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Abstract

Reconstructing and understanding intra-tumor heterogeneity, the coexistence of multiple genetically distinct
subclones within the tumor of a patient, and tumor development is essential for resolving carcinogenesis and
for identifying mechanisms of therapy resistance. While bulk sequencing can provide a broad view on tumoral
complexity/heterogeneity of a patient, single-cell analysis remains essential to identify rare subclones that

might drive chemotherapy resistance. In this study, we performed an integrated analysis of bulk and single-

cell DNA sequencing data of core-binding factor acute myeloid leukemia patients, defined by the presence of

a RUNX1:RUNXITT or CBFB:MYH11 fusion gene. By single-cell sequencing, we inferred tumor phylogenies for 8
patients at diagnosis including patient-specific somatic variants, somatic copy-number alterations and fusion
genes, and studied clonal evolution under the pressure of chemotherapy for 3 patients. As a result, we developed
an approach to reliably integrate subclonal somatic copy number alterations into phylogenetic trees and clonal
evolution analysis, obtaining unprecedented resolution of intra-tumor heterogeneity in CBF AML. We were able
to show that the fusion gene is among the earliest events of leukemogenesis at single-cell level. We identified
remaining tumor clones in 6 patients with complete remission samples indicating incomplete eradication of the
tumor clones. Here, we show that identifying the order of mutation acquisition can provide valuable insights into
evolutionary history, offering a framework to improve drug selection in the era of targeted therapies.
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To the editor,

Intra-tumor heterogeneity (ITH) describes the coex-
istence of multiple genetically distinct subclones within
the tumor of a patient resulting from somatic evolution,
clonal diversification and selection [1]. Core-binding fac-
tor (CBF) acute myeloid leukemia (AML) is characterized
by the presence of a translocation of chromosomes (chr)
8 and 21 [t(8;21)(q22;q22)] or an inversion/translocation
of chr 16 [inv(16)(p13.1q22) or t(16;16)(p13.1q22)] result-
ing in RUNXI:RUNXITI and CBFB:MYHI11 fusions,
respectively [2]. We and others resolved the mutational
composition and evolutionary patterns of CBF AML with
conventional next-generation sequencing techniques
[3-5]. Although modelling clonal trajectories from bulk
sequencing has provided important insights, single-cell
resolution is necessary to unravel true clonal composi-
tion and evolution.

We developed an approach for the systematic integra-
tion of single-cell DNA (scDNA-seq) and bulk sequenc-
ing to unravel ITH and subclonal architecture. We
analyzed samples from 2 patients with t(8;21) and 7 with
inv(16) (Tables S1,S2) by whole exome (WES), targeted
and nanopore sequencing (diagnosis [D]:9, complete
remission [CR]:7, relapse [Rel]:8 samples) as well as tar-
geted scDNA-seq (D:9, CR:7, Rel:5 samples). Sample/
material availability and sequencing status is detailed in
Table S3 and the Material and Method section.

We identified 405 variants via bulk sequencing as pre-
viously described (Table S4) [6, 7]. 232 (mean=25.8) and
173 (mean = 21.6) variants in diagnosis (n=9) and relapse
(n=8) samples were detected, respectively (Figs. S1-54).
Additionally, we identified 7 somatic copy-number alter-
ations (SCNAs) via WES and defined CBF fusion gene
breakpoints by nanopore sequencing (Fig. S5 and Tables
S5, S6). By using custom panels covering patient-specific
somatic variants, SCNAs and CBF fusions (Table S7), a
median of 4103 cells/sample were sequenced (range:711—
7560) with a mean coverage of 106 reads/amplicon/
cell (range:35-384, Figs. S6-S9, Tables S8, S9) [8] and a
high concordance between bulk and scDNA-seq variants
(Figs. S10-S12). The median allele dropout (ADO) rate
in the samples ranged from 12.9%-21.8% with individual
ADO rates per amplicon from 0.9%-27.1% (Fig. S9).

A 2-step approach for assigning copy-number pro-
files to inferred tumor phylogenies from COMPASS [9]
was developed, which allowed identification of subclonal
SCNAs that were not supported by single nucleotide
variants (SN'Vs) and missed using existing computational
methods [9, 10]. We inferred tumor phylogenies for 8
patients at diagnosis (Figs. S13, S14). Phylogenetic trees
were constructed using reference and alternative counts,
without incorporating genotype or zygosity informa-
tion to account for observed variety in read depth, allelic
imbalance and ADO rates of investigated amplicons.
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Patient 03 was excluded from phylogenetic analysis due
to low variant overlap between bulk and scDNA-seq (Fig.
S10) and the lack of inv(16) detection on single-cell level
(Fig. S15). We identified 3—-11 (mean=>5.6) AML clones
per patient. The CBFB::MYHI11 fusion was part of the
founding clone in the remaining 6 patients with inv(16).
RUNXI:RUNXITI was acquired early in both patients
with t(8;21). Interestingly, a low number of cells (patient
01:14 at D, 44 at D and Rel combined; patient 09: 39 at D)
acquired mutations before the t(8;21) translocation (Fig.
S16-S21) which is in concordance with the higher rate of
co-mutations in patients with t(8,21) [11]. Those earlier
clones harbored mutations in genes that are not known
AML driver mutations (ZBTB17, ARV1, SCN1B, CYP8BI,
PHIP, EIF2B4, LAMB4, NWDI). As a result, leukemo-
genesis was likely initiated by the RUNXI:RUNXITI
fusion. We detected a higher fraction of mutated cells in
cells carrying a CBF fusion than in cells without fusion
independent of the fusion gene detected (Fig. S22). In one
patient, we identified a tumor cell population harboring
multiple tumor clones and a non-tumor cell population,
harboring a clonal hematopoiesis-associated mutation
that was stable during treatment (Fig. 1A, B).

We used CR samples from 6 patients for tumor cell
detection during molecular remission on single-cell
level (confirmed by measurable residual disease (MRD)
assessment via qPCR [12]). Remaining tumor cells that
harbored>1 variant/fusion were identified in all CR
samples (4—35 cells, 0.16%-1.54%, Fig. 1C—H). In 93 cells
1 variant/fusion was identified at CR, 55 cells carried >1
alteration (Figs. S23-S25). Applying the infinite-sites
assumption [10], we assigned each cell to tumor clones
from inferred phylogenetic trees from diagnosis or diag-
nosis and relapse. Among the 148 cells with detectable
variant/fusion, 4 carried relapse-specific variants and
only 6 cells carried the CBF fusion in CR (Fig. 1C-H). Of
those patients with relapse samples available (in scDNA-
seq or WES), the majority of CR variants (101/119) were
detected at diagnosis and relapse indicating their pre-
sumed association with the CBF AML. Thus, the parallel
assessment of multiple patient-specific genetic aberra-
tions markedly enhanced the sensitivity of MRD detec-
tion relative to the exclusive targeting of CBF fusions in
scDNA-seq.

Next, we modelled clonal evolution on single-cell level
for three patients with available material for scDNA-seq
from all timepoints and sufficient quality for phyloge-
netic analysis. Patient 01 lost the late diagnosis-specific
FLT3 D835 clones at relapse, which were also not present
at CR (Fig. 2A-C). At relapse, patient 02 lost a diagno-
sis-specific branch while acquiring a WT'1 mutation (Fig.
2D-F). Patient 05 acquired 8 new variants/subclones at
relapse (Fig. 2G-I). All three patients shared the found-
ing and early acquired events between diagnosis and
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Fig. 1 Persisting clones throughout treatment. Inferred phylogenetic tree of patient 07 with a (A) persisting clonal hematopoiesis (CH) clone at diagnosis
and relapse with 42 cells (1%) and 90 cells (13%), respectively, and (B) the AML clone of the diagnosis sample. C-H Bar plots showing mutated cells de-
tected in complete remission. Colors represent tumor clones from inferred phylogenetic trees of diagnosis sample (patient 04,06,09: Fig. S12) or diagnosis
and relapse sample combined (patient 01,02,05: Fig. S13). Clones are labelled by mutation identified in the CR cells and highlighted in bold if relapse-
specific. Detection of fusion genes is indicated next to the respective clones to which the cells were assigned, based on co-mutations

relapse, indicating similar clonal evolution patterns and
incomplete eradication of disease initiating events.

Although, the described approach is labor intensive,
the sensitivity of subclonal events is an advantage of the
presented study. We included a high number of patient-
specific somatic events resulting in detailed phylogenetic
trees, resolving mutation order more precisely as com-
pared to large-scale analyses restricted to few events per
patient [13]. We integrated SCNAs not covered by SN'Vs
into phylogenetic tree analysis and validated the results
with karyotype data. With this approach we detected
subclonal SCNAs that have been missed by conventional
bulk sequencing methods, unravelling the complexity of
the disease in detail. To adapt this method for clinical
purposes, we suggest screening for therapeutic targets
and AML drivers to determine the order of mutation
acquisition.

In conclusion and with the limitation of a small patient
cohort, our study highlights the necessity of identifying
early events during tumorigenesis in CBF AML. Expand-
ing the detection spectrum through the parallel analysis
of multiple patient-specific co-occurring genomic aber-
rations (CBF fusions and mutations) enabled the iden-
tification of residual tumor cells in all patients during
complete remission, underscoring the method’s techni-
cal utility and sensitivity for early detection of disease
progression.
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Fig.2 Clonal evolution of longitudinal CBF AML samples. Fish plots of A patient 01, D patient 02, G patient 05 including diagnosis (D), complete remission
(CR) and relapse (Rel). Clone sizes are normalized to percentage of blasts in the sample. The grey background represents the wild-type cell fraction. Col-
ored circles at CR represent the cell counts and assigned tumor clones as inferred by the infinite-sites model. B, C Simplified phylogenetic tree of patient
01 at diagnosis and relapse, respectively. E, F Simplified phylogenetic tree of patient 02 at diagnosis and relapse, respectively. H, I Simplified phylogenetic
tree of patient 05 at diagnosis and relapse, respectively. The greyed-out clones are not present in the respective timepoint
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