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Abstract 

The field of single-cell biology is growing rapidly, generating large amounts of data 
from a variety of species, disease conditions, tissues, and organs. Coordinated efforts 
such as CZI CELLxGENE, HuBMAP, Broad Institute Single Cell Portal, and DISCO allow 
researchers to access large volumes of curated datasets, including more than just 
scRNA-seq data. These resources have created an opportunity to build and expand 
the computational biology ecosystem to develop tools necessary for data reuse 
and for extracting novel biological insights. We highlight achievements made so far, 
areas where further development is needed, and specific challenges that need to be 
overcome.

Introduction
Technological advances have enabled generation and collection of large volumes of data 
at the single-cell resolution [1]. For the most part, this is done by individual research 
groups, and to make these datasets more useful to the community, they need to be 
assembled into cell atlases. In the context of single-cell technologies, an atlas is a large 
collection of datasets that have been curated and made accessible through a web portal. 
In addition to making it easier to find datasets, atlases provide a coherent pipeline for 
data ingestion and processing, ensuring that datasets can be combined and leveraged to 
provide novel biological insights.

Today, there are thousands of single-cell datasets available, and building an atlas is 
a resource-intensive endeavor, requiring a large team of biologists and data scientists. 
Moreover, substantial infrastructure is needed, and to be useful to the community, it 
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must be sustained and updated over time. Hence, cell atlases are backed by large organi-
zations or supported by large-scale projects (Table 1).

Together, we have been involved in the Chan Zuckerberg Initiative’s effort to expand 
the ecosystem of computational methods that can support and exploit cell atlases in the 
context of the Data Insights program. Here, we present our shared experiences, and we 
discuss some of the issues involved in building and using a cell atlas (Fig. 1). We then go 
on to explore the possibilities enabled by cell atlases as well as the challenges that the 
community faces going forward.

Data ingestion, access, and representation
A central goal for any scientific resource is to make sure that it adheres to the FAIR prin-
ciples [15], i.e., ensuring that data is findable, accessible, interoperable, and reusable. 
By serving as central repositories, cell atlases make it easier to find and access data. By 
making sure that data is uniformly processed and adheres to standard formats, it also 
becomes interoperable and reusable. Although straightforward in principle, the scale 
and complexity of a cell atlas make it difficult to achieve these goals.

Data pre‑processing

For sequencing data to be useful, one must have access to the underlying reads, typically 
stored in fastq format [16]. In addition to the raw data, the various levels of processed 
data and metadata must also be ingested. The first step for the cell atlas is to carry out 
quality controls to ensure the integrity of the data. Thus, preprocessing is a key step that 
is often poorly documented and difficult to reproduce due to the use of different ver-
sions of software packages. Although preprocessing can improve the internal consist-
ency, it does not prevent the emergence of discrepancies within and across atlases. A 
particular concern for cell atlases is batch effects, technical artifacts that emerge due to 
differences in how the data was obtained and processed. Although batch effects can be 
reduced, they cannot be eliminated altogether. Fortunately, it is possible to detect and 
correct batch effects post hoc, provided that detailed information about the processing 
is available. As no repository will be able to span all conditions, populations, organisms, 
cells, and modalities of interest, maintaining this possibility is a key requirement for ena-
bling meta-analyses.

Data accessibility, interoperability, and reusability

By providing a portal where users can search for data, cell atlases greatly facilitate find-
ing datasets. Depending on the use case, different levels of processing will be desired. 
Only providing the raw data is not sufficient, and various levels of processing will be 
required by most users. However, tools for indexing, metadata standardization, and 
cross-cohort queries are in their infancy, and this limits the ability of users to identify 
suitable datasets [2, 17]. Although it is possible to find and access individual datasets 
through a web browser, anyone interested in analyzing a large number of datasets needs 
to have both programming skills and sufficient computational resources. This creates a 
barrier for many users, and an important area of research is to develop computational 
tools to facilitate access to large cell atlases. Another key aspect is to provide APIs for 
those users who are developing code for accessing the cell atlas. This includes adhering 
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to standardized file formats as well as catering for multiple programming languages. At 
the time of writing, both R and Python are widely used, and cell atlases need to support 
both to be useful. As with many other aspects of a cell atlas, these resources need to be 
updated over time as the computational ecosystem and use cases evolve.

Metadata and ontologies

Metadata is crucial for researchers interested in re-analyzing existing datasets. Com-
plete and well-curated metadata can transform a cell atlas from being a static refer-
ence to a dynamic hypothesis-generating tool, enabling a variety of stratified analyses. 
For example, metadata capturing timepoints post-infection enables reconstruction of 
disease trajectories. On the other hand, missing or incomplete metadata could mislead 
data interpretation (e.g., in a human study, effects that are actually due to donor sex or 
age would erroneously be attributed to treatment). This issue has long been recognized, 
and in the past, there have been community efforts such as MIAME [18] to set common 
standards. For scRNAseq, metadata can be divided into three categories: sample, gene, 
and cell. Sample metadata includes information about donor, time of collection, stor-
age, experimental processing, computational processing, etc. Gene metadata is relatively 
straightforward, at least for model organisms, where various annotations are mature and 
stable. The most important aspect of cell metadata is its annotation, and this requires 

Fig. 1  Cell atlases ingest data from a wide range of labs based on specific criteria, e.g., species, disease, and 
tissue. Data is processed in a coherent manner and made available through a portal. The portal enables a 
wide range of queries to either download or interrogate multiple datasets. On their own or in combination 
with additional experiments, these queries can result in new findings
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mapping data to a cell type ontology [19]. An example of a metadata scheme developed 
for single-cell analysis is matrix and metadata standards (MAMS [20]). Although report-
ing and adhering to technical standards is important, it is essential to couple this to the 
establishment of a culture where data generators recognize their responsibility in pro-
viding complete metadata.

Ontologies allow formal and structured operations to be carried out, and they are thus 
essential to contextualize the resource and facilitate interpretations. In particular, they 
enable automated processing and application of ML/AI methods. The Cell Ontology [21] 
provides a standardized vocabulary to annotate cell types and states, which is vital for 
ensuring interoperability across datasets. Cell type annotation is a central step in the 
biological interpretation, yet it remains one of the most time-consuming tasks during 
the analysis. The traditional approach is to first identify marker genes for each cluster 
and then use the literature to determine which is the corresponding cell type or state. 
Several computational tools seek to assist with this process by comparing to previously 
annotated datasets [22, 23], and this has been highlighted as one of the main use cases 
of cell atlases. However, when aggregating datasets, it is often the case that they have 
not been annotated consistently, and assigning a consistent set of cell labels remains a 
major challenge. No universally accepted definition of cell types exists; however, as our 
knowledge of cell biology and identities is ever improving, consequently, ontologies 
must remain flexible to accommodate the diversity of cell types, states, and conditions. 
In this regard, we think that tools for harmonizing and standardizing annotations, such 
as [23] and [24], as well as initiatives such as the HuBMAP Common Coordinate Frame-
work, will play an essential role in improving data consistency and enhancing the utility 
of atlases across contexts.

Cross-species comparisons can be particularly challenging due to differences not 
only in nomenclature but also in function. These analyses can be assisted by retaining 
gene/feature-level metadata and leveraging orthology-based information, and tools 
such as SAMap [25] can bridge gaps between different phyla by robustly reconstructing 
the latent manifolds. The integration of disease data into atlases also presents its own 
set of difficulties as disease-associated cells may acquire distinct cell states, requiring 
expanded annotations in the metadata. Moreover, when querying a “normal” atlas with 
disease-specific data, researchers must account for the potential lack of representation 
or mismatch in cell types [26]. For instance, cancer cells often recapitulate developmen-
tal gene programs, meaning these cells may map to normal developmental stages rather 
than the typical “diseased” cell types.

Extracting the most out of a cell atlas
The immediate use of cell atlases is to provide a global overview of cell types and cell 
states for a given tissue, disease, organism, or condition. An inventory of the build-
ing blocks is of great scientific value, and once generated, it serves as a springboard to 
address further biological questions. The challenge for the research community is that 
there is a breadth of needs for accessing a cell atlas. For some researchers, it may be 
enough to access a web server that displays gene expression and cell clusters, while 
bespoke analysis access may require downloading cell atlases to a local computer or 
server.



Page 7 of 18Hemberg et al. Genome Biology          (2025) 26:358 	

Data representation and subsampling

The typical workflow when using a cell atlas requires a user to first identify and down-
load the relevant datasets. Given their size, already exceeding 1 TB using standard data 
structures, this can require significant bandwidth and be prohibitive to many research 
labs without high-memory computing resources. For most users, working with this data 
requires out-of-core processing, high-performance computing, and significant effort in 
data wrangling [27]. Consequently, there is an urgent need for methods for handling 
streaming data as well as lossless compression algorithms for single-cell data that sig-
nificantly reduce memory footprint without compromising computational performance. 
New data structures for R/C +  +/Python can reduce memory footprint by up to tenfold 
over standard sparse matrices with minimal cost to compute. This has been achieved 
through substantial efforts in handling memory limitations and enabling processing of 
large datasets through the adoption of disk-backed or pyramidal data formats. Examples 
include Zarr, Parquet, and TileDB.

One algorithmic approach for dealing with large datasets is to subsample. Subsampling 
can ease computation over diverse datasets and help reduce bias of highly represented 
signals, but may also compromise the unprecedented modeling power that comes with 
a dataset of this size. Issues include racial and gender bias in samples [28], over-repre-
sentation of specific cell types [29], opportunistic collection of rare samples [30], but the 
best approach depends on the scientific goals of the study. Simple random subsampling 
does not address signal representation and can miss rare subpopulations [31, 32], and 
it is desirable to balance the tradeoff between representing the true proportions of cell 
types and full extent of cell identities of rare cell types [33]. As cell atlases become more 
diverse across tissues and patient donors, subsampling will become more attractive. 
However, such summaries may impair our ability to tease out subtle and biologically rel-
evant signals that only come with the massive statistical power offered by large sample 
sizes [34]. We also envision that latent space representations will be highly useful for 
providing compact representation, but further research is required to understand their 
accuracy and limitations. One promising line of work is the “biosketching” approach 
[32], which enables efficient and structure-preserving summarization of large-scale sin-
gle-cell data. Another complementary strategy involves the construction of metacells, as 
developed in a series of works aiming to create compact, less sparse representations that 
preserve essential transcriptional structure while reducing noise (e.g., [35, 36]). While 
these approaches may sacrifice single-cell resolution, they offer potential advantages in 
terms of interpretability, robustness, and computational tractability.

Data integration and meta‑analysis

To relate cell atlases with each other or with additional single-cell datasets, the research 
community relies on data integration tools [37]. These tools aim to identify joint low-
dimensional representations of all the input data, with which further downstream 
analysis can be performed, e.g., joint clustering, cell type classification, and differential 
abundance testing. In modern single-cell analysis, this data integration is often key for 
harmonizing distinct datasets, and it serves as an initial step for meta-analysis of sin-
gle-cell datasets. Appropriate meta-analyses will not only have to consider corrected 
cell type labels, but also other statistical factors that remain challenging to deal with. 
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Issues such as confounding factors, nested structure of single cells measured within bio-
logical samples (i.e., repeated measures), and understanding hidden sources of variabil-
ity all may be relevant. Ideally, cells are curated with sample-level information such as 
donor identity, sex, age, tissue, organism, developmental stage, technology, and disease. 
Some of these confounders are technical, and performing data integration over them 
will remove noise and increase salience of biological signals [38]. Others are biologically 
driven, and thus data integration would enable researchers to compare analogous cell 
states across tissue, diseases, and organisms. A useful data integration algorithm must 
account for all of these sources of information and allow users to retain or remove spe-
cific variation relevant to their analyses. For instance, a comparison of T cells across tis-
sues may emphasize tissue-specific differences (i.e., do not harmonize over tissue) to 
explain differential heritability, while others look to nominate for shared effector pheno-
types across diseases (i.e., do harmonize over tissue) for basket clinical trials [39]. These 
scenarios highlight that data integration is not a static tool to be applied prior to further 
analysis, but rather needs to be adaptable to the research question at hand. This intro-
duces a new computational challenge, as current integration algorithms are designed 
with the idea that they are run once per analysis, and therefore are not necessarily opti-
mized to an online dynamic query setting. Successful data integration algorithms must 
address these emerging complexities, and they must (1) scale to 10,000 s of confounder 
levels (corresponding to the number of donors), (2) account for all sources of technical 
and biological variation in a way that lets users select which to account for, (3) perform 
consistently across a wide variety of cell atlas queries, (4) be fast and flexible enough 
to integrate diverse queries on the fly, (5) provide views of their impact on data distor-
tion and signal degradation in a manner that is easy for the user to interpret. Numerous 
methods for carrying out batch integration have been proposed in recent years, result-
ing in substantial progress in terms of performance, as demonstrated by independent 
benchmarks [37, 40, 41]. However, several challenges remain, and existing methods 
often struggle in more complex scenarios, e.g., involving different species [42], imbal-
anced datasets [43], or very large numbers of cells. As quantitative metrics of batch inte-
gration provide an incomplete view, evaluation of the five criteria above will also require 
careful considerations based on the biological interpretations.

Building cell atlases in context

An important use of cell atlases, beyond defining cell types and corresponding markers, 
is to explore how cellular and transcriptional landscapes are impacted by specific dis-
ease/functional decline (e.g., disease states, reduced function), physiological/biological 
factors (e.g., age, sex/gender, ethnic/genetic background), or treatments (e.g., response 
to a drug) [44–46]. Indeed, important insights can be achieved by analyzing cell atlases 
in a context-aware fashion, both comparing how biologically relevant inputs can lead to 
changes in (i) cell composition [47–49] and (ii) cell-type specific gene expression. Impor-
tantly, even for single-cell atlases, biological replicates should consist of samples pro-
cured from independent biological sources/individuals, and not just independent cells 
from the same sample [50–52]. Thus, a key feature of context-aware cell atlases is the 
inclusion of sufficient independent biological samples across conditions to account for 
inter-individual variability. This requires sufficient numbers of true biological replicates, 
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similar to bulk approaches [53]. For the interpretation of context-dependent cell atlases, 
it is crucial to consider the need for approaches that limit the high false positive rates 
in single-cell differential analyses (e.g., considering the potential of pseudobulking 
approaches per identified cell type/state to avoid underestimation of true biological vari-
ability [50, 51]). As an example, in the study of menopause and its potential molecular 
drivers, a context-aware atlas should include sufficient samples covering both pre-meno-
pausal and post-menopausal states, in tissues most relevant to the condition (e.g., ovary, 
pituitary gland, hypothalamus) [54].

Benchmarking and development of novel methods

There is currently a rapidly expanding ecosystem of computational tools in the single-
cell field, and for most problems, there is more than one method available. To help 
researchers decide what tool to choose, benchmarking studies are essential, and multiple 
benchmarking papers are published every month. Several challenges exist in the current 
single-cell benchmarking field, and guidelines on best practices are needed. It needs to 
be clear what the evaluation metrics are, and although many details will depend on the 
specific topic, there are overarching trends [55]. One of the main challenges when com-
paring methods is that for most problems, we do not have an independent ground truth. 
Hence, evaluating the performance will involve some degree of subjectivity. One way 
of circumventing this challenge is to use simulations to create synthetic data. However, 
most synthetic datasets are unable to capture the full spectrum of complexities found 
in real datasets, and more work is required to build on recent developments [56]. Com-
parisons using real datasets require curation, a process that can be time-consuming and 
requires substantial domain knowledge. Moreover, it may further entrench any value 
of certain algorithms through the process of performing the curation (e.g., clustering 
algorithms). As such, there is tremendous value in datasets that can be considered as a 
“gold standard” by virtue of orthogonal means. Carefully curated cell atlases can serve an 
important role here by being commonly used for benchmarking specific analytical tasks.

Today, most analysis tools and strategies are designed within the context of a smaller 
number of datasets or total cells. Many methods that are commonly used may not scale 
well to tens of millions of cells and thousands of conditions, and consequently, there is a 
need to increase computational and algorithmic efficiency. This is likely to involve vari-
ous types of approximations and lossy compression to achieve the desired speed-up and 
reduction in memory footprint. An example is the use of strategies like mini-batch to 
speed up the estimation of k-means clustering [57] without compromising the quality of 
results.

Alongside improvements to existing analytical strategies, a wider reformulation of 
these methods to address new biological questions is needed to fully leverage data-
sets spanning tissues, species, and organismal age. One such example of an established 
method that requires novel frameworks to be applicable to new types of data is RNA 
velocity. A manifold-constrained and biologically tailored velocity, as opposed to gen-
eral-purpose tools, could be designed to statistically compare estimates in the case–con-
trol setting [58, 59]. With such a modular method, a diseased or otherwise perturbed 
sample could be used to investigate whether subtle disruptions of the RNA velocity vec-
tors indicate an effect of a particular perturbation.
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Recently, there have been tremendous advances in AI, in particular in applications 
related to natural language processing, protein structure prediction, and image process-
ing. What these methods have in common is that they rely on large datasets for train-
ing, and consequently cell atlases will help their advance. Several groups have developed 
foundation models leveraging the large-scale data collected via cell atlas efforts, e.g., 
Geneformer [60], scGPT [61], scFoundation [62], scBERT [63], CellFM [64], UCE [65], 
and atlas approximations [66]. Foundation models learn generalizable representations of 
cell type and state from gene expression profiles, and they can be used to annotate new 
datasets, project them into shared latent spaces, infer missing modalities, and simulate 
responses to genetic or pharmacological perturbations. Despite these advances, wide-
spread practical use remains limited. Current challenges include technical barriers to 
applying these models in user-friendly interfaces, dealing with memory and computa-
tional infrastructure requirements, limited interpretability and explainability of model 
predictions and representations, and the lack of widespread stress-testing of models 
on noisy, rare and disease-specific single cell datasets to improve trust. Still, the field is 
advancing rapidly, with several models already being applied to biologically meaningful 
tasks such as cross-species comparison [66, 67] and spatial pathology integration [68]. 
As tools become more accessible and validated, we anticipate that AI will increasingly 
serve as a bridge between cell atlases and translational insight.

Using cell atlases for biomedical research

Perhaps the most important application underpinning efforts to build cell atlases is the 
notion that they can help accelerate biomedical research to help manage and cure dis-
ease [69, 70]. Below, we discuss some of the areas where cell atlases will provide key 
resources.

From large-scale genome-wide association studies (GWAS), thousands of genetic loci 
have been identified that infer risk of disease or influence human traits. While these 
studies have yielded great and unexpected insights into complex and common diseases, 
they also reveal a yawning knowledge gap. For instance, for 50% of the risk loci identi-
fied for coronary artery disease (CAD) it is unclear which gene(s) and which cell(s), and 
therefore which molecular and cellular pathways may be involved [71]. From studying 
CAD-associated loci, it is clear that gene regulatory effects are context-dependent, and 
that genetic effects can be condition-specific in terms of effect, direction, and magni-
tude [72]. In other words, biological sex, environmental factors (e.g., smoking), and dis-
ease influence genotypic effects and change cellular gene expression and responses. The 
analysis of cell type and condition-specific genetic effects on cellular molecular traits 
quantitative trait locus (molQTL) analysis will provide critical insights. These efforts 
could enable cell type and cell state-specific colocalization of molQTL and GWAS sig-
nals to interpret the regulatory mechanisms for complex diseases and traits. Cell atlases 
that combine genetic information with cell molecular profiles will be a key resource in 
unraveling such complex regulatory effects.

Cell atlases can also facilitate therapeutic target discovery, e.g., by predicting disease-
relevant cell states by identifying gene signatures along a trajectory from healthy to dis-
ease [73]. For example, muscle cells downregulate their contractile markers and become 
mesenchymal stem-like cells before adopting specialized cell states [74]. There are now 
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automated pipelines (e.g., scDrug, Drug2Cell [75, 76]) that take as input a cell-by-gene 
matrix of protein-coding genes and leverage the full compendium of drug-gene inter-
actions (e.g., DGIdb [77]), cell perturbations (e.g., LINCS L1000 [78]), FDA-approved 
molecules and biologics (e.g., DrugBank [79]), or active ligands (e.g., ChEMBL [80]) to 
prioritize potential drug target genes. Importantly, atlases could also be used to predict 
drug responses or unwanted side effects (e.g., scDR [81]) by querying identified targets 
in public databases (e.g., SIDER [82]). Such a combination of cell atlas and therapeutic 
databases would enable the combination of genetic epidemiology, in particular, causal 
inference through Mendelian randomization, with single-cell biology, resulting in effec-
tive identification of druggable targets or surrogate markers of disease.

The large collections of data presented in cell atlases require appropriate tools and 
frameworks that enable efficient exploration. Only in this way can they fulfill their 
potential in assisting a wide spectrum of researchers to generate novel hypotheses, faith-
fully representing the results, and communicating the findings with the community. 
Several platforms and interfaces that aim to simplify the extraction of insight from such 
datasets have proliferated over the last decade, including, for example, the CELLxGENE 
tool [2], the Bioconductor iSEE package [83], Vitessce [84], and the browsers included in 
the Broad Single Cell Portal or the Single Cell Expression Atlas [85]. To illustrate how a 
typical user might interact with a cell atlas, a researcher interested in the expression of a 
fibroblast-associated gene (e.g., COL1A2) in tendons can filter by tissue, select relevant 
cell types, and visualize expression levels across conditions (healthy vs. after acute injury, 
[86]). The spectrum of operations covered by such tools enables a powerful, in-depth 
exploration, possibly blending different views and representations of these large corpora 
of data, and linking out to other existing databases or relevant resources. For a more sys-
tematic guide to best practices in interacting with integrated atlases, we refer readers to 
the work of [87].

Beyond atlases of dissociated single‑cell transcriptomes
Single-cell RNA-seq was the first high-throughput method that allows for a high-plex 
characterization of individual cells, and thus it has been the most widely used approach 
[1, 88]. However, there are numerous other single-cell technologies under active devel-
opment, and we foresee that over the coming years cell atlases will see an influx of other 
modalities [89]. These include TCR and BCR sequencing, ATAC-seq, and long-read 
sequencing. Although this is likely to be hugely beneficial to researchers, it also involves 
several different challenges. This starts with the organizations supporting the cell atlas, 
which must develop standards and protocols for how to process and curate other modal-
ities [90]. Ensuring that different modalities can be combined for joint analyses is key, 
but it will present some major challenges, e.g., developing pre-processing pipelines, 
ontologies, and determining what metadata to include.

Several assays have been developed for measuring other aspects of the cellular state in 
single cells, e.g., DNA methylation, accessible chromatin (ATAC-seq), and transcription 
factor binding (scCUT&Tag), and an active area of research is to apply them to the same 
cell for multiomics profiling. This will provide numerous opportunities, e.g., by com-
bining ATAC-seq and RNA-seq data, we are likely to improve our ability to infer gene 
regulatory networks [91]. However, integrating such data across tissues, donors, and 
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platforms at the cell atlas scale presents substantial challenges. As multi-omics datasets 
become more complex and heterogeneous, future integration frameworks will need to 
account for missing modalities, differing noise characteristics, and scale. Recent reviews 
have highlighted methods based on shared latent spaces and graph-based integration 
as promising approaches for atlas-scale applications [92], while recent benchmarking 
efforts have examined the performance and scalability to sufficiently large (atlas-scale) 
datasets [93].

Perhaps the most important direction of new technologies is toward spatial methods, 
primarily for transcriptomics and proteomics, but other modalities are likely to fol-
low. Spatial data brings numerous challenges along with great potential for additional 
insights [94]. One challenge is in visualizing the data, and here, a user should be able 
to seamlessly toggle between gene expression space (typically a UMAP) and physi-
cal space. This representation is relatively straightforward for individual datasets, and 
indeed is implemented in cell atlas interfaces such as CxG, but for multiple samples it 
becomes much more challenging. For multiple samples, it may be more useful to map 
cells/spots to a common coordinate system, either informed by relative landmarks [95] 
or by merging across multiple samples [96]. There is also a need for further algorith-
mic development of methods, tools, and community standards for mining spatial data. 
Mining spatial data typically involves finding subcellular patterns in cells associated with 
disease, type, and outcomes [97], as well as spatial patterns from histopathological image 
data that can then be used across archival histology data without the companion omics 
layers [98]. As technologies evolve and are able to profile larger tissue sections at subcel-
lular resolution, a particular challenge will be to develop methods that can bridge molec-
ular, cellular, and tissue-level patterns. Given the success of machine learning in image 
analysis, spatial omics is well positioned to benefit from cross-pollination with computer 
vision and AI techniques.

Cell atlases outreach

At the moment, cell atlases are being built by scientists for other scientists [99]. How-
ever, given the potential implications to wider society and the substantial amounts of 
resources, much of which is coming from public funding, it is important that cell atlases 
can also cater to other audiences [99, 100]. Beyond the core constituency of academic 
biomedical researchers, potential users include clinicians and researchers in biotech and 
pharmaceutical industries. However, we believe that the ambition should be to make the 
resource at least somewhat accessible to the general public, including patients, teach-
ers, and students of all ages [69]. Public-facing presentations of cell atlas resources 
should emphasize aspects that are relatable, visually intuitive, and grounded in rele-
vance to human health. For example, simplified representations of how cells function 
across organs, or how they change in common diseases, can be powerful tools for public 
engagement. Interactive visualizations, curriculum-aligned resources for educators, and 
narratives that link cellular biology to real-world medical advances (e.g., cardiovascular 
disease, cancer, infection, or aging) are particularly valuable for broad audiences. This 
has the potential of helping to educate the public on the advances and benefits of bio-
medical research, involving citizen scientists, and inspiring the next generation of scien-
tists to ensure that others will be able to build on the work. To maximize the accessibility 



Page 13 of 18Hemberg et al. Genome Biology          (2025) 26:358 	

and impact of these efforts, collaborations with science communication professionals 
can help ensure that messaging is accurate, inclusive, and engaging for non-specialist 
audiences.

Conclusions and outlook
Here, we have outlined some of the challenges and opportunities brought along by cell 
atlases. We foresee that over the coming years, the existing atlases will continue to grow 
and that additional, more specialized collections will emerge. Having multiple atlases 
is likely to be beneficial to the field as different policies for curation, representation, 
interaction, and use cases. One analogy is gene annotations, where resources such as 
Ensembl, Refseq, and Gencode continue to be used in parallel. Depending on the specific 
need, one of these overlapping and complementary resources will be the most useful. In 
parallel, we expect substantial advances in computational methods that can effectively 
work with atlas-scale datasets to extract new insights.

Cell atlases have been enabled by technological advances, and we envision that con-
tinued innovation will govern how cell atlases evolve. As costs fall, we also expect that 
atlases will be broadened. To realize the potential not just for biomedical research, 
but for other aspects of biology, we need better coverage of human populations across 
the age spectra and for multiple disease states. Moreover, additional species are 
needed. Most likely, within the next few years, advancements in the fields of proteom-
ics and metabolomics will enable the profiling of large numbers of single cells via these 
modalities, unlocking more accurate modeling of metabolism, signaling, and cell–cell 
communication.

In addition to their biomedical applications, cell atlases are proving to be invaluable 
resources for fundamental research in developmental biology, comparative genomics, 
and evolutionary biology. Developmental atlases, such as those of the human fetus [101], 
human brain [102], zebrafish [103], fruit fly [104], and mouse [105], provide rich datasets 
for understanding cell fate decisions and lineage specification, both in humans and in an 
evolutionary context (“evo-devo”) [106]. Comparative atlases across species, including 
non-model mammals, birds, and reptiles [107], as well as plant atlases [108, 109], enable 
insights into conserved and divergent cellular programs. Resources like SPEED [110] 
and the Malaria Cell Atlas [111] further extend atlas applications into ecology and para-
site biology. Together, these resources demonstrate that cell atlases are not only tools for 
biomedical discovery but are also essential for addressing fundamental questions in cell 
and developmental biology, evolution, and organismal diversity.

The availability of large-scale data resources contributes to the democratization of sci-
ence. In fact, we have reached a point where many projects are run using only public 
data. Single-cell data is information dense, and there is little chance that the lab that gen-
erated the data has the capacity to make all the discoveries that are possible, in particular 
those that are only possible by combining with other datasets. Enabling the efficient use 
and reuse of complex and multiple datasets allows our scientific community to increase 
the pace of scientific discoveries.

In summary, we have described the development and utilization of cell atlases, which 
are comprehensive maps of cell types and states generated through the integration of 
large volumes of single-cell data. We detailed challenges and opportunities in building, 
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maintaining, and utilizing these atlases (Fig.  2), emphasizing the importance of data 
standardization, accessibility, and computational tools for extracting meaningful biologi-
cal insights, ultimately aiming to facilitate cross-tissue, cross-condition, and cross-spe-
cies studies in the field of single-cell biology.
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