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Abstract
Purpose  To evaluate the reproducibility of biventricular global longitudinal strain (GLS) assessment using cardiovascular 
magnetic resonance in a multicenter study of travelling volunteers.
Methods  Twenty travelling volunteers were prospectively scanned at four sites with same-vendor scanners at 3.0T (sites I, 
II, III) and 1.5T (site IV). Cine imaging in three long-axis views was performed using a segmented balanced steady-state free 
precession sequence with 30 cardiac phases except site II with 25 phases.
Results  Imaging and post-processing were carried out successfully for 18 volunteers in a core lab setting. Pairwise com-
parisons revealed significant differences in left ventricular (LV) GLS between sites I and II (p < 0.001) and sites II and IV 
(p = 0.013), as well as in right ventricular (RV) GLS between sites I and IV (p = 0.027). RV GLS values were significantly 
higher at 3.0T (p = 0.024), whereas field strength had no significant impact on LV GLS (p = 0.153). Conversely, the use of 25 
cardiac phases at site II was associated with significantly lower LV GLS values (p < 0.001), while RV GLS remained unaf-
fected (p = 0.825).
Conclusion  When applying feature tracking-based strain in a multicenter study, careful consideration should be given to the 
temporal resolution for LV longitudinal strain and to magnetic field strength for RV longitudinal strain.
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Abbreviations
AI	� Artificial intelligence
bSSFP	� Balanced steady-state free precision
GLS	� Global longitudinal strain
LV	� Left ventricle
CMR	� Cardiovascular magnetic resonance
FT	� Feature tracking
RV	� Right ventricle
BER-CMR	� Berlin Research Network for CMR
LAX	� Long axis
AI	� Artificial intelligence
IQR	� Interquartile range

Introduction

Cardiovascular magnetic resonance (CMR) is a versatile 
imaging tool in the field of cardiology, providing detailed 
insights into cardiac function, morphology and tissue com-
position [1–3]. Therefore, its application in clinical trials 
has expanded, with large cohort studies, such as the UK 
Biobank or the German National Cohort (NAKO), incor-
porating CMR into the imaging protocol [4–6]. In addition, 

clinical endpoints are increasingly based on imaging mark-
ers derived from CMR [7]. With the growing focus on early 
disease detection and prevention, imaging markers that cap-
ture subclinical stages of pathologies are highly valuable 
and sought after [8, 9]. Strain imaging has been shown to 
capture reverse tissue remodeling at an early stage [10].

Global longitudinal strain (GLS) measures peak systolic 
shortening and is a strong predictor of mortality in acute 
heart failure [11] and adverse clinical outcomes in heart 
failure with preserved ejection fraction [12]. It has been 
successfully applied in the SUCCOUR-MRI (Strain sUr-
veillance of Chemotherapy for improving Cardiovascular 
Outcomes) trial to assign patients with anthracycline ther-
apy to cardioprotection before ejection fraction deteriorates 
[13].

Strain assessment in CMR can be carried out using 
dedicated sequences, such as displacement encoding with 
stimulated echoes (DENSE) [14], or on routinely acquired 
balanced steady-state free precession (bSSFP) cine images 
[15]. Feature tracking (FT) is applied in image post-process-
ing to track the myocardial borders for the assessment of left 
and right ventricular (LV and RV, respectively) strain mea-
surements. Starting from a reference image with endo- and 
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epicardial contours, anatomical features and intensity pat-
terns (e.g. the blood-tissue border) are followed from frame 
to frame using optical flow and pattern recognition tech-
niques [16, 17]. From the resulting displacement fields, 
segmental and global strain parameters, such as GLS, are 
derived. Main confounding factors for the analysis include 
the temporal resolution, the post-processing software, and 
reader experience [18–21]. Although studies have shown 
good agreement between different field strengths and scan-
rescan comparisons [22, 23], no data exist on multisite com-
parisons with a travelling volunteer cohort.

The Berlin Research Network for CMR (BER-CMR) is 
a multisite project with the primary objectives to identify 
confounders that lead to differences in measurements and 
to establish a scanner platform for prospective clinical trials 
[24–26]. This study aims to analyze the reproducibility of 
biventricular GLS across the BER-CMR with a travelling 
volunteer cohort.

Materials and methods

Study protocol

The overall structure of the BER-CMR has been described 
in previous publications [24–26]. For this analysis, a cohort 
of 20 healthy volunteers was prospectively scanned at four 
sites of the BER-CMR with scanners from the same vendor 
(Siemens Healthineers, Forchheim, Germany). This included 
three sites equipped with a 3.0 T scanner (sites I with a Sky-
raFIT and sites II and III with a PrismaFIT), while site IV used 
a 1.5 T scanner (AvantoFIT). Cine imaging was based on a 
bSSFP cine sequence with the following scan parameters at 
the 3.0 T sites: repetition time 38.4 ms, flip angle 52–59°, 
echo time 1.4 ms, field of view 301–322 × 360 mm, acqui-
sition matrix 122–139 × 208, voxel size 1.7 × 1.7 × 6.0 mm. 
For the 1.5 T site they were: repetition time 33.0 ms, flip 
angle 59°, echo time 1.2 ms, field of view 292 × 360 mm, 
acquisition matrix 156 × 192, voxel size 1.9 × 1.9 × 6.0 mm. 
At all sites, 30 cardiac phases were acquired except for site 
II, for which 25 phases were acquired. Acquisitions were 
carried out in three long-axis views (LAX) including a four-
chamber, a three-chamber and a two-chamber view [27]. 
At site I, a scan-rescan was performed with a 15-minute 
break between scans and a new positioning of the proband 
to assess tolerance intervals for equivalence testing [28]. 
Blood pressure and heart rate were measured electronically 
in supine position before each scan. The date and time of 
each scan was noted for each participant.

Post-processing and strain analysis

Post-processing was carried out with dedicated software 
(cvi42 version 5.13.7, Circle Cardiovascular Imaging, 
Calgary, Canada) in a core lab setting at a single site by 
a single reader who was blinded to the examinations. Arti-
ficial intelligence (AI)-assisted cardiac segmentation was 
performed via batch processing as described recently [15]. 
GLS for the LV was based on FT in all three LAX views 
after endocardial and epicardial segmentation in end-dias-
tole and end-systole. GLS for the RV was assessed by FT in 
the four-chamber view from endo- and epicardial segmenta-
tion at end-diastole. The implementation of the FT method 
used is based on a nearly incompressible deformable model, 
providing a physiologically plausible approximation of 
myocardial motion [29]. LV biplanar function values and 
volumes were derived from the four- and two-chamber 
views. All segmentations for function and strain analyses 
were visually assessed for quality control [15].

Statistical analysis

Values are presented as median and interquartile range 
(IQR). Normal distribution was assessed with the Shapiro-
Wilk test. Mean differences between sites were assessed 
using analysis of variance (ANOVA) for repeated measure-
ments. In cases of significant differences, a post-hoc com-
parison using a paired two-sided t-test was caried out with a 
Bonferroni correction applied for multiple testing. To test for 
differences in field strength and temporal resolution, inde-
pendent two-sided t-tests were performed. A p-value less 
than 0.05 was considered significant. To isolate the inter-
site influence on mean deviations, tolerance intervals were 
established as ± 1.96 standard deviations from scan-rescan 
differences at site I. Equivalence was assumed if the 95% 
confidence of the mean bias between two sites remained 
within the respective tolerance interval [28]. Bland-Altman 
analysis was carried out to assess scan-rescan differences at 
site I. Statistical analysis was performed using SPSS (SPSS 
version 29, International Business Machines).

Results

General characteristics

From the initially recruited 20 volunteers, N = 18 under-
went successful cine imaging at all sites. Two probands 
were excluded due to missing acquisitions at one site each. 
The cohort comprised seven women and eleven men with 
a median [IQR] age of 25.0 [22.0, 30.3] years, height of 
1.81 [1.75, 1.85] m and weight of 71.5 [57.8, 79.3] kg. All 
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interval was 124 days, and the minimal time interval was 
three days (Supplementary Table 1).

Quality assurance

Upon visual inspection, AI-based segmentation did not 
warrant manual corrections. Example images are shown in 
Fig. 1.

Function, volume and mass analysis

Median values across all sites were as follows: LV end-dia-
stolic volume 171.1 [153.7, 211.2] ml, LV stroke volume 
97.0 [89.8, 120.1] ml, LV ejection fraction 57.3% [55.2%, 
59.8%], LV mass 109.9 [94.5, 119.6] g. We observed a sig-
nificant difference in LV ejection fraction across the sites 
(p = 0.002), with pairwise comparisons revealing a signifi-
cant bias between sites II and III (p = 0.039), and sites II and 
IV (p = 0.002) (Table 1). However, when testing for mean 
differences applying published tolerance intervals for left 
ventricular ejection fraction [28], equivalence was assessed 
for all comparisons (Supplementary Fig. 1).

Strain analysis

The median value for LV GLS across all sites was − 17.6% 
[−19.4%, −16.2%], and for RV GLS − 18.6% [−21.7%, 
−14.9%]. Significant differences for LV GLS were found 
between sites I and II (site I −16.4% [−18.4%, −15.1%] 
vs. site II −18.8% [−21.7%, −17.5%]); p < 0.001) as well 
as sites II and IV (site II −18.8% [−21.7%, −17.5%] vs. site 
IV −17.1% [−18.4%, −15.8%]; p = 0.013). (Table 1; Fig. 2). 
For RV GLS, significant differences were detected between 
sites I and IV (site I −16.9% [−21.8%, −14.2%] vs. site IV 
−21.1% [−24.2%, −18.2%]; p = 0.027) (Table  1; Fig.  2). 
While there was no significant difference for LV GLS across 
field strength (p = 0.153), RV GLS values were significantly 
higher at the 3.0 T sites in comparison to the 1.5 T site (3.0 
T −17.9% [−21.9%, −14.3%] vs. 1.5 T −21.1% [−24.2%, 
−18.2%]; p = 0.024) (Fig.  3). In contrast, LV GLS values 

volunteers were healthy at time of inclusion, but one sub-
ject was diagnosed with mild arterial hypertension shortly 
after inclusion. Median arterial systolic and diastolic blood 
pressure for the cohort were 119.0 [113.0, 127.0] mmHg 
and 71.0 [61.0, 80.0] mmHg, respectively. Median heart 
rate at time of scan was 67.5 [60.0, 72.3] beats/minute. The 
median difference of maximal and minimal blood pressure 
between scans was 15.0 [10.0, 21.0] [10, 21] mmHg systolic 
and 17.0 [11.0, 25.0] [11, 25] mmHg diastolic. Comparison 
of hemodynamic parameters revealed no significant differ-
ences. A median time interval of 14.0 [3.0, 47.0] days was 
noted between the first and last scans. The maximal time 

Table 1  Function and strain parameters across the sites
Parameter Site I Site II Site III Site IV p-value
LV EDV (ml) 163.3 [149.0, 220.0] 173.7 [155.0, 211.9] 172.1 [153.6, 216.3] 178.8 [152.8, 210.3] 0.733
LV SV (ml) 94.7 [82.6, 126.0] 97.0 [89.1, 121.6] 100.8 [90.6, 116.2] 101.0 [90.9, 122.0] 0.112
LV EF (%) 56.3 [54.5, 59.9] 55.7 [53.1, 57.6] 57.9 [56.5, 59.8] 59.3 [57.4, 61.3] 0.002 (II vs. III p = 0.039;

II vs. IV p = 0.002)
LVM (g) 112.9 [93.8, 133.6] 110.3 [93.9, 131.8] 112.3 [94.0, 129.2] 107.4 [91.7, 129.2] 0.579
LV GLS (%) −16.4 [−18.4, −15.1] −18.8 [−21.7, −17.5] −17.7 [−19.6, −16.2] −17.1 [−18.4, −15.8] < 0.001 (I vs. II p < 0.001;

II vs. IV p = 0.013)
RV GLS (%) −16.9 [−21.8, −14.2] −19.1 [−22.4, −15.8] −18.1 [−22.3 −13.3] −21.1 [−24.2, −18.2] 0.032 (I vs. IV p = 0.027)
All values are median and interquartile range. LV: left ventricle; EDV: end-diastolic volume; SV: stroke volume; EF: ejection fraction; LVM: 
left ventricular mass; GLS: global longitudinal strain; RV: right ventricle. Significant values are in bold

Fig. 1  Examples of feature tracking-based left and right ventricular 
global longitudinal strain assessment for one volunteer across all sites. 
LV: left ventricle; GLS: global longitudinal strain; RV: right ventricle
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Fig. 3  Boxplots for left and right 
ventricular global longitudinal 
strain by imaging phases and 
field strength. Boxplots represent 
median (solid line inside the box), 
interquartile range (IQR, box) and 
Q1–1.5×IQR or Q3 + 1.5×IQR 
(whiskers). p-values: independent 
t-test

 

Fig. 2  Boxplots for left and right ventricular global longitudinal strain 
across the BER-CMR. Boxplots represent median (solid line inside the 
box), interquartile range (IQR, box) and Q1–1.5×IQR or Q3 + 1.5×IQR 
(whiskers) for (A) left and (B) right ventricular global longitudinal 

strain at each site (site I: 3 T, site II: 3 T, site III: 3 T, site IV: 1.5T). 
p-values: one-way ANOVA (overall); t-test (pairwise; for significant 
comparisons). BER-CMR: Berlin Research Network for Cardiovascu-
lar Magnetic Resonance
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In contrast to previous studies, this analysis comprised a 
travelling volunteer cohort, providing a robust foundation 
for inter-site agreement. We could confirm prior findings 
by showing inter-site differences due to differing tempo-
ral resolution, thus confirming the minimal requirement of 
30 cardiac phases [18]. When testing for equivalence, two 
out of three inter-site comparisons for LV GLS at varying 
numbers of phases were outside of their respective toler-
ance range. For the single comparison (sites II and III) that 
remained inside, the exact same scanner model was used, 
suggesting that the specific scanner hard- and software may 
also contribute to the observed differences. While our work 
showed no significant effect of field strength on LV GLS, 
the literature on this topic is ambivalent, with some studies 
reporting an impact [34], and others finding no significant 
differences [20].

Our observation that fewer cardiac phases resulted in 
lower (more negative) LV GLS values is unexpected, as 
previous work described an increase in absolute strain at 
higher temporal resolution [18, 19]. Theoretically, a reduced 
number of cardiac phases may miss the true end-diastole 
and end-systole or impair feature tracking accuracy due 
to increased inter-frame pattern displacements. However, 
there are possible explanations for our finding. The reduced 
number of time points requires stronger interpolation over 
the cardiac cycle, effectively smoothing and regularizing 
the strain curve. This in turn may allow tracking algorithms 
to work more stably and result in apparently improved 
peak systolic strain estimates. Furthermore, variability in 
the selection of end-diastole and end-systole could have 
also contributed to differences in GLS values. In any case, 
increasing the temporal resolution beyond the limitation of 
the spatial resolution does not provide additional benefit for 
strain imaging, as movements less than one voxel cannot be 
captured [18].

While LV GLS is increasingly being applied in clini-
cal and scientific settings, studies on RV GLS are still very 
limited. This study demonstrates that RV GLS values can 

were significantly lower with 25 cardiac phases than with 30 
phases (25 phases − 18.8% [−21.7%, −17.5%] vs. 30 phases 
− 17.2% [−18.6%, −15.8%]; p < 0.001) but phase difference 
had no impact on RV GLS (p = 0.825) (Fig. 3). Scan-rescan 
differences at site I are reported in Supplementary Fig. 2 and 
were not significant for LV GLS (p = 0.136) and RV GLS 
(p = 0.768).

Equivalence testing

Tolerance intervals for biventricular strain assessment 
based on a scan-rescan at site I were established as: LV 
GLS ± 4.1%, RV GLS ± 7.3%. Equivalence was demon-
strated for all parameters except LV GLS between sites I 
and II, and sites II and IV (Fig. 4).

Discussion

In this sub-analysis of the BER-CMR travelling volunteer 
cohort, we demonstrate that the reproducibility of biventric-
ular GLS assessment in multicenter studies is impacted by 
magnetic field strength for RV GLS and temporal resolution 
for LV GLS.

Strain assessment is a valuable parameter in cardiac imag-
ing that can help to identify subclinical changes and patients 
at risk [30]. Potentially, it can be used to initiate early and 
preceptive treatment strategies. One such approach is the 
HERZCHECK study currently analyzing the value of GLS 
in patients at risk [7], with outcomes pending. Validation 
and confounder analysis is essential for any biomarker used 
in research or clinical settings. Recent studies analyzed the 
influence of field strength, temporal resolution, software 
vendor, scanner vendor and segmentation method on FT-
derived strain [18–20, 22, 31–33]. While GLS was found 
to be overall reproducible, major confounders included the 
software used and the number of phases acquired with an 
overall agreement calling for a minimum of 30 phases [18]. 

Fig. 4  Equivalence testing for 
left and right ventricular global 
longitudinal strain across all sites. 
The underlying tolerance intervals 
(green areas) were derived from 
scan-rescan comparisons at site I 
(± 1.96 standard deviations of the 
difference). Error bars represent 
the 95% confidence interval for the 
mean bias from inter-site compari-
sons. Equivalence is assessed if the 
error bar lies completely within its 
corresponding tolerance interval 
(true for all comparisons except 
site I vs. II and site II vs. IV for 
left ventricular global longitudinal 
strain)
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robustness of multisite strain measurements. The observed 
differences in temporal resolution and field strength cannot 
be reliably isolated from other inter-site differences, since 
only one site each had a deviating field strength or num-
ber of cardiac phases. Blood pressure was only measured 
before, but not during, the scans. Given the time interval 
between examinations, changes in loading conditions may 
have influenced the results, despite no significant differ-
ences in blood pressure between sites.

Conclusions

Global longitudinal strain assessments in a multicenter setup 
require harmonized imaging protocols with closely aligned 
temporal resolution. For right ventricular GLS, images 
should be acquired at the same magnetic field strength.
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be consistently measured across different sites with mean 
differences for all comparisons lying within their respec-
tive tolerance ranges. However, the wider tolerance inter-
val demonstrates already greater variability for same-site 
reproducibility. Median RV GLS values in this study were 
slightly higher than in a recent meta-analysis, which showed 
a median RV GLS of −24.0% [34]. The same meta-analysis 
found that the software used for analysis has a major impact 
on RV GLS, with cvi42 yielding the highest values, which 
could explain the difference. Noteworthy, RV GLS differed 
between field strengths, which may be the main reason for 
the differences between sites I and IV. A prior study inves-
tigated the impact of field strength, spatial resolution and 
imaging sequence [35]. The authors concluded that RV GLS 
assessment across 1.5 T and 3.0 T with a bSSFP sequence 
shows good correlation with narrow limits of agreement 
[35]. Similar results were presented by Schuster et al. 
comparing 10 volunteers scanned on both 3.0 T and 1.5 T 
systems [22]. Our results contradict these findings and war-
rant further investigation. Possible explanations include the 
increased signal-to-noise ratio at 3.0 T or the slightly higher 
in-plane resolution of 1.7 × 1.7  mm at 3.0 T compared to 
1.9 × 1.9 mm at 1.5 T in this study, which could particularly 
affect RV measurements due to the thinner wall compared to 
the LV. However, in previous works, spatial resolution was 
found to have no significant impact on strain [18].

Previous studies have shown that cardiac loading condi-
tions, and the associated pre- and afterload, influence strain 
results [36]. High blood pressure may negatively impact 
LV strain [37]. In contrast, RV strain may be affected by 
preload, which can already change relevantly during breath 
holds for cine image acquisition [38]. Therefore, the inte-
gration of blood pressure and strain into a new index for 
“myocardial work” is proposed to better account for hemo-
dynamic conditions in strain analysis [39]. In the current 
study, we recorded blood pressure measurements before 
image acquisition but not during the scan. We did not find 
any significant difference in median hemodynamic param-
eters between sites. In patient cohorts, blood pressure dys-
regulations may result in a stronger influence of loading 
conditions on strain than in healthy volunteers. Further-
more, irregular breath holds, or cardiac arrhythmias may 
additionally impair reproducibility in patient cohorts [40].

Limitations

This study reports findings based on a cohort of 18 healthy 
volunteers, facilitating optimal image quality and breath-
holding. Therefore, our results may not fully translate to 
patient cohorts. Despite the small sample size, the exten-
sive logistical effort involved in scanning the same volun-
teers at four sites supports its adequacy for evaluating the 
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