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Long Interspersed Nuclear Elements-1 (LINE-1 or L1) make up approximately 21% of the human genome,

with some L1 loci containing intact open reading frames (ORFs) that facilitate retrotransposition. Because
retrotransposition can have deleterious effects leading to mutations and genomic instability, L1 activity is typically
suppressed in somatic cells through transcriptional and post-transcriptional mechanisms. However, L1 elements
are derepressed in senescent cells causing age-associated inflammation. Despite the recognition of L1 activity

as a hallmark of aging, the underlying molecular mechanisms governing L1 derepression in these cells are not
fully understood. In this study, we employed high throughput sequencing datasets and validated our findings
through independent experiments to investigate the regulation of L1 elements in senescent cells. Our results
reveal that both replicative and oncogene-induced senescence are associated with reduced expression of the
cytidine deaminase APOBEC3B, a known suppressor of L1 retrotransposition. Consequently, senescent cells
exhibited diminished levels of C-to-U editing of full-length L1 elements. Moreover, Ribo-seq profiling indicated that
progression to senescence is not only associated with increased L1 transcription, but also translation of L1 ORFs. In
summary, our results suggest that the depletion of APOBEC3B contributes to enhanced activity of L1 in senescent
cells and promotion of L1-induced DNA damage and aging.
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Background

Almost half of the human genome consists of sequences
derived from transposable elements (TEs) [1]). The
majority of TE sequences belong to non-LTR retrotrans-
poson families such as L1 (21% of the genome with ~
500,000 copies) and Alu elements (~ 10% of the genome
with ~ 1 million copies) [2, 3]. While most L1 elements
are inactive, a few full-length loci are still capable of ret-
rotransposition [1]. Moreover, retrotransposon families
that do not encode their own retrotransposition machin-
ery (e.g. Alu and SVA elements) also exploit L1-encoded
reverse transcriptase to integrate into new genomic loci
[4, 5].
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Due to the potential harmful effects of active TEs,
such as insertional mutagenesis, the human genome
has evolved independent mechanisms to suppress TEs
at multiple steps of their retrotransposition cycle. For
instance, specific KRAB-ZNFs recruit TRIM28 (Tri-
partite motif-containing protein 28) that silences L1
transcription elements by further recruiting chromatin-
modifying enzymes such as the histone methyltransfer-
ase SETDBI1 [6]. SETDBI is also known to interact with
the HUSH complex (TASOR, Periphilin, MPP8), causing
long-term repression by perpetuating heterochroma-
tin [7]. However, even if L1 elements are transcription-
ally active, their retrotransposition can still be curbed at
later steps. For instance, nucleases such as three prime
repair exonuclease 1 (TREX1) prevent the accumulation
of L1 transcripts [8, 9], while MOV10 decaps L1 RNA
[10], thereby sequestering L1 ribonucleoprotein com-
plexes in cytoplasmic aggregates [11]. A critical inhibi-
tion of retrotransposition is mediated by the members of
the APOBEC (Apolipoprotein B mRNA Editing Catalytic
Polypeptide-like) family of deaminases [12—20]. While
APOBECS3 proteins are known to induce C-to-U muta-
tions, leading to hypermutation, their role in suppress-
ing L1 retrotransposition appears to extend beyond this
deaminase activity [4]. Notably, overexpression of APO-
BEC3A, B, C, and D inhibits L1 activity without corre-
sponding increases in L1 point mutations, indicating a
deaminase-independent mechanism [14]. Further sup-
porting this, catalytically inactive mutants of APOBEC3B
and C retain their ability to suppress L1 retrotransposi-
tion underscoring the multifaceted roles these proteins
play in maintaining genomic stability [12, 16].

Despite these multilayered suppression mechanisms,
L1 elements can be activated under certain conditions.
For example, external stimuli such as ionizing radiation
trigger L1 transcription [21]. Similarly, certain develop-
mental stages are associated with increased L1 activity.
These include early developmental stages such as embry-
onic cells that undergo epigenetic reprogramming and
global demethylation [22]. Notably, DNA methylation of
L1 repeats decreases with advancing age, and L1 activ-
ity has been proposed as a predictor of chronological
age [23, 24]. In this case, L1 activity was shown to drive
organismal aging and cellular senescence [25, 26]. Senes-
cence describes a state of permanent cell-cycle arrest and
resistance to apoptosis that can be induced by multiple
intrinsic and extrinsic stimuli, including oncogene acti-
vation or genotoxic stress [27]. Genotoxic stress refers to
DNA damage that can arise from various sources, includ-
ing the activity of retrotransposons such as L1 elements,
which induce double-strand breaks and disrupt genomic
integrity through their insertion events. Senescence is
typically associated with the release of inflammatory
cytokines and other immune modulators, referred to as
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the senescence-associated secretory phenotype (SASP)
[28]. These secreted factors can trigger the progression of
proliferating, non-senescent cells to senescence [28].

The activation of L1 repeats in presenescent cells
results in the production of nucleic acids that can acti-
vate cellular sensing pathways such as cGAS-STING or
RIG-I, which mediate the production of type I IFN and
ultimately SASP [25, 26, 29]. Hence, L1 activity in pre-
senescent cells not only contributes to their transition
to senescence, but can also induce a senescent state in
bystander cells [30]. In addition to sensing of L1-derived
nucleic acids, the retrotransposition and de-novo integra-
tion of L1 elements may promote senescence by trigger-
ing the vicious cycle of DNA damage, cell-cycle arrest
and inflammation [26]. Overall, there is more than one
way how uncontrolled activity of L1 can trigger cellular
senescence.

While SASP is heterogenous, and numerous triggers
of senescence have been described, L1 transcription has
been observed in different types of senescence, includ-
ing replicative senescence, oncogene-induced senes-
cence and stress-induced premature senescence [25, 31].
L1 activation in senescent cells is associated with higher
levels of accessible chromatin around the 5" UTR of L1
repeats [31]. Furthermore, the transcription factor PAX5
binds to the 5-UTR of L1 and is proposed to contrib-
ute to their activation in cells entering senescence [32].
However, precise mechanism of enhanced L1 activity in
(pre)senescent cells remains elusive, and the mechanisms
underlying post-transcriptional L1 regulation are still
unclear.

We hypothesized that the loss of various L1 controllers
may result in L1 derepression at the transcriptional and/
or post-transcriptional level. To investigate the expres-
sion dynamics of L1 and its repressors, we reanalyzed
publicly available RNA-seq and Ribo-seq datasets from
cells progressing to replicative or oncogene-induced
senescence.

Our RNA-seq data analyses, together with validation
experiments in fibroblasts, revealed that several L1 inhib-
itors, including the deaminase APOBEC3B, are down-
regulated in presenescent cells. In line with reduced
APOBEC3B levels, we found evidence for decreased
C-to-U editing and higher levels of L1 translation. In
summary, our findings support a model in which reduced
expression of restriction factors such as APOBEC3B
contribute to increased L1 activity, ultimately leading to
enhanced L1 cDNA sensing and potentially L1-mediated
DNA damage in cells transitioning to senescence.

Materials and methods

Analysis of RNA-seq datasets from senescent cells

Raw RNA-seq reads from immortalized human pri-
mary BJ fibroblasts and ES-derived lung fibroblasts were
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obtained from [33] [GSE42509] and [25] [GSE109700],
respectively. RNA-seq reads were mapped to the human
(hgl9) reference genome using STAR (v2.4.2a) [34]. We
used STAR for its ability to detect novel splice junctions
and as a non-canonical splice aligner for the detection of
chimeric transcripts and circular RNA. Mapped reads
were processed to obtain raw counts for gene expression
estimation using featureCounts [35] from the subread
package (v1.4.6). DESeq2 (v1.30.1) was used to process
counts per million (CPM) and differential expression of
genes in the R environment (v4.0.3). To determine the
expression of cellular factors affecting L1 retrotranspo-
sition, we took advantage of a list of activators and sup-
pressors of L1 retrotransposition previously identified in
a genome-wide CRISPR/Cas9 screening [36], as well as
experimentally validated and published L1 suppressors
(Tables 1 and 2).
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Analysis of repetitive elements

Mapping of RNA-seq reads to the human reference
genome (hg19) was performed using bowtie (v1.0.1) [69]
short read aligner with use of -N 1 and - -local param-
eters for effective alignment. FPKM values for expres-
sion were computed using cufflinks (v2.0.2) [70] with the
usage of GTF file format for specific repetitive elements
(L1 & Alu) obtained from the UCSC genome browser
[71]. The annotation file of repetitive elements (L1 & Alu)
was categorized into young, middle-aged and ancient
sub-families.

Detection of APOBEC- and ADAR-edited RNA sites

A data analysis pipeline was designed, involving multiple
rigorous iterations focused on the identification of APO-
BEC- and ADAR-edited RNA sites within full-length L1
elements. Mapped RNA-seq reads were incorporated
to perform local realignment, base-score recalibration,
and candidate variant calling using the IndelRealigner,

Table 1 List of previously described L1 suppressors and their differential expression in replicative senescence

Symbol BaseMean log2FoldChange IfcSE stat pvalue padj PMIDs
(Senescent vs.
non-senescent)
ADAR 13593.70544 —0.1767522525 0.1036717693 —1.704921732 0.08820902262 0.2020137145 [37,38]
ADARB1 7923.720891 —1.135034549 0.230490103 —4.924439418 8.46E-07 5.84E-06 [37]
APOBEC3A 0.1771823279  —1.285752751 3470979875 —03704293306  0.7110626231 0.8275012857 [17,39-41]
APOBEC3B 2074065383 —5.79319621 1.367403086 —4.23664117 2.27E-05 1.28E-04 [12-16]
APOBEC3C 1361.025833 02410312535 02173211663 1.109101601 0.2673863542 04647505347 [20]
APOBEC3F 51.2280652 04755750593 0.3508502683 1.355492933 0.1752605586 0.3414929439 [15,20]
APOBEC3G 129.3980821 0.2909960237 0.6001933883 04848371032 6.28E-01 7.79E-01 [19], [42]
BRCA1 1407430926 —4.512747793 0.1861865152 —24.23778 8.90E-130 2.98E-127 [43]
BRCA2 739.0177882 —4.747624492 0.3692232744 —12.85841067 7.71E-38 3.56E-36 [43,44]
CDK12 2729.584381 —-0.3958855794 0.07516753684  —5.266709487 1.39E-07 1.05E-06 [43,45]
ERCC1 2590.195369 —0.5402738228 0.1691851287 —3.193388373 0.001406136906  0.005646594775  [46-48]
FANCA 859.0160672 —4.567728483 0.2331840498 —19.58851168 1.94E-85 3.27E-83 [29, 46]
FANCC 576.3773425 —-1.160195003 0.1955136277 —5.934087647 2.95E-09 2.69E-08 [43, 45, 49]
FANCD2 1704.582755 —4.578016147 0.3447290095 —13.28004322 3.02E-40 1.51E-38 [29, 46]
FANCI 2634.783325 —3.87242164 0.1598756147 —24.22146521 1.32E-129 4.39E-127 [43-45,49]
MCM2 3296.152558 —3.886187297 0.1677845159 —23.16177555 1.11E-118 3.17E-116 [50]
MEN1 630.8288085 —0.4623118186 0.1703850649 —2.713335344 6.66E-03 2.26E-02 [43-45, 49,
51]
MORC2 1785.005624 —-04624012188 0.1333309595 —3.468070886 5.24E-04 2.32E-03 [36,52]
MOV10 2327.601271 -0.4614617449 0.1198897 —3.849052463 1.19E-04 5.92E-04 [10,53]
PPHLN1 2641.473683 -0.1631561449 0.1763207885 —-0.9253369741 3.55E-01 5.62E-01 [54, 55]
RNASEH2A 1237.108977 —3.591983858 0.133416489 —26.92308789 1.18E-159 6.70E-157 [56,57]
RNASEH2C 684.8608255 —0.699231256 0.2099357848 —3.330691129 0.000866306685  0.003662943363  [50, 57-61]
SAFB 2054418039 —1.028261863 0.1528576456 —6.726924643 1.73E-11 1.95E-10 [50, 58-61]
SETDB1 1429.963425 —0.3200143374 0.15809441 —2.024197677 4.29E-02 1.13E-01 [62-66]
SLFNS 5495.230925 1451515478 0.1754247483 8274291354 1.29E-16 2.17E-15 [50, 58-60]
SLX4 588.5899453 —1.274654754 0.1839240204 —6.930333247 4.20E-12 5.03E-11 [29, 46]
TASOR 4660.656721 0.1989861321 0.12541377 1586637034 1.13E-01 0.2441933186 [36,52, 54,
67,68]
TRIMS 1484.227229 —0.4452832903 0.1658357538 —2.685086178 0.007251110699  0.02432820151 [50, 58, 59]
TRIM28 10838.28195 —1.505814595 0.2386464441 —6.309813672 2.79E-10 2.82E-09 [50, 58]
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Table 2 List of previously described L1 suppressors and their differential expression in oncogene-induced senescence
Symbol  BaseMean log2FoldChange IfcSE stat pvalue padj PMID
(Senescent vs. non-senescent)
ADAR 8368.720992 —-0.0952368314 0.3484200601 —0.2733391165 0.7845925491 0.9379457021 [37,38]
ADARB1 784.1280316 —1.794027878 04824583062 —3.718513818  0.0002003983319 0.004907446132 [37]
APOBEC3B 310.1567351 —6.752480232 09267465089 —7.286221386  3.19E-13 4.08E-11 [12-16]
APOBEC3C 1932589211 1.042916509 03744387161 2.785279577 5.35E-03 6.49E-02 [20]
APOBEC3F 96.05824889 —1.044669274 05519057116 —1.892840121  5.84E-02 0.3284414554 [15]
APOBEC3G 58.77648727 —1.272260731 0.7374265801 —1.725271051  0.08447863646 04083211076 [15,19,42]
BRCA1 1153.869341 —3.293584005 0390952605  —8.42450968 3.62E-17 7.06E-15 [43]
BRCA2 6382982856 —4.015285616 04324966275 —9.283969772  1.63E-20 4.09E-18 [43,44]
CDK12 3317522914 0.04627908005 0.3399569552 0.136132176 0.8917167915 0.9751049779 [45]
ERCC1 2786.928375 1.293056276 03783880289 3.417275856 0.0006325115405 0.0126031845 [46-48]
FANCA 1279213077 —4.675477182 04690577733 —9.967806629  2.11E-23 6.35E-21 [29, 46]
FANCC 2779076235 —1.782393688 05618803281 —3.172194504 0.001512916418  0.02486001012  [43, 45, 49]
FANCD2 829.1968194 —4.839139327 04218704277 —11.4706768 1.85E-30 9.82E-28 [29, 46]
FANCI 2143.908685 —3.427379534 0.3631840345 —9.43703249 3.83E-21 9.78E-19 [43-45, 49]
MCM2 3052.158556 —3.440282643 04890269477 —7.034955148  1.99E-12 242E-10 [50]
MEN1 1266.918142 —0.1952086275 0.3569306757 —0.54690908 5.84E-01 9.14E-01 [43-45,49,51]
MORC2 139251223 —-0.09762543581 0.34667252 —0.2816070792 0.7782448114 0.9368147665 [36,52]
MOV10 1887.955436 0.0634066136 03514920582 0.1803927347  0.8568442577 0.9660164808 [10,53]
PPHLN1 1367.840596 0.4616055898 04073374611 1.133226462 2.57E-01 7.20E-01 [54, 55]
RNASEH2A  1406.277496 —3.624748877 04825712269 —7.51132408 5.85E-14 8.21E-12 [56,57]
RNASEH2C 7934435244 0.2589269923 03757228108 0.6891436583  4.91E-01 8.96E-01 [50,57-61]
SAFB 2466.688488 —1.186810605 04269607716 —2.779671303  0.005441394536  0.06559601113  [50, 58-61]
SETDB1 7247476742 —0.3170419275 0371907219  —0.8524758633 0.3939500299 0.8434003343 [62-66]
SLFNS 4231.544048 1.199170999 0.712351448  1.683397994 0.09229807134 04295928367 [50, 58-60]
SLX4 896.9424992 -0.3033578976 0420107135  —0.7220965137 0.4702351415 0.8843501764 [29, 46]
TASOR 2524.530699 -0.3932232306 04047780991 —0.97145382 3.31E-01 7.98E-01 [36,52, 54,67, 68]
TRIMS 759.3398736 —1.336946212 0.3767997659 —3.54816094 0.0003879311041 0.008439967853 [50, 58, 59]
TRIM28 1163448129 —1.256029245 03900891791 —3.219851542  0.001282569985  0.02184652445  [50, 58]

TableRecalibration and UnifiedGenotyper tools with the
parameters stand call conf to 0 and stand emit conf to
0 and the output mode set to EMIT ALL CONFIRMED
SITES from the Genome Analysis Toolkit (GATK) (v3.5-
0) [36, 72]. In addition, some iteration steps of the SNPiR
pipeline [73] were adapted, and obtained variants were
subjected to it. The intended variants were incorporated
into different filtering steps to obtain true variants by
removing false-positive variant calls. First, variants with
quality up to 20 were filtered. Then, the mismatches at
the 5" ends of the reads were removed in this step. Fur-
thermore, the obtained variants were directed to filter
in L1 elements. Shell scripting and bedtools [74] were
used to retrieve the edited sites for each sample across
full-length L1 elements. The obtained editing sites for
each sample were further filtered for C to U mutations
for APOBEC editing sites and A to I mutations for ADAR
editing sites.

Estimation of L1 encoded proteins
The repeat masker track for L1 elements was downloaded
from the UCSC genome browser. More specifically,

only full-length L1 elements were extracted from this
track, and a BED file was prepared. Ribosomal profil-
ing (Ribo-seq) samples for immortalized human pri-
mary BJ fibroblasts were obtained from [33] [GSE42509].
Adapter sequences were removed from the raw FASTQ
reads, and ribosomal sequences were eliminated using
quick alignment with TopHat2 [75]. Unmapped reads
from this alignment were converted into FASTQ format
using bam?2fastx [75]. The consensus sequence for full-
length L1 elements was constructed by converting the
BED file into FASTA format with fastaFromBed [74].
These consensus sequences were aligned to Ribo-seq
reads (single-end, 50 bp) using Bowtie (v1.0.1) using the
best parameter, across conditions of proliferation and
senescence. Uniqueness for 35-mers and alignability for
36-mers with respect to full-length L1 elements in the
Ribo-seq data were computed. Normalized coverage for
uniquely mapped reads was obtained using bamCoverage
for each condition. Further, computation of matrix was
performed on the bigwig file of each condition by using
computeMatrix [76].
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Transduction of BJ cells

BJ cells and HEK293T cells were purchased from ATCC
(ATCC LGC Standards GmbH, Manassa, Virginia, USA;
cat# CRL-2522 and CRL-3216, respectively). BJ-hTERT
cells were generated by transduction with the pWZL-
Blast-Flag-HA-hTERT retroviral vector (addgene; cat.#
22396). All cells were cultured in DMEM high glucose,
penicillin (10.000 unit/mL), streptomycin (10 mg/mL),
and 10% FCS at 37 °C and 5% CO,. HEK293T cells were
transfected with PWZL-Hygro-H-Ras“'?" using PEL. On
the following day, the cell culture medium was changed
and 24 h later a supernatant containing the viral particles
was filtered through a 0.45 pm filter. Viral supernatant
and 8 pg/uL polybrene were then added to the target cells
(primary BJ and immortalized BJ-hTERT) for 24 h. Lastly,
cells were washed three times with DPBS and appropri-
ate selection antibiotic was added.

qRT-PCR
For BJ cells, total RNA was isolated 7 days post-trans-
duction (d.p.t.), using the RNeasy Mini Kit (Qiagen,
cat# 74106) following the manufacturer’s instructions.
For HEK293T cells, total RNA was isolated 2 days post
etoposide stimulation using the RNeasy Plus Mini
Kit (Qiagen # 74136) according to the manufacturer’s
instructions. RNA quality and quantity were assessed
using a spectrophotometer. Reverse transcription was
performed using the PrimeScript RT Reagent Kit (Perfect
Real Time) (TAKARA, cat# RR037A) with oligo dT prim-
ers and random hexamers. Quantitative real-time PCR
(qPCR) was conducted using specific primer/probe sets
for APOBEC3A (forward): 5'-GAGAAGGGACAAGCA
CATGG-3', (reverse): 5-TGGATCCATCAAGTGTCT
GG-3’; APOBEC3B human probe: (Thermo Fisher, cat#
Hs00358981_m1); APOBEC3C (forward): 5'-AGCGCTT
CAGAAAAGAGTGG-3', (reverse): 5'-AAGTTTCGTT
CCGATCGTTG-3'; APOBECSF (forward): 5'-CCGTTT
GGACGCAAAGAT-3/, (reverse): 5'-CCAGGTGATCTG
GAAACACTT-3'; APOBEC3G (forward): 5'-CCGAGGA
CCCGAAGGTTAC-3/, (reverse): 5'-TCCAACAGTGCT
GAAATTCG-3'; CDKNIA/p21 human probe: (Thermo
Fisher, cat# Hs00355782_m1), with GAPDH (forward):
5-CCGAGGACCCGAAGGTTAC-3'; (reverse): 5'-TCC
AACAGTGCTGAAATTCG-3’, human probe: (Thermo
Fisher, cat# Hs02786624_g1) serving as the internal con-
trol. Each sample was analyzed in technical triplicates.

Western blot

To validate over-expression of APOBEC3B, transfected
HEK293T cells were washed with PBS and lysed in West-
ern blot lysis buffer (150 mM NaCl, 50 mM HEPES, 5
mM EDTA, 0.1% NP40, 500 uM Na3VO4, 500 uM NaF,
pH 7.5), followed by centrifugation at 20,800 xg for
20 min at 4 °C. Lysates were then mixed with loading
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buffer containing 10% [-mercaptoethanol and heated
at 95 °C for 5 min. Proteins were separated on NuPAGE
4-12% Bis-Tris Gels, transferred onto Immobilon-FL
PVDF membranes, and probed with primary antibodies:
anti-HA tag (abcam, catalog number: ab18181), and anti-
GAPDH (BioLegend, catalog number: #607902). After
washing, membranes were incubated with secondary
antibodies labeled with infrared dyes (LI-COR IRDye).
Protein bands were detected using a LI-COR Odyssey
scanner.

L1 reporter assay

The retrotransposition-competent L1-GFP reporter plas-
mid (99 PUR L1RP EGFP, “wt”) and the retrotransposi-
tion-defective negative control plasmid (99 PUR JM111
EGFP, “mut”) were previously described by Ostertag
et al. [77]. Both constructs harbor a CMV-driven eGFP
reporter cassette that includes an intron inserted in the
reverse orientation within the 3° UTR. Expression of
eGFP serves as an indicator of successful retrotranspo-
sition, as it requires splicing, reverse transcription, and
genomic integration to become active. HEK293T cells
(cultured in DMEM, penicillin (100 unit/mL), streptomy-
cin (100 pg/mL), and 10% ECS at 37 °C and 5% CO,) were
co-transfected with the L1 reporter plasmid and either an
APOBEC3B expression vector (pcDNA3.1, 3x HA-tag)
or an empty control vector (pcDNA3.1) at a 3:1 molar
ratio using calcium phosphate. An expression plasmid for
IFI16 (pCG, HA-tag) served as positive control [78]. One
day post transfection, half of the cells were treated with
0.2 uM etoposide to induce a senescence-like phenotype.
Two days post transfection, 2.5 pg/ml puromycin was
added to select cells harboring the L1 reporter plasmid.
Four days later, the percentage of GFP-positive cells was
quantified by flow cytometry.

Statistical analysis

Wilcoxon-Mann-Whitney test, paired t-test and Ordi-
nary one-way ANOVA test were used for analysis at the
transcriptional and translational level. p-values<0.05
were considered statistically significant.

Results

Replicative and oncogene-induced senescence are
associated with decreased expression L1 repressors such
as APOBEC3B

While L1 activity was shown to be upregulated in senes-
cence [25, 31], the mechanisms underlying L1 activation
remained poorly understood. We therefore commenced
this study by determining the expression levels of known
L1 suppressors in primary human lung fibroblasts transi-
tioning from a proliferative state to early and ultimately
late replicative senescence. By leveraging a previously
published RNA-seq dataset [25] [GSE109700], we
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(See figure on previous page.)

Fig. 1 Decreased expression of L1 repressors in senescent cells. A Expression of known L1 suppressors in human lung fibroblasts transitioning from a
proliferative state to early and late replicative senescence (see also Table 1). Expression relative to the mean of all three conditions is shown. A paired t-test
was performed to determine statistically significant differences between proliferating and senescent (early + late) cells (***p <0.001). B Expression of full-
length L1 elements is significantly increased in senescent vs. proliferating cells (p-value < 2.2e-16). C Expression of known L1 suppressors in BJ fibroblasts
before and after RAS®'?-mediated induction senescence. The analyses in (A, B, and C) are based on publicly available RNA-seq datasets (GSE109700
and GSE425009, respectively). D Venn diagram illustrating the overlap of known L1 suppressors with genes that are down-modulated during transition to
replicative and/or oncogene-induced senescence. E Cartoons illustrating the transduction process of BJ fibroblast cells with empty or RASS'? expressing
vectors shown on the left. Primary BJ cells expressing RAS®'?" enter a presenescent state, while hTERT-immortalized cells undergo a transient growth
delay. Bar graphs on the right show APOBEC3A, B, C, F and G mRNA levels upon transduction with lentiviruses encoding RAS®'?Y and normalization to
cells transduced with the vector control. F HEK293T cells were stimulated with 0.2 uM etoposide. Two days later, cells were harvested, and p21/CDKN1A
expression was analyzed by qPCR (G, H) HEK293T cells were co-transfected with intact (wt) or mutated (mut.) L1 GFP reporter constructs, together with
the indicated expression plasmids. One day later, cells were stimulated with etoposide or left untreated. G Expression of APOBEC3B was validated by
Western blotting two days post transfection. One exemplary Western blot out of two is shown. H Six days post transfection, the percentage of GFP posi-
tive cells was determined by flow cytometry as a reporter for L1 retrotransposition. Values were normalized to the L1 wt control without etoposide and
without overexpression of APOBEC3B/IFI16. Mean values of two to four independent experiments+SEM are shown in panels (E), (F) and H. (*p <0.05;

*¥¥¥p <0.0001)

compared the expression of L1 suppressors in prolifera-
tive cells relative to both early and late senescent cells
taken together. We found 13 L1 repressors to be signifi-
cantly downregulated in senescent cells compared to pro-
liferating cells (Fig. 1A; Table 1). The five most strongly
reduced transcripts encode for the deaminase APO-
BEC3B (log2fc -5.79 & adjusted p-value 1.28e-04) and
the DNA repair proteins BRCA2 (log2fc —4.75 & adjusted
p-value 3.56e-36), FANCD2 (log2fc -4.58 & adjusted
p-value 1.51e-38), FANCA (log2fc -4.57 & adjusted
p-value 3.27e-83) and BRCA1 (log2fc —4.51 & adjusted
p-value 2.98e-127) (Table 1). In contrast, only a single L1
suppressor, SLEN5, was significantly upregulated during
progression to senescence (log2fc 1.45 & adjusted p-value
2.17e-15) (Table 1). The data suggest that progression to
senescence is marked by a significant downregulation
of multiple L1 suppressors, particularly APOBEC3B,
BRCA2, FANCD2, FANCA, and BRCA1, while SLENS5 is
the only L1 repressor significantly upregulated.

To determine whether a similar expression pattern
of L1 inhibitors can also be observed in other mod-
els of senescence, we determined their expression in
cells undergoing oncogene-induced senescence [25]. To
this end, we re-analyzed RNA-seq data obtained from
immortalized human BJ primary fibroblasts [GSE42509],
in which senescence was induced by tamoxifen-inducible
expression of the oncogenic RAS“?Y gene [33]. Since this
study did not monitor the activity of transposable ele-
ments, we first analyzed the transcription of L1 elements
in this data set. As observed for replicative senescence,
L1 expression in BJ fibroblasts was significantly elevated
upon Ras“/?Y-mediated induction of oncogenic senes-
cence (Fig. 1B). Furthermore, oncogene-induced senes-
cence was also associated with a significant decrease
in the expression of L1 inhibitors (Fig. 1C; Table 2).
Intriguingly, eleven L1 repressors were significantly
depleted in both data sets (Tables 1 and 2; Fig. 1D). In
oncogene-induced senescence, the five most strongly
depleted transcripts were APOBEC3B (log2FC -6.75

& adjusted p-value 4.08e-11), FANCD2 (log2FC -4.84
& adjusted p-value 1.51e-38), FANCA (log2FC -4.68
& adjusted p-value 6.35e-21), BRCA2 (log2FC -4.02
& adjusted p-value 4.09e-18) and RNASEH2A (log2FC
-3.62 & adjusted p-value 8.21e-12) (Fig. 1C; Table 2).
Again, expression of SLEN5 was modestly increased in
senescent vs. proliferating cells (log2FC 1.20 & adjusted
p-value 0.43). These findings indicate that both replica-
tive and oncogene-induced senescence are marked by a
significant downregulation of multiple L1 inhibitors.
Next, we expanded our analyses to a list of potential L1
regulators identified by Liu and colleagues [36]. While the
activity of many of the identified activators and inhibitors
remains to be experimentally validated, the candidate
L1 regulators are the results of unbiased genome-wide
CRISPR screens [36]. Several L1 suppressors were down-
regulated in cells progressing from proliferation to senes-
cence (Fig. 2). This was particularly evident for cells
undergoing replicative senescence (Fig. 2B). Surprisingly,
several L1 activators also showed reduced expression in
cells transitioning to (replicative) senescence (Fig. 2C, D).
Since APOBEC3B was the most strongly down-regu-
lated repressor in both replicative and oncogene-induced
senescence (Fig. 1A, C; Tables 1 and 2), we validated its
differential expression via qRT-PCR. Related APOBEC3
gene family members were included as additional con-
trols. We took advantage of the RasS1?Y fibroblast model,
including telomerase reverse transcriptase (hTERT)
positive and negative cells. As previously described [79,
80], hTERT-negative BJ cells show signatures of prema-
ture senescence 7 days post transduction with Ras12Y,
In contrast, hTERT-immortalized BJ fibroblasts do not
enter senescence, but stay in a growth-delayed state
between 7 and 14 days after RasS'?" expression that is
ultimately overcome [68, 80] (Fig. 1E, left). 7 days after
Ras®!?V expression, APOBEC3B levels decreased by 68%
in presenescent, telomerase-negative cells. In contrast, a
36% reduction of APOBEC3B expression was observed
in hTERT-expressing cells (Fig. 1E, right). In line with
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Fig. 2 Differential expression of L1 regulators in senescent vs. proliferating cells. A-D Heatmaps illustrate the differential expression of (A, B) L1 suppres-
sors and (C, D) L1 activators identified in a CRISPR/Cas screen by Liu and colleagues [36] in senescent vs. proliferating cells. Data were obtained from cells
undergoing (A, C) oncogene-induced senescence [33] or (B, D) replicative senescence [25]

the RNA-seq results (Fig. 1C), the mRNA levels of APO-
BEC3A, C, D, F, and G were reduced to a lesser degree or
remained unchanged.

To test whether APOBEC3B is in principle able to
restrict L1 activity in senescent cells, we took advan-
tage of a previously described GFP reporter system [77]
that enables monitoring of L1 retrotransposition in the
presence or absence of ectopically expressed restriction

factors. Briefly, HEK293T cells were co-transfected with
the L1-GFP reporter construct or a transposition-defec-
tive mutant thereof, together with an expression plas-
mid for APOBEC3B. One day later, the cells were treated
with etoposide to induce a senescence-like state [77, 81].
Expression of the senescence marker p21/CDKNIA and
APOBEC3B were determined by qPCR and Western blot,
respectively (Fig. 1F, G). The previously described L1
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Fig. 3 Expression of Alu elements is significantly increased in senescent
vs. proliferating cells. A-C Expression of (A) AluY, (B) AluS and (C) AluJ ele-
ments in human BJ primary fibroblasts transitioning from a proliferating
state to RAS®'?V-induced senescence [33]. p-values were calculated using
the Wilcoxon-Mann-Whitney test

inhibitor IFI16 served as positive control [78]. Quantifica-
tion of GFP expression via flow cytometry revealed that
APOBECS3B and IFI16 are able to restrict L1 not only in
proliferating, but also in etoposide-treated cells (Fig. 1H).

Together with the RNA-seq and qPCR data described
above, these findings demonstrate that APOBEC3B is a
potent suppressor of L1, but expressed to lower levels
during transition of proliferating cells to oncogene-
induced and replicative (pre)senescence.

Expression of Alu element subfamilies is increased in
senescent cells

Many L1 repressors also restrict other transposable ele-
ments. For example, APOBEC3 family members, includ-
ing APOBEC3B [16, 19, 27, 42, 82, 83], also suppress
Alu retrotransposition, and a subset of Alu repeats is
bound by TRIM28 [27, 82]. We therefore expanded our
analyses to different Alu elements, which belong to the
group of short interspersed nuclear elements (SINEs).
These include the two major Alu subfamilies AluJ and
AluS [84], as well as AluY, a sub-subfamily of AluS [85].
Expression of all three Alu subfamilies was higher in
oncogene-induced senescent cells compared to prolif-
erating cells (p-values < 2.2e-16) (Fig. 3). These results
demonstrate that reduced expression of TE suppressors
is not only associated with increased L1 activity, but also
with increased expression of the major Alu subfamilies.

Senescent cells show reduced signatures of APOBEC-
induced L1 RNA editing

APOBEC3B, the most strongly downregulated repres-
sor in senescent vs. proliferating cells (Fig. 1A, C; Tables
1 and 2), is able to deaminate both RNA and DNA [86].
Although APOBEC3 proteins are able to restrict L1
independently of their deaminase activity [14, 15, 20],
we therefore hypothesized that the reduction of APO-
BEC3B expression may coincide with decreased RNA
editing in cells transitioning to senescence. To test this
hypothesis, we examined APOBEC3-mediated RNA
editing profiles in cells progressing to oncogene-induced
senescence [33]. We employed RNA-seq datasets for
identification of RNA editing profiles. We incorporated
mapped RNA-seq reads to execute local realignment,
base-score recalibaration and candidate variant call-
ing by using GATK toolkit. The obtained variants were
incorporated to into various filtering steps to obtain true
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variants by removal of false-positive variant calls. Fur-
thermore, the obtained variants were directed to filter
in L1 elements. Using an in-house pipeline, we retrieved
edited sites for each sample across full-length L1 ele-
ments (see Methods). When investigating the loci of
ancient (e.g. L1PA6, L1PA7) and middle-aged L1 sub-
families (e.g. LIPA2, L1PA3, L1PA4, L1PA5), which are
not capable of retrotransposition, we observed no sig-
nificant difference in the editing frequency between pro-
liferating and senescent cells (Fig. 4A). In contrast, the
evolutionary youngest and most active L1 subfamilies
(e.g. L1Hs, L1PA1) showed an ~ 8 fold reduced editing
frequency in senescent vs. non-senescent cells (Fig. 4B)
(p-value = 0.024). As additional control, we also monitored
editing signatures induced by ADAR (Adenosine Deami-
nase Acting on RNA) proteins, which convert adenosine
into inosine [87]. ADAR1 and ADAR2 (= ADARBI) both
restrict L1 [37, 38], and ADARBI was significantly down-
regulated in senescent vs. non-senescent cells (Tables
1 and 2). However, we found no significant changes in
ADAR-mediated editing signatures within L1 elements
(Fig. 4C, D). In summary, our RNA editing analyses point
towards a reduced mutagenic activity of at least one
APOBECS3 protein in senescent cells.
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Translation of L1 ORFs is increased in senescent cells
Increased L1 transcription and decreased L1 RNA edit-
ing in senescent cells are predicted to result in increased
translation of L1 ORFs. We therefore examined publicly
available Ribo-seq datasets of immortalized human pri-
mary fibroblasts in proliferative and senescent (onco-
gene-induced) states [33]. Due to the short sequencing
reads (29-35 bps), the analysis of Ribo-seq datasets for
TEs, especially the youngest ones, poses major alignabil-
ity and mappability challenges [88]. To overcome these
challenges, we aligned the Ribo-seq datasets with the full
length L1 consensus sequence using an in-house pipe-
line and compared it to the genome-wide 35 bps unique
mappability/alignability of full-length L1 elements. After
calculating Ribo-seq coverage (see Methods), we were
able to identify a few hundred mappable reads over the
full-length L1 consensus sequence comprising both ORFs
with a similar pattern of 35 bps mappability over differ-
ent L1 elements (Fig. 4E). As expected, stronger signals
were observed around the translation start sites (TSS)
and translation end sites (TES), where ribosomes briefly
pause at the start and stop codons, respectively (Fig. 4F).
Taken together, the results demonstrate that progression
to senescence is not only associated with increased tran-
scription, but also increased translation of L1 elements.
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Fig.4 Editing and translation of L1 RNA in senescent vs. proliferating cells. A Frequency of APOBEC3-mediated editing of ancient (e.g. L1PA6, L1PA7) and
middle-aged (e.g. L1PA2, L1PA3, L1PA4, L1PAS5) L1 subfamilies. B Frequency of APOBEC3-mediated editing of the youngest L1 loci (e.g. LTHS), which are
still capable of retrotransposition (p-value = 0.02403). C Frequency of ADAR-mediated editing of ancient (e.g. L1PA6, L1PA7) and middle-aged (e.g. LTPA2,
LTPA3, L1PA4, L1PAS5) L1 subfamilies. D Frequency of ADAR-mediated editing of the youngest L1 loci (e.g. L1HS). Statistically significant differences in edit-
ing frequency were calculated using the Wilcoxon-Mann-Whitney test. The analyses in (A-D) are based on publicly available RNA-seq datasets (GSE42509.
(E) & (F) Coverage-plot demonstrating the enrichment of Ribo-seq reads within L1 in senescence vs. proliferation. While (E) describes the enrichment for
alignability, (F) describes the enrichment for uniqueness. Analyses in (E) and (F) are based on Ribo-seq datasets obtained from [33]
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Discussion

Our study provides insights into the expression dynamics
of TE regulators in presenescent and senescent cells that
may enable the derepression of L1 and/or Alu elements
and ultimately contribute to an irreversible cell cycle
arrest and inflammaging. By analyzing publicly avail-
able RNA-seq datasets, we reveal a consistent decrease
in the expression of various TE inhibitors in two major
subtypes of senescence, i.e. replicative and oncogene-
induced senescence. Vice versa, several TE activators
are upregulated in (pre)senescent cells. These expres-
sion changes of TE modulators are tightly coupled with
increased transcription and/or translation of L1 and Alu
elements. Thus, our findings suggest that a major dys-
regulation of TE-regulating factors contributes to L1 and
Alu derepression in cells transitioning from a proliferat-
ing to a senescent state.

Among the commonly down-regulated inhibitors were
transcriptional repressors such as TRIM28/KAP1, DNA
replication regulators such as MCM2, but also several
RNAses (e.g. RNASEH2A) and DNA repair proteins (e.g.
FANCA, FANCD2, FANCC, FANCI, BRCA1, BRCA2)
(Fig. 1A, C; Tables 1 and 2). The most strongly down-
regulated L1 repressor was APOBEC3B. This deaminase
is well known for its ability to restrict exogenous retrovi-
ruses such as HIV by inducing lethal hypermutations in
the viral genome [89]. While it also restricts L1 elements,
this inhibitory activity is independent of RNA editing
[90]. Still, we observed signatures of APOBEC3-mediated
editing of L1 transcripts. Notably, the exact mechanisms
underlying APOBEC3-mediated L1 restriction have
remained largely unclear. There is no correlation between
the subcellular localization of individual APOBEC3 pro-
teins and their ability to restrict L1, although L1 reverse
transcription occurs in the nucleus [14, 16]. Similarly,
the activity of APOBECS3 proteins to restrict L1 does not
correlate with their ability to restrict HIV-1 lacking the
APOBEC3 antagonist vif [16, 20]. Mutational analyses
identified E68 as a residue involved in APOBEC3B-medi-
ated L1 inhibition, also in the absence of any deaminase
activity [16]. Bogerd and colleagues speculated that this
residue may be involved in the interaction with L1 ribo-
nucleoprotein complexes [16]. Indeed, co-immunopre-
cipitation experiments revealed a potential interaction of
APOBEC3B with the L1 ORF1 protein [13].

In our analyses, APOBEC3B was the most strongly
down-modulated member of the APOBEC3 family in
both oncogene-induced and replicative senescence
(Tables 1 and 2), strongly suggesting that it is likely the
principal contributor to the observed L1 editing and
suggesting a shared regulatory mechanism which in
turn driving L1 activation in senescence. One inter-
esting aspect in this context is that in contrast to other
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APOBEC3 genes, APOBEC3B is not IFN-inducible [91].
Thus, its expression is not expected to be increased upon
L1-mediated IFN production.

Our analysis of RNA editing profiles in cells progress-
ing to oncogene-induced senescence revealed distinct
patterns among L1 subfamilies. Specifically, the evolu-
tionarily youngest and most active L1 subfamilies, such
as L1HS and L1PA1l, exhibited approximately a~8 fold
reduction in editing frequency in senescent cells com-
pared to non-senescent cells (Fig. 4B). In contrast, no sig-
nificant differences in editing frequency were observed at
loci corresponding to ancient (e.g., LIPA6, L1PA7) and
middle-aged L1 subfamilies (e.g., LIPA2, L1PA3, L1PA4,
L1PA5), which are no longer capable of retrotransposi-
tion. These findings suggest that the reduced RNA editing
activity in senescent cells primarily affects the youngest
and most active L1 elements, potentially limiting their
mutagenic potential during senescence. This observation
aligns with our hypothesis that the activity of APOBEC3
proteins, which are key mediators of L1 RNA editing, is
diminished in (pre)senescent cells, thereby contributing
to a reduced mutagenic burden in this state.

The reduction of various host factors that inhibit dif-
ferent steps of L1 retrotransposition suggests that L1 ele-
ments are not only transcribed, but also translated when
cells progress to a senescent state [92]. Indeed, ribosomal
profiling analyses demonstrate that L1 ORFs are trans-
lated in senescent cells. As we only analyzed retrotrans-
position-competent copies of full-length L1 elements, the
above results suggest that senescent cells are character-
ized by increased jumping’ of L1.

Since Alu elements depend on L1 for their transposi-
tion and since L1 inhibitors frequently also restrict Alu
repeats [93], it is not surprising that expression of the lat-
ter is also increased in senescent vs. proliferating cells.
Notably, this was not only the case for the youngest and
most active sub-subfamily AluY, but also the oldest sub-
family Alu]J.

Since TEs of (pre)senescent cells are derepressed at
both the transcriptional and post-transcriptional level, it
is tempting to speculate that they promote senescence via
two independent mechanisms. First, TE-derived nucleic
acids can trigger innate sensing cascades that induce
inflammation, IFN secretion and ultimately inflammag-
ing. This proinflammatory cascade has been rigorously
documented in the context of aging in murine and human
cells [25, 94, 95]. Second, the retrotransposition of L1 and
other mobile genetic elements directly induces DNA dam-
age. Since several factors involved in DNA damage repair
are downregulated in (pre)senescent cells (e.g. BRCAI,
BRCA2, FANCA, FANCD2, etc.), these cells may not be
able to repair the damage in a timely manner, which might
ultimately lead to a permanent cell-cycle arrest.
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Conclusions

Our findings not only shed light on the differential
expression of L1 modulators during the transition of cells
to senescence, but also highlight the dual role that TE
activation may play in senescence. On the one hand, our
study supports a model, in which increased transcription
of transposable elements, including L1 and Alu elements,
is sensed and triggers IFN-mediated inflammaging. On
the other hand, our analysis of Ribo-seq data revealed an
increased translation of L1 elements that may enable L1
retrotransposition and ultimately induce genotoxic stress
that further promotes transition to senescence. It will be
important to decipher the relative contribution of these
two mechanisms to senescence. Furthermore, future
studies should aim at alleviating the detrimental effects of
TEs on cellular senescence, organismal aging and aging-
associated diseases. For example, therapeutic approaches
that aim at enhancing APOBEC3B activity - or mimick-
ing its antiviral functions - may represent a novel strategy
to suppress L1 activity and L1-induced genotoxic stress.
Such an approach could be combined with restoring
epigenetic silencing of L1 repeats or reverse transcrip-
tase inhibitors to prevent the production of L1-derived
nucleic acids triggering detrimental inflammaging.
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Histone Lysine Methyltransferase 1
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TASOR Transcription Activation Suppressor
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TREX1 Three prime repair exonuclease 1

TRIM28 Tripartite motif-containing protein 28

Ucsc University of California, Santa Cruz
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