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Spatial proteomics of ovarian cancer precursors
delineates early disease changes and drug targets
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Abstract

High-grade serous ovarian cancer (HGSOC) is often detected at an
advanced stage, where curative treatment options are limited.
Recent advances in ultrasensitive mass spectrometry-based spatial
proteomics have provided a unique opportunity to uncover mole-
cular drivers of early tumorigenesis and novel therapeutic targets.
Here, we present a comprehensive proteomic analysis of serous
tubal intraepithelial carcinoma (STIC), the HGSOC precursor
lesion, and concurrent invasive carcinoma, covering more than
10,000 proteins from ultra-low input archival tissue. STIC and
HGSOC showed highly similar proteomes, clustering into two
subtypes with distinct tumor-immune microenvironments and
common remodeling of the extracellular matrix. We discovered
cell-of-origin signatures from secretory fallopian tube epithelial
cells in STICs and identified early dysregulated pathways of ther-
apeutic relevance. Targeting cholesterol biosynthesis by inhibiting
the terminal steps via DHCR7 showed therapeutic effects in ovar-
ian cancer cell lines and synergized with standard-of-care carbo-
platin treatment. This study demonstrates the power of spatially
resolved quantitative proteomics in understanding early carcino-
genesis and provides a rich resource for biomarker and drug target
research.
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Introduction

Among ovarian cancer subtypes, high-grade serous ovarian
carcinoma (HGSOC) stands out as the subtype that causes the
highest number of fatalities related to this malignancy (Bowtell
et al, 2015). It is often diagnosed at an advanced stage and is

characterized by frequent peritoneal metastasis and tumor
recurrence following platinum-based chemotherapy. Genomic
analyses have identified key genetic features of HGSOC, including
pronounced genomic instability and vast copy number alterations,
few recurrent mutations other than ubiquitous TP53 mutations
(Bell et al, 2011), homologous recombination (HRD) deficiency in
roughly half of the tumors, often caused by BRCA1/2 germline and
somatic mutations, and high inter- and intra-tumoral heterogeneity
(Veneziani et al, 2023). Moreover, several studies have highlighted
the polyclonal nature of HGSOC and its pronounced spatial and
temporal heterogeneity (Geistlinger et al, 2021; Cunnea et al, 2023;
Denisenko et al, 2024). Mass spectrometry-based proteomics
studies have addressed how HGSOC genomic alterations translate
to the protein level, identifying dysregulated pathways associated
with patient survival (Zhang et al, 2016) and chemotherapy
response (Chowdhury et al, 2023; Coscia et al, 2018). These studies
also revealed that the four bulk transcriptomic subtypes (mesench-
ymal, proliferative, immunoreactive, and differentiated) are
reflected in the proteome (Zhang et al, 2016).

Despite these major efforts to map the proteogenomic disease
landscape, far less understood are HGSOC precursor lesions, which
are histologically present in 20–60% of all HGSOC patients
(Kindelberger et al, 2007; Crum et al, 2007). Termed serous tubal
intraepithelial carcinomas (STICs), these lesions share histological,
molecular and genetic features with advanced HGSOC. Although it
was first somewhat surprising to find the precursor for ovarian
carcinoma in the tubal epithelium, the concept of STICs is widely
acknowledged (Auersperg et al, 2008; Folkins et al, 2008; Labidi-
Galy et al, 2017). STICs were previously profiled by whole-exome
sequencing, which showed that they already present high genome
instability and pronounced copy number alterations (Eckert et al,
2016; Labidi-Galy et al, 2017). However, very little is known about
their proteomic makeup. In particular, we lack a detailed under-
standing of the extent to which precursor lesions molecularly
diverge from normal fallopian tube epithelial cells to ultimately
form morphologically distinct invasive tumors. As protein
abundance is directly related to cellular phenotype and function
(Aebersold and Mann, 2016), unraveling precancerous proteome
states can provide important insights into the earliest stages of
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HGSOC development and progression. Such knowledge is of
paramount importance for preventive medicine approaches and for
identifying protein-based drug targets that are likely to be present
in the majority of tumor clones. In addition, we lack a deeper
understanding of the co-evolving tumor microenvironment (TME),
comprising the extracellular matrix (ECM) and diverse stromal and
immune cell types, which are critically involved in all phases of
HGSOC development (Schoutrop et al, 2022). Several lines of
evidence support the crucial role of the HGSOC TME in regulating
disease progression (Nieman et al, 2011; Cheon et al, 2014) and
immunosuppression (Ghisoni et al, 2024), which dictate therapeu-
tic outcomes (Jordan et al, 2020). Our own work recently identified
a stromal signature of ovarian cancer metastasis and identified
nicotinamide N-methyltransferase (NNMT) as a promising new
drug target against cancer-associated fibroblasts (Eckert et al, 2019).

Here, we performed deep spatial proteomics of laser-
microdissected fallopian tube epithelial cells, STICs, and concur-
rent invasive carcinomas, as well as their adjacent stromal regions.
We present the first comprehensive proteomic map of ovarian
cancer precursor lesions, encompassing more than 10,000 proteins
in 36 patients. Our data revealed strong cell-of-origin proteome
signatures preserved in STICs and concurrent invasive tumors,
nominated onco-metabolic adaptations as early events during
HGSOC development, and dissected the progressive co-evolution
of the HGSOC tumor microenvironment.

Results

Histopathology-guided ultra-low input proteomics of
HGSOC precursor lesions

To study the cell-type- and compartment-resolved proteomic
progression of HGSOC precursor lesions (Fig. 1A), we selected a
cohort of 36 patients with histologically confirmed serous tubal
intraepithelial carcinoma (STIC). Precursor lesions were classified
according to the criteria proposed by Vang et al (Vang et al, 2012)
using three tissue sections stained with H&E and immunohisto-
chemically for p53 and Ki67 (Fig. 1B). Only samples for which full
agreement was reached were included in our study, and those that
received chemotherapy before resection were excluded. Most
patients were diagnosed at an advanced stage (>70% stage T3c,
Fig. 1C), characteristic of sporadic HGSOC (Bell et al, 2011), and
had a mean age at diagnosis of 63 years (Table EV1). Importantly,
all but one patient had associated invasive carcinoma (IC), which in
most cases was sampled in the adnexal region on the same
histological slide (Fig. EV1), allowing us to directly compare STICs
with concurrent ICs. We used additional serial tissue sections to
analyze homologous repair deficiency (HRD) in ICs using targeted
next-generation sequencing. The HRD status was successfully
determined in 29 samples, which classified 15 tumors (approx. half
of our cohort) as HRD-positive and 14 tumors as HRD-negative, in
excellent agreement with a previous large-scale study conducted by
TCGA (Bell et al, 2011). Of the HRD-positive samples, three
carried a BRCA1 mutation and one had a BRCA2 mutation,
classifying them as HRD-positive based on both the genomic
instability score (GIS) and the BRCA1/2 mutations. For three other
samples, the GIS could not be determined because of the low tumor
purity. Pathogenic TP53 mutations, a ubiquitous genetic feature of

HGSOC (Bell et al, 2011), were identified in all 32 sequenced
samples, with missense and nonsense mutations being the most
prevalent (Fig. 1C; Dataset EV1). Having identified a representative
cohort of HGSOC with co-occurring STIC precursor lesions and
invasive carcinoma, we next investigated their proteomic makeup.

Spatially resolved proteomes reflect disease-specific
alterations at the bulk level depth

We employed our recently developed ultra-low-input tissue
proteomics workflow (Makhmut et al, 2023), optimized for the
seamless integration of immunohistochemistry (IHC) and immu-
nofluorescence (IF) staining and ultrasensitive LC-MS-based
proteomics. This approach enables the deep profiling of FFPE
tissue microregions of only 50–100 cells in size, which is
characteristic of STICs. For laser microdissection (LMD), tissues
were mounted on PPS metal frame slides and stained with
antibodies targeting p53, Ki67, and PAX8 to guide LMD and
proteome profiling. For 35 cases, we successfully sampled at least
one STIC lesion and one adjacent normal fallopian tube epithelial
(NFTE) region. Additionally, in three patients, a second STIC could
be sampled from the contralateral fallopian tube. For most cases, a
complete set of samples was obtained, including epithelial and
stromal regions (NFTE and NFT-St), STICs and adjacent stroma
(STIC-St), and invasive carcinoma (IC) and its connected stroma
(IC-St) (Figs. 1B,C and EV1). IC regions were defined as
small tumor ‘nests’ clearly separated from the surrounding stroma
(Fig. 1B). All samples were processed in a single batch in 384-well
low-binding plates using our loss-reduced sample processing
protocol (Methods) and measured in high-sensitivity dia-PASEF
mode (Meier et al, 2020) on a timsTOF Ultra mass spectrometer.
Raw files were analyzed in DIA-NN (Demichev et al, 2020) using a
predicted spectral library, resulting in 10,223 unique protein groups
from 192 mass spectrometric injections. The median proteome
coverage for epithelial samples exceeded 7500 protein groups and
6000 for stromal samples, spanning more than five and four orders
of magnitude, respectively (Figs. 2A–C and EV2A,B). The fewer
number of identified proteins in stromal samples can be explained
by differences in protein abundance. For example, the top 50 STIC
stroma proteins contributed to 37.16% of the total protein mass,
compared to 22.96% in STIC epithelial samples (Fig. 1B and
Dataset EV2, EV3). Epithelial and stromal proteomes exhibited
high compartment specificity. For example, known HGSOC
markers, such as p53, PAX8, and MUC16 (CA125), were specific
to the epithelial samples, whereas stromal and immune markers
(i.e., collagens, vimentin, CD3E, and CD20) were characteristic of
the stromal sample groups (Figs. 2B,C and EV2A,B). Notably, our
high proteome coverage from FFPE tissue regions of only 50–100
cells in size was on par with recent bulk-level studies that required
hundreds of micrograms to milligrams of fresh frozen tissue
(Zhang et al, 2016; Qian et al, 2024). To investigate this further, we
compared our dataset with those two large-scale bulk proteomic
studies focusing on advanced HGSOC. Comparing our dataset with
that of Qian et al and Zhang et al (CPTAC), we found that 73% of
all identified proteins were common in all three studies. Interest-
ingly, our study featured the highest number of uniquely identified
protein groups (1022) (Fig. 2D), which we attributed to our laser
microdissection-based sampling strategy that results in a “biologi-
cal fractionation” effect for improved proteome coverage. Proteins
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unique to our dataset were enriched for tumorigenesis-associated
processes, such as immunity (interleukin-36 pathway), transcrip-
tion (RNA polymerase I), and chromatin-related functions (PRC2
chromatin regulator complex, Fig. 2E). The biological richness of

our proteomics data was also reflected in the hallmark gene sets,
which showed a median pathway coverage of 73% (Fig. 2F). For
example, pathways such as fatty acid metabolism (86%), DNA
repair (88%) and oxidative phosphorylation (91%) were almost

Figure 1. Histology-guided ultra-low input proteomics of HGSOC precursor lesions.

(A) Pathology-guided ultra-low input proteomics workflow for studying ovarian cancer precursor lesions at the global proteome level. Guided by immunohistochemistry
(IHC), healthy and diseased epithelial and stromal regions were laser-microdissected and analyzed using ultrasensitive LC-MS-based proteomics. (B) Representative
immunohistochemical staining (Ki67 and p53) of normal fallopian tube epithelium (NFTE), serous tubal intraepithelial carcinoma (STIC), and invasive carcinoma (IC) in
the epithelial and stromal compartments. Scale bars: 100X: 100 μm, 400X: 20 μm. (C) Patient cohort (n= 36) with clinicopathological and molecular characteristics. Panel
(A) was created with BioRender.com.
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completely covered by the quantified proteins. Principal compo-
nent analysis (PCA) of all 192 proteomes clearly delineated disease-
associated changes in the epithelial and stromal compartments,
separating healthy control regions from the STIC precursor and
invasive regions (Fig. 2G). Principal component 1 (PC1, 23.3% total
variability) separated epithelial cells from stromal proteomes (Fig.

2H), whereas PC2 displayed a transition from healthy to invasive
regions in both compartments (7.5% total variability; Figs.
2G and EV2C). Dysregulated processes along the progression from
healthy to invasive regions included known HGSOC-associated
processes, such as increased DNA replication, DNA repair, and
inflammation signatures (Fig. EV2C). Known disease drivers and
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functional markers were upregulated with disease progression. For
example, STICs and ICs were characterized by significantly higher
Ki67 levels, reflecting their high proliferative state, and strongly
elevated p53 levels compared to NFTE (Fig. 2I, p < 0.001).
Interestingly, the strong increase in p53 protein levels was not
only specific to tumors with stabilizing missense mutations
(compared to p53 null tumors, Fig. EV2D), but also marked the
only significantly expressed protein between these two sample
groups (Fig. EV2D). The stromal compartment featured strong
extracellular matrix and cell-type-related changes associated with
disease progression. For example, the cancer-associated fibroblast
regulator NNMT (Eckert et al, 2019), CD163, a marker of tumor-
associated macrophages (TAMs) (Lecker et al, 2021), and
oncogenic proteoglycan VCAN (Cheon et al, 2014) were signifi-
cantly upregulated from the NFT stroma to the invasive stroma
(Fig. 2I). Taken together, our deep and compartment-resolved
proteomic dataset provides a rich resource for studying the early
steps of HGSOC development and progression by incorporating
tissue-matched healthy control regions, STIC precursor lesions,
and IC.

Precursor lesions feature histological markers and
cell-of-origin signatures

Although there is accumulating evidence that HGSOC originates
from fallopian tube epithelial cells (Perets et al, 2013; Kim et al,
2012), a global and cell-type-resolved proteomic comparison of
these putative precursor cells with concurrent STICs and ICs
remains elusive. Furthermore, little is known about the proteomic
landscape and heterogeneity of STICs and their molecular deviation
from NFTE to ultimately form invasive tumors. To address this, we
isolated small stretches of NFTE guided by PAX8 IHC and isolated
concurrent STIC regions and IC ‘nests’ of the same area (total
50,000 µm3). Principal component analysis revealed strong pro-
teome differences between the three sample groups, with NFTE
clearly grouping apart from the disease states (Fig. 3A). Interest-
ingly, four NFTE samples grouped much closer to STICs and ICs,
indicating that they likely did not represent NFTE (here referred to
as atypical). Proteins upregulated in these samples were strongly
enriched for cancer-associated pathways, such as higher DNA
replication, cell cycle, and DNA double-strand break repair
signatures (Fig. 3B,D). The most upregulated protein was the cell
cycle regulator CDKN2A (p16/INK4A, Dataset EV4), an estab-
lished histological marker for the diagnosis of STIC with a p53 null

phenotype (Novak et al, 2015). Informed by proteomics, we
therefore re-stained these tissues against p16 and evaluated whether
they were normal-like or indeed malignant lesions. Indeed, we
observed strong and uniform p16 staining (Fig. 3C) and a
morphology suspicious for an STIC for two of them, leading to
the re-diagnosis of two of these samples as serous tubal
intraepithelial lesions (STIL) (Kuhn et al, 2012; Vang and Shih,
2022) and STIC for the other two. The absence of p53 positivity
(p53 null phenotype) and only marginal morphological changes in
the epithelium potentially led to their misclassification. We also
noticed that two samples initially labeled as STIC grouped closer to
the NFTE. Reanalysis of these samples revealed that one was the
only STIC sample with no associated IC, likely representing an
earlier disease state captured by proteomics. The second one
represented an STIC with a stabilizing p53 missense mutation but a
p53 null phenotype in the invasive component. Pairwise compar-
ison between the four atypical fallopian tube lesions and the NFTE
also revealed the presence of ciliated cell signatures in the NFTE
samples (Fig. 3D; Dataset EV5), potentially due to the co-isolation
of ciliated cells. To investigate this further, we integrated data from
a recent single-cell transcriptomic atlas of the healthy human
fallopian tube (Dinh et al, 2021) to assess which cell type and cell
states were present in our dataset. This resulted in a binary
clustering, marking roughly half of our NFTE samples as secretory
cell-enriched and the other half as more ciliated (Fig. EV3B; Table
EV2). As expected, the cell type marker PAX8 (secretory cells),
expressed in 96% of HGSOCs (Nonaka et al, 2008), and the
transcription factor FOXJ1 (ciliated cells) were among the most
significantly regulated proteins in these two clusters (Fig. 3E;
Dataset EV6). We therefore next asked whether these two distinct
cell-type signatures present in our dataset could help to unmask
cell-of-origin signatures preserved in STICs and invasive tumors.
We found that the secretory-like NFTE cluster grouped closely with
all malignant stages (STIC and IC) and was clearly apart from the
ciliated-like cluster (Fig. 3F). Co-expressed markers in the
carcinoma/secretory NFTE group included known histological
markers, such as PAX8 and STMN1, a proposed ancillary marker
for detecting STIC lesions with a p53 null phenotype (Fig. 3G,
Novak et al, 2015). Other proteins with similar cell-type specific
and disease-associated expression included DHCR24, an oxidor-
eductase important in cholesterol biosynthesis (Waterham et al,
2001), the collagen-specific chaperone SERPINH1, the calcium-
binding protein S100A4, as well as the basal cell adhesion protein
BCAM, and 27 other proteins with similar abundance profiles (Figs.

Figure 2. Spatially resolved proteomes reflect disease-specific alterations at bulk level depth.

(A) Boxplots showing the number of proteins identified in the epithelial and stromal sample groups. Boxplots define the range of the data (whiskers), 25th and 75th
percentiles (box), and medians (solid line). Number of samples per group: NFTE – 35, STIC – 35, IC – 31, NFT stroma – 31, STIC stroma – 30, IC stroma–29. (B, C) Dynamic
range plots of median protein abundance for epithelial (B) and stromal (C) STIC samples. Known ovarian cancer, cell type, and stromal markers are highlighted. Proteins
with at least 50% valid values for each group are shown. (D) Upset plot comparing common and unique proteins identified in this study and in Qian et al (Qian et al, 2024)
and Zhang et al (Zhang et al, 2016) bulk proteome datasets. (E) Overrepresented pathways (Reactome) for the 1022 proteins uniquely identified in this study
(Benjamini–Hochberg FDR <0.05). (F) Median pathway coverage of hallmark gene sets based on the 10,223 proteins identified in this study. (G) Principal component
analysis (PCA) of all 191 samples based on 8590 protein groups. (H) Pathway enrichment analysis (gene ontology terms) for PC1, separating all epithelial and stromal
samples. Representative terms are shown with a Benjamini–Hochberg FDR <0.05. (I) Boxplots of the relative protein levels (log2) of the selected epithelial and stromal
HGSOC markers. Boxplots define the range of the data (whiskers), 25th and 75th percentiles (box), and medians (solid line). Point colors reflect protein levels and are for
visual guidance, where brighter colors indicate higher protein level and darker colors indicate lower protein levels. Asterisks indicate two-sided t-test p values (p > 0.05,
NS; p < 0.05, *; p < 0.01, **; p < 0.001, ***; p < 0.0001, ****. NFT-St NFT stroma, STIC-St STIC stroma, IC-St invasive stroma). Number of samples per group: NFTE – 35,
STIC – 35, IC – 31, NFT stroma – 31, STIC stroma – 30, IC stroma–29. Exact p values are provided in the Appendix Table S2.
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3G and EV3D). To further validate that STICs are globally related
to secretory cells, we performed additional immunofluorescence
whole-slide imaging of six tissue sections and precisely isolated
PAX8+ and PAX8- cells for direct proteomic comparison (Fig.
3H,I and EV3E–G). PAX8+ secretory cell proteomes showed
strong overlapping signatures with STICs and clustered apart from
all PAX8- epithelial samples (Figs. 3J,K and EV3H). Secretory cell-
specific signatures were strongly enriched in the STIC/PAX8+
cluster with high p16, p53, and PAX8 protein levels and pathways
related to cell cycle, unfolded protein response and DNA repair. In
contrast, PAX8- cells expressed high levels of ciliated cell-specific
cilium and intra-flagellar transport proteins, as well as FOXJ1 (Figs.
3K and EV3F–I; Dataset EV7–10). The NFTE cluster, which
comprised PAX8+ and PAX8- cells, was enriched for previously
identified transition signatures between secretory and ciliated cells
(unclassified clusters 2 and 3) (Dinh et al, 2021), consistent with the
expected tissue composition and possibly capturing the previously
proposed secretory-to-ciliated cell differentiation programs in the
fallopian tube epithelium. In summary, this cell-type resolved
proteomic analysis revealed strong cell-of-origin signatures present
in STIC and concurrent carcinomas, supporting the view that
HGSOC originates in secretory cells of the distal FT. Moreover, our
analysis highlighted several new proteins as potential ancillary
markers for the detection of p53 null phenotype STIL and STIC
lesions, independent of HRD and TP53 mutation status.

Refined molecular subtyping from spatial
proteomics data

Next, we compared all STICs and ICs. Similar to principal
component analysis (PCA) (Fig. 3A), unsupervised hierarchical
clustering of the 2000 most variably expressed proteins in our
dataset confirmed that STICs and ICs were highly related, resulting
in two distinct clusters, irrespective of sample type (STIC or IC)
(Figs. 4A,B and S4A). Clustering was also independent of TP53
mutation type, histological stage, and HRD status, but showed an
association of cluster 2 samples with higher patient age and shorter
overall survival (Figs. 4A and EV4B; Appendix Fig. S1). Nearly all
(29/30) patient-matched STIC-IC pairs clustered together (Fig.
4A,B), underlining the strong patient-specific proteome profiles.

The high similarity between tissue-matched STICs and ICs was also
reflected in their higher global proteome correlation (median
Pearson r = 0.94, Fig. EV4C) compared to interpatient comparisons
(median Pearson r = 0.91). Interestingly, bilateral STICs obtained
from both ovaries of the same patient featured exceptionally high
proteome correlations (Pearson r = 0.97), despite being spatially
unrelated. While this pointed towards a possible clonal relatedness
of these two premalignant lesions, additional genetic analyses are
needed to confirm or reject this hypothesis.

Cluster 1 tumors were primarily enriched for immune-
associated processes (e.g., interferon response, TNFα signaling,
antigen processing, and presentation), whereas cluster 2 samples
showed elevated levels of cell cycle, EMT, and DNA repair-
associated proteins (Fig. 4C,D; Dataset EV11–EV12). To integrate
our findings with previously identified HGSOC molecular subtypes
(Zhang et al, 2016; Bell et al, 2011), we employed the consensusOV
classifier (Chen et al, 2018) and assessed whether known subtypes
were present in our two main clusters. 36 proteomes could be
assigned to one subtype based on a margin score of greater than 0.2
(difference between the probabilities of the most-probable and
second most-probable subtype, mean score = 0.54). Notably, most
cluster 1 samples (12 of 17, 71%) were classified as the
‘immunoreactive’ (IMR) subtype, whereas cluster two samples
were classified as “proliferative” (PRO) tumors, independent of
HRD status (Fig. 4E). Only a few samples were classified as
mesenchymal (n = 4) or differentiated (n = 5). We mainly attribute
this discrepancy to our compartment-resolved strategy that
contains minimal stromal admixing, thereby enabling more
accurate tumor subtyping. Using single-cell RNA sequencing,
previous studies have contextualized HGSOC bulk subtypes and
identified “differentiated” (DIF) and PRO subtypes as tumor cell-
specific signatures (Geistlinger et al, 2021). In contrast, stromal and
immune cells are associated with the “mesenchymal” (MES) and
IMR subtypes, respectively (Izar et al, 2020). The study by
Geistlinger et al also revealed that the DIF subtype is associated
with the strongest lymphocyte infiltration, letting us speculate that
cluster 1 tumors could likely represent DIF tumors whose
proteomes were strongly masked by pronounced intra-tumoral
immune infiltration. Indeed, not only was the second-best subtype
assignment for IMR tumors the DIF subtype (Fig. EV4G), but cyclic

Figure 3. Precursor lesions feature histological markers and cell-of-origin signatures.

(A) Principal component analysis (PCA) of 101 NFTE, STIC, and invasive carcinoma proteomes based on ANOVA-significant 3564 proteins. (B) Volcano plot of pairwise
proteomic comparison between atypical (light-pink, four samples) and NFTE samples (light blue, 31 samples). Markers with the highest fold change are highlighted
(two-sided t-test, permutation-based FDR <0.05). (C) Representative immunohistochemical staining of CDKN2A (p16) in one atypical fallopian tube epithelial region.
(D) Pathway enrichment analysis based on the t-test difference between premalignant and normal fallopian tube epithelial samples. Selected significantly enriched
pathways are shown for pathways higher in atypical samples (light-pink) and in NFTE samples (light blue) (Benjamin–Hochberg FDR <0.05). (E) Volcano plot of the
pairwise proteomic comparison between ciliated-like epithelial (dark pink, 20 samples) and secretory-like epithelial (dark blue, 15 samples) samples. Known secretory
(e.g., PAX8) and ciliated (e.g., FOXJ1) markers are highlighted (two-sided t-test, permutation-based FDR <0.05). (F) Principal component analysis of all epithelial samples
based on 632 proteins overlapping with cell type-specific markers identified by single-cell transcriptomics(Dinh et al, 2021). (G) Boxplots of STMN1, DHCR24, SERPINH1,
BCAM, PAX8, FOXJ1, and CFAP126 relative protein levels (log2) in STIC (yellow, 35 samples), invasive cancer (purple, 31 samples), secretory NFTE cluster (dark blue,
15 samples), and ciliated NFTE cluster (dark pink, 20 samples) samples. Boxplots define the range of the data (whiskers), 25th and 75th percentiles (box), and medians
(solid line). (H) Immunofluorescence image of one representative HGSOC tissue section stained for PAX8, Ki67, panCK, and DAPI (DNA). Yellow boxes highlight regions
of invasive carcinoma, STIC precursor lesion, and normal fallopian tube ciliated and secretory cells, which were sampled for proteomic profiling. (I) Magnified tissue
regions from immunofluorescence images in panel (H). Arrows show exemplary epithelial regions of the PAX8+ and PAX8- regions used for proteomic profiling. Scale
bar= 20 µm. (J) Unsupervised hierarchical clustering of all ANOVA-significant proteins between STICs, secretory, and ciliated fallopian tube epithelial cells obtained from
six patients. Relative protein levels (z-scores) are shown. Three distinct clusters, C1, C2, and C3, are highlighted. PAX8+ secretory cells clustered together with STICs and
were separated from ciliated PAX8−samples. (K) Pathway enrichment analysis (Reactome, Hallmark, WikiPathways, and cell type signatures from Dinh et al (Dinh et al,
2021)) showed significantly overrepresented pathways for clusters C1, C2, and C3 with a Benjamini–Hochberg FDR <0.05.
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immunofluorescence imaging (CyCIF) also confirmed strong
immune cell infiltration in this subgroup (CD8+ cytotoxic
T cells, CD4+ helper T cells, FOXP3+ regulatory T cells,
CD163+M2-like TAMs, and CD11c+ dendritic cells) (Fig. 4F,G;
Appendix Figs. S4, S5). Conversely, cluster 2 tumors showed
negligible immune infiltration based on proteomics and CyCIF but
had a larger fraction of Ki67+ tumor cells, in line with their
proliferative nature (Fig. 4H; Appendix Figs. S4, S5).

We next addressed whether STICs and ICs featured similar
molecular subtypes and whether the progression from STIC to IC
was associated with a change in molecular subtype identity. Ten
matching STIC-IC pairs could be clearly assigned to one of the four
subtypes. We found a similar subtype frequency at both stages (Fig.
EV4F), suggesting a similar level of phenotypic and proteomic
heterogeneity. For the majority of paired cases (70%), the STIC and
IC subtypes were coherent (Fig. EV4H), underlining the absence of
a distinct epithelial STIC proteotype distinguishable from ICs. This
finding was supported by the global proteome comparison, which
revealed only a few differentially regulated proteins (9 out of 6744)
between all STIC and IC samples (Fig. EV4I) and exceptionally
high proteome correlations of patient-matched STIC-IC pairs (Fig.
EV4C).

Mapping progressive ECM remodeling reveals stromal
drug targets

We next focused our attention on the tumor microenvironment
(TME). The TME comprises various stromal and immune cell types
and the extracellular matrix (ECM) and is critically involved in all
phases of tumorigenesis (Pickup et al, 2014; Winkler et al, 2020;
Prakash and Shaked, 2024). As the TME is increasingly recognized
as a promising therapeutic target across cancer entities (Bejarano
et al, 2021), exploratory proteomics data comparing normal,
precursor, and invasive stromal tissue regions offer a particularly
important biomedical resource. While the broad dynamic range of
protein abundance in the ECM generally poses a significant
obstacle for deep proteome profiling (Naba, 2023), our analysis still
yielded more than 6,000 proteins for each stromal microregion,
distributed over four orders of magnitude (Fig. 2A,B). Principal
component analysis revealed a disease gradient from NFT stroma
over STIC stroma (STIC-St) to invasive stroma (IC-St) (Fig. 5A).
Interestingly, in contrast to our epithelial findings that showed that
STICs and ICs were proteomically highly related and distinct from
the NFTE, STIC-St proteomes showed both normal-like and
malignant signatures. This observation was supported by unsu-
pervised hierarchical clustering of the 2888 differentially abundant

proteins, representing roughly one-third of our analyzed stromal
proteome (Fig. 5B; Dataset EV13). We found that stromal
clustering could generally not be explained by the two tumor
clusters (Fig. 5B), emphasizing the importance of compartment and
cell-type-resolved analyses to study spatially-defined changes
during disease progression. Nevertheless, immune-related and
inflammatory pathways were clearly higher in the stroma of
immune-enriched cluster 1 tumors (Appendix Fig. S2). The
invasive stroma cluster showed high inflammation, hypoxia and
VEGF signaling, accompanied by strong lymphocyte and myeloid
cell signatures (e.g., T-cell, B-cell, macrophage, and NK-cell).
Conversely, the normal-like cluster, which included half of the
STIC stroma group, was enriched for fibroblast and endothelial cell
signatures, as well as core ECM functions, indicating a structurally
different and more intact ECM. This prompted us to more
systematically analyze the quantitative ECM changes during
HGSOC development and to this end filtered our data for all
quantified matrisome-associated proteins, as recently cataloged
(Renner et al, 2022). From the total of 467 matrisome-related
proteins in our dataset, we identified 95 (20%) as differentially
abundant between NFT and invasive stroma (Figs. 5C and EV5A;
Dataset EV14). Proteins with the highest significance included
known ECM degraders, such as cathepsins (CTSA, CTSC, CTSS,
and CTSZ), matrix metalloproteinases (MMP11 and MMP14), pro-
inflammatory cytokines (TGFβ1, TGFβ2, IL16, and IL18), and
insulin-like growth factor-binding proteins (IGFBP2, IGFBP7). We
identified strong structural ECM changes, as evident from the
downregulation of multiple collagen isoforms (e.g., collagen types
4, 6, 11, and 21) during HGSOC progression (Fig. 5D,E). Our
collagen isoform-resolved data also enabled us to quantify a
common decrease in the COL3/COL1 ratio in 27 of 32 tissues (84%
of the cohort), a marker for fibrosis, ECM stiffening, and tumor
progression (Brisson et al, 2023; Sinha et al, 2022) (Table EV3). An
exception to the general decrease in collagen abundance with
disease progression were collagens 8A1, 8A2, and 10A1, which
showed higher levels in the invasive stroma (Fig. 5D). Notably,
these three collagen isoforms were previously linked to myofibro-
blasts (myCAFs) in pancreatic cancer and were associated with
unfavorable clinical outcomes (Thorlacius-Ussing et al, 2024). This
underlines the central role of CAFs as key drivers for oncogenic
ECM remodeling in our cohort, which was further supported by a
consistent upregulation of several other CAF markers, such as
NNMT, TNC and FAP (Dataset EV15). We also identified other
collagen isoforms, such as COL9A3, COL9A1, COL23A1, and
COL13A1, not previously reported in HGSOC and whose specific
functions remain to be elucidated.

Figure 4. Refined molecular subtyping from spatial proteomics data.

(A) Unsupervised hierarchical clustering of all 64 STIC and IC samples based on the 2000 most variable proteins (highest median absolute deviation), showing two
clusters. Relative protein levels (z-score) are shown with clinicopathological information as color bars. (B) Cluster dendrogram related to panel (A). Selected cluster 1 and
2 patients shown in panels 4F-H are highlighted in bold. (C) Volcano plot of pairwise proteomic comparison between cluster 1 (turquoise, 28 samples) and cluster 2 (dark
blue, 36 samples) samples. Proteins with the highest fold change are highlighted (two-sided Student’s t-test, false discovery rate [FDR] <0.05). (D) Pathway enrichment
analysis (WikiPathways, Hallmarks) based on the t-test difference between cluster 1 and cluster 2 epithelial samples. Selected pathways with a Benjamin–Hochberg FDR
<0.05 are shown. (E) Sankey plot illustrating the distribution of STIC & IC samples across consensusOV molecular subtypes, cluster 1 or cluster 2, and HRD statuses. The
width of each flow corresponds to the proportion of the samples within each category, highlighting the relationship between molecular subtype, cluster assignment, and
HRD status. (F–H) CyCIF of one representative immune-enriched cluster 1 tumor and STIC (patient W31V, (F) – tumor, (G) - STIC) and one immune-deserted cluster 2
tumor and STIC (patient W30FW30D, (H), top – tumor, bottom - STIC) confirms pronounced differences in Ki67+ tumor cells and intra-tumoral immune cell infiltration.
Scale bar= 50 µm (STIC), 200 µm (tumor).
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To prioritize protein drug targets significantly upregulated in the
invasive stroma, we employed support vector machine (SVM)
classification combined with feature ranking and retrieved a 100-
protein stromal signature that robustly (5% error rate) separated all
NFT and malignant stromal proteomes (Fig. 5E,F). Notably,
protein levels of the STIC stroma samples were between the NFT
and invasive stroma levels, indicating a gradual decrease or increase
of the selected proteins (Fig. EV5B,C). Our signature included
many known proteins of the desmoplastic stroma previously linked
to poor patient outcome (Cheon et al, 2014) (e.g., VCAN, THBS2,
and TNC), pro-inflammatory cytokines (IL18), immune response
and complement system modulators (e.g., F13A1, FCGR1A, and
FCER1G) and markers of tumor promoting cell-types (e.g., NNMT
for CAFs and CD163 and MSR1 for M2-polarized TAMs)(Eckert
et al, 2019; Gudgeon et al, 2022; Lecker et al, 2021) (Figs.
5G and S5B,C; Dataset EV16). Notably, eight proteins upregulated
in the invasive stroma (NNMT, FCGR1A, FCER1G, TYMP, F13A1,
DCK, CASP3, and SYK) represented FDA-approved drug targets
outside of ovarian cancer (Fig. 5I,J), emphasizing their high
relevance for future preclinical investigations. Integration with
publicly available single-cell sequencing data revealed that these
proteins were mostly macrophage and monocyte-associated with
malignant features (TYMP, FCER1G, FCGR1A, SYK, and F13A1),
except NNMT, which was highest in cancer-associated fibroblasts
(Fig. 5J; Appendix Fig. S3; Table EV4).

Identification of early dysregulated pathways of
therapeutic relevance

To identify commonly dysregulated pathways during early HGSOC
development, we compared all NFTE to STICs. Such data are of
high translational importance, for example, for the development of
new disease prevention and therapeutic strategies (Zhang et al,
2024). To this end, we compared all secretory-like NFTE samples
with their corresponding STICs. Overall, we observed pronounced
proteomic differences with 615 differentially abundant protein
groups (Fig. 6A; Dataset EV17), in stark contrast to the STIC versus
IC comparison that only yielded nine differentially expressed
proteins (Fig. EV4I). Proteins of highest significance and fold
change included DNA replication proteins (e.g., MCM2, 3, 4, 5, and
7), the cell cycle regulator CDKN2A (p16-INK4A), the microtubule

and cell cycle regulator STMN1, and the insulin growth factor-
binding protein IGFBP2, which was previously reported to be
upregulated in STICs through DNA hypomethylation (Wang et al,
2022). Notably, we also discovered several dysregulated metabolic
pathways (Figs. 6B,C and EV6A; Dataset EV18). For instance,
protein levels related to prostaglandin biosynthesis were higher in
NFTE than in STIC and IC (Fig. 6C), reflecting the important
physiological role of the fallopian tube in hormone regulation (Paik
et al, 2012), and the loss of epithelial cell function during
carcinogenesis. Conversely, the glycolysis and cholesterol biosynth-
esis/mevalonate pathways were prominently elevated in carcino-
mas, coinciding with a decrease in oxidative phosphorylation
(OxPhos). Our data further showed that these metabolic pathway
changes were independent of the molecular subtype (Figs.
6D and EV6B; Dataset EV19), suggesting that metabolic adaptation
to a glycolytic and cholesterol-dependent state is a common and
likely early event during HGSOC development. We found several
key enzymes of the cholesterol biosynthesis pathway were
upregulated in STICs and ICs compared to NFTE (Fig. 6E). Most
prominently, the enzymes dehydrocholesterol-reductase 24
(DHCR24) and 7 (DHCR7) were upregulated by 5.2 and 3.3-fold,
respectively, which catalyze the final steps in cholesterol biosynth-
esis. Integrating a large-scale pan-cancer study (Ben-David et al,
2018; Gao et al, 2013) comparing 1739 cell lines of different tumor
origins confirmed high DHCR24 and DHCR7 mRNA levels in
HGSOC (Fig. EV6C,D). Furthermore, we orthogonally validated
the upregulation of DHCR7 and DHCR24 in STICs and invasive
regions versus NFTE based on IHC in 36 samples (Fig. 6F,G).

Cholesterol biosynthesis inhibition sensitizes ovarian
cancer cells to carboplatin

Next, we asked whether blocking the cholesterol biosynthesis
pathway via dehydrocholesterol-reductases could offer a novel and
potent approach for HGSOC treatment. To test this, we selected
four ovarian cancer cell lines (OAW-42, OVCAR-8, ES-2, and
EFO-21) of high molecular similarity to HGSOC tumors (Sinha
et al, 2021) based on mutation, copy number and gene expression
profiles for treatment with the DHCR7 inhibitor AY9944 (Datasets
EV20 and 21). While OVCAR-8, EFO-21 and ES-2 were TP53
mutant lines, we also chose the TP53 wildtype OAW-42 model as

Figure 5. Mapping progressive ECM remodeling reveals stromal drug targets.

(A) PCA of all 90 stromal proteomes based on 6363 protein groups. PC1 and PC2 accounted for 40.64% of the total data variability. (B) Unsupervised hierarchical
clustering of all stromal proteomes based on 2888 ANOVA-significant proteins (permutation-based FDR <0.05). Relative protein levels (z-score) are shown with
clinicopathological and tumor subtype information as color bars. A subset of enriched pathways (WikiPathways, cell-type signatures obtained from Dinh et al (Dinh et al,
2021)) for the two main row clusters marked in purple and green is shown. (C) Pairwise proteomic comparison between invasive (28 samples) and NFT stroma
(30 samples) (two-sided t-test) for all proteins. Proteins with a permutation-based FDR <0.05 were considered significant. Orange: ECM regulators; green: secreted
factors, pink: ECM glycoproteins; blue: core matrisome; purple: proteoglycans. (D) Pairwise proteomic comparison between invasive (28 samples) and NFT stroma
(30 samples) (two-sided t-test) for matrisome-associated proteins. Proteins with a permutation-based FDR <0.05 were considered significant. Orange: ECM regulators;
green: secreted factors, pink: ECM glycoproteins; blue: core matrisome; purple: proteoglycans. (E) Relative protein levels (z-score) of all quantified collagens across NFT
stroma (light blue), STIC stroma (yellow), and invasive stroma (purple) samples. (F) Support vector machine-based identification of top-ranked protein features
distinguishing NFT stroma from IC stroma. (G) Boxplots of the relative protein levels (z-score) of the top 100 proteins distinguishing NFT from invasive stroma. Boxplots
define the range of the data (whiskers), 25th and 75th percentiles (box), and medians (solid line). Left: Proteins that were higher in the NFT stroma. Right: Proteins that
were higher in the IC stroma. NFT stroma – 31 samples, STIC stroma – 30 samples, IC stroma – 29 samples. (H) Overrepresented pathways (FDR <0.05) of the top 100
proteins compared to all proteins in the dataset. (I) Boxplots of relative protein levels (z-score) of FDA-approved drug targets. Boxplots define the range of the data
(whiskers), 25th and 75th percentiles (box), and medians (solid line). NFT stroma – 31 samples, STIC stroma – 30 samples, IC stroma – 29 samples. (J) Dotplot showing
RNA expression of NNMT, FCGR1A, TYMP, F13A1, DCK, CASP3, and SYK across different cell types in HGSOC and non-malignant ovarian samples. Dot size represents the
percentage of cells expressing each marker, and color indicates expression level (gray to red for HGSOC, gray to blue for non-malignant samples).
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previous studies revealed a causal link between p53 deficiency and
elevated levels of the mevalonate/cholesterol synthesis pathway
(Freed-Pastor et al, 2012; Moon et al, 2018). For comparison to
DHCR7 inhibition, we included the clinical cholesterol inhibitor
simvastatin and four doses of carboplatin as the main chemother-
apeutic drug for HGSOC treatment (Fig. 7A). DHCR7 inhibition
resulted in a strong reduction in cell viability in all four cell lines,
but with notable differences in the approximated IC-50 values. ES-2
(IC-50 = 2.44 µM) and OVCAR-8 (IC-50 = 6.72 µM) were most
sensitive to DHCR7 inhibition, consistent with their responses to
simvastatin (Figs. 7B and EV7). EFO-21 responded to the DHCR7
inhibitor (IC-50 = 7.25 µM), but was more resistant to simvastatin
(IC-50 >20 µM). OAW-42 cells instead required 2–3-fold higher
doses of AY9944 (IC-50 = 12 µM) compared to the three TP53
mutant lines. While carboplatin treatment alone resulted in variable
responses consistent with the expected high levels of chemoresis-
tance, we observed significant drug synergy in all cell lines except
OAW-42 (Fig. 7C; Appendix Table S1). Notably, in accordance
with the DHCR7 responses, drug synergy was also strongest in
OVCAR-8 and EFO-21, the models most resistant to carboplatin.
Together, our patient and in vitro data support the notion that
blocking the cholesterol biosynthesis pathway, possibly through
dehydrocholesterol-reductase inhibition, could be a promising and
previously hidden avenue for ovarian cancer treatment.

Discussion

Despite the common view that STICs represent the precursor lesion
for the majority of HGSOCs, their global proteomic landscape and
relationship with NFTE and concurrent invasive tumors have
remained largely unaddressed. Building on our previously devel-
oped frameworks for deep spatial proteomics of ultra-low-input
tissue (Makhmut et al, 2023) and deep visual proteomics (Mund
et al, 2022), we performed a comprehensive proteomic analysis of
HGSOC precursor lesions, quantifying over 10,000 proteins. Such
deep proteome coverage was previously obtained from hundreds of
micrograms to milligrams of freshly frozen tissue (Zhang et al,
2016; Qian et al, 2024). Closely guided by histopathology and
whole-slide imaging, this approach enabled us to dissect early
changes in the disease-related proteome and to unravel the

proteomic heterogeneity of STICs. We quantitatively compared
the proteome of STICs and adjacent NFTE, the assumed cell of
origin for HGSOC, and revealed hundreds of disease-related
protein level changes. Compared to traditional bulk approaches
using tumor-adjacent control tissue for comparison, mostly
comprised of stromal cells and ECM, our cell-type resolved
approach is more accurate in identifying disease-specific alterations
and functional drivers. We provide strong support for the secretory
fallopian tube epithelial cell as the cell-of-origin for our analyzed
tumors. Our paired proteome analysis of STICs and adjacent
healthy fallopian tube epithelial cells revealed that STICs and
PAX8+ epithelial cells were not only globally highly related,
compared to PAX8- epithelial cells, but also co-expressed well-
established histological HGSOC and secretory cell markers (e.g.,
PAX8 and STMN1), as well as several newly identified ones (e.g.,
DHCR24, BCAM, and SERPINH1). These findings are in line with
recent single-cell sequencing data (Dinh et al, 2021; Hu et al, 2020)
as well as HGSOC mouse models (Labidi-Galy et al, 2017; Kim
et al, 2012), supporting the view that the majority of HGSOC
originates from secretory cells of the distal fallopian tube.

Surprisingly, we uncovered four atypical tissue regions that were
missed by histopathological examination, likely due to p53 staining
negativity (p53 null phenotype) and ambiguous Ki67 status.
However, our deep proteome data clearly marked these regions as
atypical with a strong upregulation of DNA replication, DNA
damage response, and cell cycle proteins, including CDKN2A
(p16), which is an additional marker used to diagnose STILs and
STICs (Novak et al, 2015). Morphological and immunohistochem-
ical reevaluation by p16 confirmed our suspicion and allowed us to
reclassify them as precancerous lesions. In accordance with the
current pathological nomenclature, these regions were STILs.
Unbiased spatial proteomics data hence show great potential for
companion diagnostics, especially in cases difficult to diagnose by
morphology and IHC alone, or when lacking disease-specific
histological markers

Many of the identified proteins upregulated in STICs and
invasive carcinoma have known roles in cell cycle regulation, DNA
metabolism, and oncogenic signaling, characteristic of this highly
proliferative and genetically unstable cancer. We found that
metabolic reprogramming is a common and likely early event in
HGSOC pathogenesis, identifying several onco-metabolic changes

Figure 6. Identification of commonly dysregulated pathways of therapeutic relevance.

(A) Volcano plot of the pairwise proteomic comparison between STIC (yellow) and secretory cell-enriched NFTE samples (light blue). Proteins with the highest fold
change were highlighted (two-sided t-test, permutation-based FDR <0.05). (B) Pathway enrichment analysis (WikiPathways, Benjamin–Hochberg FDR <0.05) revealed
processes upregulated in STICs. (C) Boxplots of relative protein levels (group average, z-score) for selected pathways. Boxplots define the range of the data (whiskers),
25th and 75th percentiles (box), and medians (solid line). OxPhos: oxidative phosphorylation. Asterisks indicate two-sided t-test p values (p > 0.05, NS; p < 0.05, *;
p < 0.01, **; p < 0.001, ***. Number of samples per group: NFTE – 35, STIC – 35, IC – 31. Exact p values are provided in the Appendix Table S3. (D) Two-dimensional ANOVA
showing pathways significantly affected by disease progression (x-axis) and molecular subtype (y-axis). Note that metabolism-related terms such as the mevalonate and
cholesterol biosynthesis pathways are upregulated in carcinoma, independent of molecular subtype. (E) Ranked protein fold changes (STIC and IC vs. NFTE, log2) of all
quantified cholesterol biosynthesis/metabolism pathway proteins. Most proteins show higher expression in STICs and ICs. Proteins significantly changed in both
comparisons (STIC vs. NFTE and IC vs. NFTE, FDR <0.05) are highlighted with asterisks. (F) Representative immunohistochemistry (IHC) staining for DHCR24 (upper
panel: 1 – serous tubal intraepithelial carcinoma [STIC] and normal fallopian tube epithelium [NFTE]; 2 – invasive carcinoma) and DHCR7 (lower panel: 3 – STIC and NFTE;
4 – invasive carcinoma) at 20× magnification (scale bar = 20 µm). Images illustrate staining patterns across NFTE, STIC, and invasive carcinoma regions in 33 patients
(36 samples, three patients displayed bilateral STIC and IC). Wilcoxon matched pairs signed rank test: ns (not significant), ∗∗∗∗p < 0.0001. (G) Violin plots showing
distribution of DHCR24 and DHCR7 immunohistochemical H-scores in NFTE, STIC, and invasive carcinoma regions in 33 patients (36 samples, three patients displayed
bilateral STIC and IC). H-scores were determined by assessing the percentage of cells at each staining intensity (0 = none, 1 = weak, 2 = moderate, 3 = strong) and
summing the products of each percentage multiplied by its corresponding intensity score, giving a total score ranging from 0 to 300. A paired Wilcoxon signed rank test
was used to compare the median between the groups (NFTE, STICs, and ICs). Exact p values are provided in the Appendix Table S4.
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for therapeutic intervention and possibly early detection. For
example, our data revealed that oxidative glucose metabolism
gradually decreases from healthy fallopian tube epithelial cells, over
STICs, to invasive tumors, accompanied by upregulated glycolysis
and lipid metabolism (cholesterol biosynthesis/mevalonate path-
ways). While the metabolic switch towards a glycolytic state is a
well-known characteristic of many cancers (Hanahan and

Weinberg, 2011), upregulation of cholesterol biosynthesis was
highly intriguing. Studies in breast and liver cancer showed a link
between TP53 mutant tumors and increased cholesterol biosynth-
esis (Freed-Pastor et al, 2012; Moon et al, 2018), likely explaining
this signature’s dominance in our TP53 mutant cohort. Impor-
tantly, this metabolic phenotype was independent of molecular
subtype, supporting the view that blocking cholesterol biosynthesis

Figure 7. Cholesterol biosynthesis inhibition sensitizes ovarian cancer cells to carboplatin.

(A) Experimental workflow describing cholesterol biosynthesis inhibitor (AY9944 or simvastatin) treatment of ovarian cancer lines in combination with carboplatin.
Cancer cells were treated for 72 h with AY9944 or simvastatin in combination with carboplatin. Cell viability was measured by MTT assay and normalized to untreated
controls. Drug synergy was evaluated by Highest Single Agent (HSA) method, where synergy value >10 indicates synergistic effect, −10 to 10 indicates additive or no
interaction, <−10 indicates antagonistic effect. (B) Cell viability assay of ovarian cancer cell lines (OAW-42, OVCAR-8, ES-2, and EFO-21) treated with different doses of
carboplatin, the DHCR7 inhibitor AY9944 and simvastatin. Treatment effect relative to matched vehicle. Experiments were performed in biological triplicates (with n= 3
technical replicates each). Mean ± SD; significance test: unpaired Student’s t-test: ns (not significant), ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001. Exact p values are
provided in the Appendix Table S5. (C) Synergy score map of OVCAR-8, EFO-21, ES-2, and OAW-42 cells treated with different concentrations of carboplatin and the
DHCR7 inhibitor AY9944. The mean HSA (Highest Single Agent) score for OVCAR-8, EFO-21, ES-2, and OAW-42 was 14.9 (p value= 5.13e−10), 13.5 (p value= 3.30e-09),
7.52 (p value= 2.05e-3), 2.38 (p value= 2.86e-01) synergy value >10 indicates a synergistic effect, −10 to 10 indicates an additive or no interaction, and <−10 indicates
an antagonistic effect.
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(He et al, 2021), possibly via the upregulated enzymes DHCR7 or
DHCR24, could be a promising therapeutic strategy for high-grade
serous ovarian cancer. Our in vitro data based on several HGSOC
models established that inhibiting the terminal steps of cholesterol
biosynthesis via DHCR7 inhibition not only shows dose-dependent
tumor cell killing, but also synergizes with platinum-based
chemotherapy. Our data suggest a possible metabolic dependency
of HGSOC on altered lipid and cholesterol metabolism with
prospects for combination treatments to improve therapeutic
outcomes and possibly overcome frequent chemoresistance in
recurrent tumors. Notably, a previous study linked the inhibition of
the cholesterol synthesis pathway by statins to decreased STIC
formation in mouse models of ovarian cancer (Kobayashi et al,
2015), further emphasizing the translational relevance of our
findings. Lastly, these data could also have implications to diagnose
HGSOC at an early stage. For example, altered cholesterol/lipid
profiles could be measured in pelvic fluid (Tang et al, 2024).
Alternatively, the detection of endogenous plasma peptides, such as
reported for DHCR24 (Dufresne et al, 2018), or tumor-derived
extracellular vesicles (Hinestrosa et al, 2022; Trinidad et al, 2023)
via HGSOC-specific cell surface proteins, as discovered here, could
offer a sensitive approach for early HGSOC detection. However,
more preclinical research is needed to assess the diagnostic
relevance of our findings.

We further demonstrated that STICs and invasive carcinomas
show high proteomic similarity, lacking a distinct STIC proteotype
distinguishable from advanced carcinomas. Our results showed that
STICs mirror the phenotypic and molecular subtype heterogeneity
of ICs, implying they exhibit the full oncogenic potential of invasive
HGSOC. Two recent smaller-scale studies (Wisztorski et al, 2023),
including our own (Eckert et al, 2019), support this view. One
explanation is that at HGSOC diagnosis, STICs have likely
undergone additional molecular aberrations, making them indis-
tinguishable from invasive tumors. The estimated time between
STIC development and HGSOC progression is seven years (Labidi-
Galy et al, 2017), possibly leading to further molecular adaptations.
Another explanation for the high proteomic similarity between
STICs and ICs is that STICs do not represent precursor lesions but
advanced tumors that retrogradely metastasize to the fallopian
tube. However, given the lower frequency of this scenario (Eckert
et al, 2016; Labidi-Galy et al, 2017), this hypothesis doesn’t explain
the strong coherence of our proteomic data for the 32 matching
STIC-invasive tumor pairs.

To further explore the proteomic heterogeneity of STICs, we
integrated previously identified molecular subtypes from bulk
transcriptomics and proteomics data (Bell et al, 2011; Zhang et al,
2016), assigning nearly half of the epithelial samples to one
predominant subtype. The inability to unambiguously assign all
samples to one subtype might reflect HGSOC’s polyclonal nature
and the co-existence of diverse tumor subpopulations with distinct
gene expression programs in different spatial niches (Izar et al,
2020; Geistlinger et al, 2021; Denisenko et al, 2024). Among the
clearly assigned samples, we classified half as the proliferative
subtype and half as immune-enriched, with a likely underlying
differentiated tumor cell phenotype (Geistlinger et al, 2021). While
the clinical significance of HGSOC molecular subtypes remains
debatable, our global proteomics data suggest a simple binary
classification into two distinct epithelial proteotypes with ther-
apeutic implications. Cluster 1 tumors showed an inflamed,

immune-enriched signature with elevated interferon and TNF
signaling, aligning with a recent spatial omics report (Kader et al,
2024) and high lymphocyte infiltration. Our findings generally
agree with Kader et al’s conclusion that interferon signaling from
epithelial cells is an early occurrence in HGSOC development, but
indicate this inflammatory characteristic is present in approxi-
mately half of all STICs. Proliferative cluster 2 samples showed low
interferon-related signaling, were immune-deserted, and linked to
higher patient age and likely more unfavorable clinical outcomes.
This dichotomy is supported by long-known phenotypic differences
in tumor-infiltrating CD3+ T cells, a favorable prognostic factor
for roughly half of HGSOC patients (Zhang et al, 2003). Our
precise sampling through laser microdissection enabled us to
disentangle distant from intraepithelial immune cells, where only
the latter mark tumors likely to respond to immune checkpoint
inhibitors (ICI) (Ghisoni et al, 2024). Notably, a comparable IFN-
high immunophenotype (similar to cluster 1 tumors) associated
with an upregulation of antigen presentation and intraepithelial
immune cells was recently identified as a characteristic of
metastatic deficient mismatch repair colorectal cancers responding
to ICI treatment (Kim et al, 2012). Therefore, our deep proteomics
data could serve as a valuable resource to build new classifiers for
improved patient stratification beyond PD-L1 assessment. This is
clinically relevant since ICI treatment in ovarian cancer has yielded
disappointing results (Ghisoni et al, 2024), likely due to the absence
of clear guidelines to tailor treatment to patients with the highest
likelihood of therapeutic benefit.

The absence of an epithelial STIC proteotype distinct from
concurrent invasive tumors contrasts with our stromal findings,
which revealed a disease gradient of stromal remodeling from NFT
stroma over STIC to invasive stroma. Stromal remodeling of STIC
precursors featured both NFT and invasive phenotypes, possibly
reflecting different stages of progressive tumorigenic ECM
remodeling. This suggests some STICs, despite high epithelial
proteome similarity to invasive tumors, have not undergone
complete stromal transformation. As all STICs in our cohort were
accompanied by adjacent invasive tumors, it raises questions about
the timescales of TME remodeling, clonal escape, and tissue
invasion. While the presence or absence of stromal immune cell
infiltration (e.g., CD8+ T cells) was strongly associated with the
epithelial tumor proteotype (i.e., immune-enriched/differentiated
[cluster 1] versus proliferative [cluster 2]), oncogenic ECM
remodeling was a more uniform feature in our cohort. We found
that one-third of the stromal proteome undergoes quantitative
remodeling towards an immunosuppressive TME, likely driven by
myofibroblasts and M2-like macrophages. These changes include
many known ECM degraders (cathepsins and MMPs), pro-
inflammatory cytokines (TGFβ1, TGFβ2, IL16, and IL18), and
many structural core matrisome proteins. On this basis, we
extracted a 100-protein stromal signature of commonly upregulated
and downregulated proteins. This signature features known disease
drivers and oncogenic ECM proteins associated with ovarian cancer
progression and metastasis (e.g., NNMT, CD163, and FN1) (Eckert
et al, 2019; Mitra et al, 2011; Lecker et al, 2021) and sheds light on
proteins with high therapeutic potential. For example, thymidine
phosphorylase (TYMP), a therapeutic target in metastatic colorectal
cancer (Prager et al, 2023), showed a strong and gradual increase in
the invasive stroma. Similarly, SYK, a non-receptor tyrosine kinase
implicated in immune cell regulation (Liu and Mamorska-Dyga,
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2017), is targeted by Fostamatinib, which was approved by the FDA
for the treatment of chronic immune thrombocytopenia (Newland
et al, 2018). Notably, SYK also represents a promising strategy to
target TAMs in pancreatic cancer (Rohila et al, 2023), cells we
found to be strongly enriched in the invasive stroma. Together,
these data underscore the central role of the stromal compartment
in HGSOC pathogenesis, the importance of tumor-stromal co-
evolution, and the potential of the TME as a therapeutic target.

In summary, our study highlights the power of spatially and cell-
type resolved proteomics to dissect the molecular underpinnings of
early carcinogenesis and provides a rich proteomic resource for
biomarker and drug target discovery.

Methods

Reagents and tools table

Reagent/resource Reference or source
Identifier or catalog
number

Antibodies

p53 (IHC) Dako/Agilent M7001
RRID:AB_2206626

PAX8 (IHC) Roche/Ventana 760-4618

Ki67 (IHC) Dako/Agilent M7240
RRID:AB_2142367

p16 (IHC) Roche/Ventana 805-4713
RRID:AB_3675558

DHCR7 (IHC) Atlas Antibodies HPA044280
RRID:AB_10794893

DHCR24 (IHC) Cell Signaling 2033
RRID:AB_2091448

Ki67 Cell Signaling 11882
RRID:AB_2687824

anti-mouse Invitrogen A32794
RRID:AB_2536180

CD4 Cell Signaling 40568S
RRID: AB_3492108

CD8 Thermo Fisher 53-0008-82 RRID:
AB_2574413

FOXP3 BioLegend 320107
RRID: AB_492986

CD11c BioTechne NBP2-54432AF750
RRID: AB_3083691

CD163 Abcam ab218293
RRID: AB_2889155

panCK Thermo Fisher 41-9003-82
RRID: AB_11218704

PAX8 Proteintech CL647-10336
RRID: AB_2920213

COL1A1 BioTechne NB600-408AF750
RRID: AB_10000511

Chemicals, Enzymes and other reagents

n-Dodecyl-beta-
Maltoside (DDM)

Sigma-Aldrich D4641-500MG

Endoproteinase LysC Promega VA1170

Reagent/resource Reference or source
Identifier or catalog
number

Proteomics grade
modified trypsin

Promega V5117

Tris(2-carboxyethyl)
phosphine
hydrochloride

Sigma-Aldrich C4706-2G

Acetonitrile (ACN)
HPLC-grade

VWR 83640.290

Isopropanol (ISO) Sigma-Aldrich 1070222511

Formic acid Merck F0507-100ML

2-chloroacetamide Sigma-Aldrich C0267-100G

DMEM Gibco 21885-025

Fetal bovine serum
(FBS)

Capricorn FBS-16A

PCR mycoplasma kit Biontex M030/050

AY-9944 MedChemExpress HY-107420

Simvastatin Biomol Cay10010344-5

Carboplatin Merck C2538

MTT assay reagent Merck M2128

Sodium hydroxide
solution

Merck 72068

4.5% hydrogen
peroxide solution

Merck 31642

TEAB Merck T7408-100ML

Trifluoroacetic acid Sigma-Aldrich 96924-250ML-F

Microscopy Neo-
Clear

Merck 1.09843.5000

BSA Serva 11948.01

LC-MS grade water Avantor 9825.2500GL

Acetonitrile with 0.1%
formic acid

Sigma-Aldrich 1590021000

Water with 0.1%
Formic Acid

Fisher Scientific 10188164

10% fetal bovine
serum

Capricorn FBS-16A

PCR mycoplasma kit Biontex M030/050

DMSO cell culture
grade

Genaxxon M6323.0250

EnVision FLEX Target
Retrieval Solution
High pH (50X)

Agilent Dako K8004

Hoechst 33342
staining reagent

Thermo Fsher 62249

Software

QuPath https://qupath.github.io Version 0.4.3

Zeiss ZEN Carl Zeiss AG Version 3.5

DIA-NN Demichev et al
https://github.com/
vdemichev/DiaNN

Version 1.8.1

Perseus Tyanova et al
https://maxquant.net/
perseus/

Version 1.6.15.0
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Reagent/resource Reference or source
Identifier or catalog
number

Leica Laser
Microdissection
software

Leica Microsystems Version 8.3.0.08259

R The R Project for Statistical
Computing.
https://posit.co/download/
rstudio-desktop/

Version 4.3.2

SEQUENCE Pilot JSI Medical Systems GmbH Version 5.4.0

Qupath_to_LMD
function: Contour
export from Qupath
to the Leica LMD7

https://github.com/
CosciaLab/Qupath_to_LMD.

https://doi.org/
10.5281/
zenodo.8414787

Bruker Compass Data
Analysis
Software version 6.0

Bruker Daltonik GmbH https://
www.bruker.com/
en/products-and-
solutions/mass-
spectrometry/ms-
software.html

Other

C18 Evotips (Evotip
Pure, Evosep)

Evosep Biosystems EV2013

96-well plate Thermo Fisher Scientific AB1300

384-well low-binding
plate

Eppendorf 0030129547

Super PAP-pen liquid
blocker mini

Science Services N71312-N

Cover glass Corning CLS2980223

PPS frame slides Leica 11600294

High-volume
diaphragm chips for
MANTIS Liquid
Dispenser

Formulatrix 233128

Super PAP-pen liquid
blocker mini

Science Services N71312-N

Evaporative
concentrator:
Eppendorf Vacuum
Concentrator Plus
with 96-well plate
rotor

https://
www.eppendorf.com/de-de/

N/A

MANTIS Liquid
Dispenser
(Formulatrix, V3.3
ACC RFID, software
version 4.7.5)

https://formulatrix.com/
liquid-handling-systems/
mantis-liquid-dispenser/

N/A

PCR ComfortLid
(Hamilton)

https://
www.hamiltoncompany.com/

N/A

Evosep One Evosep EV-1000

timsTOF Ultra Bruker Daltonik GmbH N/A

Evosep Performance
column

Evosep EV1137

BenchMark XT
immunostainer

Ventana Medical Systems N/A

PANNORAMIC 1000
digital slide scanner

3DHISTECH N/A

Sample collection and patient cohort

We retrieved all samples containing the term “STIC” and/or
“serous tubal intraepithelial carcinoma” in the pathology report
from the pathology archive of the Institute of Pathology, Charité,
between 2013 and 2022. Two pathologists (M.P.D. and E.T.T.)
performed two independent rounds of reclassification of the
precursor lesions according to the criteria proposed by Vang et al
(Vang et al, 2012), using three whole slides stained with H&E, p53,
and Ki67. Briefly, STIC was defined by a lesion morphologically
suspicious or unequivocal for STIC and an immunohistochemical
p53 aberrant expression and a proliferation rate (Ki67) >10%. Only
samples in which full agreement was reached were included in the
proteomic analysis. In addition, we excluded all samples that
received chemotherapy prior to the resection of tubal lesions.
Clinical data were obtained from the Tumor Bank Ovarian Cancer
Network (www.toc-network.de) or the Charité Comprehensive
Cancer Center (https://cccc.charite.de). This study was approved by
the local ethics committee (EA1/110/22).

Cell line models

The human ovarian carcinoma cell line OAW-42 was obtained
from the European Collection of Animal Cell Cultures (Salisbury,
United Kingdom). OVCAR-8 was obtained from the laboratory of
Ernst Lengyel (Department of Obstetrics and Gynecology/Section
of Gynecologic Oncology, University of Chicago, Chicago, IL,
USA). ES-2 was obtained from the American Type Culture
Collection, and EFO-21 was obtained from Dr. Fritz Hölzel
(Department of Gynecology, University Hospital Eppendorf,
Hamburg, Germany). The cells were cultured in DMEM (Gibco,
#21885-025), all supplemented with 10% fetal bovine serum
(Capricorn, #FBS-16A), no added antibiotics, at 37 °C with 5%
CO2 and 95% humidity. Prior to the study, the cytogenetic analysis
and cell authentication of the cells were performed at the DNA-
Fingerprinting Facility at Charité Berlin using short tandem repeat
DNA. All cell lines were tested for mycoplasma contamination
using the PCR mycoplasma kit (Biontex, #M030/050).

Cell viability assay

Cell viability assay was performed in 96-well plates. For OAW-42,
OVCAR-8, and ES-2, we plated 4000 cells/well, and for EFO-21, we
plated 6000 cells/well and we cultured the cells in full growth
medium for 24 h. The medium was then removed and replaced
with new full medium containing different concentrations of AY-
9944 (MedChemExpress, #HY-107420), carboplatin (Merck,
#C2538) or combinations of the two drugs. The plates were
incubated at 37 °C, 5% CO2 for 72 h. After the treatment, 11 µL of
MTT assay reagent (Merck, #M2128) was added to the medium,
and incubated at 37 °C, 5% CO2 for 4 h. Following MTT
incubation, the media and MTT were removed, 100 μL of DMSO
(Genaxxon, M6323.0250) was added to all wells, including controls
and the spectrophotometric absorbance of the samples was detected
by using a microplate spectrophotometer (BioTek, Synergy 2) at
540 nm wavelength.
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Homologous repair deficiency analysis

HRD analysis was performed using the (Northeastern German
Society for Gynecologic Oncology) NOGGO GIS v1 Assay, as
previously described (Willing et al, 2023). Briefly, from tumor rich
regions of invasive carcinoma from ten to twenty sequential 5 µm
thick FFPE slides DNA was extracted. 50 to 100 ng of tumor
DNA was used for library preparation using hybrid capture XT HS2
chemistry (Agilent Technologies) targeting all exonic bases as well
as a minimum of 10 bp flanking region of 57 genes, including 35
HRR genes, as well as selected driver genes and more than 20,000
genome-wide evenly distributed single nucleotide polymorphism
(SNP) loci that enable the detection of allele-specific copy number
alterations (CNA). Next, the libraries were subjected to sequencing
with a minimum of 20 million reads using 100 bp read length on a
NextSeq 2000 instrument (Illumina, San Diego, CA, USA). The
genomic instability score (GIS) was calculated using an allele-
specific copy number profile and three measures of HRD based on
the PureCN output: percent loss of heterozygosity (PLOH), percent
copy number alteration (PCNA), and percent telomeric copy
number alteration (PTCNA). A GIS cutoff of “83” or the presence
of a pathogenic mutation in either BRCA1 or BRCA2 was used to
define HRD-positive cases. Mutation calling was conducted using
SEQUENCE Pilot Software, Version 5.4.0 (JSI Medical Systems
GmbH, Ettenheim, Germany).

Immunohistochemistry (IHC)

Immunohistochemical staining was performed on a BenchMark XT
immunostainer (Ventana Medical Systems, Tucson, AZ, USA). For
antigen retrieval, sections were incubated in CC1 mild/standard buffer
(Ventana Medical Systems, Tucson, AZ, USA) for 30min at 100 °C.
The sections were stained with anti-Ki67 antibody (M7240, Dako,
1:50, CC1 mild buffer), anti-p53 (M7001, Dako, 1:50, CC1 standard
buffer), anti-PAX8 (760-4618, Roche/Ventana, ready to use, CC1 mild
buffer), anti-p16 (805-4713, Roche/Ventana, 1:2, CC1 mild buffer),
anti-DHCR7 (HPA044280, Atlas Antibodies, 1:100, CC1 standard
buffer), and anti-DHCR24 (2033, Cell Signaling, 1:100, CC1 standard
buffer) for 60min at room temperature, and visualized using the
avidin–biotin complex method and DAB (Table 1). We stained the cell
nuclei by additionally incubating for 12min with hematoxylin and
bluing reagent (Ventana Medical Systems, Tucson, AZ, USA).
Histological images were acquired with a PANNORAMIC 1000
digital slide scanner (3DHISTECH).

For DHCR7 and DHCR24 scoring four intensity levels were
used: 0 (no positivity), 1+ (weak positivity), 2+ (moderate

positivity), and 3+ (strong positivity). For each category, the
percentage of cells exhibiting that staining intensity was
determined. Then we applied the H-score formula = (1 × % of
cells with weak positivity (1+))+ (2 × % of cells with moderate
positivity (2+))+ (3× % of cells with strong positivity (3+ )). The
H-score ranged from 0 to 300, with a score of 0 indicating no
marker expression and a score of 300 indicating strong staining in
all cells.

Cyclic immunofluorescence (CyCIF) staining and imaging

Prior to immunostaining, tissue sections were incubated at 60 °C for
30min, followed by deparaffinization and sequential rehydration as
follows: two 5-min immersions in neo-clear buffer, two 2-min washes
in 99% ethanol, and sequential 2-min washes in 80%, 70% ethanol, and
1x PBS (twice for 1 min each). Heat-mediated antigen retrieval was
performed in Tris-EDTA (pH 9) using a steamer for 25min, followed
by cooling to room temperature in the retrieval solution. Slides were
then washed three times in 1x PBS. To reduce tissue autofluorescence,
sections were pre-bleached for 30min under direct white light in 4.5%
H2O2 and 24mMNaOH diluted in 1x PBS. Following three additional
PBS washes, tissue sections were outlined with a PAP-pen (Science
Services, N71312-N) to minimize the reaction volume and blocked
with 3% BSA (Serva, 11948.01) in 1x PBS for 30min at room
temperature. Antibody incubation was performed overnight at 4 °C in
a blocking buffer in a humidified staining chamber. Immunofluores-
cence staining was conducted over several cycles. Except for p53, all
antibodies were directly conjugated (Table 2). For p53 staining,
sections were washed in 1x PBS after primary antibody incubation and
then incubated with a secondary fluorescently conjugated antibody
(A555 donkey anti-mouse, 1:500) at room temperature for 1 h. Slides
were subsequently washed in 1x PBS, counterstained with Hoechst
33342 (1 µg/mL) for 5 min at room temperature, washed again,
mounted with 10% glycerol in 1x PBS and imaged. Following imaging,
coverslips were removed by soaking the slides in 1x PBS within a
vertical Coplin jar on a platform shaker. Detached slides were washed
in 1x PBS, bleached for 30min under direct white light in 4.5% H2O2

and 24mM NaOH diluted in 1x PBS, and washed again in 1x PBS
before proceeding to the next round of primary antibody staining. This
process was repeated twice to achieve staining for ten markers. After
the final cycle, coverslips were removed by soaking the slides in 1x PBS
within a vertical Coplin jar on a platform shaker. Once detached, the
slides were rinsed with Milli-Q water, air-dried, and stored at 4 °C.
Imaging was conducted using a Zeiss Axioscan 7 slide scanner
equipped with the Colibri 7 LED light source and an EC Plan-Neofluar
20x/0.50 M27 objective at 2 × 2 binning. Stitching of the raw images

Table 1. Antibodies used for immunohistochemistry (IHC) imaging.

Antibody Company Catalog # Clone Species Dilution Pre-preparation

p53 Dako/Agilent M7001 DO-7 Mouse 1:50 CC1 standard

PAX8 Roche/Ventana 760-4618 MRQ-50 Mouse ready to use CC1 mild

Ki67 Dako/Agilent M7240 MIB-1 Mouse 1:50 CC1 mild

p16 Roche/Ventana 805-4713 E6H4 Mouse 1:2 CC1 mild

DHCR7 Atlas Antibodies HPA044280 - Rabbit 1:100 CC1 standard

DHCR24 Cell Signaling 2033 C59D8 Rabbit 1:100 CC1 standard

Goat Anti-Rabbit IgG Antibody (H+ L) Vector BA-1000-1.5 - Goat 1:200 -
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was performed using ZEN software (version 3.5, Blue Edition), with
the DAPI channel set as the reference for all channels and the
following parameters: minimal overlap of 5%, maximal shift of 15%,
Comparer set to Optimized, and Global Optimizer set to Best.

Image analysis and contour export for laser
microdissection

QuPath (version 0.4.3) was utilized for conducting image analysis.
Regions of interest were manually annotated in QuPath following
the image analysis process. To ensure accurate contour transfer
between the screening and laser microdissection microscopes, three
tissue reference points (x-y coordinates) were selected. The
contours and reference points were then exported in GeoJSON
format and converted into.XML format, which is compatible with
Leica LMD7 software. The shape processing code can be accessed at
github.com/CosciaLab/Qupath_to_LMD, and it employs geopan-
das (Version 0.12.2) and py-lmd (Makhmut et al, 2023) (Version
1.0.0).

Laser microdissection

For laser microdissection, three slides were prepared for each
sample and mounted on PPS-Membrane Frame Slides (Leica). The
slides were then stained immunohistochemically with p53 (5-µm
thick slide), PAX8 (2.5-µm thick slide), and Ki67 (2.5 µm thick
slide). Whenever feasible, the specimen was collected from the p53-
stained slide, while the other slides served mainly for orientation.
Sample annotation was conducted under the direct supervision of
at least one of the study pathologists (M.P.D./E.T.T.).

For laser microdissection-based tissue collection, we employed
the Leica LMD7 system along with Leica Laser Microdissection V
8.3.0.08259 software. The tissue was cut using a 20x objective in
either brightfield or fluorescence mode. We applied the following
laser parameters for the 20x objective (HC PL FL L 20x/0.40
CORR): 56 power, 1 aperture, 15 speed, 1 middle pulse count, −1
final pulse, 37 – 45% head current (adjusted based on tissue type
and section thickness), 801 pulse frequency, and 101 offset. The cut
contours were then collected into a low-binding 384-well plate
(Eppendorf 0030129547), which was set up using the ‘universal
holder’ function with a single empty well separating each sample.

Sample preparation for MS-based proteomic analysis

Automated cutting was employed to gather tissue specimens following
contour import into 384-well plates (Eppendorf, 0030129547) with
low-binding properties. To ensure tissue settled at the well bottoms
post-LMD collection, each well received 15 µL of acetonitrile, under-
went brief vortexing, and was vacuum dried (15 min at 60 °C). A
subsequent well inspection was conducted prior to proteomics sample
preparation to verify successful collection. The DDM-based protocol
utilized a lysis buffer comprising 0.025% DDM, 5mM TCEP, 20mM
CAA, and 0.1M TEAB in water. A MANTIS Liquid Dispenser with
high-volume diaphragm chips was used to add 4 μl of lysis buffer to
each sample well. The plate was sealed with PCR ComfortLid and
heated at 95 °C for 60min. After brief cooling, 1 µL of LysC (10 ng/ µL
in 0.1M TEAB [pH 8.5] and 30% ACN in milli-Q water) was
introduced, followed by digestion for at least 2 h at 37 °C in a thermal
cycler (50 °C lid temperature). Next, 1 µL of trypsin (10 ng/μl
containing 10% ACN and 0.1M TEAB [pH 8.5] in milli-Q water)
was added, with overnight incubation at 37 °C in the thermal cycler.
The following day, digestion was stopped by the addition of
trifluoroacetic acid (TFA, final concentration 1% v/v), and samples
underwent vacuum drying before peptide clean-up.

Peptide clean-up with C18 tips

Peptide purification was conducted using Evotips (Evosep, Odense,
Denmark) following the manufacturer’s instructions. The tips were
prepared by adding 20 μl of buffer B (99.9% ACN, 0.1% FA) to each
C18 tip (EV2013, Evotip Pure, Evosep) followed by centrifugation
at 700 rpm for 1 min. Subsequently, 20 μl of buffer A (99.9% water,
0.1% FA) was added to the top of each C18 tip, which was then
activated in isopropanol for 20 s and centrifuged again at 700 rpm
for 1 min. Peptides were then applied to the Evotips, washed once
with 20 μL of buffer A, and finally loaded with 200 μL of buffer A.
The tips were also submerged at the bottom in buffer A before
initiating the LC-MS analysis.

MS-based proteomic analysis

Liquid chromatography was performed using the Evosep One LC
system (Evosep, Odense, Denmark) connected to a trapped ion

Table 2. Antibodies used for immunofluorescence (IF) imaging.

Target Dilution Fluorophore Source Catalog no. Clone Research resource identifier (RRID)

Ki67 1:100 Alexa Fluor 488 Cell Signaling Technology 11882 D3B5 AB_2687824

p53 1:25 - Agilent Dako M7001 - AB_2206626

anti-mouse 1:500 Alexa Fluor 555 Invitrogen A31570 - AB_2536180

CD4 1:50 Alexa Fluor 647 Cell Signaling Technology 40568S MSVA-004R AB_3492108

CD8 1:100 Alexa Fluor 488 Thermo Fisher 53-0008-82 AMC908 AB_2574413

FOXP3 1:50 PE Biolegend 320107 206D AB_492986

CD11c 1:50 Alexa Fluor 750 BioTechne NBP2-54432AF750 ITGAX/1243 AB_3083691

CD163 1:50 Alexa Fluor 488 Abcam ab218293 EPR14643-36 AB_2889155

panCK 1:100 eFluor™ 570 Thermo Fisher 41-9003-82 AE1/AE3 AB_11218704

PAX8 1:50 CoraLite 647 Proteintech CL647-10336 - AB_2920213

COL1A1 1:50 Alexa Fluor 750 BioTechne NB600-408AF750 - AB_10000511
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mobility spectrometer with quadrupole time-of-flight mass spectro-
meter (timsTOF Ultra, Bruker Daltonik, Bremen, Germany) with a
nano-electrospray ion source (CaptiveSpray, Bruker Daltonik,
Bremen, Germany). Digested peptides were loaded on the Evosep
Performance column (EV1137, 150 µm inner diameter, packed with
1.5 µm C18 beads) at 40 °C. Chromatographic separation was
performed using an Evosep 30SPD gradient. The solvents utilized
were LC-MS-grade water containing 0.1% formic acid (buffer A)
and acetonitrile with 0.1% formic acid (buffer B). For the dia-
PASEF analysis, we employed a method comprising eight dia-
PASEF scans divided into three ion mobility windows per scan.
This covered a mass-to-charge ratio range of 400–1000 m/z using
25 Th windows and an ion mobility range from 0.64 to
1.37 Vs cm−2. The mass spectrometer was run in high-sensitivity
mode, with accumulation and ramp time set to 100 ms, and
capillary voltage at 1750 V. The collision energy was configured as a
linear ramp, starting at 20 eV at 1/k0 = 0.6 Vs cm−2 and increasing
to 59 eV at 1/k0 = 1.6 Vs cm−2. This collision energy ramp was
applied linearly as a function of ion mobility, decreasing from
59 eV at 1/k0 = 1.6 Vs cm−2 to 20 eV at 1/k0 = 0.6 Vs cm−2.

Mass spectrometry raw file analysis

For the analysis of dia-PASEF raw files and generation of spectral
libraries, we employed DIA-NN (Demichev et al, 2020) (version
1.8.1). The human FASTA file was obtained from the UniProt
database (2022 release, UP000005640_9606, downloaded on April
8th 2022). To generate in silico predicted libraries, we provided the
human FASTA file along with commonly encountered contami-
nants (Frankenfield et al, 2022). We enabled deep learning-based
predictions for spectra, RTs, and IMs within the 300-1200 m/z mass
range. Fixed modifications included N-terminal M excision and
cysteine carbamidomethylation. We allowed up to two missed
cleavages and set the precursor charge to 2–4. DIA-NN was run in
default mode with slight modifications. We configured MS1 and
MS2 accuracies to 15.0, set scan windows to 0 (for DIA-NN
assignment), enabled isotopologues, activated match-between-runs,
applied heuristic protein inference, and disallowed shared spectra.
Protein inference was based on genes. We set the neural network
classifier to single-pass mode and selected “Robust LC (high
precision)” as the quantification strategy. Cross-run normalization
was configured as “RT-dependent,” library generation as “smart
profiling,” and speed and RAM usage as “optimal results.”

Data analysis and statistics

Proteomic data analysis was performed within the R environment
(https://r-project.org/version 4.3.2) with the following packages:
tidyverse (version 2.0.0), Rstatix (version 0.7.2), UpSetR package
(version 1.4.0), FactoMineR (version 2.11), factoextra (version
1.0.7), ggpubr (version 0.6.0), corrplot (version 0.92), Complex-
Heatmap (version 2.18.0), RColorBrewer (version 1.1.3), circlize
(version 0.4.16), dendsort (version 0.3.4), ggcorrplot (version
0.1.4.1), ggplot2 (version 3.5.1), ggrepel (version 0.9.5), viridis
(0.6.5) and networkD3 (version 0.4). Perseus (Tyanova et al, 2016)
(version 1.6.15.0) and Instant Clue (version 0.12.2) (Nolte et al,
2018) were used for additional exploratory data analysis. Prior to
statistical testing, data were first filtered to keep only proteins with
70% non-missing values in at least one group, or more stringently,

with 70% in all groups. Missing values were imputed based on a
normal distribution (width = 0.3, downshift = 1.8). Pairwise com-
parisons were computed using a two-sided Student’s t-test.
For multiple group comparisons, analysis of variance (ANOVA)
was used. For both tests, a permutation-based FDR of 5% was
applied to correct the multiple hypothesis testing. Pathway
enrichment analysis was performed in Perseus based on Fisher’s
exact test (categorical data) or 1D pathway enrichment
analysis (Cox and Mann, 2012). Hallmark gene sets, WikiPath-
ways, and the Reactome pathways were enriched terms filtered
using a Benjamini–Hochberg FDR cut-off of 0.05. The minimum
category size was set to five. The annotation matrix algorithm of
Perseus (version 1.5.0.3) was additionally employed to globally
compare pathway-level changes across multiple samples (Fig.
EV3B). This algorithm tests the difference in any protein
annotation from the overall intensity distribution of the sample.
The resulting pathway scores were z-scored for relative
comparison.

For subtype classification of high-grade serous ovarian cancers
based on TCGA subtypes, the consensusOV package (version
1.26.0, get.consensus.subtypes function) was used. The package
calculates the probability for each subtype and assigns each sample
to the subtype with the highest probability. To characterize the
previously identified fallopian tube epithelial cell types in the
dataset, we used the signature matrix from Dinh et al (Dinh et al,
2021). For the systematic analysis of ECM changes, the matrisome
database described by Renner et al (Renner et al, 2022) was used.
To prioritize proteins upregulated in the invasive stroma during
HGSOC progression (Fig. 5), we employed support vector machine
(SVM) classification using the Perseus software. Before classifica-
tion, data were first filtered (70% in at least one group), log2-
transformed, and imputed based on a normal distribution (width =
0.3, downshift = 1.8). The SVM was then trained on the stromal
proteomes to determine the optimal classification parameters. To
achieve the lowest classification error, we systematically tested
kernels and the corresponding parameters. We used a Radial basis
function (RBF) kernel, parameter sigma (σ) = 5 and parameter
C = 10. For cross-validation, the “leave-one-out” function was used,
and ANOVA was used as the feature ranking method with an s0
value (Goss Tusher et al) of 0.1. The optimal number of
discriminating protein features was then determined from the
error percentage curve, which resulted in an error rate of 5% for the
top 100 features.

For single-cell RNAseq analysis of HGSOC stromal
cell populations, data were retrieved from two public datasets
(Xu et al, 2022; Olbrecht et al, 2021), including seven malignant
and five non-malignant samples in one dataset, and two malignant
and one non-malignant sample in the other. Data were
analyzed and integrated using Seurat (v5). Cell clusters were
annotated using both SingleR and known marker genes. Expression
across ovarian cell types was visualized using Seurat’s DotPlot
function.

The list of FDA-approved drug targets was retrieved from the
Human Protein Atlas database (https://www.proteinatlas.org/
search/protein_class:FDA+approved+drug+targets).

For drug-response curve and drug synergy calculations, we used
the SynergyFinder R package and web application (Zheng et al,
2022). We used the highest single agent (HSA) score to assess drug
synergy.
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Expanded View Figures

Figure EV1. Pathology-guided ultra-low input proteomics of HGSOC precursor lesions.

Representative H&E stains of normal fallopian tube epithelium (NFTE), serous tubal intraepithelial carcinoma (STIC), and invasive carcinoma (IC) and corresponding
epithelial and stromal compartments. Scale bars: 100X: 100 μm, 400X: 20 μm.
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Figure EV2. Spatially resolved proteomes reflect disease-specific alterations at the bulk level depth.

(A, B) Dynamic range of median protein abundance for epithelial (A) and stromal (B) compartment samples. Known ovarian cancer-, cell type-, and stromal markers are
highlighted. A minimum of 18 quantified values were required for each marker to be displayed. Proteins with 50% valid values for each group are shown. (C) Pathway
enrichment analysis (Hallmarks) based on PC2 reveals differences between normal and disease compartments. Selected terms with a Benjamini–Hochberg FDR <0.05 are
shown. (D) Scatter plot of t-test results between p53 overexpression and p53 null mutation patients, indicating that p53 is the only differentially abundant protein between
the two groups.
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Figure EV3. Precursor lesions feature histological markers and cell-of-origin signatures.

(A) Hierarchical tree showing the clustering pattern across regions (normal fallopian tube epithelium, STIC, and invasive fallopian tube carcinoma), revealing three
epithelial samples that are atypical lesions based on proteome profiling. (B) Unsupervised hierarchical clustering of all normal fallopian tube epithelial samples based on
cell type abundance scores. Cell type abundance scores were calculated based on the annotation matrix algorithm (Perseus) for all fallopian tube epithelial cell types
identified by Dinh et al Two main clusters of secretory and ciliated cell-enriched normal fallopian tube epithelium samples were identified. (C) Enriched cell type signatures
along PC1, related to Fig. 3F. (D) PCA loadings related to Fig. 3F. Note that proteins on the left are higher in STIC, invasive carcinoma, and secretory-like epithelial cells,
whereas proteins on the right are higher in ciliated epithelial cells. (E) Barplots showing the number of proteins identified in the PAX8 negative (dark pink), PAX8 positive
(dark blue), and STIC (yellow) compartments across six patients. (F) Volcano plot of the pairwise proteomic comparison between PAX8 positive (dark blue, 6 samples)
and PAX8 negative (dark pink, 6 samples) epithelial samples. Cell and functional markers with the highest abundance change and significance are highlighted (two-sided
Student’s t-test, FDR <0.05). (G) Volcano plot of pairwise proteomic comparison between STIC (yellow, 6 samples) and PAX8 positive (dark blue, six samples) samples.
Cell and functional markers with the highest abundance change and significance are highlighted (two-sided Student’s t-test, FDR <0.05). (H) PCA of all quantified proteins
comparing STICs (yellow), secretory (dark blue), and ciliated cell (dark pink) samples. (I) PCA loadings show known secretory and ciliated markers. Related to panel (H).
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Figure EV4. Refined molecular subtyping from spatial proteomics data.

(A) Principal component analysis of STIC and invasive carcinoma samples corresponding to Fig. 3A. (B) Multivariate statistical analysis of patients in clusters 1 and 2. Note
that cluster 2 samples showed a trend towards higher patient age at diagnosis (p= 0.059). (C) Boxplots showing proteomic correlations between STIC and invasive
carcinoma samples between matched and unmatched samples, corresponding to intrapatient and interpatient correlations. Boxplots define the range of the data
(whiskers), 25th and 75th percentiles (box), and medians (solid line). (D) Molecular subtype assignment of cluster 1 and 2 samples based on the consensusOV
algorithm(Chen et al, 2018). Only samples with a margin score of >0.2 were included for high classification confidence. (E) Molecular subtype assignment of HRD-positive
and HRD-negative invasive cancer samples based on the consensusOV algorithm(Chen et al, 2018). (F) Frequency of molecular subtypes of STIC and IC proteomes.
(G) Boxplots indicating the second-highest molecular subtype classification probabilities for samples with immunoreactive (left) and differentiated (right) subtype calls.
Boxplots define the range of the data (whiskers), 25th and 75th percentiles (box), and medians (solid line). Number of samples per molecular subtype with margin score
>0.2: DIF – 5, PRO – 8, IMR – 5, MES – 2. (H) Sankey plot showing convergence or divergence of molecular subtypes for patient-matched STIC and invasive carcinoma
pairs. (I) Volcano plot of pairwise proteomic comparison between STIC (yellow) and invasive fallopian tube carcinoma (violet) samples. Markers with the highest
abundance change and significance are highlighted (two-sided Student’s t-test, FDR <0.05). Number of samples per group: STIC – 35, IC – 31.
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Figure EV5. Mapping progressive ECM remodeling reveals stromal drug targets.

(A) Volcano plot of pairwise proteomic comparison between IC stroma (purple, 29 samples) and NFT stroma (light blue, 31 samples) samples across different matrisome
categories (collagens, ECM-affiliated, ECM glycoproteins, ECM regulators, proteoglycans, secreted factors). Markers with the highest abundance change and significance
are highlighted (two-sided Student’s t-test, FDR <0.05). (B, C) Boxplots of relative protein levels (group average, z-scored) for IC stroma (29 samples) (B) and NFT stroma
(31 samples) (C)-associated features. Top-ranked protein features were identified by support vector machine classification, as shown in Fig. 5E. Boxplots define the range
of the data (whiskers), 25th and 75th percentiles (box), and medians (solid line).
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Figure EV6. Identification of commonly dysregulated pathways of therapeutic relevance.

(A) Pathway enrichment analysis (Hallmarks) based on t-test difference between STIC (yellow) and normal fallopian tube epithelium (light blue) samples. Selected
pathways with a Benjamin–Hochberg FDR <0.05 are shown. (B) Protein fold changes (STIC vs. NFTE and IC vs NFTE, FDR <0.05) of all cholesterol biosynthesis pathway
proteins across four molecular subtypes of HGSOC. Proteins with significant fold change are highlighted in bold. (C, D) Frequency of DHCR24 and DHCR7 genetic
alteration (overexpression), respectively, across different cancer types analyzed by cBioPortal.
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Figure EV7. Cholesterol biosynthesis inhibition sensitizes ovarian cancer cells to carboplatin.

(A–H) Dose–response curves (top left: AY9944 or simvastatin; bottom left: carboplatin) and dose–response matrices (right) for ES-2 (A, B), EFO-21 (C, D), OVCAR-8
(E, F), and OAW-42 (G, H) cells treated with AY9944 and carboplatin or simvastatin and carboplatin, respectively, alone or in combination. Experiments were performed
in biological sextuplicate, each with n= 3 technical replicates.
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