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Abstract

Background: While disability progression in multiple sclerosis (MS) is age-dependent, the exact timing
of neuroaxonal degeneration throughout the patient lifespan remains unclear.

Objectives: To investigate the influence of age on retinal neurodegeneration after the first unilateral epi-
sode of optic neuritis (ON).

Methods: We measured peripapillary retinal nerve fibre layer (pRNFL) and macular ganglion cell inner
plexiform layer (mGCIPL) absolute thickness and intereye differences (IEDs) in 61 MS patients with a
single unilateral ON 6—24 months prior (MS-ON) and 61 MS patients without ON history (MS-NON).
Participants were 1:1 matched based on age, sex, and Expanded Disability Status Scale (EDSS). Statisti-
cal significance was evaluated using mixed linear effects models.

Results: Age and ON status of eyes significantly interacted in predicting absolute pRNFL and mGCIPL
thickness (pRNFL: B=0.28, 95% confidence interval (CI)=[0.03, 0.54], p=0.03, mGCIPL: B=0.24,
95% CI=[0.01, 0.46], p=0.04).

Discussion: Our data show evidence of increased relapse-associated neuroaxonal damage in older indi-
viduals. This suggests less neuronal resilience following attacks and implicates age-effects beyond insidi-
ous progression. The growing population of older people with MS (pwMS) may be at increased risk
of neurodegeneration and permanent disability worsening after acute MS attacks. Longitudinal studies
should confirm this.
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Introduction

Multiple sclerosis (MS) is an autoimmune disease of
the CNS characterised by demyelination and neuroax-
onal degeneration.! While autoimmune-mediated
demyelination associated with acute relapses is effec-
tively targeted by disease-modifying therapies (DMTs),
our understanding of the causes and timing of neurode-
generation in MS remains limited.!:? Disability pro-
gression in MS is age-dependent.> While younger
people with MS (pwMS) are more prone to

experiencing relapse-associated worsening (RAW),
aging is typically accompanied by a gradual shift
towards progression independent of relapse (PIRA).#
There is additional evidence that older patients with
MS may exhibit incomplete recovery from relapses.?
However, the direct contribution of age to neurodegen-
eration after an acute attack remains unclear. Whether
age-associated disability in MS is solely the result of
cumulative injury or whether disability depends on the
timing of injury, is currently unknown.
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Study population
UCSF: 948 pwMS,
Charité: 589 pwMS

L.

age < 12 years
UCSF: n =20, Charité:n=0

non RRMS

L.

UCSF: n =198, Charité: n = 209

L.

incomplete dataset

UCSF:n =212, Charité:n=72

L.

UCSF:n =15, Charité:n=6

flare < 3 months before OCT

\J

Study subpopulation
UCSF: n =503,
Charité: n =302

L.

no ON before OCT

UCSF: n =357, Charité:n =151

UCSF: n =43, Charité:n =55

multiple/bilateral ON attacks

L.
L.

UCSF: n =78, Charité:n = 60

ON not 6-24 months before OCT

\J

MS-ON

1:1 matching

MS-NON

UCSF: n = 25, Charité:n =36

sex, age, EDSS at OCT -

UCSF: n =25, Charité:n =36

Figure 1. Cohort selection flow chart.

Abbreviations: Charité=Charité¢ Universititsmedizin Berlin, EDSS =Expanded Disability Status Scale, OCT =optical coherence
tomography, ON =optic neuritis, RRMS =relapsing remitting multiple sclerosis, UCSF=University of California San Francisco.

The afferent visual system provides a valuable model
in MS research by uniquely enabling pathway-spe-
cific longitudinal assessment of neurodegeneration,
while also being a frequent site of inflammatory activ-
ity.%7 Damage to retinal ganglion cells and their axons
resulting from optic neuritis (ON) is linked to a
decrease in macular ganglion cell inner plexiform
layer (mGCIPL) and peripapillary retinal nerve fibre
layer (pRNFL) thickness as measured by optical
coherence tomography (OCT).” OCT uses coherent
light to produce high-resolution, non-invasive, cross-
sectional images of the retina. Besides a reduction in
absolute pRNFL and mGCIPL thickness, intereye dif-
ferences (IEDs) of pRNFL and mGCIPL can be used
as indicators of previous ON attacks and to quantify
the severity of ON-related damage.$-10

Regardless of the overall rate of neural decline, it is
unclear how individual attacks contribute to neurode-
generation over the course of MS. An increasing vul-
nerability of neurons towards stressors or a chronic

increase in neuronal stressor load might promote
greater attack-related neurodegeneration in aging
pwMS. " This study aimed to understand, whether the
neuroaxonal loss resulting from a single MS attack is
age-dependent. We hypothesised that higher age at
ON is associated with greater subsequent retinal
atrophy.

Methods

Participants

This cross-sectional analysis comprised 122 pwMS:
Sixty-one pwMS with previous ON (MS-ON) and 61
pwMS without ON history (MS-NON) (Figure 1).
Participants of both groups were derived from large
observational cohorts at UCSF (UCSF EPIC study,'? n
= 50) and Charité (CIS, VIMS and Berllmmun'? stud-
ies, n = 72), with standardised protocols for assessments
and trained personnel. Inclusion criteria for the MS-ON
group were 1) a diagnosis of relapsing-remitting MS
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(RRMS) according to 2017 criteria,'4 2) age > 12 years
and 3) a single episode of unilateral ON within 6-24
months before OCT. ON episodes were defined based
on clinical history. Participants of the MS-NON group
were included by manual 1:1 matching for age at OCT,
sex, and Expanded Disability Status Scale (EDSS)"3
score. EDSS scoring was performed under the supervi-
sion of an experienced MS neurologist. Participants with
multiple or bilateral ON events, relapse activity < 3
months before OCT and eyes with retinal comorbidities
(e.g. diabetic or hypertensive retinopathy, posterior vit-
reous detachment) were excluded.

The study was approved by the local ethics commit-
tees in San Francisco and Berlin (Charité
Universitatsmedizin Berlin: EA1/362/20, EA1/163/
12, EA1/182/10) and performed in line with the cur-
rent version of the Declaration of Helsinki. All par-
ticipants gave written informed consent before study
inclusion.

OCT acquisition and measurements

Experienced personnel performed OCT acquisition,
quality control, and image data reading at UCSF (DC,
SCM) and Charité (CB, GK). Images of macular and
peripapillary retinal layers were acquired with spec-
tral domain OCT devices (Spectralis, Heidelberg
Engineering, Heidelberg, Germany). Pupil dilation
was not performed. Quality control was executed in
compliance with OSCAR-IB criteria,'® and OCT data
were reported according to the APOSTEL guide-
lines.!” Semi-automatic layer segmentation was per-
formed using the OCT manufacturer’s software (eye
explorer, Heidelberg Engineering; versions 1.10.12.0
(UCSF) and 1.10.2.0 (Charité)). pRNFL thickness
was quantified from 12° ring scans around the optic
nerve head with activated eye tracker. mGCIPL thick-
ness was calculated as average thickness from macu-
lar volume scans by placing 3.45 mm diameter
cylinders around the fovea.

Visual function

Visual function was measured for each eye separately.
High-contrast visual acuity (HCVA) was acquired
using retro-illuminated Early Treatment in Diabetic
Retinopathy (ETDRS) charts at 4 m distance. Decimal
acuity (Charité) or letter acuity (UCSF) scores were
converted to the logarithm of the Minimum Angle of
Resolution (logMAR). Low-contrast visual acuity
(LCVA) was tested with Sloan 2.5% contrast charts,
with the letter acuity (range 0—60) as the outcome of
interest. Correction was either carried out using opti-
mal optical (Charité) or habitual correction (UCSF).

Statistical analysis

All parameters are reported as mean * SD unless
specified otherwise. The relationship between age
and pRNFL/mGCIPL thickness was examined using
linear mixed-effects models including an interaction
term between ON status of eyes and age at OCT, as
well as subject-specific intercepts. Contralateral,
ON-unaffected eyes of MS-ON participants (CON
eyes) and eyes from MS-NON participants (NON
eyes) were combined to increase power. Age at OCT
was centred around the mean to allow interpretation
of ON effects at mean age. Estimated marginal means
were derived from these models to predict pRNFL/
mGCIPL mean thickness differences between
ON-affected and ON-unaffected eyes at ages 20, 30,
40, and 50 years. Effect size of interaction terms was
further assessed by obtaining marginal AR? and stand-
ardised coefficients. Marginal AR? was calculated as
the difference in marginal R? between models with
and without the interaction term. The association
between age and pRNFL/mGCIPL IEDs per MS-ON
participant was analysed with linear regression mod-
els. IEDs were calculated as the absolute value of the
difference in pRNFL/mGCIPL thickness between
both eyes. Percentage IEDs were obtained by normal-
ising absolute IEDs to the eye with greater pRNFL/
mGCIPL thickness. Furthermore, the MS-ON group
was split based on median age (35 years). The differ-
ence between pRNFL/mGCIPL IEDs in these two
subgroups was analysed with the Mann—Whitney
U-test to allow for non-parametric testing of non-nor-
mally distributed data. Normality of linear model
residuals was assessed graphically with density
curves. Given the collinearity of the structural meas-
ures and the limited number of comparisons, we did
not apply formal multiple-comparison corrections.
The impact of centre, sex, disease duration, DMT
treatment (yes/no), steroid treatment (yes/no, only for
IED comparisons within the MS-ON group) and time
between ON and OCT (only for IED comparisons
within the MS-ON group) as additional predictor var-
iables was investigated by comparing hierarchically
nested models. Goodness of fit was assessed through
likelihood ratio testing, implemented via the anova
function in R. A sensitivity analysis was performed
after outlier exclusion. Outliers were defined as data-
points outside the interval [Q1 — 1.5*interquartile
range (IQR); Q3 + 1.5*IQR]. Finally, age-depend-
ency of ON-related changes in HCVA and LCVA was
analysed analogously to pRNFL/mGCIPL absolute
thickness modelling. Due to centre-specific acquisi-
tion protocols, visual acuity analyses were separated
by centre and coefficients were standardised to create
comparable estimates. Statistical significance was
defined as p < 0.05. All analyses were performed
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with R (Version 4.2.1) including the packages /me4,
emmeans, MuMIn and parameters. Figures were cre-
ated using R and Adobe Illustrator. Statistical infor-
mation is reported in accordance with the SAMPL
guidelines.!8

Results

Patient population

Sixty-one participants with RRMS were included in
both the MS-ON and MS-NON group (UCSF: n =
25, Charité: n = 36) (Table 1). The two groups were
matched for sex, age and EDSS at OCT (sex (male, N
(%)): MS-ON: 19 (31.1), MS-NON: 19 (31.1), p >
0.99; age at OCT (years, mean = SD): MS-ON: 34.2
+ 8.2, MS-NON: 349 = 7.7, p = 0.62; EDSS
(median (IQR)): MS-ON: 1.5 (1.0-1.5), MS-NON:
1.5 (1.0-2.0), p = 0.36). Fifty-two of the 61 MS-ON
participants received steroid treatment. Therapy esca-
lation to plasma exchange was confirmed for one par-
ticipant; for seven participants, this could not be
determined. pRNFL thickness was analysed in 239
eyes, 242 eyes were included in mGCIPL thickness
analyses. For pRNFL IED analyses, 119 participants,
and for mGCIPL IED analyses, 121 participants were
included. Three MS-ON participants were excluded
from pRNFL analyses because of missing ringscans
(n = 2) or unilateral posterior vitreous detachment (n
= 1; unaffected eye included in pRNFL absolute
thickness modelling). One MS-NON participant was
excluded from mGCIPL analyses because of missing
macular scans.

ON lead:s to retinal atrophy

pRNFL/mGCIPL thickness was significantly lower in
ON eyes compared to CON and NON eyes (ON eyes:
pRNFL (median (IQR)): 92.00 (81.65-99.50) pm,
mGCIPL (median (IQR)): 77.02 (69.53-83.55) pm;
CON eyes: pRNFL (median (IQR)): 103.00 (94.17—
108.27) um, mGCIPL (median (IQR)): 87.72 (83.44—
89.90) um; NON eyes: pRNFL (median (IQR)):
100.83 (94.73-105.00) um, mGCIPL (median (IQR)):
88.11 (82.81-93.76) um; p value for all comparisons
of ON eyes with CON or NON eyes < 0.001) (Table
2). In addition, pPRNFL/mGCIPL IEDs were increased
in MS-ON compared to MS-NON participants (MS-
ON: pRNFL IED (median (IQR)): 9.65 (5.46-13.51)
um, mGCIPL IED (median (IQR)): 10.70 (5.55-
17.13) pum; MS-NON: pRNFL IED (median (IQR)):
2.02 (1.004.00) um, mGCIPLIED (median (IQR)):
1.38 (1.07-2.92) um; p value for both comparisons <
0.001) (Table 2).

Retinal atrophy after ON is associated with age

As expected, older age was associated with lower
pRNFL/mGCIPL thickness in ON-affected and -unaf-
fected eyes (ON eyes: pRNFL: B = —0.56, 95% confi-
dence interval (CI) = [-0.97, —0.15], p = 0.01;
mGCIPL: —0.42, 95% CI = [-0.80, —0.04], p = 0.03;
CON + NON eyes: pRNFL: B = —0.25, 95% CI =
[-0.44, —0.06], p = 0.01; mGCIPL: —0.21, 95% CI =
[-0.35, —0.07], p = 0.003) (Figure 2). Linear mixed-
effects models revealed a significant interacting effect of
age at OCT and ON status on both pPRNFL and mGCIPL
thickness (pRNFL: B = 0.28, 95% CI = [0.03, 0.54], p
= 0.03, mGCIPL: B = 0.24,95% CI = [0.01,0.46],p =
0.04; Table 3). Standardised coefficients indicated that,
with every 1 SD increase in age, the difference in
pRNFL/mGCIPL between ON-unaffected eyes and
their ON-affected counterparts increased by an addi-
tional 0.2 SD/0.19 SD. However, as revealed by AR, the
interaction term only accounted for 0.8% of the variance
in the pRNFL model and 0.6% in the mGCIPL model.

Estimated marginal mean differences in pRNFL were
predicted to increase from —7.49 um (95% CI =
[-11.72,-3.27]) at 20 years to —15.97 um (95% CI =
[-20.56, —11.39]) at 50 years of age (Table 4). For
mGCIPL, the predicted mean difference between
ON-affected and -unaffected eyes increased from
—9.74 um (95% CI = [-13.5, —5.99]) at 20 years to
—16.89 um (95% CI = [-20.96, —12.82]) at 50 years
of age (Table 5).

Consistently, there was a numerical increase in
pRNFL and mGCIPL IEDs of MS-ON participants
with greater age, not meeting the predefined threshold
of statistical significance (pRNFL: B = 0.28, 95% CI
= [-0.09, 0.65], p = 0.13; mGCIPL: B = 0.26, 95%
CI =[-0.07,0.59], p = 0.12; Figures 3a and b). Only
a small part of the variance of the dataset was
explained by our models (multiple r> = 0.04 for both
pRNFL and mGCIPL IEDs). No statistical difference
in pRNFL (p = 0.71) or mGCIPL IEDs was observed
(p = 0.26) when comparing MS-ON participants
younger and older than the age median (35 years;
Figure 3c). Participants from both age groups did not
significantly differ in EDSS or disease duration
(EDSS (median (IQR)): older participants: 1.5 (1.0-
1.5), younger participants 1.5 (1.0-1.5), p = 0.67; dis-
case duration at OCT (years; mean *= SD): older
participants: 1.5 * 2.4, younger participants: 1.1 =
2.2, p = 0.52). Analyses of percentage IEDs yielded
similar results (data not shown).

Age (in IED models) or the interaction of age and ON
status (in absolute thickness modelling) presented the
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Table 1. Cohort description.

MS-NON MS-ON
Participants (N) 61 61
Sex (male, N (%)) 19 (31.1) 19 (31.1)
Age at OCT (years, mean + SD) 349+17.7 342 +8.2
Age at ON (years, mean + SD) - 33.4+£8.2
EDSS (median (IQR)) 1.5 (1.0-2.0) 1.5 (1.0-1.5)
Ethnicity (N (%))
White 52 (85.2) 51(83.6)
Multiple/Other 9 (14.8) 10 (16.4)
Disease duration at OCT (years, 39+4.6 13+£23
mean + SD)
Time between ON and OCT - 11.0+4.1
(months, mean + SD)
Treatment efficacy at OCT (N (%))"°
high 8 (13.1) 11 (18.0)
moderate 16 (26.2) 14 (23.0)
modest 12 (19.7) 15 (24.6)
none 25 (41.0) 20 (32.8)
unknown 0(0.0) 1(1.6)

Participants of the MS-ON group experienced a single unilateral ON episode, MS-NON participants had no history of ON.
Abbreviations: EDSS =Expanded Disability Status Scale, IQR =interquartile range, N=number, OCT =optical coherence

tomography, ON=optic neuritis.

best predictors of OCT-derived outcome parameters
in all statistical models, when adding additional pre-
dictor variables (Supplemental Tables 1 and 2). In
pRNFL/mGCIPL thickness models, age and ON sta-
tus remained the only independent variables with sta-
tistical significance. Model estimates remained
relatively stable (pRNFL: Age:ON interaction term =
0.28-0.30, mGCIPL: Age:ON interaction term =
0.23-0.24; pRNFL absolute IED: Age at OCT =
0.28-0.34, mGCIPL absolute IED: Age at OCT =
0.23-0.26). In addition, the studied outcome parame-
ters were not significantly influenced by differing
treatment efficacies (data not shown).

After outlier exclusion, the significant interaction of
age and ON status persisted in modulating pRNFL
thickness (Age: B = —0.52,95% CI = [-0.77,—-0.27],
p < 0.001; ON status: B = 10.67, 95% CI = [8.72,
12.58], p < 0.001; Age:ON interaction: B = 0.25,
95% CI = [0.02, 0.48], p = 0.04). In mGCIPL mod-
els, age and ON status remained significant predictors
of absolute thickness, but the interaction of these vari-
ables did not seem to majorly impact this parameter
(Age: B = —0.34, 95% CI = [-0.55, —0.13], p =
0.002; ON status: B = 11.67, 95% CI = [10.09,
13.27], p < 0.001; Age:ON interaction: B = 0.13,
95% CI = [-0.07, 0.32], p = 0.21) (Supplemental
Table 3).

Visual recovery after ON depends on age

HCVA data were available for 41 ON eyes (UCSF: n
= 13, Charité: n = 28) and for 136 NON/CON eyes
(UCSF: n = 51, Charité: n = 85). For LCVA, data
were available for 41 ON eyes (UCSF: n = 13,
Charité: n = 28) and for 138 NON/CON eyes (UCSF:
n = 53, Charité: n = 85). Interestingly, no consistent
effect of age and ON status on ETDRS logMAR was
observed 6—24 months after ON. Prior ON was asso-
ciated with higher ETDRS logMAR in UCSF partici-
pants, while age and the interaction of age and ON
status did not seem to affect HCVA outcomes.
Contrastingly, there was a trend towards an age-
dependent increase of ETDRS logMAR in Charité
participants, as well as a numerical interaction of age
and ON status, which did not meet the predefined
threshold of statistical significance (Charité: Age: B
= 0.35, 95% CI = [0.00, 0.71], p = 0.05; ON status:
B = -0.29, 95% CI = [-0.64, 0.06], p = 0.11;
Age:ON interaction: B = —0.29, 95% CI [-0.65,
0.07], p = 0.12; UCSF: Age: B = 0.06, 95% CI =
[-0.48, 0.60], p = 0.83; ON status: B = —0.60, 95%
CI = [-1.11, —0.08], p = 0.02; Age:ON interaction:
B =0.01,95% CI [-0.52, 0.54], p = 0.96) (Tables 6
and 7). In LCVA testing, age and prior ON were sig-
nificantly associated with decreased letter counts in
participants from both centres. Moreover, there was a
significant interaction between age and ON status
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Table 2. Description of OCT-derived outcome parameters in ON-affected and -unaffected eyes/participants.

IEDs (um)

Absolute thickness (um)

mGCIPL

PRNFL

mGCIPL

PRNFL

median (IQR) median (IQR) median (IQR)

median (IQR)

10.70 (5.55-17.13)

77.02 (69.53-83.55) 9.65 (5.46-13.51)

92.00 (81.65-99.50)

ON eyes

MS-ON

87.72 (83.44-89.90)
88.11 (82.81-93.76)

103.00 (94.17-108.27)

CON eyes

1.38 (1.07-2.92)

2.02 (1.00-4.00)

100.83 (94.73-105.00)

NON eyes

MS-NON

All data presented as median (IQR) due to non-normality. Participants of the MS-ON group experienced a single unilateral ON episode, MS-NON participants had no history of ON. ON eyes: ON-

macular

interquartile range, mGCIPL=

intereye differences, IQR=

affected eyes of MS-ON participants, CON eyes: contralateral, ON-unaffected eyes of MS-ON participants. Abbreviations: IEDs

ganglion cell inner plexiform layer, ON

peripapillary retinal nerve fibre layer.

optic neuritis, pPRNFL

affecting the letter counts of Charité participants.
Modelling of UCSF participant data showed a
numerically similar effect, albeit not statistically sig-
nificant (Charité: Age: B = —0.45, 95% CI = [-0.80,
—0.10], p = 0.01; ON status: B = 0.82, 95% CI =
[0.47, 1.18], p < 0.001; Age:ON interaction: B =
0.48, 95% CI = [0.11, 0.85], p = 0.01; UCSF: Age:
B =-0.71,95% CI = [-1.15,-0.28], p = 0.002; ON
status: B = 0.86, 95% CI = [0.44, 1.28], p < 0.001;
Age:ON interaction: B = 0.34, 95% CI = [-0.09,
0.77], p = 0.12) (Table 8).

Discussion

While neurodegeneration is recognised as the cause
of chronic disability in MS, drivers of age-related dis-
ability accrual are only poorly understood.? We aimed
to analyse the relationship between age and ON-related
retinal atrophy. Previous studies have suggested
greater overall neurodegeneration rates in younger
pwMS,20-22 but age differences in the contribution of
individual attacks to the neurodegenerative load were,
to our knowledge, previously unknown. A better
understanding of age-related differences in vulnera-
bility towards relapse-associated damage could help
inform ongoing discussions regarding discontinuation
of treatment in older pwMS.33

Our data suggest that retinal neuroaxonal loss during
acute events is age-dependent. This was reflected in
the interaction of age and ON status of eyes in linear
mixed-effects models of pRNFL and mGCIPL thick-
ness, adding to the known age-dependent neuroax-
onal loss in MS, which is also observed in the
retina.?>2* Older age was also associated with a ten-
dency towards increased pRNFL/mGCIPL IEDs after
ON. Moreover, the interaction between age and ON
status also influenced LCVA 6-24 months after ON.
This suggests that older age at ON is associated with
impaired functional recovery. Multiple other studies
have previously demonstrated an association of age
with declining functional recovery from MS
relapses.>23-26 However, the biological basis of this
has not been determined. Our work suggests that early
neuroaxonal loss is a likely significant contributor to
this failure to recover functionally.

A previous study reported no predictive effect of age
on HCVA 12 months after a first episode of ON in
pwMS, while pRNFL thickness at 12 months was sig-
nificantly associated with age at baseline in univariate
regression analysis.?’” Due to the lack of a control
group of pwMS without ON, this study could not sep-
arate the attack-specific contribution of age from the
results of natural and MS-related aging.?’
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Figure 2. Age dependency of pPRNFL/mGCIPL thickness in ON-affected (orange) and -unaffected eyes (blue). a:
PRNFL absolute thickness model. Fifty-nine ON-affected eyes (UCSF: n=23, Charité: n=36) and 180 ON-unaffected
eyes (UCSF: n="72, Charité: n=108) were included. b: mGCIPL absolute thickness model. Sixty-one ON-affected eyes
(UCSF: n=25, Charité: n=36) and 181 ON-unaffected eyes (UCSF: 75, Charité: 106) were included. Linear regression
lines were based on mixed linear effects models with uncentred variables, including age at OCT (Model formula: pRNFL/
mGCIPL thickness ~ Age at OCT*ON status).

Abbreviations: Charité=Charité¢ Universititsmedizin Berlin, mGCIPL=macular ganglion cell inner plexiform layer, OCT =optical
coherence tomography, ON=optic neuritis, pPRNFL=peripapillary retinal nerve fibre layer, UCSF=University of California San Francisco.

Table 3. Linear mixed-effects modelling of pPRNFL/mGCIPL thickness (pum) in ON-affected and -unaffected eyes,
depending on age.

Intercept 89.31 [87.12,91.51] <0.001 74.66 [72.78, 76.54] <0.001
ON status? 11.60 [9.51, 13.67] <0.001 13.21 [11.37, 15.06] <0.001
Age at OCT® -0.54 [-0.81, —0.28] <0.001 ~0.46 [-0.69, —0.23] <0.001
Age:ONabe 0.28 [0.03, 0.54] 0.03 0.24 [0.01, 0.46] 0.04

Table 4. Changes in estimated marginal mean pRNFL thickness differences between ON-affected and -unaffected eyes
from 20 to 50 years of age.

20 97.21[92.78,101.65]  104.71 [101.25, 108.17] -7.49[-11.72,-3.27]  0.28[0.03,0.54]  0.03
30 91.77 [89.28, 94.26] 102.09 [100.18, 104.00]  —10.32 [-12.69, —7.96]

40 86.33[83.6,89.05] 99.47[97.47,101.48]  —13.15 [~15.73, ~10.57]
50  80.88[76.05, 85.72] 96.86 [93.24, 100.48]  —15.97 [-20.56, —11.39]
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Table 5. Changes in estimated marginal mean mGCIPL thickness differences between ON-affected and -unaffected eyes
from 20 to 50 years of age.

Age*  mGCIPL mGCIPL A mGCIPL Change in p value
years  ON-affected® ON-unaffected® um, [95% CI] A mGCIPL/yeard

um, [95% CI] um, [95% CI] um, [95% CI]
20 81.29 [77.47, 85.11] 91.03 [88.16, 93.91] -9.74 [-13.5,-5.99] 0.2410.01, 0.46] 0.04
30 76.73 [74.59, 78.87] 88.86 [87.27, 90.45] —-12.13 [-14.23,-10.02]
40 72.18 [69.85, 74.50] 86.69 [85.02, 88.35] —-14.51 [-16.80, -12.22]
50 67.62 [63.48, 71.75] 84.51[81.51, 87.51] —-16.89 [-20.96, —12.82]

Estimated marginal means were derived from linear mixed-effects modelling of mGCIPL absolute thickness (model formula:
mGCIPL thickness ~ Age at OCT*ON status + (1|ID). a: Age=age at OCT. b: ON-affected eyes=ON-eyes. c: ON-unaffected
eyes=NON- and CON-eyes. d: year=year of age at OCT; interaction term and p value taken from original model. Abbreviations:
CI=confidence interval, mGCIPL=macular ganglion cell inner plexiform layer, OCT=optical coherence tomography, ON=optic

neuritis.

Major strengths of our study include the close 1:1
matching of an MS-NON group to control for age-
and attack-unrelated neurodegeneration, as well as a
focus on patients after their first clinical ON attack.
Since ON events often occur early in the disease,
most participants were DMT-naive at the ON event,
mitigating possible effects of differing treatment effi-
cacies. Older and younger MS-ON participants did
not significantly differ with respect to EDSS and dis-
ease duration. This argues against the assumption that
ON activity in older participants could be indicative
of a more severe MS course.

Nevertheless, limitations have to be considered: The
lack of baseline OCT data before ON events and the
relatively narrow age span present limiting factors of
our study. Owing to the cross-sectional design, it can-
not be excluded that retinal asymmetry or thinning of
retinal layers may be due to factors unrelated to age
and retinal inflammation. As ON frequently presents
the heralding event in MS, obtaining baseline data
remains a challenge. However, the fact that IEDs
remained low in MS-NON participants throughout
the studied age span supports the underlying assump-
tion that the increase in IEDs observed in MS-ON
participants can be substantially attributed to the prior
ON episode. ON-unaffected eyes of MS-ON partici-
pants can thus serve as baseline surrogates for the
affected eyes. Considering that only 26% of partici-
pants were older than 40 years, the reported effects
might be stronger when studied in cohorts with larger
age ranges, although recruitment of older participants
is limited by lower attack frequencies?32° and the
requirement of no prior ON attack. The average dif-
ference in pRNFL/mGCIPL thickness of 0.24-0.28
um per year of age at ON estimated by our models
however amounts to an average difference of ~2-3
um per decade of age. This difference could already

be considered clinically meaningful: previously pub-
lished cross-sectional data estimated an average
reduction in pRNFL thickness of 2.2-2.9 um to be
associated with a 1-line change in HCVA testing 303!
In addition, our study suggests impairment of LCVA
recovery in older patients with ON, further underlin-
ing the clinical implications of our structural
findings.

The outlier-dependency of the mGCIPL data and the
marginal statistical significance in IED analyses could
be explained by the relatively small sample size.
Generally, our variables of interest only explained
small parts of the overall variance of our outcome
data. Differences in attack severity might explain
some of this additional data variability. Data on visual
acuity at nadir was unfortunately not available to be
included as a measure of attack severity. Given that
older pwMS typically show decreased adaptive
immune activity, it is plausible that relapse-related
inflammation is less severe in this group.3? Differences
in the time between ON and OCT could also have
added to the data variability. Furthermore, overall dis-
ability of both MS-ON and MS-NON participants
was relatively low. While this might be due to the
short disease duration associated with first-time ON
attacks, we cannot exclude that our study population
might not be reflective of all disease courses.

Larger, prospectively gathered datasets from multiple
centres and in more diverse populations are needed to
replicate and expand upon these findings. The inclu-
sion of additional measures of neurodegeneration is
crucial, since age-related neurodegeneration has been
suggested to be region- and assessment-dependent.2?
Attack definitions may however be more challenging
to standardise when studying other areas of the CNS,
for example, with magnetic resonance imaging (MRI).
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Figure 3. Age dependency of pPRNFL/mGCIPL IEDs in MS-ON and MS-NON participants. Participants of the MS-

ON group (yellow) experienced a single unilateral ON episode, MS-NON participants (green) had no history of ON. a,

b: Linear regression of age at OCT and pRNFL/mGCIPL IEDs. Model formula: pRNFL/mGCIPL IED ~ Age at OCT.
pRNFL data from 119 participants (MS-ON: n = 58 (UCSF: n = 22, Charité: n = 36); MS-NON: n = 61 (UCSF: n =
25, Charité: n = 36)) was included. mGCIPL data stemmed from 121 participants (MS-ON: n = 61 (UCSF: n = 25,
Charité: n = 36); MS-NON: n = 60 (UCSF: n = 25, Charité: n = 35)). ¢: Distribution of pPRNFL/mGCIPL IEDs in older
compared to younger MS-ON participants after median split. Median age: 35 years. Older group: n = 28/29, younger
group: n = 30/32 (pRNFL/mGCIPL). The box depicts the IQR, the horizontal line indicates the median. Whiskers extend
to QI — 1.5 X IQR and Q3 + 1.5 X IQR. Statistical testing was performed using the Mann—Whitney U-test.
Abbreviations: Charité = Charité Universitdtsmedizin Berlin, IED = intereye difference, IQR = interquartile range, mGCIPL =
macular ganglion cell inner plexiform layer, OCT = optical coherence tomography, ON = optic neuritis, PRNFL = peripapillary retinal
nerve fibre layer, UCSF = University of California San Francisco, y = years.

Preclinical studies should further elucidate possible
mechanisms behind age-related changes in neuroax-
onal loss, such as impaired remyelination and
changes in neuronal vulnerability. The degree of
demyelination of the optic nerve has been shown to
correspond with retinal neurodegeneration and
remyelinating treatment has been associated with
increased neuroaxonal stability.333* Since impaired

remyelination is a known pathophysiological feature
associated with aging in MS, age-related remyelina-
tion failure and increased neuroaxonal loss might be
linked.?? In addition, neuronal senescence might
reduce the intrinsic capacity for self-protection.
Unravelling the contribution of these complex
mechanisms to age-associated neuronal loss could
provide essential insights for future therapeutic
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Table 6. Description of visual acuity parameters in ON-affected and -unaffected eyes by centre.

ETDRS (logMAR) UCSF 0.02 (-0.10-0.02) —0.10 (<0.12-0.06) —0.07 (<0.16-0.03)
Charité —0.20 (-0.20-0.10) —0.20 (-0.23-0.10) —0.20 (-0.20-0.10)
LCVA (Letter count) UCSF 22.00 (19.00-31.00) 29.00 (24.00-34.00) 29.50 (26.75-35.00)

Charité 44.50 (40.00—48.00) 49.00 (45.75-52.00) 49.00 (45.00-53.00)

Table 7. Linear mixed-effects modelling of HCVA (ETDRS, logMAR) in ON-affected and -unaffected eyes, depending
on age.

Intercept 0.22 [-0.13, 0.57] 021 0.48 [-0.05, 1.00] 0.07
ON status® -0.29 [-0.64, 0.06] 0.11 ~0.60 [-1.11,-0.08] 0.02
Age at OCT® 0.35 [0.00, 0.71] 0.05 0.06 [-0.48, 0.60] 0.83
Age:ONebe -0.29 [-0.65, 0.07] 0.12 0.01 [-0.52, 0.54] 0.96

Table 8. Linear mixed-effects modelling of LCVA (letter count) in ON-affected and -unaffected eyes, depending on age.

Intercept —0.63 [-0.97,-0.29] 0.003 -0.71 [-1.15,-0.28] 0.002
ON status? 0.82 [0.47,1.18] <0.001 0.86 [0.44, 1.28] <0.001
Age at OCT® —0.45 [-0.80,-0.10] 0.01 —0.72 [-1.16,-0.28] 0.002
Age:ONabe 0.48 [0.11,0.85] 0.01 0.34 [-0.09, 0.77] 0.12

strategies to prevent neurodegeneration and disabil- MS attacks could aid both as a prognostic factor and

ity progression in MS. help guide therapeutic decision-making. Although
Despite the relatively young age of our participants, less frequent, individual MS attacks might have more
our data suggest an association between age at ON and detrimental effects in older patients. This conclusion
subsequent retinal neurodegeneration. In the clinical is also relevant in the context of emerging discussions
setting, an enhanced understanding of age-effects in regarding discontinuation of treatment in aging pwMS.3>
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