expression. Niches with similar marker expressions
are labeled with lowercase letters. L Stacked bar plots of the abundances of cell
niches across tumors in LUAD (n = 2233 tumor samples from n = 663 patients).
M Tumor examples with enrichment of niche 5 (lymphocyte-rich, left) and niche 3
(carcinoma cell-dominant, right). Dots represent cells colored by their niche

membership. N Heatmaps sorted with hierarchical clustering for similarity in
abundances, z-scored and log-transformed for improved visibility in LUAD. Tumor
groups with differing niche patterns are labeled with roman numerals (n = 2233
tumor samples from n = 663 patients). O Examples of tumors with different niche
patterns in LUAD as outlined in (N). P LUAD niche atlas for all tumor samples, see
Supplementary Fig. 8 for a magnified version. UMAP projection of tumor samples
according to niche patterns shows distinct groups (I, II, III; scale bar: 500 µm).
Source data are provided as a Source data file.
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Cluster group II had a high proportion of niches 1–5 and 7
(exemplary tumor sample in the middle-left section of Fig. 4O).
Cluster groups III and IV showed a higher prevalence of the car-
cinoma cell-enriched niche 6 compared to cluster groups I and II.
In addition, both clusters had a higher proportion of niches 3 and
7, while niches 1, 2, and 4 were more prevalent in cluster III

(exemplary tumor samples of cluster groups III and IV in the
middle-right and right sections in Fig. 4O).

The LUSC niche atlas (Fig. 4P) showed characteristic groups of
tumors, reflecting the niche distributions and niche clusters described
above. For example, groupswere identifiedwith a higher prevalence of
niches 3, 6, and 7 (I), with a mixture of niches 2 and 4 (III), and with a
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high proportion of niches 1, 3, 5, 7, and 8 (II) were identified, consistent
with the niche groups from the histogram (Fig. 4L) and cluster group II
from the heatmap (Fig. 4N).

In summary, these results show that we were able to compre-
hensively characterize the spatially resolved tumor composition at an
unprecedented scale at single-cell level, revealing ten niches with
unique cell neighborhood signatures in LUAD and LUSC, respectively,
which could be further grouped according to their dominant immune
status. Both entities exhibited carcinoma cell-enriched niches with a
low to moderate immune reaction, carcinoma niches with strong
immune reaction, carcinoma cell-dominant niches, as well as
lymphocyte-dominant and macrophage-dominant niches. However,
quantitative differences in the prevalence of these niche groups were
critically observed between LUAD and LUSC.

Translation of the niches into cell phenotype compositions for
biological interpretability
Based on the distribution of the cell phenotypes (Supplementary
Data 2) within each niche of LUAD and LUSC (Fig. 5A, B), we compared
LUAD niches (Fig. 5C) with those of LUSC (Fig. 5D) based on their
phenotype distribution (partial optimal transport; see Methods and
Supplementary Fig. 10 for further details)64,65. In addition, we classified
them according to their specific immune reaction and further grouped
them into hot and cold niches (Fig. 5E).

LUAD niche 8 (Fig. 5C) and LUSC niche 3 (Fig. 5D) revealed higher
proportions of immunosuppressive carcinoma cells (LUAD= 27%;
LUSC = 31%) alongside a mixture of high immune cell infiltration
(LUAD= 46%; LUSC= 47%), defining themas “inflamedniches” (Inflhigh),
and therefore as hot niches (Fig. 5E). LUAD niche 2 showed a balanced
composition of carcinoma cells (51%) and the other half of immune
cells (49%). The immune cells were a mixture of T lymphocytes (e.g., T
helper cells (12%), CD8+ cells (3%), cytotoxic T cells (1%)) and macro-
phages (13%), corresponding to a hot niche with “strong immune
infiltration” (Leucohigh). A similar phenotype distribution was observed
in LUSC niche 1. LUAD niche 6 and LUSC niche 5 were also classified as
hot niches. Both contained high densities of lymphocytes (LUAD=
88%; LUSC= 82%), while the number of carcinoma cells was low
(LUAD= 1%; LUSC = 2%). We categorized them as “lymphoid rich I”
(Lymphigh I). Both LUAD and LUSC had a unique hot niche. LUSC niche 8
was named “lymphoid rich II” (Lymphigh II) due to the high number of
lymphocytes. The immune infiltrate of LUAD niche 4 consisted mainly
of T lymphocytes (75%) and was therefore classified as “T cell domi-
nant” (T cellhigh). Both entities had a nichewith an increased proportion
of B cells (LUAD niche 5 = B cells 15%; LUSC niche 7 = B cells 10%).
Furthermore, these nicheswere characterizedbyhighproportions of T
lymphocytes (LUAD niche 5 = 56%; LUSC niche 7 = 58%), regulatory
T cells (LUAD niche 5 = 6%; LUSC niche 7 = 7%) and natural killer cells
(LUAD niche 5 = 1%; LUSC niche 7 = 1%), moderate proportions of
macrophages (LUAD niche 5 = 19%; LUSC niche 7 = 22%) and low levels
of carcinoma cells (LUAD niche 5 = 3%; LUSC niche 7 = 2%). As shown in
the example regions (Fig. 5C, D), both niches exhibited morphological
features of tertiary lymphoid structures (TLS), consisting of organized
cellular aggregates with T cell-rich zones and B-cell follicles66. Thus,
both niches were classified as “tertiary lymphoid structures” (TLShigh).

We further identified five cold niches in each entity, four of which
were found in both LUAD and LUSC, and one of which was found in

only one entity (Fig. 5E). We found an “immune deserted” niche
(ImmuNULL) in LUAD (niche 3) and LUSC (niche 4), characterized by
carcinoma cells without immune cell infiltrates. In addition, one
“immunosuppressive excluded” niche (Immunosuphigh) could be
identified in LUAD (niche 7) andLUSC (niche 6), showing ahighdensity
of immunosuppressive carcinoma cells (LUAD=65%; LUSC= 71%),
alongside a low number of immune cells (LUAD=6%; LUSC = 5%).
Furthermore, we classified LUAD niche 9 and LUSC niche 2 as niches
with weak immune infiltration (Leucolow). Finally, we found a “TAM-
dominated” niche (Mφhigh I) in each entity (LUAD niche 10; LUSC niche
10), which revealed a mixture of a high number of macrophages
(LUAD= 92%; LUSC = 90%). In contrast to LUAD, LUSC had a second
macrophage niche with a high proportion of M2 macrophages (93%),
on the basis of which we classified it as “TAM-II-dominated” (Mφhigh II).
LUAD niche 1 consisted of 81% carcinoma cells and 16% tumor-
associated macrophages (TAMs) and was classified as “TAM-carci-
noma” (LUAD Mφint). This niche was unique to LUAD.

In summary, we were able to contextualize the spatially resolved
cell niches from a biological perspective. On the one hand, we found
six distinct hot niches, of which two were characterized by hetero-
geneous lymphocyte populations (Lymphigh I, Lymphigh II), three showed
inflammatory cell-rich carcinoma regions (Inflhigh, Leucohigh, T cellhigh)
and one correlated in composition andmorphology with TLS (TLShigh).
On the other hand, we identified macrophage-rich neighborhoods
(Mφhigh Ii, Mφhigh II), immunosuppressive (Immunosuphigh)-, inflamma-
tory cell-poor (Leucolow, Mφint) as well as immune deserted (ImmuNULL)
carcinoma regions,which couldbe summarized as coldniches. Eight of
the twelve niches occurred in both LUAD and LUSC, while two niches
were present only in one or the other carcinoma subtype.

AI-derived cell-niches advance survival prediction beyond
UICC8 standard
The UICC8 staging system, which categorizes tumors based on the
surgical resection with respect to size, infiltration of histological
structures and presence of lymph node and distant metastases, is a
cornerstone of the standard of care and serves as a primary predictor
of patient survival and a key determinant of treatment recommenda-
tions. However, UICC8-staging is limited, particularly with respect to
predicting relapse in early-stage lung cancer and therefore cannot
reliably stratify patients for adjuvant treatment selection. In our study,
we found that the UICC8 system effectively stratifies cases of LUAD
with a concordance index (c-index) of 0.633 and cases of LUSC with a
c-index of 0.630, which is a measure of survival prediction accuracy.
More precisely, the c-index67 is the proportion of pairs of patients in
which the patient with the higher risk value indeed experienced the
event before the patient with the lower risk value. For prediction at
random, the c-index is 0.5.

To investigate whether cellomics profiles improve patient strati-
fication beyond the UICC8 baseline, we trained a survival predictor
using cell densities within the tumor region andUICC8 data. To ensure
predictive validity of the results, wedeveloped themodel on the Berlin
patient cohort and validated it with the Cologne data set. Our models
showed an improvement over UICC8 of 8% relative to a chance-level
baseline of c-index =0.5 for LUAD cases (c-index =0.644, 95% CI
[0.546–0.738], p < 0.001) and an improvement over UICC8 of 34% for
LUSC cases (c-index =0.674, 95% CI [0.565–0.773], p <0.001). We

Fig. 4 | Niche composition, distribution and patterns in LUSC. A–J Visualization
of niche compositions via radar plots highlighting the proportions of the under-
lying marker expressions. K Heatmap of cell niches sorted with hierarchical clus-
tering for similarity in marker expression. Niches with similar marker expressions
are labeled with lowercase letters. L Stacked bar plots of the abundances of cell
niches across tumors in LUSC (n = 1659 tumor samples from n = 462 patients.
M Tumor examples with enrichment of niches 2 and 4 (carcinoma cell-dominant
and -enriched, left) and niches 3, 6, and 7 (immune cell-rich, right). Dots represent

cells colored by their niche membership. N Heatmaps sorted with hierarchical
clustering for similarity in abundances, z-scored and log-transformed for improved
visibility in LUSC. Tumor groups with differing niche patterns are labeled with
roman numerals (n = 1659 tumor samples from n = 462 patients. O Examples of
tumors with different niche patterns in LUSC as outlined in (N). P LUSC niche atlas
for all tumor samples, see Supplementary Fig. 9 for a magnified version. UMAP
projection of tumor samples according to niche patterns shows distinct groups (I,
II, III; scale bar: 500 µm). Source data are provided as a Source data file.
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restricted our analysis to patients with complete tumor resection and
without adjuvant treatment, as such treatments (radio- and che-
motherapy) may influence the immune system and thus the patient’s
prognosis, and therefore distort themodel results (for detailed patient
selection flowchart see Supplementary Fig. 11). Integration of multiple
TMA cores per patient was performed via max-pooling, i.e., the tumor

sample with the highest risk determines the overall risk of a patient
(“hot-spot approach”, see “Methods” section for further details). This
followed the rationale that risk underestimation should be avoided. Of
note, using average risk scores also improved patient stratification
beyond UICC8 staging (Supplementary Table 3), but using maximum
scores performed best.
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Weperformed the same analysis with the cell niches combinedwith
the UICC8 as features and found a relative improvement over UICC8 of
14% in LUAD (c-index =0.665, 95% CI [0.566–0.758]) and also a strong
relative improvement of 47% in LUSC (c-index =0.692, 95% CI
[0.597–0.781]). These models that used cell niches significantly out-
performed models just using cell densities (p<0.01, Wilcoxon signed-
rank test). A visualization of the model hold-out c-index bootstrap test
distribution is presented in Figs. 6A and 7A. This finding supports the
claim that the spatial organization of the TME is relevant for tumor
progression and clinical outcome. This is also reflected in the survival
analysis (see Kaplan–Meier plots in Fig. 6B for LUAD and Fig. 7B for
LUSC), which confirms the superior predictive power of the niche-based
models over models based on the UICC8 staging or cell densities alone.
A visual comparison to the patient stratification by the UICC8 grading
system can be found in Supplementary Figs. 12 and 13. Notably, patients
assigned the lowest risk scores by our niche-base models have longer
overall survival than patients with UICC8 stage 1. See Supplementary
Table 3 for a comparison of the different models in LUAD and LUSC.

In summary, our findings suggest that spatial TME features have a
significant prognostic impact that can be leveraged to improveUICC8-
based clinical decision making.

AI-based cell niche analysis identifies clinically relevant risk
subgroups in stage 1 lung cancer
The improvement in survival prediction performance of the niche-
basedmodel comeswith significant changes in patient risk assessment
(Figs. 6C and 7C). In particular, a noticeable reclassification of the
UICC8 stage 1 patient group could be observed—patients for whom
surgery alone is the treatment of choice according to current guide-
lines. Approximately half of these patients were reclassified to a higher
risk score basedonniches and showed aprognosis similar to the group
of patients originally classified as UICC stage 2—patients for whom
adjuvant chemotherapy is recommended (Figs. 6D and 7D). Our study
of the spatial composition of TME in early-stage LUAD and LUSC thus
represents a paradigm shift in risk stratification by providing a sig-
nificantly different scoring system that can effectively identify high-
risk and potentially undertreated patients within a heterogeneous
UICC stage 1 population.

As expected, the niche-based models developed on early-stage
patients treated with surgery alone were able to stratify patients with
late tumor stage or patients with adjuvant therapy with less precision.
For patients with UICC8 = IV, the niche-based models stratified the
LUSC subgroup into a high-risk class and a low-risk class (Supple-
mentary Fig. 14). For patients with adjuvant therapy the niche-based
models significantly separated LUAD into high and low-risks (Supple-
mentary Fig. 15). Additionally, we compared risk groups with impor-
tant clinical confounders68 such as mutation status of frequently
mutated genes in lung cancer as well as other known covariates,
including sex, age, ECOG performance status, smoking status, tumor
grade, thyroid transcription factor 1 (TTF-1) expression, and growth
pattern, and found no relevant association (Supplementary Fig. 16. 17;
Supplementary Data 7).

Risk groups reveal distinct hot and cold niche patterns
To further understand the underlying biology of the proposed niche-
based stratification, we analyzed the cell niche patterns associated
with the three risk groups in LUAD (Fig. 6E–G) and LUSC (Fig. 7E–G).

LUADwith niche risk score 1 (RS1) showed a predominantmixture
of hot niches (Leucohigh, Inflhigh, T cellhigh), which is consistent with the
literature. Several studies have shown that high densities of tumor-
infiltrating lymphocytes (TILs)—such as CD3+TILs, CD4+TILs,
CD8+TILs and CD20+TILs – are favorable prognostic
biomarkers17,22,69–71. In line with the LUAD-specific analysis by Sorin
et al.72, two B–cell–rich niches with high regulatory T cell content
(TLShigh, Lymphigh I) were also enriched in our high-risk groups RS2 and
RS3, further supporting their associationwith poor prognosis in LUAD.
In addition, a higher concentration of the cold TAM-dominated niche
(LUADMφhigh) was observed at the higher risk scores. This is consistent
with the observation that an increased incidence of TAMs is associated
with reduced overall survival in various cancer types, and aligns with
reports by Backman et al.22 and Desharnais et al. (LUAD)73 linking
macrophage-rich niches to poor prognosis60,74. We also identified
additional cold immune niches (ImmuNULL, Immunosuphigh, and
Leucolow) characterized by high densities of tumor or immunosup-
pressive tumor cells, which were strongly enriched in RS3 and asso-
ciated with particularly poor prognosis—patterns not reported in the
previously cited large-scale spatial studies.

Similar to LUAD, for LUSC, higher concentrations of hot niches
(TLShigh, LUSC Inflhigh) were found at risk score 1, whereas the cold
niches Leucolow and ImmuNULL accumulated at risk scores 2 and 3.
Again, cold macrophage niches (Mφhigh I; Mφhigh II) were enriched in
high-risk tumors. In contrast to LUAD, TLShigh niche and Immunosuphigh

niche were both particularly observed in risk score 1 tumors, whereas
Chen et al.75 reported a favorable association of TLS enrichment in
NSCLC without histology-specific separation. This underlined the dis-
tinct nature of LUAD and LUSC. We also observed that the B-cell- and
regulatory T cell-rich niche Lymphigh I was enriched in RS1, whereas a
second such niche (Lymphigh II) was enriched in higher-risk groups,
emphasizing entity-specific prognostic associations and highlighting
the importance of considering niche patterns rather than single niches
for prognostic prediction.

In a complementary analysis, we quantified fibroblast abundance
fromH&E images and analysed their distribution across the cell niches.
Fibroblast abundance showed weak to moderate correlations with
niche frequencies and was significantly higher in “hot” niches com-
pared to “cold” niches in both LUAD and LUSC, but did not show a
statistically significant association with patient survival (Supplemen-
tary Figs. 18 and 19).

In summary, the results highlight that AI-derived analysis showed
distinct niche patterns associated with different patient survival risk
scores in both LUAD and LUSC. Both LUAD and LUSC showed an
accumulation of hot niches at risk score 1, whereas cold niches were
found in higher concentrations at risk score 2 and 3, consistent with
findings from the literature.

Risk-score heterogeneity and validation on whole tumor
sections
To evaluate the adequacy of TMAs for risk score assessment, we
evaluated and compared the intra- and inter-tumoral heterogeneity
of the niche-based risk scores for the different tissue cores for each
patient and across the whole cohort. The results demonstrated a low
intra-tumoral vs. inter-tumoral risk score variation (Supplementary
Fig. 20). To further evaluate the use of TMA cores as surrogates for
whole tumor sections, we compared the risks derived from20NSCLC

Fig. 5 | Niche composition and biological interpretation. A Distribution of cell
phenotypes within each niche in LUAD* (n = 2233 tumor samples from n = 663
patients). B Distribution of cell phenotypes within each niche in LUSC* (n = 1659
tumor samples fromn = 462patients).C Example imagesof LUADniches inmIF and
H&E stainings. D Example images of LUSC niches in mIF and H&E stainings.
E Classification of cell niches with respect to their specific immune reaction,
schematic representation of the composition in pictograms and grouping into hot

and coldniches. The arrows connect identical niches in LUAD(C) andLUSC (D) with
the corresponding classification (E), as determined by partial optimal transport
analysis, which yields a unique solution and does not require repetitions (see
Methods and Supplementary Fig. 10 for details). Scale bars: (C +D) 20 µm. *Figure
shows cell phenotype name abbreviations. For full names see Supplementary
Data S2. For detailed cell counts per niche in LUAD and LUSC, see Supplementary
Tables 4 and 5, respectively. Source data are provided as a Source data file.
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surgical whole tissue sections with the risk assessment based on their
corresponding TMA cores. The results demonstrated high correla-
tion of risk scores and 100% concordance on the level of risk
groups (Fig. 8A–D; Pearson’s r = 0.979; p < 0.0001****) and LUSC
(Fig. 8E–H; Pearson’s r = 0.997; p < 0.0001****). A complete visuali-
zation of the whole tumor sections can be found in Supplementary
Figs. 21–23.

Discussion
Understanding the complexity of the TME and its relevance for tumor
biology and therapeutic strategies remains amajor challenge in cancer
research and oncology.

In the present study, we built on previous work highlighting the
prognostic value of the TME, such as the studies by Chen B. et al.17 and
Kinoshita T et al.18 and recent evidence suggesting that the spatial
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arrangement of cells within tumors critically influences disease pro-
gression and therapeutic response22,30,76. To this end, we developed a
multimodal AI-powered TME profiling approach that revealed spatial
cellular “niche” patterns predictive of biological tumor behavior in
lung cancer.

The strength of our approach lies in its ability to identify clinically
relevant spatial cellular neighborhoods by combining multiplex ima-
ging with multimodal AI. This method extends traditional tumor
categorizations by considering the microscale interactions between
different cell types in the TME. Our AI-driven models predict patient
outcomes with higher accuracy than the current clinical gold standard
(the UICC8 staging system), suggesting a potential paradigm shift in
the stratification of NSCLC. This could lead to more personalized
treatment strategies where therapies are tailored to the specific cel-
lular composition of individual tumors, representing a significant
advance towards precision medicine in oncology.

Our findings support the hypothesis that not only the quantitative
composition of the immune and stromal cells matter, but that also
their spatial organization within the TME is critical to understanding
tumor behavior. Incorporating these spatial patterns into the diag-
nostic process facilitates the identification of low- and high-risk sub-
groups in lung cancer patients that are currently classified as low-risk
by UICC8 staging alone. This is clinically highly relevant because stage
1 lung cancer patients do not receive adjuvant therapy according to
current guidelines. However, the stage 1 high-risk subgroupwe identify
has a similar riskprofile as stage 2patients andwould therefore require
adjuvant therapy.

Although high-quality mIF imaging would currently only be
available at specialized centers, the fact that our TMEprofiling relies on
a robust 12-plex mIF approach makes its broader diagnostic imple-
mentation realistic for the near future.

Moreover, while we trained and validated the approach on two
independent lung cancer patient cohorts from two separate centers in
Germany, further evaluations will be needed to promote clinical
implementation. Also, it remains to be shown if the observed niche
patterns represent general microenvironmental properties and could
be transferred to other cancer types.

Future research should aim to validate and refine the predictive
power of cell niche patterns in broader patient populations. In this
context, cancer-associated fibroblasts (CAFs) represent a particularly
relevant stromal cell population, as recent work by Cords et al.76

demonstrated that distinct CAF phenotypes are linked to either
favorable or poor prognosis in NSCLC. While our current analysis did
not show any significant association between the abundance/density
of fibroblasts in cell niches with risk scores, we were not able to take
into account different CAF subtypes because fibroblast subtype mar-
kers were not included in our mIF panel, which we designed to limit
complexity for easier clinical applicability. Future studies will have to
evaluate the additional clinical value of incorporating such phenotypic
distinctions. Future work should also integrate multi-omics data to
gain a deeper insight into themechanisms underlying niche formation
and its relevance on tumor progression. Model systems allowing

experimental perturbation of the identified cell niches could establish
causal relationships between niche patterns, tumor behavior and
response to treatment, thus revealing potential therapeutic targets.

In summary, by identifying cell niches and demonstrating their
clinical value, our study not only contributes to the understanding of the
role of the TME in NSCLC progression but also exemplifies the trans-
formative potential of AI-powered multiplex technologies. This study
paves the way for sophisticated diagnostic and therapeutic approaches
that take into account complex spatial tumor properties, potentially
leading to more effective and personalized treatment strategies.

Methods
Patient population and dataset
We examined 1168 NSCLC patients treated from 2006 to 2019 at the
University Hospital Cologne (n = 382) and Charité Berlin (n = 786),
comprising 730 males and 438 females, with a mean age of 66.1 years
and a median age of 66.4 years. 346 patients had received adjuvant
treatment. We had definite survival times for all but 209 patients that
were still alive at the time of analysis and covered observation periods
of a maximum of 186 months. We divided NSCLC patients into 673
LUAD, 473 LUSC, and 22 excluded cases with mixed subtype. Diag-
noses, histological growth patterns, tumor grading, pTNM classifica-
tion, angioinvasion, lymphatic invasion, and tumor staging (according
to the 8th edition of the TNM classification, AJCC) were reviewed by
twoboard-certified pathologistswith over 6 (S.S.) and 10 (F.K.) years of
experience in thoracic pathology. Histological subtyping was based on
hematoxylin and eosin (H&E), Periodic Acid–Schiff (PAS), and Van
Gieson staining. Routinediagnostic immunohistochemical panels used
for tumor classification included p40, p63, CK5/6, CK7, and TTF-1
(Supplementary Fig. 24). The diagnosis of LUAD was based on the
presence of glandular growth patterns and typically showed CK7
positivity and p63/p40 as well as CK5/6 negativity, with or without
co-expression of TTF-1. LUSC was diagnosed in the presence of ker-
atinization and/or intercellular bridges in combinationwith positivity
for p40, p63, and CK5/6 and no or only weak CK7 expression. All
major histological subtypes77 of invasive non-mucinous adenocarci-
noma—namely lepidic, acinar, papillary, micropapillary, and solid
patterns—as well as invasive mucinous adenocarcinomas were
included in the study (see Supplementary Fig. 24). Rare LUAD
variants77, including minimally invasive adenocarcinoma, colloid
adenocarcinoma, fetal adenocarcinoma, and enteric-type adeno-
carcinoma, as well as large cell lung carcinomaswere excluded due to
low frequency and distinct biological characteristics. Neuroendo-
crine tumors—identified by positivity for synaptophysin and chro-
mogranin A or CD56—including small cell lung carcinoma (SCLC),
large cell neuroendocrine carcinoma, and typical or atypical carci-
noids, were excluded from all analyses because they represent a
separate tumor group as defined by the WHO.

Rationale for separate analysis of LUAD and LUSC
We performed separate analyses for LUAD and LUSC based on clin-
icopathological and methodological rationales.

Fig. 6 | Survival prediction and risk scores in LUAD. Results for Cologne patients
for model trained on Berlin cohort. A Bootstrap distribution of c-index comparing
UICC8 staging versus niche enhanced risk-scores (n= 109 patients; p<0.001, two-
sided Mann–Whitney U test). Box plots show the median (center line), interquartile
range Q1–Q3 (box), and whiskers to the most extreme points within 1.5× IQR; points
beyond are shown as fliers.BKaplan–Meier analysis, patients (n= 109 (same as (6A))
stratified by the risk scores as assigned via the cell-niche survival model. Patients are
split into tertiles for better comparison to UICC8 (see Supplementary Fig. 12 for a
corresponding Kaplan-Meier analysis based on the UICC8model). Separation tested
significantly via log-rank test. C Sankey plot showing the redistribution of patients
(n= 109) from the UICC8 to the niche-based risk stratification. A large number of the
UICC8 stage 1 patients was reclassified as risk score 2 (RS2) indicating potentially

undertreated high-risk patients. D Kaplan–Meier analysis for UICC8 stage 1 patients
(n= 148; black curve) and the restratification by risk score (RS1 = blue curve, n= 61
patients; RS2 =orange curve, n= 163 patients). Separation tested significantly via log-
rank test. E Example tumors (n= 12) with the characteristic niche patterns of risk
score 1. Colored dots with niche numbers in legend (left) correspond to dots in
tumor samples representing cells colored by their niche membership (right). Bar
plots indicate relative abundance of niches in tumors: Hot niches are indicated by
red, cold niches by blue bars. Niches are sorted by the abundance within the risk-
score group relative to the global average, e.g., the Leucohigh niche was observed
more often than in the whole cohort whereas ImmuNull was observed less frequently.
F Same as (E) but for risk score 2.G Same as (E) but for risk score 3. Scale bars: (E–G)
500 µm. Source data are provided as a Source data file.
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Clinicopathological rationale
LUAD and LUSC are increasingly recognized as distinct tumor entities,
based on well-established differences in etiology, histology, and
molecular biology:
1. Different etiology: In contrast to other types of lung cancer, LUAD

also manifests in non-smokers, particularly in female non-
smokers. In contrast, LUSC is strongly associated with smoking78.

2. Different origin: LUSC typically arises from a main or lobar
bronchus,with approximately two-thirds of cases occurring in the
central lung compartment. In contrast, LUAD is more frequently
observed in peripheral regions77.

3. Different pathogenesis: The atypical adenomatous hyperplasia
and adenocarcinoma in situ, which originate from type II pneu-
mocytes and/or club cells, are regarded as the precursors of
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invasive LUAD79,80. In contrast, squamous dysplasia and squamous
carcinoma in situ are considered to be the precursors of LUSC,
which arise in the bronchial epithelium77.

4. Different histology: The histomorphology of LUAD and LUSC is
markedly disparate, exhibiting distinct cytomorphology, growth
patterns, and immunohistochemical expression profiles81–83.

5. Different molecular landscape: LUAD and LUSC exhibit markedly
disparate molecular signatures84,85. For instance, several onco-
genic driver gene alterations, such as EGFR or ALK have been
identified in LUAD, which are typically not present in LUSC.

6. Different treatment effects: Some targeted agents developed for
LUAD have been shown to be largely ineffective against LUSC. In
addition, studies have shown that the survival benefit of IO ther-
apy is histology-dependent86.

Methodological rationale
Joint niche discovery would have required assuming shared spatial
biology between LUAD and LUSC, potentially obscuring subtype-
specific patterns. To preserve biological resolution, we performed
niche discovery separately. For comparability, we aligned niches post
hoc at the phenotype level using partial optimal transport to identify
matched niche pairs across subtypes (see also “Methods”, p. 37).

Tissue microarray construction and staining
For each patient, 4 cores of 1.5mm diameter representative tumor
tissue were taken and placed on TMA slides, each containing a tonsil
stain as a positive control for staining success and spot to patient
mapping verification. TMAs were stained with an antibody panel for
use in multiplex immunofluorescence imaging by Ultivue
(Cambridge, MA).

The 12-plex immunofluorescence panel was designed to capture
multiple immune cell phenotypes present in the NSCLC TME (pan-
cytokeratin [panCK], CD3, CD8, CD68, CD20, CD4, FoxP3, PD-1, PD-L1,
CD56, CD163, GranzymeB). Multiplex immunofluorescence (mIF)
staining was performed on 2 µm sections of formalin-fixed paraffin-
embedded (FFPE) tissue blocks of NSCLC TMA on the Leica Bond RX
autostainer as previously described in Vasaturo et al.87. In brief, FFPE
samples are dewaxed, and epitope retrieval is performed. After
blocking, the slides are incubated with DNA-barcoded primary anti-
bodies. All antibodies were provided in pre-optimized Ultivue kits and
were diluted 1:100 in antibody diluent according to themanufacturer’s
standard protocol. All the targets are simultaneously amplified to
increase assay sensitivity, and then, for each barcode, a com-
plementary oligonucleotide probe tagged with a fluorescent dye is
used to label the antibody conjugates. Different fluorophores are
associated with each barcode–probe pair to spectrally separate the
targets during imaging. High-plex panels require an Ultivue proprie-
tary process, termed “exchange”, which gently removes the fluor-
escent signal bydehybridizing thefirst set of four probes,while leaving
the conjugated antibodies intact and bound to the tissue for detection
by a second set of probes. A 12-plex assay thus consists of three image
detection rounds using four probes per round, generating 4 × 3 images

of the same tissue using the AxioScan Z1 whole slide scanner. Since
tissue spots can change position during the different scanning phases,
we collectedper-spot ROI annotations of eachTMAtoensure that each
spot is assigned to the right patient information. Splitting the TMAs
into individual spot images greatly facilitated later image registration
efforts. Registration was based on a DAPI signal that was contained in
each scan group.

In total, the resulting dataset comprised a total of 57,000 micro-
scopy images with an average size of 8650 × 8350 for themIF channels
and 17300× 16700 for the H&E slide, representing a region of around
1.76 square millimeters each.

Antibodies Company Identifier Dilution

Anti-human CD3 BioCare ACI 3170A 1:100

Anti-human CD4 Abcam ab238798 1:100

Anti-human CD8 BioCare ACI3160CF 1:100

Anti-human CD20 Thermo/eBio 14-0202-82 1:100

Anti-human CD56 Thermo/eBio 701379 1:100

Anti-human CD68 BioCare CM033CF 1:100

Anti-human CD163 Abcam ab213612 1:100

Anti-human FoxP3 Thermo/eBio 14-4777-82 1:100

Anti-human PanCK Bethyl/Fortis PGS170523 1:100

Anti-human PD-1 Abcam ab251613 1:100

Anit-human PD-L1 Abcam ab226766 1:100

Granzyme B Abcam ab214443 1:100

Contact for reagent and resource sharing
Additional information and requests for reagents shouldbedirected to
Ultivue (https://ultivue.com).

Imaging quality control
A pathologist reviewed each of the 4400 H&E scans to ensure that
spots with tissue damages and tears, that potentially occur during
staining, are rejected from further analysis, affecting around 10% of
data. For each mIF-channel, the intensity histograms of all spots were
collected and analyzed with a local outlier factor analysis as imple-
mented in scikit-learn to highlight potential glow-artifacts and auto-
fluorescence. The top 1% highest scoring tissue spots were inspected
for rejection bty a pathologist, affecting less than 0.1% of data that was
dropped from further analysis.

Registration and tissue alignment quantification
For every tissue spot, each mIF scan group of four channels was
registered to the H&E baseline using the DAPI nuclear expression sig-
nal as a guide. We employed a proprietary registration algorithm
developed by Aignostics and applied it at full gigapixel resolution to

Fig. 7 | Survival prediction and risk scores in LUSC. Results for Cologne patients
for model trained on Berlin cohort. A Bootstrap distribution of c-index comparing
UICC8 staging versus niche enhanced risk-scores (n = 109 patients; p <0.001, two-
sidedMann–Whitney U test). Box plots show themedian (center line), interquartile
rangeQ1–Q3 (box), andwhiskers to themost extremepointswithin 1.5× IQR; points
beyond are shown as fliers. B Kaplan–Meier analysis, patients (n = 109) stratified by
the risk scores as assigned via the cell-niche survival model. Patients are split into
tertiles for better comparison to UICC8 (see Supplementary Fig. 13 for a corre-
sponding Kaplan–Meier analysis based on the UICC8 model). Separation tested
significantly via log-rank test. C Sankey plot showing the redistribution of patients
(n = 109) from the UICC8 to the niche-based risk stratification. A large number of
the UICC8 stage 1 patients was reclassified as risk score 2 (RS2) indicating

potentially undertreated high-risk patients. D Kaplan–Meier analysis for
UICC8 stage 1 patients (n = 163; black curve) and the restratification by risk score
(RS1 = blue curve, n = 66 patients; RS2 = orange curve, n = 209patients). Separation
tested significantly via log-rank test. E Example tumors (n = 12) with the char-
acteristic niche patterns of risk score 1. Colored dots with niche numbers in legend
(left) correspond to dots in tumor samples representing cells colored by their niche
membership (right). Bar plots indicate relative abundance of niches in tumors: Hot
niches are indicated by red, cold niches by blue bars. Niches are sorted by the
abundance within the risk-score group relative to the global average, e.g., TLSHigh

the niche was observed more often than in the whole cohort whereas ImmuNull was
observed less frequently. F Same as E but for risk score 2.G Same as (E) but for risk
score 3. Scale bars: (E–G) 500 µm. Source data are provided as a Source data file.
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Fig. 8 | Niche patterns onwhole tumor sections. AWhole LUAD section (left) and
corresponding tumor cores (right) with niche patterns of risk score 1.B Same as (A)
but for risk score 2. C Same as (A) but for risk score 3. D LUAD risk score con-
cordance (n = 10 patients): Risk scores (maximum risk) for whole tumor sections
(blue circles) are highly correlated with tissue core risk scores (orange crosses).
Risk group assignments (RS1-3) are concordant with r >0.97 (two-sided Pearson’s
correlation, scipy.stats). y-axis: risk score, x-axis: cases (ordered by increasing final

risk score), horizontal lines show boundaries between risk scores. E Whole LUSC
section (left) and corresponding tumor cores (right) with niche patterns of risk
score 1. F Same as (D) but for risk score 2.G Same as (D) but for risk score 3.H LUSC
risk score concordance: Same as (D) but for LUSC (n = 10 patients). Scale bars:
(A–C + E–G) 3mm (whole tumor sections) and 500 µm (tissue spots). Source data
are provided as a Source data file.
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enable cell-level registration. We limit the registration to basic geo-
metric adjustments—specifically, affine transformations—to facilitate
interpretability and avoid the generation of artifacts that would be
infeasible to review manually with the amount of data available.

The quality of tissue alignment was scored computationally on a
per-pixel level to allow rejection of areas where cells do not align well
enough after registration, which can occur due to mechanical damage
introduced between scanning phases. A subset of twenty spots con-
taining misaligned regions was annotated to train and test the align-
ment mask quality control (QC) method proprietary to Aignostics.
Spots with less than 0.7 square millimeters of aligned tissue were
rejected for a lack of content. Spots with more than 3 square milli-
meters of aligned tissue were rejected from further analysis as the
spots were broken into several shards that distort their spatial
statistics.

Statistics and reproducibility
Analyses were performed in Python 3.11.9 with pandas 2.3.2, numpy
2.3.2, scipy 1.16.2, lifelines 0.30.0, scikit-learn 1.7.2, and seaborn 0.13.2.
Cellular graphics were prepared using Inkscape 1.3.2. In a first step, we
extract the biological structure that is contained in the pixel space,
which we call the image analysis pipeline. In a second step, the raw
biological structures are summarized based on their spatial composi-
tion to create interpretable features. In a third step, webuildpredictive
models for survival outcomes based on the spatial features.

Step 1: Image analysis pipeline
Tissue segmentation. Although the tissue cores were punched from
wider tumor regions, considering the whole spot as a tumor would be
imprecise. In particular, necrosis and healthy tissue areas should be
excluded when calculating the density of immune cells infiltrating the
tumor. Therefore, we created a tissue segmentation model to distin-
guish carcinoma, stroma, necrosis and healthy areas. A total of 10871
tissue polygons were annotated, 697 for healthy, 4672 for carcinoma,
4571 for stroma and 931 for necrosis. We trained an ensemble of
UNets31 on a mixture of weighted cross entropy and DICE loss and
collected the average F1 score obtained from a five-fold cross-valida-
tion, where the hold-out spots were selected based on the patient
indicator.

Cell detection. We annotated 100,000 cell nucleus polygons to train
and validate a StarDist model using the public repository version 0.8.2
commit id 466d0c on H&E-stained images at 20x resolution. The
model employed the U-Net architecture and a star-convex polygon
prediction framework,whichwe found tobeparticularlydata-efficient.
Recall and precision metrics were computed for 20 tissue spots, each
exhaustively annotated over 100μm² regions of interest.

Cell classification. A board-certifiedpathologist annotated a subset of
the previously detected cells for marker positivity in each of the mIF
channels separately. The labels were collected sparsely with an
emphasis on spatial heterogeneity and local contrast of positive and
negative pairs. We trained twelve independent binary models as they
have to adjust to either attending to nuclear or membranous stains,
have to consider the surrounding tissue contexts differently and have
to suppress channel-specific artifact types and auto-fluorescence
levels. To this end, we used a ConvNeXt Base33 and provided it with a
256 square pixel crop centered on the cell to be classified at 10x
magnification, together with the binary label from the pathologist. We
only provided the H&E and respective mIF channel to classify, as pre-
liminary experiments indicated a strong tendency for Clever
Hans34,88–90 overfitting if the model is presented with all mIF channels
simultaneously. We repeated training on 5 folds to gather cross-
validation scores and joined themodels into an ensemble for inference
on the whole cohort to further increase the performance for the

following analysis. We distributed the inference of the 12 binary tasks
with 3 ensemble members each applied to 53 million cells on a
Kubernetes cluster, as required due to the total amount of 1.5 billion
images.

Co-registration of H&E and mIF images. H&E and mIF staining were
performed sequentially on the same section (for details, see “meth-
ods”). This is a critical prerequisite and allows for registration/align-
ment of the resulting images as well as the integration of model
annotations on a single cell level. The H&E-based and mIF-based
models, although optimized separately, were combined to work
together as the H&E and mIF stainings were co-registered/spatially
aligned (Fig. 6 provides an example of an alignment result between
H&E and mIF). As a result, annotations generated by one algorithm in
theH&E domain are seamlessly linked to annotations generated on the
mIF domain. This alignment provides an integrated view of the TME,
with H&E providing a robust basis for tissue segmentation and cell
detection, and mIF adding detailed cell classification based on
immuno-staining patterns.

Motivation for trainingmultiple binary classification models. In the
mIF domain, we trained individual binary classification models for
each stain to optimize detection accuracies due to the unique
patterns associated with each marker. Each stain required a dif-
ferent model (1) due to the different localization (nucleus, cyto-
plasm, membrane), which significantly affects the detection
process, and (2) stain-specific imaging artifacts, such as speckle
noise or blurred fluorescence, which must be accounted for to
avoid false positives. During training, model performance was
closely monitored on a hold-out validation set. This approach
enabled us to achieve highly accurate results for each stain,
ensuring that the detection and classification process was robust
and adaptable to varying image conditions. These models were
then applied to the whole cohort and offer improved performance
compared to standard methods (see comparison with StarDist;
Supplementary Fig. 4, Supplementary Table 1).

Integration of H&E and mIF data. Both the H&E and mIF models are
the basis of the downstream analyses, including niche generation and
survival prediction. The integration is required for two reasons. (1)
The H&E-based model enables tissue-level segmentation into carci-
noma, stroma, necrosis, and non-neoplastic regions, thereby ensur-
ing that the analysis focuses on histologically relevant
compartments. This kind of spatial annotation cannot be reliably
obtained from mIF alone due to its limited morphological informa-
tion. mIF, in turn, contributes precise cell-type classification through
antigen-specific labeling, which is essential for phenotypic resolu-
tion. (2) The combined use of H&E and mIF is particularly critical for
distinguishing morphologically similar cell types. For example, car-
cinoma cells and normal epithelial cells, such as pneumocytes or
ciliated epithelial cells, often share expression of epithelial markers
(e.g., cytokeratins), making them difficult to differentiate using mIF
alone. Here, the morphological features captured by H&E—such as
nuclear atypia, cell shape, and architectural arrangement—are used
for accurate classification. Conversely, certain immune cell subtypes
(e.g., B vs. T lymphocytes) are indistinguishable based on H&E but
can be clearly resolved using mIF markers such as CD20 and CD3.
Thus, the integration of both modalities provides complementary
strengths: H&E delivers detailed tissue architecture and tumor mor-
phology, while mIF enables high-resolution immunophenotyping.
Together, they allow robust and context-aware cell classification
across diverse tissue environments. A key feature of our approach is
the cross-domain integration of these models for the characteriza-
tion of cell niches. Cell niches are defined as distinct cellular neigh-
borhoods within a 34 micron radius.
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Integration of all data modalities for survival analysis. Survival
analysis builds on these niche descriptions, incorporating them into a
multivariate model alongside clinical metadata such as UICC staging.
The detailed cellular composition of the niches, as generated by the
integrated H&E and mIF models, provides a biologically meaningful
context in combination with clinical metadata and is used to predict
survival.

Step 2: Extraction of spatial composition
Marker density in tumor. We computed the density of positive cells
for each marker within the total tissue area and the tumor region,
respectively. The total tissue was defined as the union of all tissue
segmentation masks and the tissue alignment QC masks, effectively
excluding only the white-background and damaged tissue. The tumor
region was defined as the union of the tissue alignment QC mask and
the tissue segmentation results for carcinoma and stroma. Measure-
ments are scaled to cell counts per millimeter and provided as log1p-
densities for any further numerical evaluation, as motivated by the
strong right skew of the distribution. Further analyses comprised 2233
tumor samples from 663 patients (303 female, 360 male; mean age =
64.7 years;median age = 64.7 years; Fig. 2A, E) and 1657 tumor samples
from 462 patients (116 female, 346 male; mean age = 67.8 years;
median age = 68.7 years; Fig. 2B, G).

Cell niches clustering. While exact biological definitions of niche
sizes do not exist, we oriented our niche size definition by the smallest
and largest immune cells occurring in the TME85,86. In particular, we
used the macrophage, for which a diameter of up to 30 µm has been
documented87 as the upper size limit. The lymphocyte, which typically
has a minimal diameter of 8 µm, was used as the lower limit87,89. Con-
sidering the lymphocyte as the most frequent and smallest cell at the
niche center, a 34 µm radius would allow for at least one adjacent
macrophage, but also higher order neighbors, given the smaller lym-
phocyte sizes. This is consistent with parallel work using interaction
ranges of 30–40 µm, such as Risom, Keren or Stoltzfus et al.30,62,63.

Using the predefined radius of 34 µm, we used a scipy KDTree91

to calculate the number of cells positive for each marker within this
spatial neighborhood (see “Methods” section: Cell classification, page
33). These marker counts were logarithmically transformed to put
more weight on the presence or absence of cells by gradually
saturating the contribution, increasing count, to further put an
emphasis on the relative composition of a neighborhood the
expression values were divided by the local mass (percentage). To
identify unique cellular neighborhoods, we performed Mini Batch K
Means + + clustering92 with a batch size of 8000 to define 10 proto-
typical neighborhoods from the 53 million extracted histograms.
Each cell was then assigned to the closest prototype using nearest-
neighbor classification. We subsequently aggregated the data for
each tissue spot to quantify how many cells corresponded to each
identified niche. Further analyses comprised 2233 tumor samples
from 663 patients (303 female, 360 male; mean age = 64.7 years;
median age = 64.7 years; Figs. 3L, N, 5A) and 1657 tumor samples
from 462 patients (116 female, 346 male; mean age = 67.8 years;
median age = 68.7 years; Figs. 4L, N and 5B).

Step 3: Predictive model
Propensity score-matching. The following motivates and documents
the technical implementation of propensity score-matching, amethod
to balance patient characteristics between studies.

We carefully checked the compatibility of the training and vali-
dation cohorts before checking the transferability of the immunolo-
gical characterization using a statistical pre-screening approach. This
approach aimed to detect potential distributional shifts unrelated to
the immunological characterization under investigation and thus aims
to increase the reliability of our results.

First, we assessed cohort compatibility by training a classifier
based on basic patient metadata, including UICC8 (integer number),
observed overall survival (real number) and censoring event (Boolean
value). The task of the classifierwas topredict the originof the patients
(Berlin or Cologne). When the classifier could accurately predict a
patient’s location based on metadata alone, it indicated the presence
of a particular patient stratum in one cohort but not in the other.
Specifically, for LUAD cases, we obtained a non-chance F1 score indi-
cating a distributional shift of key metadata between cohorts.

In response to this finding, we propose to remove unrelated cases
from the training cohort (Berlin) while leaving the test cohort untou-
ched. To achieve sample stratification, we use propensity score
matching based solely on metadata, including UICC8, overall survival
and censoring. Our approach uses a nearest neighbor-based algorithm
for optimal complete matching. Specifically, we train a classifier to
predict the treatment location (Berlin or Cologne) for each patient and
use the model’s logits to identify the most similar patient from Berlin
for each Cologne patient. Importantly, we perform sampling without
replacement to ensure that each patient is used only once.

Maximum relevance minimum redundancy selection
We follow a maximum relevance minimum redundancy criterion93 for
feature selection, which we adapt for censored survival data. For each
candidate feature, we fit a univariate Cox regression92 and consider the
achieved training set c-index as the feature’s relevance. The feature
with the highest relevance is picked first. The subsequent choices are
guided by prioritizing high-relevance features but discouraging
redundancy with respect to the already chosen features. To this end,
we compute the cross-correlation between each candidate feature and
the previously picked features and treat the absolute value of the
average as a measure of redundancy. The candidate features are then
sorted by the difference between the relevance score and the redun-
dancy score. The first candidate is taken as the next choice, and the
process repeats. Our implementation requires setting a maximum
number of features to consider and is treated as a hyperparameter to
be tuned in an inner fold cross-validation, forwhichwehave integrated
our implementation with sklearn92.

Maximum risk score approach
The maximum risk approach is motivated by the following reasoning:
In conventional or AI-based biomarker studies or histopathological
diagnostics to evaluate tumor aggressiveness, e.g., for histological
grading and Ki67 immunohistochemistry, the evaluation of many
biomarkers follows a so-called “hot-spot” strategy and does not use
averages even if large resection specimens on whole slides are
available94–97. For instance, tumor grading mostly does not rely on
averages, but renders a diagnosis based on the presence of the fea-
tures associated with the highest risk of disease progression. This
means that a tumor is diagnosed as “high grade”, even if themajority of
the tumor shows “low grade”morphology and only a subregion shows
“high grade” features.

We used maximum risk scores, because the purpose of our
approach was to identify patients having an increased risk with high
sensitivity in order to ensure that the niche-based patient stratification
will not lead to withholding a necessary adjuvant therapy.

Survival analysis
The curation of a representative and homogenous patient cohort is
crucial for survival analysis, especially in observational studies, to
ensure that main effects are not biased by distributional shifts within
the cohort. In our main results, we focused on the analysis of early-
stage patients, with a separate analysis for late-stage (UICC8 = 4) to be
found in the Appendix. We also remove patients with r-status = 1,
meaning thatpatients forwhomcomplete tumor removal could not be
confirmed. In addition, we removed patients whose observed or
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censored survival was less than three months, as their death can also
be attributed to complications during or after surgery, limiting their
usefulness for gaining insights into cancer immunology. Another
notable distributional shift may result from treatment with adjuvant
therapy, which we therefore present in a separate analysis in the
Appendix. The patient numbers in Fig. 1A reflect the selection criteria
introduced here.

Patients are represented by up to four tissue spots. We analyzed
them using a multiple instance learning approach and chose a late
fusion strategy for better interpretability. In this approach, each spot
was evaluated individually for survival based on its niche composition
features, and themodel outputs a continuous risk score (logit) for each
spot. To derive a patient-level risk estimate, we applied max-pooling
across all spot-level outputs—meaning the highest risk score among a
patient’s spots determines the overall risk classification (“hot-spot
approach”). This reflects the clinical rationale that themost aggressive
region within the tumor is most prognostically relevant. The final
patient-level prediction is thus determined by themaximum risk score
across all available spots.

The cellomics features are typically right-skewedwith a heavy tail,
which motivates the use of a non-linear normalization transform to
better comply with the assumption of the following regression mod-
eling. Instead of employing a fixed log1p transformation, as is often
used in omics pipelines, we opt for the power transformation of yeo-
johnson98 on the respective training for the increased flexibility. Inner
fold cross-validationwasused to tune sweep over a number of features
to select, and a range of alpha regularization and select the best
combination basedon the averagemultiple-instance c-index. To assess
the improvement in outcome prediction of the cell niche model
compared to the clinical baseline (UICC8), we computed the relative
improvement in c-index, accounting for its informative range between
0.5 (random prediction) and 1.0 (perfect prediction). It is defined as
follows:

Relative improvement =
c�model � 0:5
c� baseline� 0:5

ðEq:1Þ

where c-model denotes the c-index of the cell niche model,
c-baseline is the c-index of the clinical baseline (UICC8), and 0.5
represents the lower bound of the c-index, corresponding to
random prediction.

The cox regression trained on Berlin is then applied to the
patients fromCologne.We collected the risk attributions generated by
the Cox regression model and stratified the test cohort into three
groups based on the distribution of these scores. Specifically, we
divided the patients into tertiles corresponding to the lower, middle,
and upper thirds of predicted risk. These three groups are referred to
in themain text as risk strataRS1 (lowrisk), RS2 (intermediate risk), and
RS3 (high risk). This post-hocdiscretizationwas introduced to enhance
the interpretability of the survival analysis and visualization, while
maintaining the model’s continuous output during training and
inference. The use of three risk groups provides a natural counterpart
to the UICC clinical staging system for early stage lung cancer (stages
I–III), according to which patients in our study were classified. This
alignment facilitates integration with established staging frameworks
and enhances clinical interpretability. Stratifying patients into low,
intermediate, and high-risk groups is also a widely used and practical
approach across cancer types, including lung, prostate, and breast
cancer. Compared to a simple low/high split, the three-tiered system
offers more nuanced risk assessment while remaining actionable in
routine care and clinical trial design. Kaplan-Meier curves are tested for
statistically significant separation among the patient strata using log-
rank tests99. Demographicdetails of the analyzedpatient subsets are as
follows: Fig. 6A–C comprises 109 patients (45 female, 64 male; mean
age = 64.7 years; median age = 65.4 years). Figure 6D includes RS1

(n = 61; 29 female, 32 male; mean= 64.3; median = 64.0), RS2 + 3
(n = 163; 64 female, 99 male; mean = 65.8; median = 66.1), and UICC I
(n = 148; 66 female, 82 male; mean = 65.2; median = 64.8). Figure 7A–C
represent 109 patients (24 female, 85 male; mean age = 69.9 years;
median age = 70.4 years), and Fig. 7D includes RS1 (n = 66; 20 female,
46 male; mean= 69.0; median = 69.9), RS2 + 3 (n = 209; 54 female, 155
male; mean= 69.3; median = 70.3), and UICC I (n = 163; 49 female, 114
male; mean= 69.3; median = 70.2). The corresponding Supplementary
analyses comprise: Supplementary Fig. 12A, B (109 patients; 45 female,
64 male; mean = 64.7; median = 65.4), Supplementary Fig. 13A, B (109
patients; 24 female, 85 male; mean = 69.9; median = 70.4), Supple-
mentary Fig. 14A (n = 72; 39 female, 33 male; mean= 62.5; median =
61.6), Supplementary Fig. 14B (n = 18; 6 female, 12 male; mean= 68.0;
median = 68.8), Supplementary Fig. 15A (n = 164; 75 female, 89 male;
mean= 64.4; median = 64.1), and Supplementary Fig. 15B (n = 98; 18
female, 80 male; mean= 64.1; median = 63.6).

Immunology phenotype loading. Themarker panel was selectedwith
the aim to assess in addition to the cancer cells the distribution of the
main immune cell populations (e.g., T cells, TAMs, B cells, andNK cells)
according to established lineage markers (e.g., CK, CD3, CD68, CD20,
CD56, CD4, CD8), which have been described to be present in the TME
of LUAD and LUSC22. The remaining markers were selected to deter-
mine the activation state and the cytotoxic or immunosuppressive
potential of the cells (e.g., PD-1, FoxP3, PD-L1, CD163).

A complete analysis of all 212 = 4096 theoretically possible com-
binations from the 12 selectedmarkers would not bemeaningful since
many marker combinations are not present physiologically. For this
reason, we set up a table with phenotype definitions (Supplementary
Data 2), in which we firstly list the main cell populations. Secondly, we
subcategorized the main populations in well described immune cell
subpopulations (such as CD4 + , CD8+ , and regulatory (FoxP3 + )
T cells or TAM1 and TAM2). We next used themarkers granzyme B and
PD-1 to allocate lymphocytes as activated. With the expression of PD-1
only, we classified the lymphocytes as exhausted. PD-L1 expression—
independent of the cell lineage—was used to subclassify cells as
immunosuppressive. No additional subpopulations were defined from
combinations of those cell populations and markers whose biological
relevance is currently unknown, e.g., the expression of CD4 and/ or
CD8 expression in TAMs.

For easier interpretability, the aim of our classification was also
to avoid populations without known biological roles. Furthermore,
we attempted to limit the fragmentation of our classification because
too many populations would increase the risk of overfitting the
machine learning model. This approach yielded 23 medium-grained
or 43 fine-grained cell phenotypes. Examples of all 43 fine-grained
cell phenotypes along their marker expression are shown in Sup-
plementary Fig. 3.

LUAD and LUSC, matched niches based on phenotyping
We employ partial optimal transport64,65 to quantitatively determine
matched pairs among the independently derived niches in LUAD and
LUSC. The niches are characterized by the distribution of phenotypes
they encompass. Tomeasure the similarity of categorical distributions,
the chi-squared test is often used, and serves us as a distancemeasure
for the identification of analogous niches. We adopt the symmetric
distance formula from the chi-squared kernel100

X

i

ð xi � yi Þ2
ð xi + yiÞ

ðEq:2Þ

Since the number of matching pairs is not known a priori, we
systematically evaluated all scenarios ranging from zero matches to
full matches (10/10). Following best practices in clustering and
dimensionality reduction, we assume an “elbow” phenomenon that
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describes the transition from easily matched pairs to more difficult
matches. Therefore, we analyze the log transport costs to identify this
characteristic pattern.

Step 4 – Orthogonal validation
Cell classification—in-house optimized versus standard StarDist.
We compared the performance of ourmodel against publicly available
baseline checkpoints, referred to as the “Standard StarDist H&E
model” and the “standard StarDist DAPI model.” For each model, F1-
scores were calculated on the 20 test tissue core regions of interest.
Differences in average F1-scores were assessed for statistical sig-
nificance using a one-sided paired-sample permutation test with 9999
iterations.

Immunohistochemical based validation of mIF derived PD-L1
scoring. We validate the mIF based quantification of the PD-L1 state
with an orthogonal protocol based on immuno- histochemistry
brightfield microscopy and manual scoring from expert pathologists.
The corresponding patient subset comprised n = 769 (301 female, 468
male; mean age = 65.7 years; median age = 66.3 years).

For this, TMA blocks were sectioned at a thickness of 4μm for
immunohistochemical analysis. The sections were incubated in CC1
mild buffer (Ventana Medical Systems, Tucson, AZ, USA) at 100 °C for
30min. Afterward, they were treated with an anti-PD-L1 antibody
(E1L3N, Cell Signaling, #13684S, 1:200) at room temperature for
60min and visualized using the avidin–biotin complex method with
DAB staining. The BenchMark XT immunostainer (Ventana Medical
Systems, Tucson, AZ, USA) was used for these steps. Cell nuclei were
counterstainedwith hematoxylin and bluing reagent (VentanaMedical
Systems, Tucson, AZ) for 12min.

The stained sections were analyzed under an Olympus BX50
microscope (Olympus Europe), and the tumor proportion score (TPS)
was calculated as the percentage of PD-L1-positive tumor cells among
all viable tumor cells. TPS scoring was performed independently by
two pathologists (S.S. and F.K.), who have 8 and 14 years of experience
in lung pathology, respectively. Digital histological images were cap-
tured using the PANNORAMIC 1000 slide scanner (3DHISTECH).

To assess the precision of the AI-powered approach in identifying
prognostically relevant immune states within the TME, a correlation
analysis was performed between the TPS scores obtained through
multiplex immunofluorescence (mIF) by the AI approach and those
determined via immunohistochemistry (IHC) by the pathologists
(Supplementary Fig. 6). The correlation was tested for statistical sig-
nificance using scipy.stats.pearson_r.

H&E based validation of mIF derived lymphocyte counts. We vali-
dated the multiplex immunofluorescence (mIF)-based quantification
of lymphocytes by comparing it with an independent H&E-based
quantification using a state-of-the-art foundation model. The corre-
sponding patient subset comprised n = 1125 (419 female, 706 male;
mean age = 66.0 years; median age = 66.3 years). For this purpose, we
employ an in-house variant of RudolfV101, fine-tuned for cell classifi-
cation. The number of lymphocytes detected is compared to the
number of CD3- or CD20-positive cells identified in mIF on a tissue
core-by-tissue core basis (Supplementary Fig. 7).

Given the heavily right-skewed distribution of cell counts per
tissue core, the data are log-transformed prior to analysis. This trans-
formation normalizes the distribution and ensures the validity of the
subsequent statistical test. Statistical significance of the correlation
between the two methods is assessed using Pearson’s correlation
coefficient, implemented via scipy.stats.pearson_r.

Risk score heterogeneity and resection based validation of TMA
derived risk quantification. To evaluate the adequacy of TMAs for risk
score assessment, we analyzed inter- and intra-tumoral heterogeneity

of niche-based risk scores across tissue cores from each patient and
throughout the cohort. The analysis included 2233 tumor samples
from 663 LUADpatients (303 female, 360male; mean age = 64.7 years;
median age = 64.7 years) (Supplementary Fig. 20A, C, D, F) and 1657
tumor samples from 462 LUSC patients (116 female, 346 male; mean
age = 67.8 years; median age = 68.7 years) (Supplementary Fig. 20B, C,
E, G).

We further evaluated the reliability of TMAcores as surrogates for
whole tumor sections by comparing case risks derived from surgical
whole tissue sections with those from their corresponding TMA cores.
Each resection is processed through the same pipeline, comprising
registration, tissue segmentation, cell detection, cell classification,
neighborhood aggregation, and cell-niche assignment. The analyses
were conducted on two representative subsets of the main NSCLC
cohort. Figure 8D and Supplementary Fig. 23A, B include n = 10
patients (6 female, 4 male; mean age = 68.1 years; median age = 68.0
years), while Fig. 8H and Supplementary Fig. 23C, D include another
n = 10 patients (3 female, 7 male; mean age = 69.8 years; median
age = 74.0 years).

The segmentation model subsets the resection to tumor-stroma
microenvironment regions, excluding other tissue types such as
healthy, necrotic, or fatty tissue. The risk model, which links
UICC8 staging and niche composition to tissue-core risk scores, is
applied to the entire tumor region on a sliding window basis. Specifi-
cally, virtual tissue cores are placed to exhaustively cover the tumor
area, and risk scores are aggregated across all virtual cores. The case
risk for whole tissue sections, as for TMA cores, is defined as the
maximum risk score among all virtual cores.

To assess reliability, we evaluate whether the risk conclusions
derived from virtual cores of a resection align with those from the
subset of TMA tissue cores. Concordance between whole resection-
based and TMA core-based risk evaluations is tested for statistical
significance using Pearson’s correlation coefficient, implemented via
scipy.stats.pearson_r.

Association of risk scoreswith knownmutations and covariates. We
obtained panel sequencing data (18 genes) for a subset of LUAD- and
LUSC-patients (Supplementary Fig. 16A). The LUAD subset comprised
n = 147 patients (63 female, 84 male; mean age = 65.4 years; median
age = 65.9 years), and the LUSC subset comprised n = 178 patients (42
female, 136 male; mean age = 69.6 years; median age = 71.0 years;
Supplementary Data 7). Statistical significance was evaluated by con-
structing contingency tables for each gene, with rows representing
mutation status (mutated vs. wild type) and columns representing risk
categories (e.g., low,mid, high). A chi-squared test was then applied to
each table. Our analysis showed no significant correlation between the
derived risk scores and mutations in any of the frequently mutated
genes in LUAD (Supplementary Fig. 16B) or LUSC (Supplementary
Fig. 16B).

Furthermore, it has beendemonstrated that additional covariates,
including sex, age, ECOG performance status, smoking status, tumor
grade, thyroid transcription factor 1 (TTF-1) expression, and growth
pattern, are associated with patient survival in early-stage NSCLC. We
therefore conducted an analysis to determine whether there were any
potential correlations between TME risk profiles and these covariates.
Our analysis showed no significant correlation between the derived
risk scores and covariates (Supplementary Fig. 17). The analysis com-
prised the following patient subsets: Supplementary Fig. 17A, B
(n = 224; 93 female, 131 male; mean age = 65.4 years; median = 65.7),
17 C (n = 194; 85 female, 109 male; mean= 65.1; median = 65.4), 17D
(n = 131; 58 female, 73 male; mean= 65.8; median = 65.9), 17E (n = 211;
88 female, 123 male; mean = 65.7; median = 65.7), 17 F (n = 180; 70
female, 110male; mean = 65.4;median = 65.8), 17 G (n = 216; 90 female,
126 male; mean= 65.5; median = 65.7), 17H + I (n = 275; 74 female, 201
male; mean = 69.2; median = 70.3), 17 J (n = 234; 61 female, 173 male;
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mean= 69.3; median = 70.5), 17 K (n = 156; 46 female, 110 male;
mean= 68.6; median = 69.9), 17 L (n = 256; 67 female, 189 male;
mean= 69.3; median = 70.3), and 17M (n = 270; 71 female, 199 male;
mean= 69.2; median = 70.3).

Association of risk scores with fibroblast abundance. Fibroblasts
were detected in H&E-stained images using the RudolfV101 pathology
foundation model. The model was applied to all tissue spots in the
LUAD (2189 tumor samples from 663 patients (303 female, 360 male;
mean age = 64.7 years; median age = 64.7 years; Supplementary
Fig. 18C–F) and LUSC (1618 tumor samples from 462 patients (116
female, 346 male; mean age = 67.8 years; median age = 68.7 years;
Supplementary Fig. 19C–F) cohorts. For each patient, fibroblast abun-
dance was quantified per spatial niche both as absolute counts and as
proportions relative to all cells within the niche. Correlations between
fibroblast abundance and niche frequencies were computed using
Pearson’s correlation coefficient. Differences in fibroblast abundance
between “hot” and “cold” niches were assessed using a Chi-squared
test. To evaluate prognostic associations, patients were stratified into
tertiles based on either their fibroblast maximum abundance over tis-
sue spots (max pooling) or their fibroblast mean abundance over tissue
spots, analogous to the risk score analyses for niche patterns. Survival
differences between strata were analysed using Kaplan–Meier curves
and log-rank tests. The LUAD survival cohort comprised n = 108
patients (44 female, 64 male; mean age = 64.7 years; median age = 65.4
years; Supplementary Fig. 18G. H), and the LUSC survival cohort com-
prised n = 109 patients (24 female, 85 male; mean age = 69.9 years;
median age = 70.4 years; Supplementary Fig. 19G+H).

Step 5 – Visualizations
Feature distributions. All cluster maps were z-scored over columns
(features), hierarchical agglomerative clustering was applied with
Euclidean distance and single linkage. For better visual contrast, the
colormaps were non-linearly compressedwith a logarithm, including a
multiplicative saturation factor if necessary.

Stacked histograms were sorted based on the one-dimensional
projection of their kernel principal components102, done separately for
rows and columns. We use a Gaussian kernel with a length scale of one
over the number of features. This choice was made to better convey
the idea of the multi-dimensional cumulative distribution of the
cohort.

The immunology atlas. We embed the tissue spots in a two-
dimensional plane to give a comprehensive overview of the con-
centration and spread among the immuno-composition we found via
application of the niches. The location of each spot is determined by
the loadings of cell niches measured in each spot. We used a UMAP103

projectionwith thenumber of neighbors set to 100,minimumdistance
set to 8, and a spread of 8. This was chosen to avoid dense clustering
that would have resulted in overlapping tissue composition thumb-
nails. Each tissue thumbnail comes with a circular bar plot that sum-
marizes the niche concentration of each spot. See Figs. 3 and 4.

Ethics declaration
The study was performed according to the ethical principles for
medical research of the Declaration of Helsinki and was approved by
the Ethics Committee of the Charité University Medical Department in
Berlin (EA4/082/22). All patients provided written informed consent
for the scientific use of their archived tissue and associated clinical
data. The study was retrospective and involved no additional proce-
dures or interventions; therefore, no participant compensation was
provided. Information on the race, ethnicity and socioeconomic status
of patients was not available. Mutation status, recurrence information
and smoking status were incomplete at the time of writing.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All processed cell-classification results and niche annotations have
been deposited in Zenodo under accession code https://doi.org/10.
5281/zenodo.11395885. High-resolution image tiles for each patient,
including all multiplex immunofluorescence (mIF) channels and H&E
(14,000 images), have been deposited in Zenodo under accession
code https://doi.org/10.5281/zenodo.16882468. The complete raw
dataset (>1 TB), including patient metadata and full image files, is
available under restricted access due to size and privacy considera-
tions. Access can be requested from the corresponding author andwill
be granted within one week upon submission of a signed non-
commercial use declaration and verification of an academic email
address. All bona fide academic requests will be approved. Source data
for reproducing the figures are provided with this paper. No publicly
available datasets were reused in this study. Source data are provided
with this paper.

Code availability
Code is available at https://github.com/gabrieldernbach/cell_niches.
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