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Abstract

Purpose To evaluate the reproducibility of biventricular global longitudinal strain (GLS) assessment using cardiovascular
magnetic resonance in a multicenter study of travelling volunteers.

Methods Twenty travelling volunteers were prospectively scanned at four sites with same-vendor scanners at 3.0T (sites I,
IL, IIT) and 1.5T (site IV). Cine imaging in three long-axis views was performed using a segmented balanced steady-state free
precession sequence with 30 cardiac phases except site II with 25 phases.

Results Imaging and post-processing were carried out successfully for 18 volunteers in a core lab setting. Pairwise com-
parisons revealed significant differences in left ventricular (LV) GLS between sites I and II (p<0.001) and sites II and IV
(»p=0.013), as well as in right ventricular (RV) GLS between sites [ and IV (p=0.027). RV GLS values were significantly
higher at 3.0T (»p=0.024), whereas field strength had no significant impact on LV GLS (p=0.153). Conversely, the use of 25
cardiac phases at site II was associated with significantly lower LV GLS values (p<0.001), while RV GLS remained unaf-
fected (p=0.825).

Conclusion When applying feature tracking-based strain in a multicenter study, careful consideration should be given to the
temporal resolution for LV longitudinal strain and to magnetic field strength for RV longitudinal strain.
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-biventricular strain based on feature tracking is feasible in multisite studies
-care should be taken when setting up multicenter studies in regards of field strength and imaging phases
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Abbreviations
Al Artificial intelligence

bSSFP Balanced steady-state free precision
GLS Global longitudinal strain

LV Left ventricle

CMR Cardiovascular magnetic resonance
FT Feature tracking

RV Right ventricle

BER-CMR Berlin Research Network for CMR
LAX Long axis

Al Artificial intelligence

IQR Interquartile range
Introduction

Cardiovascular magnetic resonance (CMR) is a versatile
imaging tool in the field of cardiology, providing detailed
insights into cardiac function, morphology and tissue com-
position [1-3]. Therefore, its application in clinical trials
has expanded, with large cohort studies, such as the UK
Biobank or the German National Cohort (NAKO), incor-
porating CMR into the imaging protocol [4—6]. In addition,
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clinical endpoints are increasingly based on imaging mark-
ers derived from CMR [7]. With the growing focus on early
disease detection and prevention, imaging markers that cap-
ture subclinical stages of pathologies are highly valuable
and sought after [8, 9]. Strain imaging has been shown to
capture reverse tissue remodeling at an early stage [10].

Global longitudinal strain (GLS) measures peak systolic
shortening and is a strong predictor of mortality in acute
heart failure [11] and adverse clinical outcomes in heart
failure with preserved ejection fraction [12]. It has been
successfully applied in the SUCCOUR-MRI (Strain sUr-
veillance of Chemotherapy for improving Cardiovascular
Outcomes) trial to assign patients with anthracycline ther-
apy to cardioprotection before ejection fraction deteriorates
[13].

Strain assessment in CMR can be carried out using
dedicated sequences, such as displacement encoding with
stimulated echoes (DENSE) [14], or on routinely acquired
balanced steady-state free precession (bSSFP) cine images
[15]. Feature tracking (FT) is applied in image post-process-
ing to track the myocardial borders for the assessment of left
and right ventricular (LV and RV, respectively) strain mea-
surements. Starting from a reference image with endo- and
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epicardial contours, anatomical features and intensity pat-
terns (e.g. the blood-tissue border) are followed from frame
to frame using optical flow and pattern recognition tech-
niques [16, 17]. From the resulting displacement fields,
segmental and global strain parameters, such as GLS, are
derived. Main confounding factors for the analysis include
the temporal resolution, the post-processing software, and
reader experience [18-21]. Although studies have shown
good agreement between different field strengths and scan-
rescan comparisons [22, 23], no data exist on multisite com-
parisons with a travelling volunteer cohort.

The Berlin Research Network for CMR (BER-CMR) is
a multisite project with the primary objectives to identify
confounders that lead to differences in measurements and
to establish a scanner platform for prospective clinical trials
[24-26]. This study aims to analyze the reproducibility of
biventricular GLS across the BER-CMR with a travelling
volunteer cohort.

Materials and methods
Study protocol

The overall structure of the BER-CMR has been described
in previous publications [24—26]. For this analysis, a cohort
of 20 healthy volunteers was prospectively scanned at four
sites of the BER-CMR with scanners from the same vendor
(Siemens Healthineers, Forchheim, Germany). This included
three sites equipped with a 3.0 T scanner (sites I with a Sky-
ra''T and sites IT and 11T with a Prisma"™T), while site IV used
a 1.5 T scanner (Avanto''T). Cine imaging was based on a
bSSFP cine sequence with the following scan parameters at
the 3.0 T sites: repetition time 38.4 ms, flip angle 52-59°,
echo time 1.4 ms, field of view 301-322 %360 mm, acqui-
sition matrix 122—-139 %208, voxel size 1.7x1.7x 6.0 mm.
For the 1.5 T site they were: repetition time 33.0 ms, flip
angle 59°, echo time 1.2 ms, field of view 292 x360 mm,
acquisition matrix 156 x 192, voxel size 1.9%1.9%6.0 mm.
At all sites, 30 cardiac phases were acquired except for site
II, for which 25 phases were acquired. Acquisitions were
carried out in three long-axis views (LAX) including a four-
chamber, a three-chamber and a two-chamber view [27].
At site I, a scan-rescan was performed with a 15-minute
break between scans and a new positioning of the proband
to assess tolerance intervals for equivalence testing [28].
Blood pressure and heart rate were measured electronically
in supine position before each scan. The date and time of
each scan was noted for each participant.

Post-processing and strain analysis

Post-processing was carried out with dedicated software
(cvi42 version 5.13.7, Circle Cardiovascular Imaging,
Calgary, Canada) in a core lab setting at a single site by
a single reader who was blinded to the examinations. Arti-
ficial intelligence (Al)-assisted cardiac segmentation was
performed via batch processing as described recently [15].
GLS for the LV was based on FT in all three LAX views
after endocardial and epicardial segmentation in end-dias-
tole and end-systole. GLS for the RV was assessed by FT in
the four-chamber view from endo- and epicardial segmenta-
tion at end-diastole. The implementation of the FT method
used is based on a nearly incompressible deformable model,
providing a physiologically plausible approximation of
myocardial motion [29]. LV biplanar function values and
volumes were derived from the four- and two-chamber
views. All segmentations for function and strain analyses
were visually assessed for quality control [15].

Statistical analysis

Values are presented as median and interquartile range
(IQR). Normal distribution was assessed with the Shapiro-
Wilk test. Mean differences between sites were assessed
using analysis of variance (ANOVA) for repeated measure-
ments. In cases of significant differences, a post-hoc com-
parison using a paired two-sided t-test was caried out with a
Bonferroni correction applied for multiple testing. To test for
differences in field strength and temporal resolution, inde-
pendent two-sided t-tests were performed. A p-value less
than 0.05 was considered significant. To isolate the inter-
site influence on mean deviations, tolerance intervals were
established as +1.96 standard deviations from scan-rescan
differences at site 1. Equivalence was assumed if the 95%
confidence of the mean bias between two sites remained
within the respective tolerance interval [28]. Bland-Altman
analysis was carried out to assess scan-rescan differences at
site I. Statistical analysis was performed using SPSS (SPSS
version 29, International Business Machines).

Results
General characteristics

From the initially recruited 20 volunteers, N=18 under-
went successful cine imaging at all sites. Two probands
were excluded due to missing acquisitions at one site each.
The cohort comprised seven women and eleven men with
a median [IQR] age of 25.0 [22.0, 30.3] years, height of
1.81 [1.75, 1.85] m and weight of 71.5 [57.8, 79.3] kg. All
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Site IV — 1.5 Tesla

Site 11l — 3 Tesla

| 4 chamber view H 3 chamber view H 2 chamber view ‘

LV GLS tracking

| RV GLS tracking

Fig. 1 Examples of feature tracking-based left and right ventricular
global longitudinal strain assessment for one volunteer across all sites.
LV: left ventricle; GLS: global longitudinal strain; RV: right ventricle

volunteers were healthy at time of inclusion, but one sub-
ject was diagnosed with mild arterial hypertension shortly
after inclusion. Median arterial systolic and diastolic blood
pressure for the cohort were 119.0 [113.0, 127.0] mmHg
and 71.0 [61.0, 80.0] mmHg, respectively. Median heart
rate at time of scan was 67.5 [60.0, 72.3] beats/minute. The
median difference of maximal and minimal blood pressure
between scans was 15.0 [10.0,21.0][10, 21] mmHg systolic
and 17.0 [11.0, 25.0] [11, 25] mmHg diastolic. Comparison
of hemodynamic parameters revealed no significant differ-
ences. A median time interval of 14.0 [3.0, 47.0] days was
noted between the first and last scans. The maximal time

Table 1 Function and strain parameters across the sites

interval was 124 days, and the minimal time interval was
three days (Supplementary Table 1).

Quality assurance

Upon visual inspection, Al-based segmentation did not
warrant manual corrections. Example images are shown in
Fig. 1.

Function, volume and mass analysis

Median values across all sites were as follows: LV end-dia-
stolic volume 171.1 [153.7, 211.2] ml, LV stroke volume
97.0 [89.8, 120.1] ml, LV ejection fraction 57.3% [55.2%,
59.8%], LV mass 109.9 [94.5, 119.6] g. We observed a sig-
nificant difference in LV ejection fraction across the sites
(p=0.002), with pairwise comparisons revealing a signifi-
cant bias between sites II and Il (p=0.039), and sites II and
IV (p=0.002) (Table 1). However, when testing for mean
differences applying published tolerance intervals for left
ventricular ejection fraction [28], equivalence was assessed
for all comparisons (Supplementary Fig. 1).

Strain analysis

The median value for LV GLS across all sites was —17.6%
[-19.4%, —16.2%], and for RV GLS —18.6% [-21.7%,
—14.9%]. Significant differences for LV GLS were found
between sites I and II (site I —16.4% [—18.4%, —15.1%)]
vs. site I —18.8% [-21.7%, —17.5%]); p<0.001) as well
as sites Il and IV (site I1 —18.8% [-21.7%, —17.5%] vs. site
IV —=17.1% [-18.4%, —15.8%]; p=0.013). (Table 1; Fig. 2).
For RV GLS, significant differences were detected between
sites I and IV (site I —16.9% [-21.8%, —14.2%] vs. site IV
—21.1% [-24.2%, —18.2%]; p=0.027) (Table 1; Fig. 2).
While there was no significant difference for LV GLS across
field strength (p=0.153), RV GLS values were significantly
higher at the 3.0 T sites in comparison to the 1.5 T site (3.0
T -17.9% [-21.9%, —14.3%] vs. 1.5 T —21.1% [-24.2%,
—18.2%]; p=0.024) (Fig. 3). In contrast, LV GLS values

Parameter Site | Site 11 Site 111 Site [V p-value

LVEDV (ml)  163.3[149.0,220.0] 173.7 [155.0,211.9] 172.1 [153.6,216.3] 178.8 [152.8,210.3]  0.733

LV SV (ml) 94.7 [82.6, 126.0] 97.0 [89.1, 121.6] 100.8 [90.6, 116.2] 101.0 [90.9, 122.0] 0.112

LV EF (%) 56.3 [54.5, 59.9] 55.7 [53.1,57.6] 57.9 [56.5, 59.8] 59.3 [57.4,61.3] 0.002 (IT vs. ITI p=0.039;
II vs. IV p=0.002)

LVM (g) 112.9[93.8, 133.6] 110.3[93.9, 131.8] 112.3[94.0, 129.2] 107.4 [91.7,129.2] 0.579

LV GLS (%) -16.4 [-18.4,-15.1] -18.8[-21.7,-17.5] -17.7[-19.6,-16.2] —17.1[-18.4,-15.8] <0.001 (I vs. I p<0.001;
Il vs. IV p=0.013)

RV GLS (%) -16.9 [-21.8,-14.2] —19.1 [-22.4,-15.8] —18.1[22.3 —-13.3] —21.1[-24.2,-18.2]  0.032 (I vs. IV p=0.027)

All values are median and interquartile range. LV: left ventricle; EDV: end-diastolic volume; SV: stroke volume; EF: ejection fraction; LVM:
left ventricular mass; GLS: global longitudinal strain; RV: right ventricle. Significant values are in bold
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Left ventricular global longitudinal strain (%)
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Fig. 2 Boxplots for left and right ventricular global longitudinal strain
across the BER-CMR. Boxplots represent median (solid line inside the
box), interquartile range (IQR, box) and Q1-1.5xIQR or Q3+ 1.5xIQR
(whiskers) for (A) left and (B) right ventricular global longitudinal

Right ventricular global longitudinal strain (%)

0
p=0.032
-5 p=0.027
-10
-15
=20
=25
30 Site | Site I1 Site 11 Site IV

strain at each site (site I: 3T, site II: 3T, site III: 3T, site IV: 1.5T).
p-values: one-way ANOVA (overall); t-test (pairwise; for significant
comparisons). BER-CMR: Berlin Research Network for Cardiovascu-
lar Magnetic Resonance
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Fig.4 Equivalence testing for
left and right ventricular global
longitudinal strain across all sites.
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were significantly lower with 25 cardiac phases than with 30
phases (25 phases — 18.8% [-21.7%, —17.5%] vs. 30 phases
—17.2% [-18.6%, —15.8%]; p<0.001) but phase difference
had no impact on RV GLS (p=0.825) (Fig. 3). Scan-rescan
differences at site I are reported in Supplementary Fig. 2 and
were not significant for LV GLS (p=0.136) and RV GLS
(»=0.768).

Equivalence testing

Tolerance intervals for biventricular strain assessment
based on a scan-rescan at site I were established as: LV
GLS+4.1%, RV GLS+7.3%. Equivalence was demon-
strated for all parameters except LV GLS between sites |
and II, and sites IT and IV (Fig. 4).

Discussion

In this sub-analysis of the BER-CMR travelling volunteer
cohort, we demonstrate that the reproducibility of biventric-
ular GLS assessment in multicenter studies is impacted by
magnetic field strength for RV GLS and temporal resolution
for LV GLS.

Strain assessment is a valuable parameter in cardiac imag-
ing that can help to identify subclinical changes and patients
at risk [30]. Potentially, it can be used to initiate early and
preceptive treatment strategies. One such approach is the
HERZCHECK study currently analyzing the value of GLS
in patients at risk [7], with outcomes pending. Validation
and confounder analysis is essential for any biomarker used
in research or clinical settings. Recent studies analyzed the
influence of field strength, temporal resolution, software
vendor, scanner vendor and segmentation method on FT-
derived strain [18-20, 22, 31-33]. While GLS was found
to be overall reproducible, major confounders included the
software used and the number of phases acquired with an
overall agreement calling for a minimum of 30 phases [18].
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In contrast to previous studies, this analysis comprised a
travelling volunteer cohort, providing a robust foundation
for inter-site agreement. We could confirm prior findings
by showing inter-site differences due to differing tempo-
ral resolution, thus confirming the minimal requirement of
30 cardiac phases [18]. When testing for equivalence, two
out of three inter-site comparisons for LV GLS at varying
numbers of phases were outside of their respective toler-
ance range. For the single comparison (sites II and III) that
remained inside, the exact same scanner model was used,
suggesting that the specific scanner hard- and software may
also contribute to the observed differences. While our work
showed no significant effect of field strength on LV GLS,
the literature on this topic is ambivalent, with some studies
reporting an impact [34], and others finding no significant
differences [20].

Our observation that fewer cardiac phases resulted in
lower (more negative) LV GLS values is unexpected, as
previous work described an increase in absolute strain at
higher temporal resolution [18, 19]. Theoretically, a reduced
number of cardiac phases may miss the true end-diastole
and end-systole or impair feature tracking accuracy due
to increased inter-frame pattern displacements. However,
there are possible explanations for our finding. The reduced
number of time points requires stronger interpolation over
the cardiac cycle, effectively smoothing and regularizing
the strain curve. This in turn may allow tracking algorithms
to work more stably and result in apparently improved
peak systolic strain estimates. Furthermore, variability in
the selection of end-diastole and end-systole could have
also contributed to differences in GLS values. In any case,
increasing the temporal resolution beyond the limitation of
the spatial resolution does not provide additional benefit for
strain imaging, as movements less than one voxel cannot be
captured [18].

While LV GLS is increasingly being applied in clini-
cal and scientific settings, studies on RV GLS are still very
limited. This study demonstrates that RV GLS values can
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be consistently measured across different sites with mean
differences for all comparisons lying within their respec-
tive tolerance ranges. However, the wider tolerance inter-
val demonstrates already greater variability for same-site
reproducibility. Median RV GLS values in this study were
slightly higher than in a recent meta-analysis, which showed
a median RV GLS of —24.0% [34]. The same meta-analysis
found that the software used for analysis has a major impact
on RV GLS, with cvi42 yielding the highest values, which
could explain the difference. Noteworthy, RV GLS differed
between field strengths, which may be the main reason for
the differences between sites I and IV. A prior study inves-
tigated the impact of field strength, spatial resolution and
imaging sequence [35]. The authors concluded that RV GLS
assessment across 1.5 T and 3.0 T with a bSSFP sequence
shows good correlation with narrow limits of agreement
[35]. Similar results were presented by Schuster et al.
comparing 10 volunteers scanned on both 3.0 T and 1.5 T
systems [22]. Our results contradict these findings and war-
rant further investigation. Possible explanations include the
increased signal-to-noise ratio at 3.0 T or the slightly higher
in-plane resolution of 1.7x1.7 mm at 3.0 T compared to
1.9x1.9 mm at 1.5 T in this study, which could particularly
affect RV measurements due to the thinner wall compared to
the LV. However, in previous works, spatial resolution was
found to have no significant impact on strain [18].

Previous studies have shown that cardiac loading condi-
tions, and the associated pre- and afterload, influence strain
results [36]. High blood pressure may negatively impact
LV strain [37]. In contrast, RV strain may be affected by
preload, which can already change relevantly during breath
holds for cine image acquisition [38]. Therefore, the inte-
gration of blood pressure and strain into a new index for
“myocardial work”™ is proposed to better account for hemo-
dynamic conditions in strain analysis [39]. In the current
study, we recorded blood pressure measurements before
image acquisition but not during the scan. We did not find
any significant difference in median hemodynamic param-
eters between sites. In patient cohorts, blood pressure dys-
regulations may result in a stronger influence of loading
conditions on strain than in healthy volunteers. Further-
more, irregular breath holds, or cardiac arrhythmias may
additionally impair reproducibility in patient cohorts [40].

Limitations

This study reports findings based on a cohort of 18 healthy
volunteers, facilitating optimal image quality and breath-
holding. Therefore, our results may not fully translate to
patient cohorts. Despite the small sample size, the exten-
sive logistical effort involved in scanning the same volun-
teers at four sites supports its adequacy for evaluating the

robustness of multisite strain measurements. The observed
differences in temporal resolution and field strength cannot
be reliably isolated from other inter-site differences, since
only one site each had a deviating field strength or num-
ber of cardiac phases. Blood pressure was only measured
before, but not during, the scans. Given the time interval
between examinations, changes in loading conditions may
have influenced the results, despite no significant differ-
ences in blood pressure between sites.

Conclusions

Global longitudinal strain assessments in a multicenter setup
require harmonized imaging protocols with closely aligned
temporal resolution. For right ventricular GLS, images
should be acquired at the same magnetic field strength.
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