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BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma have shown promise in preclinical models, although clinical

(PDAC) is a highly aggressive and lethal cancer, with a 5-year
survival rate of <13%. Despite advances in diagnostics and
treatments, the standard of care for PDAC remains inadequate,
and most patients develop resistance to therapy. Targeted
approaches, such as Kirsten rat sarcoma (KRAS) inhibition,

application remains challenged by the rapid development of
resistance. The phosphatidylinositol-3-kinase (PI3K) signaling
pathway is critical for PDAC development and maintenance,
yet pharmacologic targeting has failed to yield significant
clinical benefits. METHODS: To investigate the relationship
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between the PI3K and small ubiquitin-like modifier (SUMO)
pathways in PDAC, we used a comprehensive approach that
included unbiased genome-wide clustered regularly inter-
spaced short palindromic repeats/clustered regularly inter-
spaced short palindromic repeats-associated protein 9
resistance screens, pharmacologic screens, transcriptomics,
proteomics, and phosphoproteomics experiments. Genetic
knockout models were applied to validate our findings. A novel
molecularly targeted combination therapy was tested in pre-
clinical mouse models. RESULTS: Using genetic and pharma-
cologic screenings, we discovered a mutual and targetable
codependence between the PI3K and the SUMO pathways.
Simultaneous inhibition of PIK3«a and PIK36, combined with
SUMO-activating E1 targeting, triggered synthetic lethality and
cell death. In syngeneic orthotopic immune-competent PDAC
models, this combination therapy reduced tumor growth and
promoted immune cell infiltration and activity. CONCLU-
SIONS: Our study introduces a novel rational combination
therapy in PDAC. Dual targeting of PI3Ka/é and SUMO
signaling bears potential for clinical translation.

Keywords: Pancreatic Cancer; PI3K; SUMOylation; Regulated
Cell Death; Combination Therapy.

P ancreatic ductal adenocarcinoma (PDAC) is one of
the most aggressive and deadliest cancers, with a
5-year survival rate of just 13%. Despite its increasing
incidence, including in younger patients, treatment options
for PDAC remain limited and nonsatisfying.1 PDAC is
defined by a distinct genetic landscape, with frequent mu-
tations in KRAS, TP53, CDKN2A, and SMAD4. Activating
KRAS mutations, present in 90% of cases, position the
Kirsten rat sarcoma virus (KRAS)/mitogen-activated pro-
tein kinase signaling pathway as a central driver of tumor
progression and a critical therapeutic target. Consequently,
the recently developed rat sarcoma (RAS) inhibitors,
including mutant-selective and pan-RAS inhibitors, have
demonstrated promising early signs of clinical efficacy in
PDAC.? However, genetic and adaptive resistance to RAS
inhibition remains challenging,® underscoring the need of
additional molecular targeted treatment strategies.

The phosphatidylinositol-3-kinase-(PI3K)-protein kinase
B (AKT)-mechanistic target of rapamycin pathway has
recently been implicated in resistance to RAS inhibitors."
Furthermore, the finding that oncogenic PI3K-signaling can
compensate KRAS-dependency to initiate and drive carci-
nogenesis and tumor progression in murine PDAC models™®
highlights the PI3K pathway’s significance as a therapeutic
target. PI3K family kinases include 3 classes. Class Ia
(p110e/PIK3CA, p1108/PIK3CB, and p1106/PIK3CD) and
class Ib (p110vy/PIK3CG) catalytic subunits are particularly
relevant in clinical settings, with inhibitors targeting these
isoforms available.” PIK3CA mutations are the most common
alterations within class I PI3Ks and may predict sensitivity
to PI3K inhibition in preclinical PDAC models.””® Moreover,
several isoform-specific PI3K inhibitors have been evaluated
in clinical trials for solid tumors, including PDAC.
Alpelisib (BYL-719), a PI3Ka inhibitor (NCT02155088,
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WHAT YOU NEED TO KNOW

BACKGROUND AND CONTEXT

Resistance to therapeutic interventions for pancreatic
ductal adenocarcinoma remains challenging.
Phosphatidylinositol-3-kinase signaling is critical for
pancreatic ductal adenocarcinoma maintenance and
progression, but pharmacologic targeting has failed to
yield significant clinical benefits.

NEW FINDINGS

Simultaneous inhibition of phosphatidylinositol-3-kinase
a/6, combined with small ubiquitin-like modifier-
activating E1 targeting, triggered synthetic lethality. In
syngeneic  immune-competent  pancreatic  ductal
adenocarcinoma models, this combination therapy
reduced tumor growth and promoted immune cell
infiltration.

LIMITATIONS

Combining phosphatidylinositol-3-kinase «/6 and small
ubiquitin-like modifier inhibitors triggered an immune-
assisted anti-tumor response, marked by an
unexpected immunophenotype, a phenomenon that
requires further investigation in future studies.

CLINICAL RESEARCH RELEVANCE

The dual targeting of phosphatidylinositol-3-kinase /6
and small ubiquitin-like modifier shows efficacy,
manageable toxicity in mice and potential for clinical
translation in pancreatic ductal adenocarcinoma, a
cancer with significant unmet medical needs.

BASIC RESEARCH RELEVANCE

Blockade of the phosphatidylinositol-3-kinase pathway
leads to the adaptive activation of the small ubiquitin-like
modifier (SUMO)ylation machinery and vice versa. Only the
combined inhibition of both phosphatidylinositol-3-kinase
« and ¢ with a clinical-grade E1 small ubiquitin-like modifier
inhibitor induced synergistic cell death in vitro and
demonstrated synergy in an immunocompetent in vivo
model. Our work highlights the unexpected requirement of
phosphatidylinositol-3-kinase « and 6 in the small
ubiquitin-like modifier—ylation-associated stress response.

§ Authors share co-senior authorship.

Abbreviations used in this paper: AKT, protein kinase B; Cas, clustered
regularly interspaced short palindromic repeats-associated; CD, cluster
of differentiation; CRISPR, clustered regularly interspaced short palin-
dromic repeats; cyclF, cyclic immunofluorescence; GSEA, gene set
enrichment analysis; KRAS, Kirsten rat sarcoma viral oncogene homo-
logue; MYC, myelocytomatosis oncogene; PDAC, pancreatic ductal
adenocarcinoma; PDO, patient-derived organoid; PI3K, phosphatidyli-
nositol-3-kinase; PI3Ki, phosphatidylinositol-3-kinase inhibitor; RAS, rat
sarcoma; RCD, regulated cell death; RNAseq, RNA sequencing; SAE1,
small ubiquitin-like modified-activating enzyme subunit 1; snRNA, single
nuclei RNA; SOC, standard of care; SUMO, small ubiquitin-like modifier;
SUMOi, small ubiquitin-like modifier E1 inhibitor; TME, tumor
microenvironment.
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NCT02437318), has demonstrated tolerability in PDAC pa-
tients and efficacy in PIK3CA-mutated breast cancer.™’
GSK2636771, a PI3K@ inhibitor, is currently under investi-
gation (NCT04439188) in patients with PTEN loss."' Ega-
nelisib (IPI549), targeting PI3Ky (NCT02637531), has
shown immune-modulation and antitumor activity when
combined with nivolumab in solid tumors.'? In contrast,
idelalisib (CAL-101) and parsaclisib (INCB050465), both
targeting PI3Ké (NCT02468557, NCT02559492), have
exhibited limited efficacy in solid tumors.'*** These findings
highlight the clinical potential of isoform-specific PI3K in-
hibitors; however, their role and targeting spectrum in the
treatment of PDAC has yet to be established.

The small ubiquitin-like modifier (SUMO)ylation
signaling pathway is a cellular process in which SUMOs are
attached to target proteins, altering their function, stability,
or localization. SUMOylation plays a crucial role in regu-
lating processes such as transcription, DNA repair, the cell
cycle, and stress responses.'”> Pharmacologic targeting of
the SUMO pathway has shown efficacy in PDAC and other
malignancies in preclinical models.*®”

To harness the therapeutic potential of PI3K-pathway
inhibition in PDAC, we investigated pathway co-
dependencies to inform translational strategies. We
observed that blockade of the PI3K pathway leads to the
adaptive activation of the SUMOylation machinery and
furthermore observed a vice versa process. Only the com-
bined inhibition of both PI3Ka and PI3Ké with a clinical-
grade SUMO-inhibitor induced synergistic cell death
in vitro and demonstrated synergy in an immunocompetent
in vivo model. Our work highlights the unexpected
requirement of PI3K«a and PI3K¢ in the SUMO-associated
stress response and unveils a novel combination therapy
approach with the potential for clinical applicability.

Methods

Pharmacologic Screen

The drug library consisting of >99 inhibitors targeting
various relevant cancer pathways in PDAC was purchased
from Selleckchem. Subastumstat was kindly gifted by Takeda.
Copanlisib (cat no HY-15346R) and pictilisib (cat no HY-
50094) were purchased from MedChemExpress LLC. The
drug screen was conducted in MiaPaCa-2, PSN-1, and
53631PPT cells, as recently described.'® After 72 hours of
treatment, viability was measured. Plates were incubated at
room temperature for 30 minutes 25 uL of CellTiter-Glo
(Promega) was added to each well, incubated for 15 mi-
nutes, and luminescence was measured (FLUOstar-OPTIMA-
microplate-reader, BMG-Labtech). Area under the curve and
half-maximal growth inhibitory concentration values were
calculated with RStudio (Posit Software) using a GRmetrics
script.

Western Blot

Cells were treated with various conditions and harvested
at different time points, and their protein lysates were
analyzed by Western blot using specific primary antibodies
and horseradish peroxidase-conjugated secondary antibodies.
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The blots were developed using the OdysseyM imager (LI-COR
Biotech), and the data were analyzed using EmpiriaStudio
software (LI-COR Biotech).

Growth Curves by Cell-Live Imaging

Cells were seeded onto 96-well plates (5x103 cells/well),
grown for 24 hours, and then treated with the indicated
compounds. Confluency was determined by monitoring cells in
real time with a confluency image mask, which was filtered for
each cell line specifically. Cell confluency was quantified by
2024A version of the Incucyte software.

CRISPR/Cas9-based Gene Editing

Depletion of PI3K« a fragment from exon-2 and depletion
of PI3K6 from exon-3 was mediated by clustered regularly
interspaced short palindromic repeat (CRISPR)/clustered
regularly interspaced short palindromic repeat associated
protein 9 (Cas9). Then, 150,000 cells were transfected with
500 ng of single-guide (sg)RNA and 1 ug of Cas9 protein
(PNA-Bio) with a Neon-Transfection-System (Thermo Fisher/
Invitrogen). A list of single-guide RNA sequences is available
in the Supplementary Material and Methods. Cleavage efficacy
was tested 72 hours after transfection with Terra PCR Direct
Card Kit (Takara Bio). Single cells were generated by serial
dilution. Clones were screened for efficient gene editing, and
selected clones were analyzed for protein expression by
immunoblotting.

In Situ Resistance Assay

Cells were seeded onto a 96-well plate at a density of 250
cells/well on day 0. On day 1, treatment was added. Medium
was changed and drugs refreshed weekly. Each week, cell
confluency was analyzed using Incucyte (Live-Cell Imager,
Sartorius). Wells reaching >50% confluency were scored as
resistant. Data were plotted as a Kaplan-Meier plot.'’

Toxicity Analysis in Mice

Serum samples of mice were isolated by postmortem
cardiac puncture centrifuged at 2000g for 10 minutes. The
concentrations of lactate dehydrogenase activity, albumin,
calcium, urea, total protein, bilirubin, alanine aminotrans-
ferase, aspartate aminotransferase, alkaline phosphate, and
inorganic phosphate were analyzed by photometry on a
Roche cobas analyzer (Roche Diagnostics, Rotkreuz,
Switzerland).

Detailed information on single-nuclei (sn)RNA sequencing
(seq), RNAseq, processing, and analysis of gene expression
data; CRISPR/Cas9-knockout screen; cell culture and treat-
ment, chemicals, viral infection, and colony formation assay;
cyclic immunofluorescence; in vivo drug efficacy analysis in
mice and immunohistochemistry; patient-derived organoids;
global and phosphoproteomics; and flow cytometry is avail-
able in the Supplementary Material.

Statistics

Statistical analyses were performed using GraphPad Prism
(GraphPad Software). P values <.05 were considered signifi-
cant. All P values and tests are indicated in the figure legends.
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Results

The SUMOylation Pathway Is Activated by PI3K
Inhibition

PI3K-signaling is considerably involved in therapy resis-
tance in multiple tumor entities.’?? In PDAC, catalytical
class-1 PI3-kinase expression is increased (Supplementary
Figure 1A4). Both basal-like and mesenchymal subtypes,
which overlap and are known to be more resistant to
chemotherapy,?® exhibit elevated PI3K/AKT-pathway activ-
ity, although mutations are rarely found (Figure 14 and B**
and Supplementary Figure 14 and B). Mining data of patient-
derived organoids (PDOs) isolated from treatment-naive pa-
tients and patients after standard-of-care (SOC) chemo-
therapy”” revealed a significant enrichment of the PI3K/AKT-
signaling signatures in SOC-treated PDAC patients
(Figure 1C). Furthermore, KRAS-knockout PDAC cells
exhibited activated PI3K-dependent mitogen-activated pro-
tein kinase signaling and were sensitive to PI3K inhibition
(Supplementary Figure 1C).”° The combination of KRAS-
inhibition by RMC-6236, a multiselective RAS®" inhibitor,
and PI3K inhibition by pictilisib (a PIK3«/6 inhibitor) acted
synergistic in selected PDAC cell lines (Supplementary
Figure 1D). Together, these data highlight the critical role of
PI3K-dependent rewiring of oncogenic networks in cells with
perturbed KRAS. Therefore, specifically in the context of
PDAC, PI3K signaling plays a crucial role in adaptation to
therapy and in treatment resistance.

To gain a deeper understanding of PI3K-controlled mo-
lecular networks, we analyzed a CRISPRK"OkoUt hased PI3K-
inhibitor (pictilisib) resistance screen’’ and identified
SUMOylation-related pathways as synthetic lethal
(Figure 1D). To causally test the relationship between PIK3-
inhibition and changes in SUMOylation, we investigated the
course of global protein SUMOylation upon PIK3 inhibition
with the formerly United States Food and Drug
Administration-approved PIK3«/d inhibitor copanlisib.
Indeed, over time, PI3K inhibition induced protein SUMO-
ylation (Figure 1E and Supplementary Figure 1E), pointing
to a role of SUMO in cells with inactivated PI3K signaling.

To extend our findings, we generated PI3K-inhibitor
(copanlisib)-resistant PDAC cells (PI3K-R) and identified
the induction of the SUMO-pathway core components
SUMO1, SUMO2, SUMO3, and SUMO-activating enzyme
subunit 1 (SAE1), ubiquitin-like modifier activating
enzyme 2 (UBA2), and UBE2I (Figure 1F and
Supplementary Figure 1E). We also examined the
SUMOylation status after application of several selected
SOC or targeted compounds. We observed induction of
SUMOylation in some treatments, but not a general SUMO
induction (Supplementary Figure 1F).

We next evaluated SUMOylation induction in PI3K
inhibitor-treated MiaPaCa-2 by proteomics and phospho-
proteomics (Figure 1G). Here, we found a significant in-
duction of SUMO1 after 6 hours and SUMO2 after 24 hours
(Figure 1H) upon PI3K inhibition. Additionally, various
SUMOylation-related signatures were induced already after
6 hours, with some sustained after 24 hours (Figure 1I),
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indicating early changes of protein SUMOylation in PI3K-
inhibited cells. Sentrin/SUMO-specific proteases, which
contribute to the maturation and homeostasis of SUMO-
ylated proteins,?® also showed a tendency toward induction
after PI3K inhibition, with the SUMO2/3-specific deSU-
MOylase sentrin/SUMO-specific protease 3 being induced
in particular (Supplementary Figure 1G). Phosphoproteo-
mics and immunoblotting confirmed efficacy of PI3K in-
hibitor treatment as indicated by reduced phosphorylation
of downstream targets (Figure 1J and Supplementary
Figure 1H).

Together, these data show the induction of SUMOylation
upon blockade of the PI3K pathway. Considering the syn-
thetic lethal relation detected in the CRISPR screen
(Figure 1D), the activation of SUMOylation pointed toward
a functional relevance for PDAC cell survival.

SUMOylation Inhibition Induces PI3K
Dependence

Observing the activation of SUMOylation in response
to PI3K inhibition and in patients receiving SOC
(Supplementary Figure 11 and J), we next sought to identify
global PDAC dependencies in the context of SUMO pathway
targeting. To this end we applied the highly specific clinical-
grade SUMO E1 inhibitor (SUMOi) subasumstat’’ in a
genome-wide CRISPR-knockout resistance screening in
MiaPaCa-2 and PSN1 (Figure 24). Indeed, we revealed that
loss of genes associated with the PI3K/AKT pathway
exhibited significant synthetic lethality in the context of
SUMO blockade (Figure 2B and Supplementary Table 1).
Complementary to the forward-directed genetic screen, we
performed a subasumstat-anchored pharmacologic screen
in human (MiaPaCa-2 and PSN1) and murine 53631PPT
PDAC cell lines (Supplementary Table 2). Again, we iden-
tified a synthetic lethal relation between the SUMO and
PI3K pathways (Figure 2C), which could be validated by
multidose treatment with subasumstat (Figure 2D). In sum,
these findings pointed toward a potential codependence of
the 2 pathways in PDAC.

Pictilisib and copanlisib both exhibit equipotent inhibi-
tion of PIK3« and PIK36 and less potent inhibition of PIK33
and PIK37y isoforms.’”*! Owing to the ample (pre)clinical
data, including some efficacy as well as toxicity and toler-
ability from clinical studies in lymphoma®* and other can-
cer entities,®>®> we focused further studies on the formerly
Food and Drug Administration-approved compound
copanlisib. Combined treatment with copanlisib and sub-
asumstat proved a targetable codependence between both
pathways (Figure 2E and F). The synergistic effects of
combined PI3K/SUMO targeting were confirmed in an
expanded panel of PDAC cell lines (Supplementary
Figure 2).

Taken together, these data indicate that SUMOylation
inhibition provoked a cellular dependency on PI3K
signaling. PI3K signaling thus represents a convergent node
and specific vulnerability in PDAC cells lacking a functional
SUMOylation machinery, and vice versa.
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Figure 1. SUMOylation is enriched upon PI3K targeting in PDAC. (A) Distribution of single-sample (ss)GSEA enrichment
scores for proteins of the Kyoto Encyclopedia of Genes and Genomes (KEGG) PI3K-AKT pathway in indicated PDAC
subtypes. The large dashed lines inside the violin plot indicate the median and the smaller dashed lines indicate the
interquartile range. (RPPA, Reverse Phase Protein Array, The Cancer Genome Atlas database). **P < .01 by t test. (B).
Distribution of ssGSEA enrichment score for messenger RNA of the KEGG PI3K-AKT pathway in mesenchymal (mes) C1
and epithelial (epi) C2 murine PDAC subtypes.?* ***P < .0001 by t test. (C) Top KEGG Eathways enriched in post-
chemotherapy PDOs shows an up-regulation of the PI3K-AKT pathway upon treatment.?> TGF, transforming growth
factor. (D) Results from genome wide CRISPR-knockout PI3K-inhibition resistance screen performed in MiaPaCa-2.%’
GSEA analysis (Reactome) of negatively selected genes revealed a synthetic lethal interaction between PI3K inhibition
and SUMOylation inhibition. GTPase, guanosine-5'-triphosphatases. (E) Immunoblot analysis shows indicated proteins
upon PI3K inhibition with pictilisib (1000 nmol/L) in MiaPaCa-2 for indicated time points. 8-Actin served as the loading
control. UBA2, ubiquitin-like modifier activating enzyme 2. (F) Top: Transcript levels SUMO core components of
MiaPaCa-2 cells—parental and resistant to copanlisib (R-500 nmol/L; R-1000 nmol/L). UBE2, ubiquitin-conjugating
enzyme E2. Bottom: Immunoblot of SUMO core components in copanlisib resistant (R-500 nmol/L; R-1000 nmol/L)
and parental MiaPaCa-2 cells. (G) lllustration of the global- and phosphoproteomics experimental setup. MiaPaCa-2
cells were treated for 6 or 24 hours with copanlisib (1000 nmol/L) or treated with dimethyl sulfoxide (vehicle-control).
(H) Relative SUMO1/2/3 protein expression upon PI3K inhibition with copanlisib (1000 nmol/L, 6 or 24 hours; n = 3). P
value by t test as indicated or *P < .05. The range bars designate standard deviation. (/) GSEA of SUMOylation-related
gene sets (Reactome) upon PI3K inhibition with copanlisib (1000 nmol/L) for 6 or 24 hours compared with vehicle/
dimethyl sulfoxide control in MiaPaCa-2. (J) Phosphorylation of indicated PI3K-Akt-mechanistic target of rapamycin
(MTOR) downstream targets (mass spectrometry) upon PI3K-inhibition with copanlisib (1000 nmol/L) for 6 or 24 hours
compared with vehicle/ dimethyl sulfoxide control (MiaPaCa-2). GSKA, glycogen synthase kinase-3 alpha; FOXO1,
forkhead box protein O1.

Simultaneous Inhibition of PIK3a/6 and SUMO Is  corroborate the dependency on specific PI3K isoforms and
Required to Induce Synthetic Lethality to provide robust data vital for clinical translation, we

Our data indicate that inhibition of PIK3« and PIK36 directly tested various PI3K inhibitors with known speci-
effectively induced susceptibility to SUMOylation inhibition, ficities for individual PI3K isoforms: alpelisib (PI3Ka),'"
a crucial finding for clinical translation. To further GSK2636771 (PI3K@),"" eganelisib (PI3Ky),'” idelalisib
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Figure 2. Synthetic lethal interaction between SUMO and PI3K pathways. (A) Schematic overview of the genome-wide
CRISPR/Cas9 knockout subasumstat-resistance screen strategy conducted in MiaPaCa-2 and PSN1. HT, high
throughput; MAGeCK, Model-based Analysis of Genome-wide CRISPR/Cas9 Knockout; MOI, multiplicity of infection; PCR,
polymerase chain reaction. (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of negatively selected
genes from CRISPR "%t screens in the MiaPaCa-2 and PSN1 exposes the PI3K-Akt pathway as a common synthetic lethal
pathway. PPAR, peroxisome proliferator-activated receptors; Th17, T helper 17. (C) lllustration/results of the subasumstat-
anchored pharmacologic screen setup of subasumstat 20% growth inhibitory concentration (Gl,g) and multidose treatment of
n > 99 compounds indicating in 3 indicated cell lines. AUC, area under the curve. (D) Top: Landscape plots depicting the
synergistic area of concentrations of subasumstat and the PI3K inhibitor (pictilisib) in the 3 PDAC indicated cell lines. Synergy
score was determined by SynergyFinder using the Zero Interaction Potency (ZIP) method. Bottom: Representative colony-
growth images after treatment with subasumstat and pictilisib. (E) Top: Landscape plot depicting the synergistic area of
concentrations of subasumstat and copanlisib in MiaPaCa-2. Bottom: Representative colony-growth image after treatment
with subasumstat and copanlisib. (F) Proliferation of MiaPaCa-2 supplemented with subasumstat, copanlisib, or the com-
bination of both. Cell confluency data were obtained by live cell imaging (n = 3). The range bars designate standard deviation.

(PI3K06),”* and parsaclisib (PI3Ké),"* all in combination and sufficient for optimal synergy with SUMO-targeting by
with subasumstat. None of the isoform-specific PI3K in- subasumstat.
hibitors displayed synergism with subasumstat (Figure 34
and B, Supplementary Figure 3A). To substantiate these . o
findings, we performed genetic knockouts of PIK3a or Combined PI3Ka/6-SUMO Inhibition Induces
PI3Ké isoforms by CRSIPR/Cas9 (Figure 3C and HRegulated Cell Death in Pancreatic Ductal
Supplementary Figure 3B). Single knockout of the PIK3« or Adenocarcinoma
PI3K¢ isoforms did not exhibit synergism under subasum- To identify relevant pathways responsible for the fate of
stat treatment. However, treating PI3Ka knockout cells PDAC cells upon dual PI3K and SUMO inhibition, we
with a PI3Ké-specific inhibitor displayed synthetic lethality examined the transcriptome and (phospho-)proteome
with the SUMOi subasumstat (Figure 3D and E). Confirming upon monotreatment and combination treatment with
our previous data on SUMO pathway activation upon copanlisib and subasumstat (Figure 4A4). Single-sample
pharmacological PI3K-targeting (Figure 1) and supporting gene set enrichment analysis (GSEA) revealed distinct
the codependence of the 2 pathways and in particular the patterns in the transcriptome (Figure 4B) and proteome
specific PI3K isoforms, the SUMO state was increased in (Figure 4C). PI3K signaling was significantly reduced and
p1106/PI3K6 and p110«/PI3Ka knockout cells (Figure 3F, myelocytomatosis oncogene (MYC) signatures were
and Supplementary Figure 3B). In parental cells, the in- depleted in both copanlisib monotherapy and combination
duction of a polySUMOylation high state upon PIK3«/é in- with subasumstat, consistent with earlier observations.***°
hibition was blocked upon combination with subasumstat By analyzing hallmark signatures of the molecular signa-
(Supplementary Figure 3C). ture database (MSigDb) enriched in the transcriptome and
Together, these results show that highly specific PI3Ka/6 the proteome in the combination treatment, we identified 6
inhibition or loss of PI3Ka/6 induced profound activation of overlapping signatures, including metabolic, heme meta-
protein SUMOylation and created a targetable vulnerability. bolism, and apoptosis signatures (Figure 4D). Therefore,
Consequently, inhibition of specifically PI3Ke/6 is required ~we analyzed the expression of proteins related to apoptosis
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Figure 3. Double targeting of PI3K«/PI3Ké and SUMOylation induces synthetic interaction. (A). Zero Interaction Potency (ZIP)
synergy scores upon combination of subasumstat and indicated PI3K inhibitors in MiaPaCa-2. Cells were treated with single
and combination treatments using a 4 x 5 matrix. Cell confluency was assessed after 96 hours, and clonogenic assay
quantification was imaged. Synergy score was determined by SynergyFinder using the ZIP method (n = 3). (B) Proliferation of
MiaPaCa-2 supplemented with 500 nmol/L subasumstat, 5 umol/L of indicated PI3K-specific inhibitors, or the combination of
both. Cell confluency data were obtained by live cell imaging (12-hour intervals over 72 hours; n = 3). The range bars
designate standard deviation. (C) Immunoblot analysis of p110a/6 expression in MiaPaCa-2 harboring a CRISPR/Cas9-
mediated PI3K«-de(p)letion. (D) Proliferation of p110«-depleted MiaPaCa-2 supplemented with 500 nmol/L subasumstat,
5 umol/L idelalisib, or the combination (left), and p1104-depleted MiaPaCa-2 supplemented with 500 nmol/L subasumstat, 5
umol/L alpelisib, or the combination (right). Cell confluency data were obtained by live cell imaging (12-hour intervals over 72
hours; n = 3). **P< .01 by analysis of variance. The range bars designate standard deviation. (E) Landscape plots depict the
synergistic area of concentrations of idelalisib and subasumstat combination treatment in p110«a-de(p)leted MiaPaCa-2
treated for 96 hours (left) and of concentrations of alpelisib and subasumstat combination treatment in p1104-depleted
MiaPaCa-2 treated for 96 hours (right). Data (n = 3) were obtained by confluency measurement. (F) Immunoblot analysis of

indicated proteins in MiaPaCa-2 harboring a CRISPR/Cas9-mediated PI3Ks-de(p)letion.

and other regulated cell death (RCD) modes (Figure 4E).
Because we observed a trend for the regulation of proteins
favoring apoptosis, we stained for cleaved caspase 3 and
performed annexin-V/propidium iodide fluorescence-
activated cell sorter. We observed an increase of cleaved
caspase 3 (Supplementary Figure 4A4) and annexin-V-
positive cells upon combination treatment, which was
blocked by a pan-caspase inhibitor (Figure 4F). However,
the sole induction of apoptosis, which was relatively mild
compared with the strong synergism observed, does not
fully account for the cell-death mode. Analyses of cell-cycle
profiles did not provide additional insights into the mode of
action of the synergistic effects in the combination treat-
ment (Supplementary Figure 4B). Considering the func-
tional impact of SUMOylation on protein function and
stability, we next investigated signatures and signaling
pathways regulated at the protein level only. Applying
phosphoproteomics, we identified that the SUMOi-PI3K
inhibitor (PI3ki) combination specifically altered meta-
bolic pathways, messenger RNA metabolism, and mitotic

regulation (Figure 4G), suggesting that affecting such
pathways contribute to the strong synergism.

In summary, these data identified a multimodal induc-
tion of RCD by the combined inhibition of the PI3K«/6 and
SUMOylation pathways.

Inhibition of PI3Ka/6 and SUMO Signaling
Impairs Growth in Patient-Derived Organoids

To validate the efficacy of combined PI3Ka/5-SUMO
inhibition in advanced human model systems, we per-
formed drug testing in 5 genetically and phenotypically
characterized epithelial-like and mesenchymal-like PDOs
with different activity of pathways associated with the
mesenchymal subtype (Figure 54 and B). We tested
their response toward FOLFIRINOX (folinic acid, fluo-
rouracil, irinotecan, and oxaliplatin) (Figure 5C) and the
PI3Ka/6- and SUMO-inhibition (pictilisib/subasumstat)
combination treatment (Figure 5D). Of note, PDOs
associated with mesenchymal transcriptomic features
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Figure 4. Multiomics analysis identifies an RCD-pattern in PDAC upon dual inhibition of PI3K«/6 and SUMO. (A) lllustration of
the experimental multiomics setup followed to elucidate the mechanistic effects of the single and combination treatments.
Hallmark single-sample (ss)GSEA of (B) transcriptome and (C) proteome results upon treatment with subasumstat (200 nmol/
L), copanlisib (1000 nmol/L), or the combination of both for 24 hours compared with vehicle/dimethyl sulfoxide (DMSO)
control in MiaPaCa-2. (D) Top enriched overlapping gene sets of transcriptome and proteome analyses upon combination
treatment. (E) Relative protein expression analysis of indicated forms of RCD in MiaPaCa-2 supplemented with DMSO,
subasumstat (200 nmol/L), copanlisib (1000 nmol/L), or the combination for 24 hours. (F) Flow cytometry of propidium iodide/
annexin-V staining of MiaPaCa-2 after subasumstat (200 nmol/L), copanlisib (1000 nmol/L), or combination treatment sup-
plemented with ZVAD-fmk (50 umol/L) for 24 hours (n = 3). *P < .05 by analysis of variance. (G) Venn diagram overlapping the
top enriched Reactome gene sets from indicated phosphoproteomes (n = 5, each condition). mMRNA, messenger RNA; NFKB,
nuclear factor «-light-chain-enhancer of activated B cells; PDH, pyruvate dehydrogenase; TCA, tricarboxylic acid.

displayed poor response in the SOC treatment but an
improved response in the pictilisib/subasumstat com-
bination treatment compared with epithelial-like PDOs
(Figure 5C and D). By GSEA we identified significant
enrichments of SUMOylation signatures in responder
PDOs associated with mesenchymal transcriptomic fea-
tures (Figure 5E).

Next, we used in situ resistance assays'® to assess
viability after long-term treatment with monotherapy or
combination therapy over a 5-week period. Outgrowth was
defined on a confluence threshold of >50%, which was
considered indicative of therapy failure. Cells treated with
monotherapy exhibited outgrowth after 3 to 4 weeks,
respectively (Figure 5F). In contrast, PI3Ka/d-SUMOI
combination therapy resulted in a pronounced loss of
confluence, with >90% of cultures deemed nonviable by
week 4 to 5 (Figure 5F).

In summary, the PI3K«/0-SUMO-targeted combination
therapy demonstrated efficacy in PDOs and in long-term
assays.

Combined PI3Ka/6 and SUMO Targeting Acts by
Licensing the Antitumor Immune Response

We next investigated the PI3Ka/di-SUMOIi combination
therapy in MiaPaCa-2 xenografts to translate our findings
into an in vivo model. We observed a reduced tumor

volume in combination-treated xenografts compared with
monotherapy (Supplementary Figure 5).

Subasumstat treatment induced multifaceted immune
effects.’”*”*% Gene ontology biological process GSEA in-
dicates up-regulated major histocompatibility complex-I
and antigen processing and presentation upon combina-
tion treatment in MiaPaCa-2 (Figure 64 and B). Therefore,
to investigate whether efficacy of combined PI3Ka/6-SUMO
was different in an immune-competent model and whether
PI3Ka/0-SUMO targeting could be associated with an
antitumor response, we generated syngeneic orthotopic
tumor grafts (Figure 6C). Here PI3Ka/6i-SUMOI treatment
in a dose-escalation schedule exhibited significant effects
on tumor growth compared with control treatments
(Figure 6D). To investigate the effects of combined PI3Ka/
0i-SUMOI treatment on tumor and immune dynamics, cyclic
immunofluorescence (cycIF) was performed using the T-
cell markers cluster of differentiation (CD) 3, CD4, CD8, and
programmed cell death protein 1. This analysis revealed an
increased infiltration of CD3™ T cells (Figure 6E). Because
we did not observe significant differences in CD4" or CD8*
T-cell infiltration, immune histochemical analysis of CD3"
T-cell infiltration was additionally performed, which
confirmed the cyclF findings (Figure 6F).

Next, to investigate the complete landscape of therapy-
induced reprogramming of the tumor microenvironment
(TME), we analyzed tumor samples from all groups by
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Figure 5. PDOs and in situ resistant assays reveal reduced tumor cell growth upon PI3K«/6 and SUMO inhibition. (A) PDOs
from 5 patients with PDAC were isolated and used for drug testing and transcriptomic profiling (schematic overview). (B) Left:
Mutation status of KRAS, CDKN2A, TP53, and SMAD4, and GSEA of indicated PDOs. PAN2T, PAN17T, and PAN7QT display
mesenchymal-like features (mes); PAN41T and PAN74T display epithelial-like features (epi). Right: Representative phase-
contrast images (similar magnification) of PDOs. EMT, epithelial-mesenchymal transition. (C) Cell viability, measured by
adenosine triphosphate quantification (CellTiter-Glo) 96 hours after treatment with indicated concentrations of FOLFIRINOX
(folinic acid, fluorouracil, irinotecan, and oxaliplatin) mes and epi PDOs (n = 3). (Original magnification, 20x objective.) (D) Cell
viability of PDOs supplemented for 96 hours with subasumstat (10 nmol/L), pictilisib (indicated concentration), or the com-
bination of both measured by adenosine triphosphate quantification (CellTiter-Glo) (n = 3). The range bars designate standard
deviation. (E) GSEA (Reactome) of transcriptome data depicts increased SUMOylation signatures in mes-PDOs (responder),
compared with nonresponding epi-PDOs. (F) In situ resistance assay in mesenchymal murine PDAC cell line 9091PPT and the
2 basal-like human PDAC cell lines PSN1 and Panc1. Log-rank P value is indicated.

snRNAseq (Figure 6G and Supplementary Figure 64 and B).
Here, we observed increased expression of cycling and
cytotoxic T cells, indicating T-cell activation, although sur-
face CD8 detection may be reduced posttranscriptionally
(Figure 6G and H and Supplementary Figure 6C). We found
that PI3Ka/0i-SUMOIi combination treatment significantly
induced transcriptional activation of XcI1 and [I118r1 in T
cells, suggesting enhanced effector function (Figure 6I). In
support, cyclF revealed a significant increase in
CD3*CD8'CCL5"  (chemokine  ligand 5)  and
CD3*CD8'Ki67" cells, compatible with elevated cytotoxic
activity and T-cell proliferation (Figure 6/). These findings
point to a PI3Ka/0i-SUMOi combination-induced amplifi-
cation of T-cell phenotypes associated with antitumor
immunity.

Macrophage profiling revealed a shift from immuno-
suppressive M2-like macrophages to antigen-presenting
tumor-associated macrophages (Figure 6K and L and
Supplementary Figure 6D), compatible with a TME with
enhanced antitumor immunity.”” Additionally, cycIF
showed up-regulation of chemokine ligand 5, a chemokine
known to recruit effector T cells, natural Killer cells, den-
dritic cells, and monocytes into the TME (Figure 6M).*" In

line with our cell culture-based data, we observed an
augmented induction of interferon-o/y and apoptosis
pathways in tumor cells treated with the combination
therapy in vivo (Supplementary Figure 6E).

Preliminary shallow analysis of toxicity regarding he-
matologic, liver, or kidney effects revealed no signals for
PI3Ka/0i-SUMOi combination therapy in the investigated
mouse cohorts (Supplementary Figure 7).

Together, these findings indicate that the combination
therapy of SUMOi and PI3Ka/d6i modulates the TME to
favor immune-mediated tumor-cell killing, predominantly
involving cytotoxic T cells and antigen-presenting
macrophages.

Discussion

The analysis of genome-wide PI3Ki-CRISPR resistance
screens”’ and our genome-wide SUMOi-CRISPR and drug
screens led to the identification of PI3Ka/3-SUMO targeting
as a novel treatment strategy for PDAC. Our study reveals
that mesenchymal/basal-like PDACs exhibit a mutual co-
dependence on PI3K signaling and the SUMOylation
pathway. By targeting both pathways, we achieved
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consistent efficacy across multiple basal-like/mesenchymal
models, including human and murine PDAC cell lines, PDOs,
and mouse models, including an immune-proficient ortho-
topic model. Furthermore, our study underscores the
importance of precise PI3K inhibitor application, because
only PI3Ka/d-inhibitors synergize with SUMOylation
inhibitors.

Gastroenterology Vol. m, Iss. m

Direct targeting PI3Ks is a treatment strategy in PDAC
worth considering.® Our data confirm the connection be-
tween the PI3K pathway and basal-like/mesenchymal
PDACs previously reported.’ Importantly, PI3K« is an
important positive effector of oncogenic KRAS.** The
interconnection of these 2 oncogenic signaling nodes is also
evident in PDAC tumorigenesis, where PIK3«, but not
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PIK38, is an essential mediator of oncogenic KRAS
signaling. Furthermore, oncogenic PIK3« is crucial for
maintenance and metastatic progression of PDAC.>**1*34*
The observation that survival of PDAC cells genetically
lacking KRAS is largely dependent on PI3K signaling®®
additionally emphasizes the pertinency of the PI3K
pathway as a therapeutic target. In contrast to PI3Ke, the
role of other class I PI3Ks in PDAC remains complex and is
less well understood.

Immunohistochemistry demonstrated the expression of
PI3Ky in most of the investigated human PDAC cases, and
knockout of the PI3Ky gene delayed tumor development in
murine PDAC models, involving nonautonomous mecha-
nisms.*”>™*”  Furthermore, PDAC cells with mutated
KRAS%12R which cannot interact with PI3Ke, overexpress
and depend on PI3Ky to induce micropinocytosis, a
pathway that fuels the cancer cell’s metabolic demands.*®
Protein abundance of PI3Ké is up-regulated in tumor-
enriched PDAC samples.”” We demonstrate that the syn-
ergy of the SUMO and the PI3K pathway inhibition depend
on specifically blocking PIK3« and PI3Ké signaling. Thus,
rational and specific inhibitor selection is needed to fully
exploit PI3K inhibition in a specific context as shown here
for the combination with SUMO targeting.

Recent studies by us and others have shown that the
SUMOylation machinery is a putatively relevant therapeutic
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grade SUMO E1 inhibitor has been evaluated in the
clinic."*”*° Concurrent with the activity of the PI3K
pathway in basal-like PDACs, we observed increased
expression of the core SUMOylation machinery in this
subtype. The observed global/group protein SUMOylation
upon PI3K inhibition appears consistent with cellular stress
responses seen under conditions such as DNA damage or
heat shock, where similar widespread SUMOylation shifts
were identified.”® This phenotype may reflect an adaptive
or compensatory signaling mechanism engaged by cells to
mitigate the disruption of homeostasis caused by PI3K
pathway blockade. Our findings thus support the growing
view that group SUMOylation plays a role in orchestrating
broad stress-response programs, potentially as a protective
means to buffer therapeutic stress.”

Importantly, inhibition of both the SUMO and the PI3K
pathways resulted in activation of the other pathway,
possibly as a mechanism to cope with various stresses,
creating a therapeutically exploitable vulnerability and
synthetic lethality. As shown previously, activation of
SUMOylation confers a selective advantage against various
stresses, contributing to cellular resilience against onco-
genic, hypoxic, therapeutic, or oxidative stress.”? Combined
PI3K and SUMO inhibition induced multimodal effects and
therapeutic synergism, with disruption of cell survival
signaling and an RCD pattern reflecting features of oxida-

target in PDAC, and a highly potent and specific clinical tive stress-associated cell death.

<
<

Figure 6. Enhanced efficacy of combined subasumstat and copanlisib treatment in immunocompetent mice. (A) Analysis of
mass spectrometry data from MiaPaCa-2 cells treated with subasumstat (200 nmol/L), copanlisib (1000 nmol/L), combina-
tion, or dimethyl sulfoxide as vehicle control (n = 3, each condition), reveals a significant induction of major histocompatibility
complex (MHC)-l-associated proteins expression upon combination treatment. B2M, 8, microglobulin; CALR, calreticulin;
HLA, human leukocyte antigen; TAP, transporter associated with antigen processing; TAPBP, TAP binding protein. (B) GSEA
(gene ontology [GOl/biological process) indicates up-regulated MHC-I and antigen processing and presentation upon
combination treatment in MiaPaCa-2. (C) Experimental setup to investigate the combination treatment in orthotopic PDAC
tumors (D-M). Mesenchymal 9091PPT cells were orthotopically transplanted. Mice were treated with vehicle, subasumstat,
copanlisib, or the combination with the indicated schedule. (D) Tumor burden was measured over time and shows signifi-
cantly decreased volume in response to combination therapy (n = 5 mice, each cohort). **P < .01 by analysis of variance
(ANOVA) with Tukey’s post hoc test; ns, not significant. (E) Quantification of indicated markers normalized to DNA (4,6-
diamidino-2-phenylindole) show significantly increased CD3" T-cell infiltration upon combination treatment, without signif-
icant change in CD4", CD8*' and programmed cell death protein 1 (PD1%) cells. Dark dashed lines inside the violin plot
indicate the median, light dashed lines indicate the interquartile range. P value determined by analysis of variance (ANOVA)
with Tukey’s post hoc test (bottom). (F) Representative images of histologic hematoxylin-eosin (HE) stains and immune
histochemical analysis for CD3 expression of tissue sections of tumors from orthotopically transplanted mice. Scale bars, 50
umol/L (right). CD3 quantification in 5 mice (n = 5 high-power fields each). P value determined by ANOVA with Tukey’s post
hoc test (left). (G) snRNAseq of tumors from orthotopically transplanted mice treated with vehicle, subasumstat, copanlisib, or
the combination. Uniform Manifold Approximation and Projection (UMAP) colored according to cell types (left). Visualization
of the cell density within each cohort (embedding density estimation). (H) UMAP colored according to T-cell phenotype (left).
Visualization of the cell density within each condition (embedding density estimation). (/) Mean expression of Xc/7 and //18r1 in
T-cell cluster per pseudobulk expression. P values are based on pseudobulk differential expression genes. (J) Representative
images of tissue sections of tumors from orthotopically transplanted mice upon treatment, labeled with 4/,6-diamidino-2-
phenylindole (DAPI), Ki67, CD8, or chemokine ligand 5 (CCLS5). Scale bars, 200 um-20 um (top). P value determined by
ANOVA with Tukey’s post hoc test (bottom). (K) UMAP colored according to macrophage phenotype (left). Visualization of the
cell density within each condition, using embedding density estimation. (L) M2 score (top) M1 score (bottom) expression in
the macrophage cluster upon no, monotreatment, or combination treatment. Left: UMAP plots for vehicle and combination
treatment. Center: M2/M1 scores of all treatment groups. Right: Individual M1/M2 scores of the mean of each tumor. Box and
whisker plot: The boxes indicate the 25th percentile (bottom border), median (center line), and 75th percentile (top border), the
whiskers show the maximum and minimum ranges, and the circles indicate outliers. (M) Representative image of tissue
sections of tumors from orthotopically transplanted mice upon treatment, labeled with DAPI and CD68, Scale bars, 200 um-
20 um (top). Bottom: Quantification of CCL5 in CD68™ cells. ROI, region of interest. P value determined by ANOVA with
Tukey’s post hoc test.
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Despite the withdrawal of approval for the PI3Ka/
o-inhibitor copanlisib for relapsed indolent non-Hodgkin
lymphoma after the Study of Copanlisib in Combination
With Standard Immunochemotherapy in Relapsed Indo-
lent Non-Hodgkin’s Lymphoma (iNHL) (CHRONOS-4)
phase 3 trial,”® copanlisib demonstrated some clinical
activity in PIK3CA-mutated cancer in the National Cancer
Institute Molecular Analysis for Therapy Choice (NCI-
'MATCH) Eastern Cooperative Oncology Group-American
College of Radiology Imaging Network trial with a
manageable toxicity profile,”* pointing to the clinical
potential of PI3Ka/é inhibitors when applied as a
principle.

PI3Ka/0i-SUMOi  combination therapy enhanced
recruitment of CD3™ T cells in vivo in immunocompetent
mice. After combination therapy, our snRNAseq analysis
revealed robust expression of both CD4 and CD8 tran-
scripts in tumor-infiltrating T cells, despite the absence of
corresponding protein expression in some cases. This
discrepancy suggests that the negative phenotype seen in
cyclF and immune histochemical analysis may stem from
transcriptionally active but protein-low or protein-
suppressed cells, rather than representing a true expan-
sion of double-negative T cells (DNTs). Although PI3K«a/di-
SUMOi-induced DNTs were associated with antitumor ef-
fects and changes in the TME in our in vivo model, other
DNTs can promote cancer progression through immuno-
suppressive actions that support tumor growth and evade
immune responses.”” The anticancer properties of the
DNTs could be induced by induction of immunogenic cell
death,’® and we show that RCD is activated in response to
PI3Ka/6i-SUMOi combination therapy in in vitro studies.
SUMO inhibition in vivo activated various immune cell
subsets and reprogrammed the tumor immune microenvi-
ronment to induce an antitumor adaptive response.”‘57 We
here found that PI3Ka/6i-SUMOi combination treatment
was specifically associated with a molecular switch from
protumorigenic M2-like macrophages to antitumorigenic
antigen-presenting macrophages. Together our data thus
indicate a multimodal reprograming of the TME toward a
less tumor-permissive state upon PI3Ka/6i-SUMOi combi-
nation treatment. Furthermore, SUMOi generated an up-
regulation of major histocompatibility complex I
expression.37

These established immune-modulatory effects of SUMO
pathway inhibition might thus be amplified and beneficial
when targeting PDAC with more effective rationale,
molecularly targeted strategies such as combined PI3Ka/6-
SUMO inhibition. This mode of action of subasumstat also
favors the combination with PI3Kis, given their broad
impact on both intrinsic tumor survival pathways and the
immune landscape.®”® PI3Ka/6i has been shown to
modulate immune suppression within the TME, which may
enhance the efficacy of immunotherapy-based ap-
proaches®® that have been insufficiently effective in
PDAC.?" In this context, it is important that subasumstat
generated a feed-forward loop by simultaneous activation
of cytotoxic T cells and induction of the antigen-presenting
machinery in PDAC and other tumor entities."”*’

Gastroenterology Vol. m, Iss. m

Conclusion

In summary, we here reveal the mutual codependency
between the SUMOylation machinery and the PI3K pathway
that warrants further development toward clinical appli-
cation. In addition to synthetic lethal effects induced on
tumor cells, the PI3Ka/di-SUMOi combination therapy
induced affected immune cell subsets and resulted in the
complex reprogramming of the TME to an antitumorigenic
state in vivo. Our findings could serve as a novel path to-
ward already available but heretofore unsuccessful immu-
notherapy strategies for PDAC.

Supplementary Material

Note: To access the supplementary material accompanying
this article, visit the online version of Gastroenterology at
www.gastrojournal.org, and at https://doi.org/10.1053/
j.gastro.2025.08.018.
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