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Motion-Corrected Cardiac T1 Mapping
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Abstract— Objective: Cardiac quantitative MRI (qMRI) is
a powerful imaging technique for diagnosing pathologies
such as diffuse myocardial fibrosis. One main challenge
is cardiac motion, which requires synchronization of data
acquisition with the heartbeat, leading to long scan times.
We present a novel deep learning-based image registration
method for cardiac qMRI that enables non-rigid motion cor-
rection of data acquired continuously over multiple cardiac
cycles, thereby reducing scan times. Methods: Our method
is a zero-shot approach that utilizes the physical qMRI sig-
nal model for accurate motion estimation. Non-rigid motion
of dynamic images is estimated with a U-Net-based archi-
tecture. This exploits the intrinsic smoothness of cardiac
motion, allowing sharing information between neighboring
images. The approach is robust to undersampling artifacts,
enabling motion estimation from dynamic images recon-
structed from very few k-space data even without advanced
image reconstruction methods. Results: We evaluated the
method for fast cardiac T1 mapping using a Golden radial
sampling scheme on numerical simulations and in-vivo ac-
quisitions. On numerical simulations, our method achieved
a 61.64% improvement in T1 accuracy. On in-vivo data, our
approach yielded a 45.13% improvement in sharpness of T1
maps, and temporal image alignment of motion-corrected
dynamics improved on average by 11.78%. Conclusion:
Our method enables accurate non-rigid motion correction
of highly undersampled cardiac qMRI data obtained from
continuously acquired data. Significance: As our method is
individually optimized for each scan without the need for
training on large datasets, it can easily be adapted to other
cardiac qMRI approaches.

Index Terms— cardiac qMRI, deep learning, image regis-
tration, zero-shot, dataset-free, motion correction, T1 map-
ping
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I. INTRODUCTION

CARDIAC quantitative MRI (qMRI) is a powerful imag-
ing technique for diagnosing heart pathologies by eval-

uating the myocardial tissue, based on changes in relaxation
times — T1, T2 or T2∗ [1]. Among these, T1 times are of
particular clinical importance [2], [3], aiding in the diagnosis
of conditions such as diffuse myocardial fibrosis [4].

A major challenge in cardiac qMRI is the presence of phys-
iological and pathological (e.g., arrhythmia) motion, which is
an open research area in medical imaging. Movements of the
heart occurring during acquisition can lead to motion artifacts
in the reconstructed images and, consequently, in the estimated
parametric maps. These artifacts may result in poor image
quality and inaccurate quantification of the underlying tissue
parameters, leading to false diagnoses.

The main sources of motion artifacts are respiratory and
cardiac motion [5]. While breath-holding techniques can often
compensate for the former, cardiac motion poses a more
significant challenge due to the complex nature of the beating
heart. In qMRI, cardiac motion is commonly addressed with
ECG-triggered acquisitions [6]–[11]. This technique reduces
motion by synchronizing the image acquisition with specific
phases of the cardiac cycle, ensuring consistency across scans
over multiple heartbeats. However, while this approach reduces
motion artifacts caused by the heartbeat, it leads to long
acquisition times and may still require post-processing motion
correction (MoCo). Waiting for ECG triggers and the correct
cardiac phase limits data acquisition to a small fraction of
the scan time, making it inefficient. Alternatively, continuous
acquisition across the full cardiac cycle achieves 100% scan
efficiency, acquiring the same amount of data in less scan time,
but introduces a more complex MoCo challenge to estimate
the full cardiac motion.

Furthermore, in qMRI, image contrast is not constant but
changes over time. This is required to make the data acquisi-
tion sensitive to different quantitative parameters. Therefore,
changes between images are due to a mixture of both complex
non-rigid deformations from the heartbeat and signal variations
required to estimate quantitative parameters.

MoCo methods in qMRI have been developed and proposed
over the years, compensating for motion during image re-
construction or as a post-processing step. MoCo is typically
based on image registration, which consists of the alignment of
the anatomical structure of two images by applying a motion
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transformation to one of them. Such alignment corresponds
to the optimization problem of a function that quantifies the
image match. This problem is ill-posed, as there is generally
no unique motion field solution to refer to. Classical methods
usually apply to standard acquisition sequences, adopting
techniques such as registering images to a mean space [12],
computing segmentations to align contours [13], or apply-
ing multiple registration steps for robustness [14], [15]. The
method proposed by [16] is tailored to continuously acquired
cardiac qMRI.

Over the past years, deep learning (DL) methods have
made significant advances in image registration [13], [17]–
[20], outperforming traditional algorithms in both accuracy
and efficiency [21]. A notable example is the VoxelMorph
model [17], which uses a U-Net-like architecture [22] to
learn motion fields from moving and fixed image pairs. It is
considered a golden standard method for image registration
due to its simplicity and adaptability, as well as the elimination
of the requirement of ground truth motion fields, whose
lack in real-world scenarios presented a challenge in medical
image registration. Building on this framework, SynthMorph
[23] generalizes registration by training a CNN without real
data, using only synthetic image pairs for robust multi-modal
alignment.

In cardiac registration, existing MoCo methods generally
fall into two categories. The first includes DL-based techniques
for unimodal imaging, such as cine MRI, that estimate full
cardiac motion (for 2D or 3D motion [24], [25], requiring fully
sampled data [26], or jointly integrating segmentation with ad-
ditional annotated data [27]). The second group targets MoCo
in cardiac T1 mapping and is applied to standard sequences.
Thus, these methods focus on correcting misalignments across
diastolic phases [18], [28] or respiratory motion [19], [29],
rather than capturing the full continuous cardiac motion.

Some further limitations of DL-based methods are that
they typically require datasets for training and validation,
which are challenging to obtain in medical imaging, and have
mainly been shown to work well on high-quality images.
These limitations are especially challenging for cardiac qMRI,
where limited breath-hold durations and heart rate variations
make the acquisition of high-quality reference images im-
possible. Finally, undersampling is often used to speed up
data acquisition. Hence, the reconstructed images can exhibit
undersampling artifacts, which impair the image quality.

In this study, we propose a novel DL non-rigid image
registration method for cardiac qMRI data acquired contin-
uously that combines the strengths of deep learning while
addressing the mentioned limitations. To the best of our
knowledge, this is the first method to enable DL-based non-
rigid registration across the full cardiac cycle in qMRI. Our
proposed registration method employs a zero-shot approach, as
the network weights are optimized for each example without
any pre-training, thus eliminating the need for possibly large
training datasets. In addition, the underlying signal models of
qMRI are exploited to overcome the challenge of contrast-
changing dynamics. To estimate the motion fields, we use a
U-Net architecture, similar to that of VoxelMorph. However,
our approach works directly on dynamic image sequences

covering, for example, multiple cardiac cycles, rather than
individual image pairs, so that the network takes into account
the information of neighboring time points to produce a more
consistent sequence of motion fields.

The paper is structured as follows. First, Section 2 intro-
duces the mathematical framework of the proposed approach.
In Section 3, we then present our method, where the algorithm
for the registration task is explained, and details on the net-
work, minimizing loss, and generation of motion-free synthetic
references are provided. Also, the motion-corrected parameter
estimation process is explained. Sections 4 and 5 introduce,
respectively, the experimental setup and the obtained results.
Finally, the main findings from the results and the contribu-
tions of the proposed method are discussed in Section 6.

II. PROBLEM FORMULATION

In qMRI, data are obtained with different image contrasts
over time, depending on MR acquisition parameters and tissue
properties. A dynamic x = (x1, . . . , xT )

⊤ ∈ RT ·N , for T ≥ 1
times and N ≥ 1 voxels, is a sequence of images, commonly
reconstructed at a generalized set of acquisition times T =
{t1, . . . , tT }, where the evolution of contrast can described
by a non-linear signal model QT

QT : RP ·N → RT ·N , p 7→ QT (p). (1)

The model QT is a mapping from the parametric space into
the image space, and maps P parameters p = (p1, . . . ,pP )

⊤

into a dynamic QT (p).
In an ideal motion-free scenario, reconstructed dynamics are

entirely described by an appropriate physical model, i.e. x =
QT (p), for some unknown parameters p. However, in real
cases, image content changes due to the motion that appears
during the acquisition. Therefore, the actual reconstructed
moving dynamic xm is described by

xm = MϕQT (p), (2)

where Mϕ is the motion operator that applies a sequence of
motion fields ϕ = (ϕ1 . . . , ϕT )

⊤ ∈ RT ·N ·D to a dynamic
using local spatial interpolation kernels, with D = 2, 3
differing between 2D and 3D motion fields. Here we assume
that the motion only occurs between acquisition time points
but not during data acquisition. This approximation is justified
as the acquisition time steps are usually short compared to
the physiological motion process. For a dynamic x, each
image is warped by the respective motion field, i.e. Mϕx :=
(Mϕ1x1, . . . ,MϕT

xT )
⊤. Mϕ is also known as a spatial

transformer, and we refer the reader to [30, Section 3] for
further details. If these motion transformations are not taken
into consideration during the estimation of the parameters p,
motion artifacts will occur.

The complexity of QT together with Mϕ results in an ill-
posed problem when estimating the motion directly from (2).
Thus, we proceed in the following way to simplify the problem
formulation.

We start by considering a reconstructed moving dynamic
xm. The goal is to estimate the motion present in xm over
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time, by aligning the dynamic to a motion-free setting. Thus,
in particular, we want to recover motion fields ϕ∗, with

Mϕ∗xm = xr, (3)

for xr := QT (p) being the ideal motion-free underlying
dynamic.

In this context, motion fields ϕ∗ can now be thought of
as the inverse motion present in (2). However, no inverse
property is assumed since, in real-case scenarios, such an
assumption may not hold. For instance, when dealing with
2D cardiac images, estimating 2D in-plane motion fields does
not consider existing through-plane motion taking place during
heart systole.

Estimating the motion fields in (3) corresponds to optimize
the alignment of Mϕx

m to xr through the minimization of an
appropriate energy function f with respect to motion fields ϕ:

ϕ∗ ∈ argmin
ϕ∈RT ·N·D

f (Mϕx
m,xr,ϕ) . (4)

The choice of f depends on the applications. In general, it
aims at addressing two main aspects: quantifying the image
alignment and controlling the spatial regularity of the fields
ϕ to maintain the most natural and realistic deformations
possible, and ensuring robustness in the presence of noise and
artifacts.

Problem (4) is also called a registration problem, and the
resulting Mϕ∗xm is the registered dynamic xm aligned to xr.

III. PROPOSED METHOD

The presented method addresses solving the registration
problem (4) with a dataset-free zero-shot unsupervised DL
iterative approach (Section A). The registration takes place
simultaneously for all time steps of a given moving dynamic
xm, resulting in a sequence of optimal motion fields ϕ∗ after
an iterative process.

A U-Net architecture is used to estimate the motion fields,
with weights initialized for each scan. Indeed, optimal fields
ϕ∗ are parameterized as the output of a CNN uθ (Section B)
that takes as input the moving dynamic xm, i.e.

ϕ∗ := uθ∗(xm), (5)

for θ∗ being optimal network weights. In the network opti-
mization, a loss function is selected to ensure both accurate im-
age similarity and motion regularity (Section C). In particular,
the alignment term of the loss uses some motion-compensated
reference dynamic xr that is calculated prior to the image
registration by exploiting the underlying physical signal model
and computing preliminary parameters p̃ (Section D).

The method is applied to quantitative parameters by for-
mulating a fitting problem for motion-corrected parametric
maps estimation using the recovered optimal motion fields ϕ∗

(Section E).
Fig. 1 shows a depiction of the method, comprising both

the registration process and motion-corrected parameter esti-
mation.

Fig. 1: Overview of the proposed registration method. The
first row shows the initialization steps. Firstly, image recon-
struction is carried out with the iterative SENSE method [31]
solving minx∥Ax − y∥22, for k-space data y and acquisition
operator A. Secondly, preliminary parameters p̃ are estimated
to compute xr by solving (10). The second row is a depiction
of the registration algorithm. From the moving dynamic xm

as input, the network uθ is trained iteratively as explained in
Algorithm 1 yielding optimal motion fields ϕ∗. The last row
describes the motion-corrected parameter estimation. 15% of
the motion-corrected dynamic Mϕ∗xm comprising the systolic
phase are excluded from the fitting problem to estimate pMoCo.

A. Registration Process

The registration occurs iteratively for E epochs by optimiz-
ing weights θ through gradient descent on the loss function
L. At the end of the iterations, the method returns the optimal
motion fields ϕ∗ = uθ∗(xm) for a given dynamic xm. Through
this method, the weights θ are optimized specifically for each
input dynamic xm without requiring any training dataset.

The input for the network uθ is initialized with xm at the
beginning of every epoch, each composed of S consecutive
steps, where the input are the intermediate warped dynamics.
During each step s, the current input is fed into the neural
network, and motion fields (ϕs) are estimated. The loss is
computed, and the weights are updated accordingly. In the
subsequent step s + 1, the input to the network becomes
the dynamic xm warped with the previous network’s output
(Mϕs

xm), detached from its previous gradient. This allows
the network to improve learning of the existing motion by
also considering intermediate steps, i.e. the network eventually
learns large deformations by a series of small transformations.
Motion fields are nevertheless always applied to the original
input dynamic xm, so no concatenation of motion fields is
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needed, which could lead to error accumulation. Note that,
in Algorithm 1, although the input to the network changes at
each iteration, the loss, defined in (III-C), is always computed
by applying the predicted motion field to the initial moving
images xm. Thus, the task of the network remains consistent
throughout training. If the loss does not decrease for a fixed
number of C consecutive steps, the next epoch is started. At
each new epoch, the input is initialized again as xm, and the
weights of uθ continue to be further updated.

By the end of this process, the network has gradually
learned to estimate the motion from its input dynamic. The
method returns the optimal motion fields. The full process is
outlined in Algorithm 1.

Algorithm 1 Registration Algorithm
1: Initialization:
2: Given: epochs E, steps S, and input dynamic xm

3: Compute reference dynamic xr from (10)
4: for each epoch e = 1, . . . , E do
5: Set initial input: xm

0 ← xm

6: for each step s = 1, . . . , S do
7: Compute motion fields: ϕs ← uθ(x

m
s−1)

8: Update parameters: θ ← θ −∇θL(uθ(x
m
s−1))

9: Update network input: xm
s ←Mϕs

xm

10: Early step stopping based on loss improvement
11: end for
12: end for
13: Get optimal motion fields ϕ∗ ← uθ∗(xm)
14: Return optimal fields ϕ∗

B. Network Structure
The network uθ takes a 2D dynamic sequence xm as

input and outputs a sequence of 2D motion fields ϕ. It uses
a 2D Attention U-Net architecture [22], [32], where each
block contains a 2D convolution, batch normalization, and
LeakyReLU activation. Temporal frames in xm are treated
as input channels (shape (1, T,H,W )), with the number of
input/output channels determined by the number of frames.
Additive attention gates help localize motion across spatial
and temporal dimensions. As in VoxelMorph [17], three final
convolutions and a scaling-and-squaring step ensure diffeo-
morphic outputs.

We use magnitude dynamics, though real and imaginary
components could also be provided as separate channels.

C. Loss Function
To update the network weights θ, we use the following loss

function. Given a moving dynamic xm, motion fields ϕ, and
a reference dynamic xr, let L be defined as

L(ϕ) := LMatch (Mϕx
m,xr) + LReg (ϕ) . (6)

Accordingly, finding a solution of (4) corresponds to finding
optimal motion fields ϕ∗ = ϕθ∗(xm) corresponding to optimal
weights θ∗ such that

θ∗ ∈ argmin
θ
L (uθ(x

m)) . (7)

The two terms in (6), which address the image alignments
and the regularity of the motion fields, are discussed next.

1) Matching Term: The alignment between two dynamics is
quantified by comparing images at corresponding times. The
matching term in (6) is defined as

LMatch(Mϕx
m,xr) =

T∑
t=1

MI (Mϕt
xm
t ; x

r
t) , (8)

where MI denotes the mutual information loss between two
images [33]–[36].

2) Regularization Term: The second term in (6) deals with
the spatial regularity of the motion fields ϕ. In particular, the
intention is to encourage smooth and natural deformations,
ensuring robustness to noise and potential image artifacts.

The regularization term is defined as

LReg(ϕ) =

T∑
t=1

(
λ ∥∇ϕt∥22 + µ ∥∇·ϕt∥22

)
, (9)

with λ, µ > 0, ∇ and ∇· being the gradient and divergence
operators computed via finite differences. These two norms
address the elastic properties of a displacement field ϕ differ-
ently. The gradient ∇ϕ shows the rate of directional change,
reflecting how much neighboring points move relative to each
other, affecting the shape of the warped object. Thus, penal-
izing the gradient results in suppressing sharp and unrealistic
local distortions. On the other hand, the divergence∇· captures
the local changes in the area of the warped object [37, Part
III, Chapter 8], either by contraction (negative divergence) or
by expansion (positive divergence), and penalizing it reduces
unphysiological motion transformations such as folding.

D. Motion-Compensated References Computation
A motion-compensated reference dynamic xr is computed

in the initialization steps of Algorithm 1 to be used in the
loss function (6). The following approach builds upon previous
work estimating parameter maps with motion compensation
[16] using info from ECG recorded during scan time.

The idea is to exploit physical knowledge coming from
the acquisition, by finding some preliminary parameters p̃ to
generate some synthetic dynamic starting from the moving
dynamic xm.

As the motion in xm leads to blurring artifacts in the solution
p̃, a subset of the dynamic xm is used for this preliminary
fitting, consisting of images from xm in a similar motion state
(e.g. diastole, which can be detected from the ECG).

Ultimately, we carry out a voxel-wise fit on the following
minimization problem

p̃ ∈ argmin
p∈A

∥QTsel(p)− xm
sel∥

2
2 . (10)

In (10),A denotes a set of admissible values for the parameters
p, with admissibility being context-dependent (e.g., T1 times
must be positive). The subset of acquisition times Tsel ⊆ T
consists of Tsel < T acquisition times, chosen to exclude
phases with large motion deformations (e.g., systole). Finally,
xm

sel is defined from xm by selecting only the times from
Tsel. Given the differentiability and non-linearity of the signal
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model QT , a solution of (10) can be handled for instance with
the limited memory BFGS method (L-BFGS) [38].

This fit uses only a small portion of diastolic frames selected
via ECG, yielding a preliminary T1 map less affected by
motion. As a result, the predicted vector of parameters p̃ can
be used to generate a motion-compensated dynamic xr to be
used as reference for the registration task, with xr := QT (p̃)
sharing similar contrast change with xm, but with strongly
reduced motion artifacts.

E. Motion-Corrected Parameter Estimation

In the process of estimating parametric maps from the
registered dynamic Mϕ∗xm, 15% of the dynamic around
systole are excluded from the fitting problem, as suggested
by [16], [39] and based on assumptions from [40], [41], to
reduce inaccuracies in T1 values caused by through-plane
motion during systole, which can reach approx. 7 mm at the
mid-ventricle and 13 mm at the base [42]. Such exclusion
is carried out automatically exploiting the fact that highest
amplitudes of the estimated motion fields ϕ∗ help to identify
the systolic motion. To achieve this, the mean amplitudes
A = (A1, . . . , AT )

⊤ ∈ RT of the respective motion fields
ϕ∗ = (ϕ∗

1, . . . , ϕ
∗
T )

⊤ are first computed. In particular, for each
time point t, we have

At :=
1

N

N∑
x=1

∥Mcorrϕ
∗
t (x)∥

2
2 , (11)

where Mcorr = ∥ 1
T

∑T−1
t=1 ϕ∗

tϕ
∗
t+1∥22 is a map used to focus the

amplitude values on regions where the fields show temporal
correlation, under the assumption that the motion in the heart
region is more temporally dependent. Secondly, we proceed
with a sinusoidal fit of the amplitudes A and 15% of the
dynamic Mϕ∗xm closest to the sinusoidal peaks are excluded,
assuming that the peaks reflect the systole. We call the
remaining 85% of the registered dynamic [Mϕ∗xm]85%, with
respective acquisition times T85%.

Finally, the motion-corrected parameters pMoCo are given by

pMoCo ∈ argmin
p∈A

∥∥QT85%
(p)− [Mϕ∗xm]85%

∥∥2
2
, (12)

where A denotes the same constraint values as in (10). Again,
problem (12) is solved via the L-BFGS. Indeed, the objective
function in (12) inherits its non-linearity and differentiability
with respect to p from the signal model QT . This, together
with the computability of its gradients, makes the problem
well-suited for a quasi-Newton method like L-BFGS.

IV. EXPERIMENTS

A. Datasets

Our method was evaluated for cardiac T1 mapping on
simulated as well as on single-slice 2D and multi-slice 2D
in-vivo acquisitions. Data acquisition was carried out on a 3T
(Verio, Siemens Healthineers, Erlangen, Germany) and ECG
was recorded during scan.
A 2D Golden-angle radial acquisition scheme was used to
continuously obtain data for 2.3 s after a single inversion pulse.

The acquisition parameters were: 5◦ flip angle, 2.03 ms TE,
and 5 ms TR. The field of view (FOV) was 320 mm × 320
mm, with a spatial resolution of 1.3 mm × 1.3 mm and a slice
thickness of 8 mm. The beginning of the data acquisition was
triggered to mid-diastole. Dynamics consisted of 54 images
for the simulated data and the single-slice 2D dataset, and of
49 images for the multi-slice 2D datasets.

1) Simulated Data: XCAT, a framework for numerical phan-
toms, was used to create a tissue segmentation in short-axis
orientation and the corresponding motion fields (ϕXCAT) [43],
[44], describing the heart deformation during a cardiac cycle at
100 bpm. Quantitative parameters were assigned to the tissue
segmentation provided by XCAT and, after transforming them
to signal intensities using QT , the motion fields ϕXCAT were
used to transform the images to different cardiac motion states.
MR data acquisition was then simulated to create k-space data
corresponding to an in-vivo data acquisition.

2) Single-slice 2D SA: For 10 healthy volunteers (4 females,
6 males, age: 32 ± 8 y), 2D short-axis (SA) slices in the mid-
ventricular myocardium were acquired in a single breath-hold
with non-selective inversion pulse [16]. Three volunteers were
scanned twice.

3) Multi-slice 2D SA and LA: Data from a group of 10
healthy subjects (7 males, 3 females, age: 30.3 ± 2.28 y)
were acquired. In each subject, 12 interleaved stacks of 5 two
dimensional slices each were acquired continuously after slice-
selective RF inversion pulses in a single breath-hold, with the
same acquisition parameters as above, except for a flip angle
of 9◦ and a TE of 2.2 ms. Data were acquired as SA stacks
covering the apex, apical, mid-cavity, and basal views and
long-axis (LA) stacks, covering four-chambers (4CH) and left
and right two-chambers (2CH) ventricle views [45].

As for T1 values references, 3(3)3(3)5 Modified Look-
Locker Inversion Recovery (MOLLI) [7] measurements were
also obtained for all in-vivo datasets, with acquisition time of
17 s at a heart rate of 60 bpm. with acquisition parameters: 2.7
ms TR, 1.12 ms TE, and 35◦ flip angle. The spatial resolution
was of 2.1 mm × 1.4 mm × 6.0-8.0 mm and the FOV was
360 mm × 307-323 mm.

The research was approved by the institution’s ethical
committee (‘Ethikkommission der PTB’). The research was
conducted in accordance with the principles embodied in
the Declaration of Helsinki and in accordance with local
statutory requirements. All subjects gave written informed
consent before participation.

B. Signal Model
A Look-Locker model [46] QT was used to estimate the

synthetic motion-compensated reference xr and parameters
pMoCo. It is a function of the parameters p, which consist
of the equilibrium magnetization M0, readout flip angle α,
and T1 values. At acquisition time t, Qt was defined as the
following three-parameter model

Qt (p) = M∗
0 − (M0 +M∗

0) e
−t 1

T∗
1 (13)

T∗
1 =

[
T−1

1 − T−1
R log(cosα)

]−1
(14)

M∗
0 = T−1

1 M0T
∗
1, (15)
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for p = (M0,α,T1)
⊤ and repetition time TR.

Thus motion-corrected parametric maps pMoCo consisted of
pMoCo = (M0,MoCo,αMoCo,T1,MoCo)

⊤. In the following, we
focus our evaluations specifically on the motion-corrected T1
maps T1,MoCo as it is the clinically relevant parameter.

C. Synthetic References

To compute synthetic dynamics from (10), the model QT
from (13) together with L-BFGS as optimization routine.
However, in the multi-slice 2D SA and LA datasets, the slice-
selective inversion pulse led to the mixing of inverted and
incoming non-inverted blood, resulting in a contrast that could
not be captured well by the original model in (13). For this
reason, in the computation of the reference dynamics of the
multi-slice 2D SA and LA datasets, we used a corrected model
Qt,β to avoid errors in the registration task due to the presence
of non-inverted blood flux. In this context, we used a modified
model Qt,β, defined as

Qt,β (M0,α,T1,β) = M∗
0 − (βM0 +M∗

0) e
−t 1

T∗
1 , (16)

where β < 1 describes a mix of inverted and inflowing non-
inverted blood.

D. Experimental Setup

For all datasets, moving dynamics were reconstructed using
the iterative SENSE algorithm [31], a standard conjugate gra-
dient (CG) method for image reconstruction without any fur-
ther regularization. Motion estimation was performed within
the imaging plane, using bicubic interpolation for the motion
operator.
For the parameters fitting of motion-compensated references
xr, values were constrained to α ∈ (1◦, 9◦), T1 ∈
(0.18 s, 6.66 s).
In the registration process, the network uθ (64 filters, 5 stages,
49 or 54 input channels – depending on the dataset) was
trained for a fixed number of iterations (E = 80 epochs
and S = 20 steps), with loss function’s weights λ = 0.05,
µ = 0.01, Adam optimizer, and learning rate of 0.0001.

E. Evaluation

1) Method of Comparison: We compared the proposed reg-
istration method to the motion estimation of the method pre-
sented in [16]. Their motion estimation consisted of three main
steps. For each scan, a dynamic was first reconstructed with
spatial and temporal total variation (TV) regularization [47] to
deal with minimized undersampling artifacts. Then, a synthetic
reference dynamic was computed using the exponential signal
models by including diastolic phases from the reconstructed
dynamic. Finally, the estimation of motion fields was carried
out via the MIRTK Toolkit [48]. This method assumed regular
heartbeats by considering the motion vector field of a cardiac
phase to be the same in each cardiac cycle. Thus, motion
fields referred to an averaged cardiac cycle and not to different
acquired images. In the following, we refer to this method as
MIRTK-T1Reg.

2) Ablation Study: We conducted an ablation study focusing
on the two main components of our method: the signal model
and the CNN-based parametrization of motion fields. First,
we kept the parametrization but removed the signal model
(i.e., removed external reference xr). For this, we used a
2D SynthMorph, the best choice available in this context, to
register xm to a diastolic frame. Second, we kept the signal
model but replaced the CNN by directly optimizing the loss
function with respect to the motion field tensors (DirectOpt).

3) Metrics: To assess the registration quality, we evaluated
two metrics within a manually selected region of interest (ROI)
around the ventricular septum in SA view. The ROI ensured
that our analysis focused specifically on motion artifacts within
the heart. The sharpness of T1,MoCo was quantified using the
Tenengrad metric (T) [49], a well-established approach for
evaluating image sharpness through finite differences in the
absence of ground truth images [50], [51].

To evaluate the temporal consistency of the registered
dynamics, we computed temporal TV [52]. Given a dynamic
x ∈ RT ·N , temporal TV is defined as

TVTime(x) =
1

N(T − 1)

T−1∑
t=1

N∑
i=1

|xt(i)− xt+1(i)|.

Since dynamics consist of regions with intensities that change
smoothly over time, an effective registration should yield a
low TVTime. For comparison, we analyzed the relative change
in both metrics, computing (T − TNM)/TNM for sharpness
and (TVTime,NM − TVTime)/TVTime,NM for temporal con-
sistency, where TNM and TVTime,NM refer to the respective
metrics on the data without motion correction (No MoCo).
This formulation ensures that improvements in both metrics
yield positive values.

V. RESULTS

A. Numerical Simulation
Fig. 2 illustrates a comparison of the motion fields ϕ∗

computed using the proposed method against the motion fields
ϕXCAT from the XCAT model for simulated data. For three
different acquisition times, corresponding to different phases
during the cardiac cycle, images of the moving dynamic (xm)
and the registered dynamics (Mϕ∗xm, MϕXCATxm) are shown.

In Fig. 3, a comparison of T1 maps is presented between
T1 maps without motion correction and the motion-corrected
maps T1,MoCo, obtained registering the dynamic with MIRTK-
T1Reg, the proposed method and, finally, the reference motion
fields from XCAT. The second row displays the difference
between the recovered maps and the reference T1 map, pro-
viding a quantitative evaluation of the accuracy of each MoCo
approach. On a manually selected ROI around the entire heart,
the mean difference is -74.06 ± 91.81 ms without motion
correction, -28.24± 43.60 ms registering with MIRTK-T1Reg,
and -28.41 ± 46.04 ms registering with the proposed approach.

B. In-Vivo
Fig. 4 shows a comparison between preliminary and final

motion-corrected T1 values.
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Fig. 2: Images from the input dynamic (xm), motion fields
and motion-transformed images shown for the numerical sim-
ulation using XCAT (ϕXCAT, MϕXCATxm) and the proposed
method (ϕ∗, Mϕ∗xm) . Motion fields are visualized using a
color wheel representation, which qualitatively indicates the
direction (color) and amplitude (intensity) of motion. Sharp
changes in the color values of ϕXCAT reflect the irregularity
of the fields at the boundaries.

Fig. 3: T1 maps estimation on simulated data. T1 maps are
displayed without and with motion correction (T1,MoCo), by
registering with MIRTK-T1Reg, the proposed method, and the
motion fields from XCAT (used as reference). The second row
shows the differences to the reference T1 map.

Fig. 5 shows the results of the registration on the single-
slice 2D SA dataset by displaying the temporal evolution of
a line profile indicating the selected voxel for four different
subjects, with voxel intensities shown across all consecutive
time points in the respective dynamics. From left to right,
the time evolution is presented for the moving dynamic xm

(showing the contraction and expansion of the heart during the
cardiac cycles), followed by the registration results obtained
with MIRTK-T1Reg, and those from the proposed method.

T1 maps for four healthy volunteers are presented in Fig. 6.
Here, we compare maps without motion correction, T1,MoCo
using MIRTK-T1Reg and the proposed approach, respectively,
and T1 maps from the clinical reference sequence (MOLLI).
Fig. 6A) shows results from the single-slice 2D SA dataset,
while Fig. 6B) from the multi-slice 2D SA dataset. Fig.7 shows
the results of the ablation study.

Moreover, Fig. 9 presents the registration results for a multi-
slice acquisition of the same subject in both 4CH and 2CH

Fig. 4: Example of T1 values achieved from the preliminary
fitting (10), with p̃ = (T̃1, M̃0, α̃), and from the final motion-
corrected fitting (12). Arrows indicate improved details.

Fig. 5: Slice-view of registered dynamics of the single-slice
2D SA dataset for four different volunteers. The red line indi-
cates the selected voxel whose temporal evolution is shown for
the case without motion correction, registered with MIRTK-
T1Reg, and with the proposed approach. Circles highlight the
improved alignment achieved by the proposed method, where
residual motion artifacts remain visible in the MIRTK-T1Reg
registration.

views. Different time steps are shown for images of both
the moving and registered dynamics. Also, a slice segment is
selected for both views to illustrate its temporal evolution. To
further assess the generalization of the method, Fig. 10 com-
pares T1 maps without motion correction to motion-corrected
T1 maps T1,MoCo for the multi-slice 2D SA dataset of one
healthy volunteer, covering basal, mid-ventricular, apical, and
apex views. Similarly, Fig. 11 displays such comparison of
T1 maps for the multi-slice 2D LA dataset over four healthy
volunteers, including both 4CH and 3CH views.

For the evaluation of the registration methods, we assessed
performance on single-slice 2D SA dataset (10 cases) and
mid-ventricular slices from the multi-slice 2D SA dataset
(120 cases). MIRTK-T1Reg was compared to the proposed
approach, with Wilcoxon tests and t-tests performed to evalu-
ate the differences (on single- and multi-slice 2D SA dataset,
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Fig. 6: T1 maps in short-axis view for four volunteers are
shown: without motion correction, with T1,MoCo using motion
fields from MIRTK-T1Reg, and with the proposed method.
MOLLI maps are included for reference, requiring approx.
7.4× longer scan time. Green arrows hihglight improved detail
in zoomed-in areas. A) shows single-slice 2D SA results; B)
shows multi-slice 2D SA. Since data in B) use a slice-selective
inversion pulse, blood T1 values are underestimated. Thus the
colorbar in B) is adjusted to better visualize tissue contrast.

respectively).
Fig. 8A) illustrates the relative temporal consistency of the

registered dynamics compared to the moving dynamics for
both the single-slice and multi-slice 2D SA datasets. Using
the proposed method, we observed improvements of 8.39%
and 15.18% for the single- and multi-slice 2D SA datasets,
respectively, with statistical significance (p < 0.01 and p <
0.001). Additionally, compared to the registration performed
with MIRTK-T1Reg, the proposed approach yielded improve-
ments of 8.40% and 14.85% (p < 0.002 and p < 0.001).
Fig. 8B) presents the relative image sharpness of T1,MoCo,
estimated using motion fields from both methods, compared

Fig. 7: Results from the ablation study for volunteers from the
single-slice 2D SA dataset and the multi-slice 2D SA and LA
dataset. From left to right: T1 maps estimated without motion
correction (No MoCo), and with motion fields from DirectOpt,
SynthMorph, and the proposed method. Arrows indicate the
most affected details.

to the T1 maps without motion correction. The metric shows
comparable results between the two methods in the single-slice
2D SA dataset. For the multi-slice 2D SA dataset, the proposed
method achieved a significant improvement in sharpness of
45.13% (p < 0.001). Additionally, compared to the motion-
corrected T1,MoCo obtained with MIRTK-T1Reg, the proposed
approach yielded a further improvement of 19.64% in the
multi-slice 2D SA dataset (p < 0.001).

Regarding computation time per dynamic, the proposed
approach required 30 ± 1.8 s for CG reconstruction on the
CPU and 81.14 ± 3.62 s for motion estimation on the GPU
(NVIDIA GeForce RTX 4090). In contrast, MIRTK-T1Reg
took 160 ± 12.14 s for TV reconstruction and 118 ± 8.51 s
for motion estimation, both performed on the CPU.

To assess reproducibility, we applied our method to subjects
scanned twice and compared the final T1 maps, with and
without motion correction, across the two scans. Results are
shown in Suppl. Fig. 2.

We analyzed deformation fields for three subjects from the
2D short-axis dataset by plotting mean motion amplitudes (11)
and the percentage of negative Jacobian determinants over time
within a manually selected cardiac ROI (Suppl. Fig. 1).

VI. DISCUSSION

In this paper, we proposed a deep learning-based image
registration technique for cardiac qMRI data acquired contin-
uously over multiple cardiac cycles. Without the need for a
training dataset, this method enables accurate motion estima-
tion across various cardiac views. The motion is estimated
from CG-reconstructed dynamics, which show undersampling
artifacts, thus not requiring high-quality reconstructions.

One key feature of our approach is its zero-shot design,
in which the registration process is perfomed for each input
individually in an iterative unsupervised way. This is particu-
larly advantageous in medical imaging, where acquiring large
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Fig. 8: Box plots comparing relative metrics for single-slice
2D SA (10 maps) and multi-slice 2D SA (mid-ventricular
slices subset, 120 maps) datasets, evaluating registration with
MIRTK-T1Reg and our proposed method. A) assesses tempo-
ral consistency and B) image sharpness. Statistical significance
from Wilcoxon tests for single-slice data and t-tests for multi-
slice data is marked as ** (p < 0.01) and *** (p < 0.001).

Fig. 9: The proposed registration is shown for one volunteer
from the multi-slice 2D LA dataset (4CH and 2CH views).
Images of the dynamics are shown for different time steps (1,
10, 15, and 20). The first row is without motion correction (No
MoCo), while the second row with the proposed MoCo. The
red line indicates the selected voxel whose temporal evolution
(TE) is shown in the last column.

Fig. 10: T1 maps are shown for one volunteer from the multi-
slice 2D SA dataset over four different views: basal, mid-
ventricular, apical, and apex. T1 maps without motion cor-
rection (No MoCo) and the proposed T1,MoCo are displayed.
Improved visualization of different features can be seen, such
as papillary muscles (mid-ventricular and apical sections) and
RV walls (basal and mid-ventricular).

datasets is challenging. By iteratively adapting the network
weights to each dynamic xm, our approach ensures optimal
registration tailored to the specific input data.

Furthermore, information on the underlying physics is used
to compute a motion-compensated reference based on a pre-
liminary parametric fit of the dynamic to the signal model
(shown in Fig. 4). It is then incorporated into the registration
process as part of the matching term in the loss function.
This makes the approach easily applicable to different qMRI
approaches. The preliminary T1 map uses only a fraction of
the available data (data only acquired in diastole). The T1 map
shows undersampling artifacts and overestimation of T1 values
for long T1 times (blood). The proposed approach utilizes
much more data and leads to higher quality.

In contrast to other state-of-the-art DL-based image reg-
istration approaches like VoxelMorph, our model processes
the full dynamic as input, rather than just image pairs, with
the time frames as input channels. This allows for the model
uθ to rely also on the temporal correlations between frames,
by applying the same convolutional layers over the entire dy-
namic. Moreover, unlike VoxelMorph or SynthMorph, which
require both moving and fixed images as inputs, our network
parametrizes the motion fields only from the moving dynamic,
since the motion-compensated reference is used only in the
loss computation.

Regarding the results on simulated data, Fig. 2 shows
that our computed motion fields align with the reference
motion fields ϕXCAT in both direction and amplitude. Our
approach also reduces the difference to the reference T1 values
compared to the case without motion correction, improving
the accuracy of T1 by 61.64% (Fig. 3), while achieving
comparable results with better generalizability compared to
classic registration algorithms. Note that, the pixel-wise dif-
ference between the XCAT reference and motion corrected
T1 maps is limited by the fact that the different motion-
correction approaches might transform the final image to a
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Fig. 11: T1 maps are shown for four different volunteers from the multi-slice 2D LA dataset. For each subject, 4CH and 3CH
views are displayed. The maps were estimated without motion correction (No MoCo) and with the proposed MoCo method.
Improved visualization of the ventricular septum (pink arrows), LV and RV walls (green and blue arrows, respectively), and
the aorta (yellow arrow) can be seen.

slightly different reference motion state.
It is worth mentioning that the motion fields provided by

the XCAT framework cannot be considered as ground truth
as they may not be physiologically plausible. However, they
still offer a useful means of quantifying the quality of motion
estimation. Since the numerical XCAT model consists of
distinct discrete shapes, motion transformations may exhibit
discontinuities along their boundaries, leading to inconsisten-
cies in the regularity of the fields, particularly along tissue
boundaries, as shown in their color wheel representation (Fig.
2). Our approach assumes spatial regularity in the motion
fields, which is enforced by the regularity term (9) in the loss
function. As a result, a direct quantitative comparison between
the two is not possible.

Furthermore, the estimated motion fields show that peaks in
motion amplitude correlate with increased negative Jacobian
percentages, suggesting that larger motion, due to systolic
contraction and through-plane displacement not captured in
2D, results in more non-positive Jacobians. This supports ex-
cluding 15% of frames before final fitting to mitigate through-
plane effects (Suppl. Fig. 1).

The CNN parametrization plays a key role in motion
correction. The ablation study (Fig. 7) shows that removing
it (DirectOpt) fails to correct artifacts and produces T1 maps
similar to uncorrected ones (green arrows). On the other
hand, removing the dependency on the signal model (Synth-
Morph) also performs worse than the proposed model, proving
unsuitable for data with varying contrast, low quality, and
strong motion by failing to align key structures or producing
inaccurate T1 values (green arrows).

Regarding the registration quality on in-vivo data, the
temporal profiles in Fig. 5 visually display that our method
achieves better motion alignment than MIRTK-T1Reg in short-
axis views. Specifically, the proposed registration yields im-
proved border alignment in areas such as the papillary mus-
cles and myocardium (white circles), resulting in a smoother

correction of motion and removing residual motion artifacts
still present in the registration performed with MIRTK-T1Reg.
The evaluation of temporal consistency in 8A) confirms our
visual observations, as our method improves motion correction
of the registered dynamics by 8.39% in the single-slice 2D
SA dataset when compared to the moving dynamics. An
improvement of 15.18% is also achieved in the multi-slice 2D
SA dataset, further demonstrating that our registration leads
to more accurate alignment over time. This improvement is
achieved because our registration process estimates motion
from the entire dynamic xm, rather than registering each image
individually. Moreover, MIRTK-T1Reg assumes that motion
fields are shared across the same phase in different cardiac
cycles, which limits its ability to capture the full motion
variability over time.

In addition, the motion estimated with MIRTK-T1Reg relies
on higher-quality TV-reconstructed images, whose reconstruc-
tion requires the choice of a regularization parameter, whereas
our method achieves comparable results directly from faster
CG-reconstructed dynamics, further highlighting the robust-
ness of our approach.

As for the motion-corrected T1 map estimation, Fig. 6
illustrates that our method provides comparable overall image
quality to the motion-corrected maps estimated using MIRTK-
T1Reg in the single-slice 2D SA dataset (first column), while
also offering improved depiction of finer structural details,
such as papillary muscles and fat tissue (green arrows). A more
noticeable improvement is observed in the multi-slice 2D SA
dataset (second column), which aligns with the quantitative
results shown in Fig. 8B), confirming comparable sharpness in
the single-slice 2D SA dataset. This was expected as MIRTK-
T1Reg was specifically optimized for this type of acquisition.
In contrast, for the multi-slice 2D SA dataset, our method
outperformed the registration with MIRTK-T1Reg and im-
proved sharpness by 45.13% compared to the T1 maps without
motion correction, indicating that our proposed approach can
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generalize better to different types of acquisition.
From the results across different cardiac orientations, we

can see that our method performs well on short-axis as
well as on long-axis views (Fig. 9, 4CH and 2CH). This
versatility highlights the flexibility of the method, which is
also reflected in the motion-corrected T1 maps. For instance,
in the stack of short-axis views (Fig. 10), our method ensures
an improved depiction of the left ventricular (LV) myocardium
across all slices, as highlighted in the close-ups. Additionally,
better-defined details, such as the papillary muscles and right
ventricular (RV) walls, are visible. Finally, Fig. 11 shows the
results of T1 maps in long-axis views, where the proposed
approach improves the visualization of the ventricular walls,
papillary muscles, and also other cardiac features, such as the
aortic outflow tract.

The reproducibility experiment showed that motion cor-
rection consistently improved sharpness (evaluated in ROIs
around the ventricular septum) across repeated scans, support-
ing the robustness of our method. Sharpness increases were
13.92% and 12.93% for Subject 1, 24.30% and 18.38% for
Subject 2, and 18.25% and 20.66% for Subject 3.

In terms of computation time, although motion estimation
times are not directly comparable due to the different hard-
ware (CPU vs. GPU), the key advantage of the proposed
method lies in achieving motion estimation with a nevertheless
faster image reconstruction. Our method can recover structural
details with only a CG reconstruction (≈ 30 s), whereas
MIRTK-T1Reg requires higher-quality images from a TV
reconstruction (≈ 2.5 min), which also involves selecting a
suitable regularization parameter.

One limitation of this study is that no ground truth T1 maps
were available. MOLLI uses a different sequence and different
signal model, thus yielding different T1 values. Furthermore,
MOLLI T1 maps were obtained using the standard clinical
parameters, leading to maps with different resolutions and
each acquisition is obtained in a different breath-hold, yielding
changes in the slice position. Therefore, a direct comparison
between these two acquisitions is not possible.

Another limitation of our study is that we were only
able to compare our method to the registration performed
with MIRTK-T1Reg. To the best of our knowledge, no other
existing method allows for non-rigid cardiac motion estimation
across the entire cardiac cycle in the presence of varying
contrast. Both classical (e.g., [15], [53], [54]) and DL-based
(e.g., [18], [20]) non-rigid MoCo approaches for cardiac T1
mapping have been developed for ECG-triggered sequences
and therefore assume only small misalignments between im-
ages or breathing motion. Furthermore, the DL method pro-
posed by [55], which operates in k-space, assumes consistent
contrast between images, thus preventing its application to
our problem of contrast-changing dynamic images. Because
of these factors, a broader comparison with other registration
methods was not feasible.

Finally, the network architecture could be further explored,
as recent structures (e.g., [56], [57]) have shown to perform
well in registration tasks. Similarly, incorporating an iterative
process between motion and parametric estimation (e.g., [15])
may improve results. In this work, we prioritized a faster

approach in both network and algorithm design, but further in-
vestigation could yield improved results. Also, T1 values were
estimated using a standard method, but advanced techniques
could further improve accuracy [58].

While further patient studies are necessary, as our method
is subject-specific, it can adapt to different anatomies and
individual cases. As no assumptions about the cardiac cycle
are made, future work could involve testing this approach
on more complex motion types, to access its adaptability to
patient-specific heart rhythms, such as variations in heart rates
or motion irregularities (e.g., ectopic beats, septal flashes).

VII. CONCLUSION

Our method provides an effective solution for cardiac mo-
tion estimation in continuously acquired qMRI data, enabling
registration of image dynamics over full cardiac cycles despite
contrast changes. It employs a zero-shot dataset-free frame-
wok, computing optimal motion fields on a per-subject basis
by relying solely on the moving dynamic, and integrating
the qMRI signal model directly into the motion estimation
process. The approach was evaluated on both short- and long-
axis datasets. On simulated data, T1 accuracy improved by
61.64% when compared to reference values. On acquired
data, our method showed improved sharpness in the motion-
corrected T1 maps (by 45.13%) and enhanced temporal image
alignment in the registered dynamics (by 11.78%, on average).
Additionally, it outperformed a recent method designed for
motion estimation under similar acquisition assumptions. To
our knowledge, this is the first registration method to perform
non-rigid registration across full cardiac cycles in continuous
qMRI acquisition. While further studies on patient data are
needed, our approach does not make any assumptions about
heartbeat regularity or anatomy, which makes the method well-
suited for broader clinical applications.
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