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Abstract
Background  Critical illness myopathy (CIM) increases mortality and causes long-term disabilities. CIM is characterized 
by reduced muscle excitability, muscle atrophy, weakness, and impaired glucose metabolism. Functional circadian 
rhythms are important for skeletal muscle homeostasis. Circadian rhythms are often disrupted during critical illness in 
the Intensive Care Unit (ICU). This analysis investigates whether diurnal temperature rhythms differ in critically ill CIM 
compared to no-CIM patients.

Methods  This is a secondary analysis of two prospective trials including critically ill patients with CIM (n = 32) or 
no-CIM (n = 30) based on electrophysiological tests. Diurnal body temperature rhythms were compared between CIM 
and no-CIM groups in reference to n = 16 participants included in a bed rest study. Cosinor analysis was performed to 
determine the rhythm parameters and classify into rhythm classes. Aggregated and longitudinal data were compared 
between groups using non-parametric tests. Rhythm parameters were correlated with muscle atrophy, weakness and 
insulin sensitivity.

Results  CIM and no-CIM patients had severe multiorgan failure (median SOFA score 12 in both groups, p = 0.39). 
The temperature rhythm nadir timepoint was shifted in CIM patients (10:43 [09:21, 12:22]) and no-CIM (11:12 [09:43, 
13:30]) compared to the healthy bed rest group (5:03 [3:22, 6:36]) p < 0.001. CIM patients showed lower temperature 
rhythm mesors than no-CIM patients (p = 0.041). The temperature rhythm amplitude was lower in both CIM and 
no-CIM patients compared to the healthy bed rest group (CIM: 0.3 °C [0.2, 0.4]; no-CIM: 0.2 °C [0.2, 0.3]; healthy bed 
rest: 0.5 °C [0.2, 0.6]; p < 0.01). Compared to no-CIM patients, CIM patients had higher temperature rhythm amplitudes 
(p = 0.021) and showed a less pronounced reduction in temperature rhythm amplitudes during ICU stay (p = 0.017). A 
higher temperature rhythm amplitude correlated negatively with M. vastus lateralis myocyte cross-sectional area.

Conclusions  Heterogeneous phase shifts of diurnal temperature rhythms in CIM and no-CIM groups compared 
to healthy bed rest volunteers may indicate ICU-related circadian disruption. Suppression of temperature rhythm 
amplitude during ICU stay could represent an adaptive response to this disruption. Blunted amplitude suppression 
observed in CIM compared to no-CIM patients might reflect reduced adaptation, potentially contributing to muscle 

Distinct diurnal temperature rhythm patterns 
in critical illness myopathy: secondary analysis 
of two prospective trials
D. Mewes1,2, S. Weber-Carstens1, K. Rubarth3, S. D. Boie4, C. Spies1, A. Kramer5, J. Fielitz6,7, T. Wollersheim1, 
B. Ananthasubramaniam8, F. Braune1, L. Hancke1,9, L. Spies4,10,11, F. Balzer4 and L. J. Engelhardt1,12*

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1186/s13613-025-01582-5
http://orcid.org/0000-0002-2312-1142
http://crossmark.crossref.org/dialog/?doi=10.1186/s13613-025-01582-5&domain=pdf&date_stamp=2025-10-23


Page 2 of 15Mewes et al. Annals of Intensive Care          (2025) 15:171 

Introduction
Critically ill patients are susceptible to developing critical 
illness myopathy (CIM). CIM is characterized by reduced 
muscle membrane excitability, skeletal muscle atrophy, 
symmetric weakness, and loss of muscle function [1]. 
This devastating complication contributes to mortality 
and to long-term physical disability in the post-intensive 
care syndrome in survivors [1]. Critically ill patients also 
tend to have a circadian rhythm disruption due to their 
severe illness and the ICU environment, where light 
exposure, nutrition, and noise do not follow the typical 
day-night rhythm [2–5].

Diurnal body temperature is a widely used biomarker 
of circadian regulation [6, 7] that is routinely assessed 
and is feasible in critical illness [8]. Moreover, body tem-
perature is of interest due to its bidirectional interaction 
with the skeletal muscle. Muscle function varies accord-
ing to the time of day [9]. Exercise performance is typi-
cally better in the early evening, which correlates with 
the physiological body temperature peak [10]. In addi-
tion, muscle activity itself is a powerful synchronizer that 
helps restore diurnal temperature rhythms [11].

Functional circadian rhythms are important for skel-
etal muscle homeostasis [12–14]. In skeletal muscle, the 
molecular clock controls the expression of genes involved 
in the regulation of muscle mass and metabolism [12–
15]. Disruption of the skeletal muscle clock causes mus-
cle atrophy and impaired glucose metabolism [12, 16].

The phenotype of CIM shows striking similarities, 
including muscle atrophy, weakness, and impaired glu-
cose metabolism [17]. Whether specific alterations in the 
diurnal temperature rhythm are associated with CIM has 

not been investigated. Addressing this knowledge gap, 
this analysis aims to compare diurnal body temperature 
rhythms between no-CIM and CIM patients from two 
prospective ICU trials [18, 19] in reference to healthy vol-
unteers included in a bed rest study [20]. We hypothesize 
that CIM patients present with distinct diurnal tempera-
ture rhythm characteristics that differ from non-CIM 
critically ill patients and healthy controls.

Results
This analysis included n = 32 CIM, n = 30 no-CIM 
patients, and n = 16 healthy bed rest volunteers. Baseline 
characteristics, clinical, histological and metabolic data 
in the CIM and no-CIM groups are shown in Table 1.

For the Cosinor analysis, 1  day was available per 
healthy bed rest volunteer, while 24  days [17; 31] per 
CIM patient, and 20  days [16; 27] per no-CIM patient 
were investigated. The R2 model fit was 0.88 [0.60; 0.95] 
in the healthy bed rest group, and 0.51 [0.41; 0.58] in the 
CIM compared to 0.50 [0.43; 0.57] in the no-CIM groups 
(p = 0.67).

Cosinor analysis and temperature rhythm classification 
for exemplary ICU days are illustrated for the healthy 
bed rest group (Fig.  1a), and for the CIM (Fig.  1b) and 
no-CIM (Fig.  1c) groups (and in Fig.S1, Supplementary 
Material 1). The temperature rhythms in the majority of 
critically ill patients were classified into either a ‘lower 
amplitude’, or ‘phase-shifted’ category compared to 
healthy bed rest volunteers on all days of interest. Indi-
vidual original temperature data and Cosinor overlays are 
shown in the Supplementary Material 2. 

catabolism. This hypothesis-generating analysis underlines the need for mechanistic studies exploring circadian 
regulation in skeletal muscle during critical illness.
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Temperature rhythm phases were shifted in CIM and 
no-CIM patients compared to healthy bed rest volunteers.
Healthy bed rest volunteers represented with the temper-
ature rhythm nadir at 05:03 [03:22, 06:36], and the peak 
at 17:04 [15:23, 19:35], showing the physiological diurnal 
temperature rhythm (Fig.  1a) [20, 22, 23]. The circular 
Rayleigh plot illustrated a high interindividual variability 
in temperature rhythm nadir timing in CIM and no-CIM 
groups, without a consistent phase direction (Fig.  2). 
Compared to healthy bed rest volunteers, CIM and no-
CIM patients had phase-shifted temperature rhythms 
(p < 0.01), with the aggregated median nadir at 10:43 
[09:21, 12:22] in the CIM vs. at 11:12 [09:43, 13:30] in the 
no-CIM group (Fig. 3a) (p = 0.20).

In the longitudinal analysis across ICU time periods, 
temperature rhythm nadir time remained highly variable 
in both groups: no differences between CIM and no-CIM 
patients (group effect: p = 0.721), no significant changes 
over time within groups (time effect: p = 0.243), and no 
interaction between group and time (interaction effect: 
p = 0.837) were observed (Fig. 3b, c).

Temperature rhythm mesors were higher in both CIM and 
no-CIM patients compared to healthy bead rest volunteers, 
but lower in CIM than in no-CIM patients.
 The healthy bed rest group had a mesor of 36.8 °C [36.7; 
37.1] (Fig.  4a). The aggregated temperature mesors in 
CIM patients was 37.2 °C [37.1; 37.4] vs. no-CIM patients 
37.4 °C [37.2; 37.7] (p = 0.041; Fig. 4a). In the longitudinal 

analysis across ICU time periods, there was no significant 
difference in mesor between CIM and no-CIM patients 
(group effect, p = 0.700), no significant change over time 
(time effect, p = 0.181), and no significant interaction 
between group and time (interaction effect p = 0.383) 
(Fig. 4b, c). The linear regression model for temperature 
rhythm mesor adjusted for CIM, age, sex and fever (Table 
S1, Supplementary Material 1) explained 48% of the vari-
ance in mesor values (adjusted R2 = 0.47). In the model, 
CIM had the strongest negative (β = –0.10, 95% CI [–0.15; 
–0.05], p < 0.01) and fever (β = 0.92, 95% CI [0.87; 0.96], 
p < 0.01) the strongest positive effects on mesor values. 
Age and sex had no significant effects on mesor in the 
model.

Temperature rhythm amplitude was lower in both CIM and 
no-CIM patients than in healthy bed rest volunteers, but 
the amplitude reduction over time was less marked in CIM 
compared to no-CIM groups.
In the healthy bed rest group, the temperature rhythm 
amplitude was 0.5  °C [0.2; 0.6], whereas it was lower 
for both CIM and no-CIM patients when amplitude 
was aggregated for all ICU days (Fig.  5a). CIM patients 
showed higher temperature rhythm amplitudes com-
pared to no-CIM patients in the aggregated analy-
sis (p = 0.021, Fig.  5a). The longitudinal analysis across 
ICU stay showed that temperature rhythm amplitudes 
decreased in the no-CIM and CIM groups (time effect: 
p < 0.01, Fig.  5b, c). The interaction between group and 
time showed a less pronounced reduction in temperature 
rhythm amplitude over time in CIM patients compared 
to no-CIM patients (p < 0.017; Fig. 5b, c).

Interindividual variability of temperature rhythm 
amplitude was higher in CIM compared to no-CIM 
patients during the last ICU days (p = 0.002), indicat-
ing greater heterogeneity in diurnal temperature rhythm 
amplitude. Variability analyses for additional rhythm 
parameters across ICU time periods are provided in 
Table S3, Supplementary Material 1.

The linear regression model for temperature rhythm 
amplitude adjusted for CIM, age, sex and fever is shown 
in Table S2, Supplementary Material 1. CIM (β = 0.07, 
95% CI [0.04; 0.10], p < 0.01) and fever (β = 0.14, 95% 
CI [0.11; 0.16], p < 0.01) were significantly associated 
with higher temperature rhythm amplitude, while age 
(β = -0.001, 95% CI [−0.002; 0.00], p = 0.02) was associated 
with a significantly lower temperature rhythm amplitude 
in the model. Sex had no effect on temperature rhythm 
amplitude in this model. The model explained 8% of the 
variance in temperature rhythm amplitude (adjusted 
R2 = 0.08).

Table 1  Baseline characteristics
CIM n = 32 No-CIM 

n = 30
p-value

Age [years] 64 [45; 71] 46 [40; 62] p = 0.025
Male [n, %] 22 [69] 18 [60] p = 0.65
Female [n, %] 10 [31] 12 [40]
BMI [kg/m2] 27 [23; 31] 27 [24; 30] p = 0.77
SOFA 12 [11; 14] 12 [9; 14] p = 0.39
APACHE 23 [18; 29] 21 [16; 25] p = 0.21
SAPS2 50 [38; 63] 49 [40; 58] p = 0.56
Days with temperature ≥ 38 °C 
[n]

15 [7; 19] 14 [5; 15] p = 0.27

Days until first awakening [n] 12 [9; 17] 11 [8; 19] p = 0.42
MRC at first awakening 3.0 [2.8; 3.4] 3.8 [2.9; 4.1] p = 0.10
MRC at discharge 3.8 [3.0; 4.1] 4.0 [3.4; 4.4] p = 0.22
Day of M.vastus lateralis biopsy 18 [16; 21] 15 [14; 20] p = 0.12
MCSA type I fibers [µm2] 3150 [2420; 

3790]
3850 [2600; 
4950]

p = 0.14

MCSA type IIa fibers [µm2] 2410 [1230; 
3850]

3510 [2320; 
4770]

p = 0.049

MCSA type IIb fibers [µm2] 2190 [1080; 
2790]

3100 [2130; 
3630]

p = 0.06

Insulin sensitivity index [(mg/
min/kg)/mU/L)]

0.025 [0.019; 
0.036]

0.030 [0.025; 
0.044]

p = 0.24

Day of hyperinsulinemic-eugly-
cemic clamp

19 [17; 22] 17 [14; 20] p = 0.12
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Fig. 1  Diurnal temperature rhythms – Cosinor analysis. Diurnal temperature rhythms in CIM and no-CIM patients were classified in comparison to the 
healthy bed rest group: blue lines show comparable temperature rhythms; red flat dotted lines indicate lower temperature rhythm amplitudes; green 
lines indicate phase-shifted temperature rhythm nadirs with maintained amplitudes. a Healthy bed rest volunteers showed the physiological diurnal tem-
perature rhythm, n = 16, raw data publicly available [20]. b CIM patients presented with phase-shifted, relatively higher-amplitude temperature rhythms 
than no-CIM patients; example shown for the day before discharge. CIM patients (n = 16) were more likely to be classified as having a phase shift com-
pared to no-CIM patients (n = 16) on the day before ICU discharge (p = 0.01; Chi-square test). c In no-CIM patients, lower temperature rhythm amplitudes 
predominated on the day before ICU discharge. Data were presented at ESICM Lives [54]. CIM Critical Illness Myopathy

 



Page 5 of 15Mewes et al. Annals of Intensive Care          (2025) 15:171 

A higher temperature rhythm amplitude correlated with 
MCSA of M. vastus lateralis myofibers in critical illness.
In critically ill patients who received skeletal muscle 
biopsy, temperature rhythm amplitude correlated nega-
tively with MCSA of type I, IIa and IIb myofibers, but not 
with clinical muscle strength or metabolic study data on 
the day before ICU discharge (Fig. 6a, b).

24-h temperature rhythm periods were observable and 
became more pronounced towards ICU discharge in CIM 
and no-CIM patients.
Continuous wavelet transformation revealed that 24-h 
temperature rhythm components were detectable in both 
CIM and no-CIM patients (Fig. 7). Temperature rhythm 
period varied as a function of time in the ICU in both, the 
CIM and no-CIM groups. Early during ICU stay, the peri-
odic signal appeared more diffuse (Fig.S2, Supplementary 

Fig. 2  Rayleigh plot a ICU day 5 b ICU Day 10 c Last 5 ICU days with available temperature data: High variability in the timing of the temperature rhythm 
nadir was observed in both CIM and no-CIM groups, without a consistent phase direction. Each arrow represents the temperature rhythm nadir of an 
individual patient; the bold vector indicates the group average
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Material 1), while over time, a strengthening of the 24-h 
period was observed in the wavelet power spectrum in 
both groups (Fig.  7). Most importantly, visual group-
level comparison of the wavelet-derived amplitude over 
time revealed the same pattern as observed in the cosinor 

Fig. 4  Temperature rhythm mesor. a Aggregated median mesor during 
ICU stay: healthy bed rest 36.8 °C [36.7; 37.1]; CIM 37.2 °C [37.1; 37.4]; no-
CIM 37.4  °C [37.2; 37.7] (p = 0.041). b Longitudinal trend of mesor at ICU 
day 5, ICU day 10, and the last 5 ICU days with available data: no difference 
between CIM and no-CIM (group effect: p = 0.700); no significant change 
over time within groups (time effect: p = 0.181). c Relative effects indicated 
no interaction between group and time (interaction effect: p = 0.383). 
Brunner–Munzel analysis. CIM Critical Illness Myopathy

 

Fig. 3  Time of temperature rhythm nadir (minimum phase). a Aggregated 
median time of nadir during ICU stay: healthy bed rest 05:03 [03:22, 06:36]; 
CIM 10:43 [09:21, 12:22]; no-CIM 11:12 [09:43, 13:30]. b Longitudinal trend 
of temperature rhythm nadir at ICU day 5, ICU day 10, and the last 5 ICU 
days with available data: no differences between CIM and no-CIM patients 
(group effect: p = 0.721); no significant change over time within groups 
(time effect: p = 0.243). c Relative effects demonstrated no interaction 
between group and time (interaction effect: p = 0.837). Brunner–Munzel 
analysis. CIM Critical Illness Myopathy
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results: patients with CIM showed higher amplitudes 
than no-CIM patients during ICU stay (Fig.S3, Supple-
mentary Material 1).

Discussion
The diurnal body temperature rhythm is an evolution-
arily conserved output of circadian regulation [7]. The 
temperature rhythm amplitude is precisely regulated by 
minor temporal imbalances between metabolic heat gen-
eration and thermoregulatory heat loss [7]. This requires 
the interplay between central circadian pacemaker and 
thermoregulatory peripheral tissues and organs, such as 
skeletal muscle for metabolic heat generation, or the skin 
for heat loss [7, 24, 25].

In this study, we identified phase shifts, lower ampli-
tudes, and higher mesors of diurnal temperature rhythms 
in both CIM and no-CIM patients compared to healthy 
bed rest volunteers. While temperature rhythm ampli-
tude declined during ICU stay in both groups of critically 
ill patients, the amplitude reduction was less pronounced 
in CIM patients, resulting in relatively higher tempera-
ture rhythm amplitudes than in no-CIM patients. This 
was accompanied by relatively lower temperature rhythm 
mesor values in the CIM compared to the no-CIM group. 
In both CIM and no-CIM groups, 24-h rhythm periods 
were detectable and became more pronounced towards 
ICU discharge.

Heterogeneous phase shifts in diurnal temperature 
rhythms in the CIM and no-CIM groups, compared to 
healthy controls, may reflect conflicting ICU time cues.
 Consistent with our findings, phase-shifted body tem-
perature rhythms have previously been reported in criti-
cally ill patients [26–28]. This may reflect disruption of 
circadian and thermoregulatory control through com-
bined effects of inflammation, medication, and loss of 
external time cues (e.g., room lighting, nutrition timing, 
mobilization). Similarly, circadian disruption during crit-
ical illness has been demonstrated at the molecular level 
in immune cells [2]. 

Given the systemic nature of circadian regulation, the 
disrupted temperature rhythm may also reflect circadian 
dysregulation within skeletal muscle. However, direct 
correlation between temperature rhythm disruption and 
muscular clock gene dysregulation in skeletal muscle tis-
sue would require 24-h time series biopsies, which are 
not feasible in critically ill patients. 

Importantly, we identified a distinct temperature 
rhythm pattern associated with CIM. Temperature 
rhythm amplitude declined during ICU stay in CIM and 
no-CIM groups, but relatively less amplitude suppression 
was observed in CIM. 

Fig. 5   Temperature rhythm amplitude. a Aggregated median amplitude 
during ICU stay: healthy bed rest 0.5 °C [0.2; 0.6]; CIM 0.3 °C [0.2; 0.4]; no-
CIM 0.2 °C [0.2; 0.3]; (p = 0.021). b Longitudinal trend of amplitude at ICU 
day 5, ICU day 10, and the last 5 ICU days with available data: CIM vs. no-
CIM (group effect: p = 0.124); both groups significantly reduced the ampli-
tude during ICU stay (time effect: p < 0.01). c Relative effects emphasized 
a more pronounced amplitude reduction in no-CIM vs. CIM patients over 
time (interaction effect: p = 0.017). Brunner–Munzel analysis. CIM Critical 
Illness Myopathy 
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Suppression of temperature rhythm amplitude during ICU 
stay could represent an adaptive response to ICU-related 
circadian disruption.
 Interestingly, no-CIM patients showed a more pro-
nounced reduction in temperature rhythm amplitude 
during ICU stay, possibly reflecting an adaptive response 
to immobilization and conflicting time cues in the ICU. 
Temperature rhythm amplitude reductions have been 
similarly observed in healthy individuals during immo-
bilization [29], induced phase shifts [30], and shift work 
[31]. Thus, no-CIM patients appeared to regulate tem-
perature rhythms comparably to healthy individuals, 
whereas CIM patients did not. Blunted amplitude sup-
pression observed in CIM compared to no-CIM patients 
may indicate reduced adaptation, potentially linked to 
skeletal muscle catabolism.

Relatively higher temperature rhythm amplitude in 
critically ill patients was linked to CIM and skeletal muscle 
atrophy.
Higher temperature rhythm amplitudes in critical ill-
ness, as observed in CIM compared to no-CIM patients, 
have been suggested as a marker of excessive circadian 
activation [25]. In previous studies, higher temperature 
rhythm amplitudes were associated with worse survival 
in critical illness, particularly sepsis [26, 32]. Body tem-
perature, metabolism and inflammation are all circadian 
regulated and interact closely [7, 25]. In healthy indi-
viduals, temperature rhythm amplitude correlated with 
robust metabolite rhythms in plasma [33]. We hypoth-
esize that in critical illness with circadian disruption, the 
relatively higher temperature rhythm amplitude observed 
in CIM compared to no-CIM patients reflects maladap-
tive circadian and metabolic activation. We propose 

Fig. 6  Spearman correlations. a Temperature rhythm parameters on the day before ICU discharge and MCSA, clinical muscle strength and insulin sensitiv-
ity. Temperature rhythm amplitude correlated with muscle atrophy metrics, but not with MRC or insulin sensitivity. b Temperature rhythm amplitude on 
the day before ICU discharge correlated negatively with myocyte cross-sectional area of myofibers type 1, IIa and IIb. Data were presented at ESICM Lives 
2024 [54], Medical Research Council (MRC) Score, myocyte cross-sectional area (MCSA), Critical Illness Myopathy (CIM)
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that temperature rhythms with phase-shifts and blunted 
amplitude suppression in CIM compared to no-CIM 
patients may indicate maladaptive diurnal temperature 
regulation associated with skeletal muscle catabolism. 
Whether this maladaptation causally contributes to mus-
cle catabolism remains to be clarified. 

Mice with skeletal muscle Bmal1 overexpression devel-
oped insulin resistance under sleep deprivation, indicat-
ing impaired metabolic adaptability to homeostatic stress 
[34]. In CIM patients, we also observed insulin resistance 
[17], possibly related to common ICU associated sleep 
disruption. Moreover, in rats with systemic inflamma-
tion, external circadian disruption through constant light 
exposure was associated with increased muscle atrophy 
compared to a standard 12-h light–12-h dark cycle [35]. 

In this analysis, a higher body temperature rhythm 
amplitude correlated also with a smaller MCSA in M. 
vastus lateralis myofibers, further supporting our result 
on a histological level. The negative correlation between 
temperature rhythm amplitude and MCSA was particu-
larly pronounced in type IIb myofibers. These fibers are 
known to be preferentially affected by circadian disrup-
tion in mice [12]. In CIM, type II myofibers are also pri-
marily affected [36]. Type IIb myofibers more likely rely 
on glycolytic metabolism and are vulnerable to metabolic 
stress, as well as to circadian disruption [12, 18, 36]. In 
chronic inflammatory atrophic conditions, circadian 
disruption and a more pronounced type IIb myofiber 

atrophy have been reported [37–39]. The link between 
temperature rhythm and skeletal muscle clock rhythm 
disruption remains hypothetical, as time-series biopsies 
were not performed. This is currently being explored in a 
complementary molecular animal study.

Confounders and limitations
Body temperature rhythms reflect diurnal regulation. 
However, body temperature and its rhythm in the ICU 
are influenced by various factors, such as age, sex, inflam-
mation, organ support systems, artificial temperature 
control, medications, nutrition, or fluid status. Moreover, 
the observed higher interindividual variability in temper-
ature rhythm amplitude observed in CIM patients during 
late ICU stay may reflect diverging recovery trajectories.

A potential concern is that fitting a fixed 24-h period 
Cosinor model to a non-24-h rhythm may introduce 
bias. However, our wavelet analysis demonstrated the 
presence of underlying ~ 24-h oscillatory components in 
both CIM and no-CIM groups, which became more pro-
nounced towards ICU discharge, the time point at which 
group differences in temperature rhythm amplitude were 
particularly relevant. In addition, wavelet-derived ampli-
tude patterns over the ICU stay closely mirrored those 
identified by Cosinor analysis. The consistency between 
both methods supports the use of fixed 24-h Cosinor 
modeling in this setting.

Fig. 7  Wavelet spectogram. Bright yellow regions indicate average relative power at each time point for the temperature rhythm period. A ~ 24-h oscilla-
tory component and a low-frequency drift can be observed in the spectrograms in a CIM and b no-CIM patients. Towards ICU discharge, a strengthening 
of the 24-h period is observed in the wavelet power spectrum in both groups. Visual group-level comparison does not suggest a relevant difference 
between groups
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Higher age was associated with CIM and with smaller 
MCSA of type I, IIa, and IIb myofibers. Since CIM 
patients were older, age was considered a potential con-
founder of the observed association between CIM and 
higher temperature rhythm amplitude. However, in our 
multivariable linear regression model adjusting for CIM, 
age, sex, and fever, age was independently associated 
with a lower temperature rhythm amplitude, while CIM 
remained significantly associated with a higher tempera-
ture rhythm amplitude. This indicates that age does not 
explain the increased temperature rhythm amplitude in 
CIM. Temperature rhythm amplitude reduction in ageing 
has been described before [40].

As expected, fever was associated with a higher tem-
perature rhythm mesor and amplitude. However, CIM 
remained independently associated with a lower tem-
perature rhythm mesor and a higher amplitude in the 
adjusted model. This suggests that temperature rhythm 
alterations in CIM cannot be explained by fever alone. 
The model explained only a small proportion of the vari-
ance in temperature rhythm amplitude, indicating that 
additional factors may contribute. High temperature 
rhythm amplitudes [41] and greater temperature changes 
in a 24-h period were associated with sepsis development 
even in afebrile ICU patients [42]. Therefore, our findings 
may reflect more severe sepsis in CIM patients. How-
ever, both groups were severely ill and the sepsis severity 
based on the SOFA score was similar between CIM and 
no-CIM groups. Still, systemic inflammation likely plays 
a key role for circadian rhythm disruption and for skel-
etal muscle wasting in critical illness [39]. 

The data are limited by the small sample size, which did 
not allow for adjustments of all confounders. The retro-
spective study design and the ICU setting limit the gener-
alizability of this hypothesis-generating analysis. The bed 
rest group is a reference for physiological temperature 
rhythms under immobilization [20] but does not repli-
cate the conditions of critical illness.

Conclusions
Heterogeneous phase shifts of diurnal temperature 
rhythms in CIM and no-CIM groups compared to 
healthy bed rest volunteers may indicate ICU-related cir-
cadian disruption. Suppression of temperature rhythm 
amplitude during ICU stay could represent an adaptive 
response to this disruption. Blunted amplitude suppres-
sion observed in CIM compared to no-CIM patients 
might reflect reduced adaptation, potentially linked to 
muscle catabolism. This hypothesis-generating analysis 
underlines the need for mechanistic studies exploring 
circadian regulation in skeletal muscle during critical 
illness.

Methods
Aims
Aim of this analysis was to compare diurnal body tem-
perature rhythms between CIM and no-CIM patients 
from two prospective ICU trials [18, 19] in reference to 
n = 16 participants included in a bed rest study [20]. Criti-
cally ill patients were classified CIM (n= 32) or no-CIM 
(n = 30) based on electrophysiological tests in the prior 
studies [18, 19]. Further aims were to test correlations 
between temperature rhythm parameters and baseline 
characteristics, histological muscle atrophy metrics in 
the form of MCSA values of type I, IIa, and IIb myofibers 
from M. vastus lateralis biopsies, clinical muscle strength 
quantified by the Medical Research Council (MRC) 
strength scale, and metabolic insulin sensitivity index 
determined by hyperinsulinemic-euglycemic clamp. The 
detailed study protocols are described in previous publi-
cations [18, 19, 21, 36].

Study design and setting
This is a secondary data analysis of two prospective clini-
cal trials (ISRCTN77569430 and ISRCTN19392591) 
which focused on CIM and skeletal muscle metabo-
lism and mobilization in critical illness [18, 19]. The tri-
als included mechanically ventilated adult patients with 
a Sequential Organ Failure Assessment (SOFA) Score 
of ≥ 8 [18, 19]. Patients or legal proxies provided written 
informed consent prior to their inclusion to the study. 
The Charité Ethics Committee approved the clinical tri-
als (EA2/061/06, EA2/041/10) and this secondary data 
analysis (EA1/284/22 January 2023, amended 01 August 
2024). The trials were conducted at two tertiary care 
ICUs at Charité–Universitätsmedizin Berlin.

External time cues were not aligned with physiologi-
cal rhythms in the ICU setting. If artificial nutrition was 
indicated, enteral 24-h continuous nutrition was the 
clinical standard during the study period. Patients were 
treated in standard ICU rooms, featuring northeast- or 
southeast-facing windows of approximately 11 m2 [43].

Conventional lighting in our ICU rooms  achieved a 
circadian effective irradiance (a measure based on the 
action spectrum for melatonin suppression) between 
0.29 and 0.5 W/m2, as indicated by spectroradiomet-
ric measurements [43–45]. While low illuminance lev-
els influence melatonin secretion in healthy individuals 
under controlled conditions [44, 45], thresholds in criti-
cal illness remain unclear. ICU patients frequently show 
altered melatonin physiology and disrupted rhythms [46, 
47]. Even exposure to complete darkness (< 1 lx) or bright 
light (> 10,000 lx) did not result in a consistent melatonin 
response in critically ill patients [47].

Mobilization methods evolved over time, ranging 
from standard physiotherapy to protocol-based phys-
iotherapy, and to protocol-based plus advanced muscle 
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activation measures, as outlined in the study protocols 
[17, 19, 36]. Physiotherapeutic measures were typically 
performed during the early shift in the ICU, specific time 
points were not documented. Still, patients were mainly 
immobilized.

We refer to temperature rhythms as diurnal rather than 
circadian, since temperature measurements were per-
formed under standard ICU conditions without experi-
mental control of masking factors such as light, nutrition, 
or mobility.

Groups
Critically ill patients who received electrophysiologi-
cal CIM diagnostics were selected from both prospec-
tive clinical trials and were grouped based on whether 
they developed CIM or not. CIM was diagnosed through 
direct muscle stimulation compound muscle action 
potential (dmCMAP) in both trials [18]. The CIM group 
was characterized by the dmCMAP < 3 mV, while patients 
with dmCMAP > 3 mV were classified as no-CIM [48]. To 
complement the electrophysiological diagnosis of CIM, 
additional metrics were reported for the CIM and no-
CIM groups. These metrics included histological muscle 
atrophy measurements, represented by MCSA values 
of type I, IIa, and IIb myofibers from M. vastus latera-
lis biopsies; clinical muscle strength, assessed using the 
Medical Research Council (MRC) strength scale; and 
metabolic insulin sensitivity index, determined via a 
hyperinsulinemic-euglycemic clamp.

As a reference, we used publicly available temperature 
data from male volunteers (mean age 31 years) that par-
ticipated in a study that investigated the effects of head-
down tilt (− 6°) bed rest, a commonly used space-flight 
analogue, with and without exercise on diurnal body 
temperature rhythms [20].

Diurnal temperature rhythm analysis
In ICU patient care, temperature was continuously mea-
sured using a thermometer attached to the urinary blad-
der catheter. Measurements were stored electronically 
every 30 min and data from the whole ICU stay were con-
sidered for analysis. Urinary bladder temperature mea-
surements have a high accuracy in critically ill patients, 
when compared to the gold standard of pulmonary artery 
temperature measurements and are less invasive [49]. For 
the healthy bed rest group, continuously reported 24-h 
rectal temperature after one week of bed rest were used. 
Temperature data of ICU and healthy bed rest groups 
were preprocessed (Tables S4 and S6, Supplementary 
Material 1). An overview of excluded temperature values 
is provided in Table S4, Supplementary Material 1.

Cosinor analysis was performed based on the pre-pro-
cessed temperature data. Therefore, single-component 
cosinor models were fitted per patient and day using 

the CosinorPy library (v2.1) [50]. We used a 1-compo-
nent Cosinor model as the primary approach due to 
its clinical interpretability. For transparency, a 2-com-
ponent Cosinor analysis was additionally performed. 
Details are provided in Table S5, Supplementary Material 
1. The period was set to 24  h. The temperature rhythm 
parameters (endpoints) time-of-day of temperature nadir 
(reflecting the minimum phase), amplitude and mesor 
were the outputs of the cosinor analysis, and the R2 indi-
cated the goodness of fit (Fig. 8). The temperature nadir 
time (minimum phase) was estimated for all fits, includ-
ing those with suppressed amplitudes.

Rhythm classification was determined for ICU day 5, 
ICU day 10, and the day before ICU discharge using the 
compareRhythms R library [51], which took temperature 
as an input and performed a cosinor-based classification 
in comparison to the healthy bed rest group. Compar-
eRhythms by default classified the diurnal temperature 
rhythms of CIM or no-CIM patients into three catego-
ries for each investigated ICU day relative to healthy bed 
rest volunteers: ‘lower amplitude’ (CompareRhythms cat-
egory: loss), ‘phase-shifted’ (CompareRhythms category: 
change), and ‘comparable rhythm’  (CompareRhythms 
category: same) [51]. Rhythms were considered present 
when the adjusted p-value of the Cosinor fit was < 0.05 
and the amplitude exceeded a predefined threshold. To 
define this amplitude cut-off, we calculated the average 
max–min difference in the raw temperature profiles of 
healthy bed rest individuals, which was 1.10  °C. Half of 
this value, 0.55  °C, was used as the biological amplitude 
cut-off (the default cut-off in this context).

Phase-shifted temperature rhythm compared with 
healthy bed rest individuals (CompareRhythms cate-
gory: change): The modeled diurnal temperature rhythm 

Fig.  8  Cosinor analysis and rhythm parameters of an ICU patient with 
physiological temperature rhythm. The blue dots represent the measured 
body temperature, the blue line indicates the fitted cosinor model with 
confidence intervals. The nadir is observed in the early morning hours, 
while the peak is observed in the late afternoon
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of the investigated CIM or no-CIM patient showed a 
p-value < 0.05 and an amplitude > 0.55 °C, but differed in 
one or more Cosinor rhythm parameters compared to 
the healthy bed rest group.

Lower temperature rhythm amplitude compared with 
healthy bed rest individuals (CompareRhythms category: 
loss): The modeled diurnal temperature rhythm of the 
investigated CIM or no-CIM patient had either ampli-
tude ≤ 0.55 °C and/or an adjusted p-value ≥ 0.05.

Comparable temperature rhythm in comparison with 
healthy bed rest individuals (CompareRhythms category: 
same): The fitted temperature rhythm had a p-value < 0.05 
and an amplitude > 0.55 °C in the investigated CIM or no-
CIM patient, and the temperature rhythm parameters did 
not differ significantly from the healthy bed rest group.

The temperature rhythm constitutes complex wave-
forms with multiple oscillatory components. To further 
support interpretation of fixed 24-h period Cosinor 
modeling, we assessed the presence of underlying ~ 24-h 
oscillatory components using wavelet analysis. We pro-
vided average spectrograms for ICU days 1–5, 5–10, 
and last ICU days for the CIM and no-CIM groups. We 
performed time–frequency analysis using continuous 
wavelet transforms implemented in the pyBOAT pack-
age [52], employing the complex Morlet wavelet due to 
its good time and frequency localization properties. For 
each time series, we computed the wavelet power spec-
trum (spectrogram), capturing the temporal evolution of 
power across a range of frequencies. To facilitate mean-
ingful averaging across multiple recordings, each indi-
vidual spectrogram was first normalized by its maximum 
value. The resulting normalized spectrograms were then 
averaged across all samples. Finally, the averaged spectro-
gram was globally normalized so that the total sum of all 
power values equaled 1, enabling visual group-level com-
parisons of relative power distributions across time and 
frequency. Bright yellow regions indicated periods at a 
given point in time with a high relative power.

Statistical analysis
The descriptive analysis results were expressed as 
median and 25th and 75th percentiles. Group compari-
sons of temperature rhythm parameters and assigned 
rhythm classes were based on aggregations for the entire 
ICU stay or longitudinally, or for specific single days of 
interest. Non-parametric Brunner–Munzel tests and 
longitudinal procedures, nparcomp package [53], and 
Chi-Square tests were used. The Brown–Forsythe test 
was used to compare interindividual variability of tem-
perature rhythm parameters between the CIM and no-
CIM groups. Temperature rhythm parameters were 
correlated with clinical, histological, and metabolic study 
data by Spearman correlation.

To account for potential confounding, we performed 
a linear regression analysis for each rhythm parameter 
and adjusted for CIM, age, gender, and fever. A statisti-
cian (KR) was involved in the formal analyses. Data pre-
processing and analyses have been implemented using 
RStudio, R, Python and SciPy, versions, packages and ref-
erences are listed in Table S6, Supplementary Material 1.
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