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Summary 

Drug resistance in cancer therapy continues to significantly contribute to treatment failure and 

disease progression, and is linked to intratumoral heterogeneity. Mass spectrometry (MS)-based 

single-cell proteomics (SCP) provides a unique opportunity to uncover the mechanisms underlying 

drug-resistant phenotypes; however, current methods lack clonal resolution and are often 

confounded by cell cycle and cell size differences. Here, we introduce PhenoSCoP, a microscopy-

guided discovery proteomics concept for mapping clonal proteomic heterogeneity. By 

distinguishing between transient and long-lived protein level changes, our approach uncovered 

hereditary and clone-specific programs associated with chemotherapeutic responses in head and 

neck squamous cell carcinoma (HNSCC) cells. Combined with fluorescence barcoding and drug 

treatment assays, we identified pre-existing proteotypes that strongly dominated drug-resistant cell 

populations. These programs also emerged in HNSCC patient samples and in relapsed tumors after 

chemoradiotherapy, linking drug-resistant proteotypes to intra- and inter-tissue spatial 

heterogeneity. In summary, we describe a robust, versatile and phenotype-resolved approach for 

uncovering single-cell-derived proteotypes associated with the therapeutic responses of distinct 

tumor cell clones. 
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Introduction  

Resistance to anti-cancer therapies, including targeted, chemo, and immunotherapies, remains a 

major obstacle for successful treatment outcomes 1. While extensive research has focused on the 

genetic mechanisms of drug resistance and tumor heterogeneity 2,3, non-genetic mechanisms that 

confer transient or permanent resistance are increasingly being recognized as important drivers of 

therapeutic responses 4. Cancer cells exploit both genetic and non-genetic drug resistance 

programs, emphasizing the importance of methodologies that capture both mechanisms on a 

global, phenotype-centric and quantitative scale 5. Studying the global proteome of distinct tumor 

cell clones, a close proxy for cellular function 6, is therefore of paramount importance to unravel 

the mechanisms underlying differential treatment responses and for identifying clone-specific 

vulnerabilities.  

A growing body of literature supports the notion that cellular states before drug treatment dictate 

treatment outcomes 7–9, including observations from clinical samples 10,11. Identifying such pre-

existing molecular programs associated with clone-specific survival is hence of high clinical value 

for discovering novel therapeutic strategies and for eradicating the most aggressive and resistant 

clones within heterogeneous tumors. However, the extent to which clonal proteomic heterogeneity 

and pre-existing proteotypes drive therapeutic outcomes and drug resistance remains poorly 

understood. Based on imaging-based proteomics, it has been estimated that one-fifth of the human 

proteome exhibits cell-to-cell variability 12, emphasizing the importance of single-cell analyses in 

the context of treatment responses. High-content imaging offers great insights into the proteome 

at subcellular and spatiotemporal resolutions, yet only a few proteins can be profiled 

simultaneously 13–16. A promising and emerging methodology to study drug-resistant proteotypes 

is single-cell proteomics (SCP) by mass spectrometry, which currently achieves a depth of a few 

thousand proteins 17–21. However, compared to bulk based profiling, SCP poses considerable 

challenges for data interpretation, for example due to data sparsity and confounding factors from 

cell size and cell cycle differences 22–24. This emphasizes the importance of hybrid methods that 

combine the complementary strengths of bulk and SCP to capture single-cell-derived proteotypes 

on a global and quantitative scale.  
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To bridge this gap, we propose PhenoSCoP, a discovery proteomics concept that combines 

fluorescence microscopy, laser microdissection (LMD), and ultrasensitive MS-based proteomics. 

Instead of analyzing true single cells, we developed a scalable workflow to profile single-cell-

derived colonies without extensive serial dilution and clonal expansion experiments. Inspired by 

elegant work conducted on transcriptional memory, spanning time frames of several cell cycles 9 

to weeks 8 and even years 25, we hypothesized that single-cell clones maintain distinct and 

quantifiable proteomic traits that underlie stable drug-resistant phenotypes. The concept of protein 

level memory and its implications in driving cellular function have been demonstrated previously 
26,27, however, the extent to which the cellular proteome features clone-specific, heritable, and 

phenotype-dictating traits remains largely unexplored. Our approach offers an easy-to-implement 

solution to prioritize heritable protein level changes while mitigating short-lived and transient 

fluctuations that often confound SCP experiments. By applying PhenoSCoP to head and neck 

cancer cell lines, we demonstrated the unique ability of our method to identify rare, pre-resistant 

proteotypes from drug-naïve populations. Combined with spatial proteomics of primary and 

recurrent tumor samples, we demonstrated the relevance of the prioritized proteins in specimens 

from patients with head and neck cancer.  
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Results 

An optimized workflow for immunofluorescence microscopy guided discovery proteomics  

Our goal was to develop an imaging-guided discovery proteomics method that captures clone-

specific proteotypes functionally linked to differential drug responses (Fig. 1A). We devised 

Phenotype-resolved Single-Colony Proteomics (PhenoSCoP), which combines clonogenic cell 

growth, fluorescence microscopy, laser microdissection (LMD) and ultrasensitive mass 

spectrometry (MS)-based proteomics. Our method was inspired by the clonogenic survival assay 

first described in 1956 by Puck and Marcus 28. This assay is a gold standard for evaluating cellular 

viability and measuring the proportion of surviving reproductive cells following treatment, thereby 

enabling the investigation of long-term cellular outcomes 29. Instead of analyzing single cells, we 

sought to analyze single-cell-derived phenotypes. Cells are seeded on microscopy slides at low 

concentrations, exposed to drug treatment, and outgrowth into multicellular colonies is monitored, 

visualized and quantified. Finally, drug-tolerant and colony-forming cells are isolated and 

quantitatively compared to untreated controls using MS-based proteomics. 

To realize PhenoSCoP, we first optimized the staining and imaging workflow and assessed the 

impact of fixation and permeabilization on the quantitative proteomic read-out. FaDu cells, an 

established polyclonal model for studying CP resistance in head and neck squamous cell carcinoma 

(HNSCC) 30, were seeded on polyphenylene sulfide (PPS) metal frame slides required for laser 

microdissection, grown to ~ 80% confluence, and subjected to different protocols prior to LMD 

and MS-based proteomics (Fig. 1B). The comparison of fresh FaDu cells with formaldehyde-fixed 

cells (4%, 10 min) resulted in almost identical proteome coverage, in line with a recent study 31. 

From the small 100-cell regions, we quantified more than 6,000 unique proteins in a 15-min active 

liquid chromatography (LC) gradient on a Bruker timsTOF Ultra instrument operated in diaPASEF 

mode 32 and based on library-free DIA-NN 33 analysis (Fig. 1B). To enable the staining of 

intracellular proteins critical for image-based cell phenotyping, we tested two standard 

permeabilization protocols based on 90% ice-cold methanol or 0.2% Triton X-100. While both 

protocols resulted in slightly lower proteome coverage than fixation alone (< 4%), quantitatively, 

the methanol protocol performed better and was closer to the fixation-only condition than Triton 

X-100 treated cells (Fig. 1C, Suppl. Fig. 1B), in agreement with previous work 34. Importantly, 
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despite the lower number of identified proteins after permeabilization, global proteomic inter-

group correlations were still excellent (median Pearson r = 0.97, Fig. 1D). Therefore, 

formaldehyde fixation combined with methanol permeabilization was selected as our final protocol. 

Next, we seeded FaDu cells onto PPS metal frame slides and monitored colony formation over ten 

days of growth. At day ten, cells were formaldehyde-fixed and subjected to whole-slide 

immunofluorescence imaging (Fig. 1E). We validated the high staining and imaging quality using 

primary conjugated antibodies targeting cytoplasmic pan-cytokeratin (panCK) and the S-phase 

marker Ki-67, as well as EdU (replicating cells) and DAPI (DNA) staining (Fig. 1E). Following 

imaging, we isolated distinct colonies by laser microdissection, providing sufficient cellular input 

for deep and robust proteome profiling (Fig. 1F). 

 

Fig. 1 Phenotype-resolved Single-Colony Proteomics (PhenoSCoP) workflow optimization.   
(A) Schematic representation of the PhenoSCoP approach. (B) Comparison of protein identifications from 
approximately 100 laser microdissected cells prepared using four different protocols: fresh cells, formaldehyde (FA) 
fixed cells, FA fixed cells permeabilized using ice-cold methanol and Triton-X-100. (C) Quantitative proteomic 
comparison of fixation-only and permeabilized cells relative to untreated (fresh) control cells. Only common proteins 
were used without data imputation. (D) Sample Pearson correlation matrix of all replicates for fixation-only and 
methanol-permeabilized cells. (E) Whole-slide immunofluorescence imaging of colonies grown on a PPS membrane 
slide using the optimized staining protocol. One representative colony corresponding to the white box is shown in the 
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right panel, highlighting nuclear and cytosolic staining. Hoechst (grey), Ki-67 (green), Pan-CK (orange) and EdU 
stained S-phase cells (pink). Scale bar for the overview image (left panel) is 5,000 µm, and 200 µm for example 
colonies (right panel). (F) Image of the PPS slide after colony isolation using laser microdissection. 

 

PhenoSCoP effectively captures clonal differences while mitigating SCP confounders 

We aimed to develop a method that captures and quantifies single-cell-derived phenotypes while 

minimizing SCP confounders, such as cell cycle and cell size differences 23 (Fig. 2A). Working 

with clonal averages instead of single cells has several advantages for studying the mechanisms 

underlying treatment resistance. Protein level variations from transient fluctuations (e.g., cell cycle 

regulation) are averaged out, whereas heritable, long-lasting (i.e., propagated to several daughter 

generations), and clone-specific molecular programs are preserved and reflected in the quantitative 

proteomic read-out.  

To test whether our approach effectively captured clone-specific proteotypes (Fig. 2A), we applied 

PhenoSCoP to the polyclonal HNSCC model FaDu. We isolated and profiled 36 colonies as well 

as and 10 mini-bulk samples acting as controls samples. Mini-bulk samples consisted of 

homogenous and non-sparsely seeded cells that failed to grow into individual colonies but were 

otherwise cultivated under identical growth conditions (Fig. 2B). All samples were processed and 

measured within the same experimental batch. On average, we consistently quantified 6,208 

proteins per colony with high data completeness across samples, which was, as expected, much 

superior to single-cell proteomic measurements of the same cells (Suppl. Fig. 2A-B). This allowed 

us to successfully capture biological differences between individual colonies, as proteomic 

variation from different colonies significantly exceeded that of our mini-bulk measurements 

(median CV 20% vs. 14%, p < 2.2e-16) (Fig. 2B). In support of this, the proteomes of cells isolated 

from the same colony were quantitatively more similar than those of cells from neighbouring 

colonies (Pearson r = 0.98 vs. 0.95, respectively, Fig. 2C). Together, these results showed that our 

approach captured hereditary proteomic traits shared between cells of the same (sub)clonal origin. 

Next, we reasoned that our precise protein quantification strategy in combination with clonal 

average measurements would additionally allow us to distinguish different biological sources of 

protein-level variability. As expected, rapidly and transiently fluctuating proteins (i.e., within one 

cell cycle), such as cell cycle-regulated proteins, showed little variation across colonies (Fig. 2D; 

for example, MCM proteins). Similarly, proteins involved in reported ‘housekeeping’ functions 
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(e.g., GAPDH, ATP1A1, and PGK1) showed stable protein levels across colonies (Fig. 2D-E). 

Notably, we identified dozens of proteins that showed significant differences in abundance among 

single-cell-derived colonies, including the metastasis-associated protein DPYSL3 35, interferon-

response protein DDX60, and heat shock protein beta-1 (HSPB1) (Fig. 2D-E). Overall, we found 

an inverse correlation between protein level variability and protein essentiality, as revealed by the 

integration of cancer dependency map data (DepMap) 36 (Fig. 2F). In other words, the most 

variable proteins were less likely to be essential, whereas cell cycle regulators and ‘housekeeper’ 

proteins generally showed low variation, but high dependency scores (below 0). 

Immunofluorescence microscopy confirmed the different protein level patterns revealed by 

PhenoSCoP. For example, while DDX60 showed variable and clone-specific expression (Fig. 2E), 

ATP1A1 (Na/K ATPase) staining was positive for the majority of cells independent of the colony. 

Globally, the most variable and non-essential proteins were strongly enriched for cancer and 

immune-related pathways, such as the interferon response, KRAS signalling, and epithelial-to-

mesenchymal transition (Fig. 2F) 

Our quantitative proteomics data suggested that the overall cell cycle profile was comparable 

across colonies, as estimated by the quantification of S-phase-specific proteins, such as the 

minichromosome maintenance (MCM) protein family (Fig. 2D), essential for genomic DNA 

replication. Integrating EdU staining coupled with machine-learning-based image analysis showed 

that for most colonies, approximately half of all cells (on average 47% ± 11%) were in early or 

late S-phase (Fig. 2H-I). Interestingly, our microscopy-guided approach also enabled us to identify 

rare outlier phenotypes that deviated from this cell line average. For example, one colony mostly 

featured slow-cycling cells, with only 25% of EdU+ cells, whereas two colonies were highly 

proliferative, with over 70% EdU+ cells (Fig. 2H). Our matching proteomics data of such colonies 

confirmed significantly higher MCM protein levels (e.g., MCM4 and MCM5) when we compared 

the least and most proliferative phenotypes (Fig. 2I). Importantly, we observed no difference in 

proteome coverage, despite the expected differences in the total number of cells per colony (Fig. 

2I). Hence, our approach provides a robust and balanced solution to capture clone-specific and 

rare cellular phenotypes while mitigating cell size and cell cycle differences that often confound 

single-cell proteomics data.  
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Fig. 2 PhenoSCoP captures clone-specific proteomic signatures while mitigating SCP confounders.   
(A) Schematic scenarios of protein level variation in single-cell-derived colonies. Fluctuating, stable, and hereditary 
protein level changes are distinguished from quantitative proteome measurements. (B) Left: Example images of 
Hoechst-stained colonies and homogenously grown cells (mini-bulk). Right: Density plot showing the coefficient of 
variation (CV) of protein quantification from single-cell-derived colonies (n = 36) and mini-bulk replicates (n = 10). 
(C) Intra-colony proteomic comparison. Seven colonies were separated into two to three replicates using laser 
microdissection and subjected to proteome analysis. Unsupervised hierarchical clustering based on 6,088 quantified 
proteins. Sample correlations between segments from the same colony (intra-colony) and different colonies (inter-
colony) are shown. (D) Relative protein levels of 36 colonies illustrating the three scenarios shown in panel A. Upper 
panel: S-phase proteins (MCM5-7) represent cell cycle-dependent proteins. Note that fluctuating protein levels were 
averaged out in the colony proteomes. Middle panel: Stable housekeeping proteins (ATP1A1, GAPDH, and PGK1). 
Lower panel: Variable proteins between different colonies (DDX60, DPYSL3, and HSPB1). (E) Immunofluorescent 
images of representative markers from different colonies, corresponding to the three protein types shown in panel D. 
Scale bar is 200 µm for colonies and 20 µm for the indicated regions. (F) Protein variability (coefficient of variation) 
versus gene essentiality (loss of fitness score in FaDu cells). Proteins from panel D are highlighted: yellow (cell cycle), 
blue (housekeeping), and red (variable proteins). Cell cycle and housekeeping proteins are essential proteins. (G) 
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Hallmark pathway enrichment of non-essential variable proteins from panel F. (H) Upper panel: Histogram showing 
the proportion of S-phase cells across 73 colonies determined by counting EdU-positive cells from IF image data. 
Lower panel: Representative images of colonies with low, medium, and high proportions of S-phase cells, 
corresponding to the upper panel. (I) Boxplots of cell counts, protein identifications, and MCM protein levels per 
colony for the top ten and bottom ten colonies shown in panel H. Student's t-test p values are indicated for each plot. 

 

PhenoSCoP identifies molecular drivers of cisplatin resistance 

Cisplatin (CP) is a cornerstone chemotherapy drug used to treat HNSCC, particularly in advanced 

stages; however, treatment failure due to primary and acquired resistance is common, particularly 

in human papilloma virus (HPV)-negative carcinomas 37. High intratumoral heterogeneity and 

expansion of pre-resistant clones are the main drivers of cisplatin resistance in HNSCC 38–40. The 

HPV-negative FaDu cell line is an established model for studying CP resistance in HNSCC and 

consists of multiple genetically and transcriptionally distinct subclones with varying CP 

sensitivities, differing by more than 100-fold 39. In this cell line, Niehr et al. revealed a causal 

relationship between the p53 gain-of-function (GOF) missense mutation TP53 p.R248L and 

increased CP resistance. Importantly, stabilizing TP53 GOF mutations are associated with poor 

patient outcomes 41–43, emphasizing the need to better understand the molecular underpinnings and 

therapeutic vulnerabilities of such resistant clones. To test whether our method could identify pre-

existing proteotypes associated with CP resistance, we employed a two-tiered strategy. First, we 

characterized two previously established single-cell-derived FaDu subclones with a known genetic 

background and CP sensitivity (Fig. 3). Second, we used an unbiased approach to determine 

whether chemotherapy resistance-associated proteotypes could be identified directly from 

treatment-naïve parental cells (Fig. 4).  

We profiled the proteomes of two single-cell-derived and drug-naive clones representing stable 

CP-sensitive (C46 clone) and resistant (C5 clone) phenotypes, previously characterized by bulk-

based genomics, transcriptomics, and phosphoproteomics (Niehr et al, 2018). Although both 

clones had an intronic TP53 mutation (TP53 c.673 G>A) resulting in an early stop codon, the CP-

resistant C5 clone carried an additional TP53R248L GOF mutation and an extra copy on 

chromosome 17 (encoding mutant p53). Additional mutations are summarized in Suppl. Fig. 3A. 

To confirm the stability of different levels of CP resistance, we combined PhenoSCoP with CP 

treatment. Cells from both clones were plated as single-cell dilutions on PPS membrane slides and 

treated for 24 h with their expected IC-50 CP concentrations (C46:30 ng/ml, C5:150 ng/ml). 
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Colony formation was then monitored over 10 days (Fig. 3B). On day 10, the colonies were fixed, 

stained, and subjected to whole-slide imaging and global proteomic analysis. CP treatment resulted 

in a reduction of approximately 50% in colony formation for both clones, confirming their 

respective IC-50 dosages. We isolated and profiled ~20 colonies of each clone and observed strong 

quantitative differences with 656 differentially abundant proteins (FDR < 0.05, Fig. 3C-D, Suppl. 

Fig. 3B). Consistent with our previous findings (Fig. 2D), non-significant proteins included 

‘housekeeping’ proteins, such as GAPDH, ATP1A1, and PGK1, which showed little clonal 

variation. Notably, p53 was the most upregulated protein in CP-resistant clone 5 (Fig. 3D), 

confirming the strong protein stabilization effect of the R248L GOF mutation and its functional 

role as a driver of CP resistance. In the sensitive clone, p53 was undetectable at the baseline level 

(Suppl. Fig. 3C), in agreement with the destabilizing intronic mutation. Our exploratory proteomic 

data also shed light on the cellular mechanisms underlying p53 stabilization. We identified the 

chaperones HSP70 (HSP1A1) and HSP90 (HSP90AA1), which are critical mediators of mutant 

p53 stabilization and localization 44,45, among the top significantly regulated proteins (Fig. 3C). 

Previously reported amplification of chromosome 17 of the resistant clone was also strongly 

reflected in the quantitative proteome (Suppl. Fig. 3D). Interestingly, we uncovered an 

upregulation of chromosome 20 encoded proteins. Pathway enrichment analysis revealed 

upregulated DNA damage repair, ribosomal processes, and p53 signaling in the resistant clone, 

whereas the sensitive clone showed higher levels of proteins related to antigen presentation, 

interferon, and TNF signalling (Suppl. Fig. 3D). The strong and constitutive upregulation of DNA 

damage repair and DNA replication signatures in the resistant clone at baseline was intriguing, as 

it could explain one of the biological mechanisms behind the five-fold higher CP tolerance of this 

clone.  

We next analyzed how these two genetically and proteomically distinct clones responded to CP 

treatment and whether drug-tolerant cells from both clones featured similar or diverging molecular 

programs. We found that drug tolerant cells that survived a single IC-50 dose of CP and formed 

reproductive colonies, featured similar protein and pathway-level changes (Fig. 3E-G). These 

included biological processes related to mitochondrial metabolism, DNA damage repair, 

proteasome degradation, and interferon response. While the genetically driven difference in p53 

protein abundance remained stable between the two clones (Fig. 3G), proteins that showed similar 

changes after treatment included the complex I mitochondrial protein NDUFB11, the Fanconi 
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anemia ubiquitin ligase FANCL (a critical regulator of CP crosslink repair), ubiquitin conjugating 

enzyme UBE2D2, and interferon-stimulated ubiquitin-like protein ISG15. Notably, several 

enriched processes have been previously associated with non-genetic resistance programs and 

cancer cell plasticity. For example, constitutive type-I-interferon signaling has been identified as 

a non-genetic driver of primary drug resistance in several cancers 7,9,46,47.  

We identified several proteins involved in mitochondrial metabolism and redox metabolism that 

were downregulated in drug-tolerant, colony-forming cells. NDUFB11, a complex I mitochondrial 

protein, was of particular interest, as it was the most downregulated protein after CP treatment in 

both clones (Fig. 3E). Reduced NDUFB11 protein levels have recently been linked to enhanced 

CP resistance in ovarian cancer models through increased protein degradation 48. In agreement 

with Salovska et al, pathway enrichment analysis also showed an increase in the proteasome 

degradation machinery in drug-tolerant cells derived from both clones (Fig. 3G). To test whether 

NDUFB11 was indeed functionally relevant for CP tolerance in the FaDu model, we performed 

an NDUFB11 siRNA (3nM) knockdown experiment with and without CP. This resulted in a 

marked decrease in colony formation in the resistant C5 clone (-53%), whereas the polyclonal 

parental line was much less affected (-17%) (Fig. 3H-I). Notably, when combined with CP 

treatment, colony formation was nearly abolished in the resistant clone. The more detrimental 

effect on cell survival could be explained by the 2.5-fold lower NDUFB11 protein level at the 

baseline (Fig. 3G). Although NDUFB11 is a non-essential gene in most cancer cell lines, FaDu 

cells exhibit moderate dependency on NDUFB11, as shown by CRIPSR-based knock-out data 

(Suppl. Fig. 3E). Our data showed clone-specific effects of NDUFB11 knockdown and suggested 

that p53-mutant clones could be particularly sensitive to NDUFB11 deficiency. Further research 

is needed to determine whether targeting NDUFB11, or more globally mitochondrial redox 

metabolism, could be exploited therapeutically to eradicate p53-mutant HNSCC clones.  

Collectively, these data demonstrate the potential and versatility of PhenoSCoP in uncovering the 

genetic and non-genetic drivers of drug resistance. 
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Fig. 3 PhenoSCoP captures genetic and non-genetic mechanisms of primary chemoresistance.   
(A) Schematic representation of two previously characterized drug-naïve clones isolated from the FaDu parental cell 
line. Clone C5 showed higher primary cisplatin resistance than clone C46. (B) Top: Representative images of untreated 
and cisplatin-treated (IC₅₀) colonies grown on membrane slides. Bottom: Quantification of colony numbers for 
cisplatin-sensitive (C46) and cisplatin-resistant (C5) clones under untreated and respective IC₅₀ treatment 
conditions.  (C) Volcano plot comparing protein expression between C5 and C46 single cell-derived colonies. The 
stable housekeeping proteins GAPDH, PGK1, and ATP1A1 are depicted in black and do not show significant 
differential expression. (D) Principal component analysis (PCA) of resistant clone C5 (untreated n = 20, drug tolerant 
n = 20) and sensitive clone C46 (untreated n = 19, drug tolerant n = 20) colonies analyzed using PhenoSCoP. 
(E) Diagonal scatter plot comparing log₂ protein fold changes upon cisplatin treatment in resistant (C5, x-axis) versus 
sensitive (C46, y-axis) colonies, calculated as the ratio of treated to untreated cells for each clone. (F) Scatter plot 
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showing two-dimensional pathway enrichment scores for drug-tolerant C5 and C46 clones compared to their drug-
naïve controls (FDR < 0.05). T-test statistics values (treated vs. untreated) were used as input for enrichment analysis. 
(G) Boxplot of protein levels for selected genes comparing drug-tolerant and drug-naïve colonies of clones 5 and 46. 
Significance was assessed by a two-sided Student’s t-test.  (H) Representative images from clonogenic assays showing 
the effects of NDUFB11 knockdown and cisplatin (CP) treatment on both parental and resistant (C5) FaDu cells. (I) 
Quantification of colonies from knockdown experiments is shown in panel H. Data represent the average number of 
colonies from three independent experiments. Significance was assessed by a two-sided Student’s t-test. 

 

PhenoSCoP identifies pre-existing proteotypes driving primary cisplatin resistance  

Increasing evidence suggests that the cellular state prior to drug administration plays a crucial role 

in determining therapeutic responses 7,8,11. Therefore, we next investigated whether PhenoSCoP 

could uncover the proteotypes associated with primary drug resistance. As both the C46 and C5 

clones were derived from treatment-naïve FaDu parental cells, these proteotypes served as 

excellent ground truths to be picked using our method. To increase the likelihood of comparing 

different clones, we integrated fluorescence-based RGB barcoding, which is a powerful imaging-

based technique for tracking individual clones in vitro and in vivo 49,50. Through stochastic color 

mixing after lentiviral expression of different fluorescent proteins in varying but stable amounts, 

the RGB color profile serves as an inheritable marker and clonal fingerprint. This approach also 

enabled us to monitor clonal selection after long-term cyclic CP treatment and assess whether 

drug-resistant proteotypes were already pre-existing or developed through proteome remodelling.  

To this end, FaDu parental cells were stably transduced with RGB vectors, enabling the 

visualization of diverse clonal populations (Fig. 4A). Following whole-slide RGB imaging using 

a widefield fluorescence microscope (Fig. 4B), we isolated 52 color-unique colonies and 

quantified over 7,200 proteins in total, with a median of more than 5,800 proteins per colony (Fig. 

4C). Our dataset included many known oncogenes and tumor suppressors involved in HNSCC 

carcinogenesis, such as EGFR, TP53, BRCA1, and CDH2 (Fig. 4D). To systematically identify 

the most variable fraction of the proteome across single-cell-derived colonies, we plotted the 

coefficient of variation (CV) for each protein versus the mean protein abundance (Fig. 4E). To 

avoid potential bias from low-abundance proteins, which tended to exhibit higher variability, we 

binned the data into 100 segments and retained only the top 5% of each segment. Additionally, the 

5% lowest-abundant proteins and those showing high variation in our mini-bulk controls were 

excluded. Using this strategy, we prioritized 357 variable proteins with high confidence. The 

protein sequence coverage of the selected proteins was similar to that of the full dataset (Suppl. 
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Fig. 4A), further supporting the idea that our approach prioritizes true biological and clone-specific 

signals rather than technical noise. An independent replicate dataset also confirmed a substantial 

overlap among the prioritized proteins, which was most pronounced at the pathway level (Suppl. 

Fig. 4B). We not only captured C5 and C46 clone-specific signatures, such as p53, DPYSL3, and 

the interferon-response proteins HLA-B, IFIT1, and DDX60 (Fig. 4E), but the quantified RGB 

reporter peptides (e.g., mTagBFP) also showed the expected variability, confirming that different 

clones were compared. Cell cycle-dependent (CCD) proteins 12 instead exhibited only low colony 

variation, consistent with their transient fluctuations (i.e., within one cell cycle) (Suppl. Fig. 4C). 

Repeated doses of CP led to strong clonal selection, as was evident from the dominant orange 

clone revealed by immunofluorescence imaging (Suppl. Fig. 4D). Interestingly, principal 

component analysis closely grouped drug-resistant clones with a small fraction of colonies derived 

from the untreated parental population. This finding was clearly obscured when we compared 

clonal mixtures (mini-bulk) (Fig. 4F), underlining the unique resolution of our method in 

identifying clone-specific molecular programs. P53, DPYSL3, CYP24A1, and N-cadherin (CDH2) 

were the most strongly elevated in these pre-resistant cells (Fig. 4G-H). Proteome correlation 

analysis further showed that the resistant proteotypes were highly related to a few drug-naïve 

parental clones (Pearson r > 0.9, Fig. 4I). While immunofluorescence (IF) imaging and RGB 

pseudo-color inference from reporter peptide quantification (Suppl. Fig. 4E) suggested that one 

dominant yellow/orange clone survived multiple rounds of CP (Fig. 4H-I), proteomics data 

revealed two distinct proteotypes of similar color (Fig. 4I-K). Although this observation could 

possibly be explained by one pre-resistant clone that underwent additional proteome remodelling 

after cyclic CP exposure, comparison with untreated cells of the same color-matched subcluster 

revealed no significant and quantifiable differences (Fig. 4J). Both resistant clones in clusters 1 

and 2 showed high mutant p53 levels and DNA damage repair signatures (Fig. 4I and 4K), but 

with nuanced differences. While the resistant clone of cluster 1 was characterized by higher protein 

levels related to nucleotide excision repair, the main pathway for detecting and repairing CP-

induced DNA adducts 51,52, the cluster 2 clone showed higher homologous recombination-based 

DNA damage repair and mitochondrial proteins (Fig. 4K).  

In summary, through PhenoSCoP, we identified and characterized pre-existing, rare proteotypes 

that dominated CP-resistant cell populations in the FaDu HNSCC model.  
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Fig. 4: PhenoSCoP identifies pre-existing proteotypes driving primary cisplatin resistance.  
(A) Schematic of the lentiviral vector-mediated RGB-marked FaDu model system. (B) Representative images of 
colonies derived from single FaDU RGB clones. Scale bar: 200 µm. (C) Depth of 52 colony proteomic measurements. 
(D) Dynamic range of protein abundance from colony proteome measurements, with examples of oncogenes and 
tumor suppressor proteins highlighted. (E) Comparison of protein level variability (CV) and mean protein levels of 
all identified proteins. Variable proteins (red) are defined as the top 5% of the most variable proteins per binned 
segment. One hundred bins were used to cover the entire protein level range. Proteins with high variation in pseudo-
bulk samples were excluded. (F) Principal component analysis (PCA) of FaDu primary clones (n = 52), primary mini-
bulk samples (n = 9), resistant clones (n = 9), and resistant mini-bulk samples (n = 5) using 357 variable proteins. (G) 
Top 20 features contributing to principal component two of PCA in panel F. (H) Immunofluorescence staining of TP53 
in primary and resistant FaDu cells. Scale bar: 20 µm. (I) Proteome correlation analysis based on the most variable 
proteins (related to panel E, filtered for 70% valid values). Distances were calculated using Euclidean metrics and 
hierarchical clustering using average linkage, revealing four main clusters. (J) Volcano plots comparing cisplatin-
resistant versus drug-naive colonies from Cluster 1 (top) and Cluster 2 (middle). Bottom: Volcano plot comparing 
cisplatin-resistant colonies from Cluster 1 versus Cluster 2. Cluster information was extracted from panel I.  
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(K) Enriched Gene Ontology pathways of proteins significantly upregulated in cisplatin-resistant clones (panel I and 
J, clusters 1 and 2) compared to clusters 3 and 4, which included drug-naïve proteomes of FaDu parental cells. 

 

Resistant proteotypes are present in patient-derived HNSCC tissues  

To address whether the identified proteins and pathways associated with CP responses in the FaDu 

model also emerged in HNSCC patient tissues, we profiled a cohort of 29 HPV-negative, 

treatment-naïve HNSCC patients obtained from a previous phase III clinical trial of definitive 

radiochemotherapy (RCTx) for locally advanced HNSCC 53. In this cohort, patients in the 

experimental arm received CP-based RCTx. Guided by H&E staining, we laser-microdissected 

tumor-specific regions of each tissue microarray core, quantifying ~ 6,500 proteins per sample 

(Suppl. Fig. 5A). Of the 357 variable proteins identified in the drug-naïve FaDu parental cells 

(Fig. 4E), which were associated with different clones and CP responses (Fig. 4E-G), 296 (82.9%) 

were also found in the patient tissue proteomes, illustrating their relevance in vivo. Compared to 

all identified proteins, our signature showed a clear and significant trend towards higher protein 

level variability across the 29 tumors (Fig. 5C, p = 3.7 × 10⁻⁸). The most variable proteins included 

aldehyde dehydrogenase ALDH3A1, interferon-related proteins (e.g., ISG15 and IFIT2), 

glutamine synthetase GLUL, and calcium-binding proteins from the S100 family (e.g., 

S100A8/A9), which have been implicated in epithelial differentiation and HNSCC progression 

through NF-κB and PI3K/Akt/mTOR signaling 54,55 (Fig. 5D). To assess whether these proteins 

also exhibited spatially related abundance differences, indicative of potential clone-specific 

proteotypes within distinct spatial niches, we compared the proteomes of several intra-tissue 

replicates from 29 patients (Fig. 5D). Indeed, compared to GAPDH, many of the most variable 

proteins (e.g., ALDH3A1, S100A8, IFIT2, and GLUL) also exhibited intra-tissue protein level 

variability of varying degrees (Suppl. Fig. 5B). For example, S100A8/A9 showed strong spatially 

related differences in patient 1, GLUL in patient 2, and ALDH3A1 was the most variable protein 

in patient 4. To test whether these proteins were also enriched in chemoresistant, recurring, or 

metastatic disease, we profiled an additional HNSCC case diagnosed as an aggressive, locally 

advanced squamous cell carcinoma of the mandible that recurred within six months after surgery 

with CP-based adjuvant RCtx and subsequently metastasized to multiple organs (Suppl. Fig. 5C). 

We profiled several tumor microregions (50,000 µm2 per tissue region) from the primary tumor (n 

= 4), local recurrence (n = 4), lymph node metastasis (n = 4), and distant metastasis (paratracheal 
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[n = 4] and skin [n = 3]) to a depth of  ~7,000 proteins per single measurement (Fig. 5E). Tissue 

proteomes showed strong tumor stage and anatomic site specificity, as revealed by principal 

component analysis (Fig. 5F). To determine which proteins and biological pathways were 

differentially abundant between the primary and recurrent tumors, we performed ANOVA coupled 

with pathway enrichment analysis. Notably, our FaDu-derived signature of variable proteins was 

significantly overrepresented among the proteins that showed abundance differences between the 

primary and metastatic tumors (Fig. 5G-H). Examples of these proteins included GLUL and 

DPYSL3, which were associated with the CP-resistant TP53 mutant FaDu clone (Fig. 4G). At the 

pathway level, ribosomal proteins were upregulated in the relapse biopsy, as well as in the distant 

skin metastasis (Fig. 5H). This finding was consistent with our observations in the resistant C5 

clone (Suppl. Fig. 3D). Instead, the primary tumor featured strong mesenchymal characteristics 

(e.g., epithelial-mesenchymal transition (EMT), and TGFb signaling), as well as higher focal 

adhesion and PI3K/AKT pathway levels (Fig 5I). 

Together, our data support the existence of diverse, spatially distinct proteotypes associated with 

chemoresistance, tumor progression, and metastasis in HNSCC patient samples. The observed 

overlap between our in vitro derived signatures and spatial tissue proteomics results underlines the 

translational relevance of the biological discoveries enabled by PhenoSCoP. 
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Fig 5: Proteotypes associated with differential cisplatin responses in vitro are present in HNSCC patient tissues 
(A) Schematic workflow of laser microdissection guided proteomics applied to tissue microarrays of patients with 
primary head and neck squamous cell carcinoma (HNSCC). Tumor-specific compartments were identified by H&E 
staining, with three replicates per tissue cut for proteome analysis. (B) Protein identification in tissue samples from 
29 patients with head and neck cancer. (C) Boxplot of inter-patient protein coefficients of variation comparing all 
quantified proteins to the variable proteins identified using PhenoSCoP in the FaDu cell line model. (D) Ranked inter-
patient coefficients of variation for variable proteins (from the in vitro FaDu cell model). Proteins with the highest 
variability are listed and marked in blue. (E) Barplot showing the number of proteins identified in multiple cancer 
tissue samples from a patient with relapse, including the primary tumor (n = 4), lymph node metastasis (n = 4), local 
recurrence (n = 4), and two distant metastases (paratracheal [n = 4] and skin [n = 3]). (F) Principal component analysis 
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(PCA) of multiple cancer tissue samples based on proteomic data. (G) Pathway enrichment analysis (Fisher’s exact 
test) of significantly differentially expressed proteins across multiple cancer tissue samples (ANOVA, p < 0.05). 
Analyses were performed using the HALLMARK gene sets from the Human Molecular Signatures Database 
(MSigDB), Reactome, WikiPathways, and a custom list of variable proteins identified from the in vitro FaDu cell 
model using PhenoSCoP. (H) Boxplots showing the relative levels (z-scores) of the selected proteins across multiple 
cancer tissue samples. ANOVA p-values are indicated for each protein. (I) Heatmap of significantly differentially 
expressed proteins across multiple cancer tissue samples (ANOVA, p < 0.05). The heatmap shows the average protein 
abundance (row-wise z-score) for each tissue, and hierarchical clustering identifies seven gene clusters. Enrichment 
analysis of representative gene clusters identified in panel H. The top five significantly enriched pathways are shown 
for four clusters.   

 

Discussion 

Here, we introduce Phenotype-resolved Single-Colony Proteomics (PhenoSCoP), a novel 

discovery proteomics approach that combines clonogenic cell growth, fluorescence microscopy, 

laser microdissection (LMD), and ultrasensitive mass spectrometry (MS)-based proteomics. It 

enables robust and deep proteome profiling through data-independent acquisition, yielding 

consistent and sufficient proteome coverage to comprehensively study oncogenic signaling 

pathways and biological processes associated with cellular treatment responses. Instead of 

analyzing single cells, we developed a scalable workflow to profile single-cell-derived colonies 

without extensive serial dilution experiments, focusing on small cell populations consisting of a 

few hundred cells. PhenoSCoP provides reliable protein quantification while preserving clonal 

heterogeneity, combining key strengths of bulk and single-cell proteomics. Moreover, it captures 

clone-specific and inherited genetic or non-genetic molecular traits. While cell cycle-regulated 

proteins showed minimal variation across colonies, we identified hundreds of proteins with 

significant differences in clone-specific abundances. For example, the identification of p53, 

DPYSL3, and GLUL among the most upregulated proteins in drug-resistant cells underscores their 

potential role in mediating cisplatin resistance. High GLUL levels can facilitate cancer cell survival 

in glutamine-depleted environments, such as those induced by genotoxic stress 56, through de novo 

glutamine synthesis 57. DPYSL3 can act as a metabolic and DNA repair enhancer that promotes 

chemoresistance and poor outcomes 35,58. The dominant upregulation of p53 aligns well with its 

established role in chemoresistance 39, proving that PhenoSCoP illuminates the molecular drivers 

of therapy resistance.  
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However, a current limitation of PhenoSCoP is that it might overlook transiently expressed 

proteins that may also play critical roles in immediate drug response mechanisms  59. Future studies 

could incorporate dynamic sampling strategies to capture these transient changes and combine 

them with live-cell imaging to monitor clonal dynamics in a time-resolved manner. Moreover, 

despite being broadly applicable across cancer types and cellular models, our method requires 

adherent and proliferative cells that ultimately form colonies. Some cellular phenotypes are 

generally less proliferative or may not grow as colonies. These cells can be captured by single-cell 

laser microdissection as conceptualized in our recent deep visual proteomics method 60, 

independent of their capacity to grow out as colonies. While our method currently supports the 

imaging of 4-6 markers, multiplex immunofluorescence imaging 15 represents a promising future 

addition to our pipeline for more fine-resolved cell phenotyping to guide proteomic profiling. 

 

A considerable advantage of integrating immunofluorescence microscopy and proteomics is the 

ability to study insightful phenotype-to-proteome associations. For example, EdU and DAPI 

staining provide important cell cycle information. Applying this strategy, we discovered rare 

phenotypes of slow- or fast-cycling cells that are likely to be missed by current single cell or bulk 

proteomics approaches. RGB fluorescent barcoding is another powerful addition to our method 

and adds a new dimension for clonal tracking and deconvolution of proteomic data. We devised 

an MS-based approach to directly quantify RGB reporter peptides to infer pseudo-colors for clonal 

tracking. This approach could also be highly relevant in microscopy-free setups, for example, for 

clonally deconvoluting SCP data. Combined with drug treatment assays, this RGB strategy enabled 

us to identify distinct proteotypes associated with primary cisplatin resistance in drug-naive FaDu 

cells. Although initially rare, these proteotypes strongly dominated the resistant populations after 

multiple rounds of cisplatin exposure. Notably, our rich proteomic data also indicated that long-

term drug exposure had only a minimal effect on the quantitative proteome of these clones, 

underlining the importance of studying clonal proteomic heterogeneity before treatment to better 

understand the biological mechanisms underlying therapeutic responses.  

 

The ability of PhenoSCoP to identify pre-existing resistant proteotypes offers a new avenue for the 

development of predictive biomarkers, potentially enabling the stratification of patients who are 

likely to benefit from cisplatin therapy. The clinical relevance of our in vitro findings is supported 
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by the observation that proteins that varied across cultured colonies also showed intra- and inter-

tumor heterogeneity in primary head and neck squamous cell carcinoma (HNSCC) tissues. Our 

spatially resolved proteomic analysis of patient-matched primary and relapsed HNSCC tumor 

samples revealed that several of these proteins were upregulated upon disease recurrence and 

metastasis. An interesting finding that emerged in both the FaDu model and the relapsed HNSCC 

case was the upregulation of ribosomal proteins in chemoresistant cells and disease progression. 

This finding suggests a potential role in drug resistance and disease progression 61. Future studies 

could explore the functional significance of these (onco)ribosomal protein changes and their 

potential as therapeutic targets and oncogenic signaling mediators 62. Additionally, investigating 

the mechanisms underlying proteomic changes observed during disease recurrence and metastasis 

could provide valuable insights into HNSCC progression and guide the development of more 

effective treatment strategies. 

In summary, PhenoSCoP is a powerful and versatile discovery tool for dissecting intratumoral 

heterogeneity and drug resistance mechanisms. The ability to identify hereditary, clone-specific 

proteomic signatures associated with treatment responses addresses the key limitations of current 

single-cell and bulk proteomic approaches. Further development and application of this method 

may reveal new predictive biomarkers and therapeutic vulnerabilities for improving cancer 

treatment.  
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Methods and Materials 

HNSCC patient tissue collection    

Primary cancer patient samples were obtained from a multicenter phase III trial (ARO-0401) 

conducted between 2004 and 2008. All the samples included in this study (n = 29) were HPV-

negative treatment-naïve tumors. Multiple tumor specimens from the recurrent patient (HPV-

negative) were collected between 2022 and 2023 during surgery, including the primary tumor, 

lymph node metastasis, local recurrence, and distant metastases to the skin and paratracheal region. 

All tissue blocks were stored at room temperature in the archive of the Institute of Pathology at 

Charité University Hospital, Campus Benjamin Franklin. The study was performed according to 

the ethical principles for medical research of the Declaration of Helsinki, and approval was 

obtained from the Ethics Committee of the Charite ́ University Medical Department in Berlin 

(EA1/222/21). Informed consent was obtained from all participants included in the study. 

 

Cell lines  

The hypopharyngeal tumor cell line FaDu (ATCC®HTB–43™) was purchased from ATCC 

(Manassas, VA, USA). FaDu clonal cell lines (C5 and C46) were obtained from the laboratory of 

Prof. Dr. Ingeborg Tinhofer-Keilholz 39. The cells were cultured in Minimum Essential Medium 

(MEM) supplemented with 12% fetal bovine serum (FBS), 1× non-essential amino acids (NEAA), 

and penicillin/streptomycin (penicillin/streptomycin). Cells were regularly tested for mycoplasma 

by PCR.  

  

Transduction of Fadu cells with RGB 

Fadu cells were transduced with the lentiviral vectors LeGO-B2-NLS-Puro+, LeGO-V2-NLS-

Puro+, and LeGO-C2-NLS-Puro+ for RGB nuclear barcoding, followed by molecular barcoding 

with LeGO-EBFP2-Hygro-LTRXX3-BC24 for clonal tracking. Dr. Kristoffer Riecken from the 

University Hospital Hamburg-Eppendorf provided all virus particles 63. For transduction, 50,000 

cells per well were seeded in a 24-well plate (Greiner Bio-One #353047). Cells were incubated for 

2-5 hours to facilitate cell attachment. The medium was replaced with polybrene-containing 

medium (8 μg/mL), and lentiviral particles were added to the wells. Spinoculation (1,000 × g, 1 h, 
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25 °C) was performed on the plate, and cells were incubated for another 16 h. The medium was 

then exchanged for a regular, non-polybrene-containing medium. 

The efficiency of RGB transduction was determined by flow cytometry. The most efficient 

transduction combination (all three 3 vectors) was used for molecular barcoding. The efficiency 

of molecular barcoding was determined by ddPCR using the ratio of Hygro/FAM9B. A ratio of 1 

or the closest to 1 was used for further experiments with irradiation (IRR) and drug treatment. 

  

Colony growth for PhenoSCoP 

Steel-frame PPS (polyphenylene sulfide) membrane slides (Leica, #11600294) and 12 mm round 

glass coverslips were sterilized by exposure to ultraviolet (UV) light for 30 min before use. They 

were then incubated with 0.1 mg/mL poly-L-lysine (Sigma #P1274) at 37°C for 30 min, rinsed 

once with sterilized water, and allowed to dry under UV light. For seeding, 4,000–5,000 cells were 

placed into a 10 cm cell culture dish containing a single PPS slide, while approximately 500 cells 

were seeded into each well of a 24-well plate, each containing a sterilized coverslip. The culture 

medium was replaced every 2–3 days to ensure optimal cell growth. 

  

Drug treatment  

Cells were seeded onto membrane slides and incubated overnight at 37°C to allow cell attachment. 

The following day, cells were treated with cisplatin at concentrations corresponding to their 

individual IC₅₀ values for 24 h. After treatment, the cells were washed once with phosphate-

buffered saline (PBS), and fresh drug-free medium was added. The medium was replaced at regular 

intervals to support colony growth. 

For cyclic CP treatment, 30,000 FaDu cells were seeded in each well of a 6-well plate. Cells were 

treated with four doses of 100 ng/ml and four doses of 150 ng/ml, with a cumulative dose of 1000 

ng/ml. Cells were split and reseeded after every cisplatin dose and harvested for further 

experiments. The drug used for drug testing included cisplatin (NeoCorp GmbH, Germany).  
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SiRNA transfection  

siRNA pools (siPOOLs) were obtained from siTOOLs Biotech GmbH. Gene knockdown was 

performed in untreated FaDu parental cells and the cisplatin-resistant clone (C5) using either 

control siRNA (siCTRL) or an siPOOL targeting NDUFB11, according to the manufacturer’s 

instructions. Briefly, 240,000 cells were seeded per well in 6-well plates and allowed to adhere 

overnight prior to transfection. Cells were transfected with 3 nM siRNA and incubated for 48 h. 

For the clonogenic assay, 500 cells were seeded per condition. 

 

Immunofluorescence microscopy 

After 8–10 days of growth, colonies were fixed with 4% paraformaldehyde (PFA, Thermo 

Scientific, # 28908) for 10 min at room temperature. A silicon frame (0.5 mm thickness, 

Technikplaza GmbH) was mounted onto the slide to facilitate the subsequent steps. 

Immunofluorescence staining was performed on PPS slides. In brief, cells and colonies were 

permeabilized by adding 90% cold methanol (in 10% PBS) for 2 min. After thoroughly washing 

away the methanol, Odyssey Blocking Buffer PBS (Li-Cor, 927-40000) was applied to block non-

specific binding sites for 30 min at room temperature. Antibodies were diluted to optimal 

concentrations in blocking buffer and incubated with the cells overnight at 4°C. When 

unconjugated primary antibodies were used, a secondary antibody was added and incubated for 1 

h at room temperature. Hoechst 33342 (Thermo Scientific, # 62249) was applied for 10 min at 

room temperature for nuclear staining. Images were acquired using an Axioscan 7 (Carl Zeiss 

Microscopy GmbH, Germany) with a 10x objective. The optimal antibody concentrations used 

were as follows: Na/K ATPase (1:500, Abcam, # 76020), panCK (1:100, Thermo Fisher Scientific, 

41-9003-82), DDX60 (1:20, Novus, NBP1-91826), TP53 (1:50, Agilent Dako, M7001), and Ki-

67 (1:100, Cell Signaling Technology, #11882). The secondary antibodies used were goat anti-

mouse (1:500, Alexa Fluor™ 750, Thermo Fisher Scientific, A-21037) and goat anti-rabbit 

(1:1000, Alexa Fluor™ 488, Thermo Fisher Scientific). EdU staining was performed using a 

commercial kit according to the manufacturer's instructions (Thermo Fisher Scientific, C10338). 

  

Colony isolation and proteomic sample preparation 

Colony selection was performed using QuPath (v0.5.1) and exported to LMD using an in-lab 

pipeline (https://github.com/CosciaLab/Qupath_to_LMD). LMD7 (Leica Microsystems, 
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Germany) was used to isolate the colonies. Sample preparation for colony and patient samples was 

performed based on our previous work 64. Briefly, samples in 384-well plates were lysed with 2 

µL of lysis buffer consisting of 0.1% DDM, 5 mM TCEP, 20 mM CAA, and 100 mM TEAB at 95 

°C for 1 h. Sequential digestion was applied by adding 1 µL of LysC (2 ng) and incubating for 4 

h, followed by the addition of 1 µL of trypsin (2 ng) and overnight incubation at 37 °C. All buffers 

were added using a liquid dispenser (MANTIS, Formulatrix) for better accuracy. Peptides were 

desalted using Evotips (Evosep Biosystems, Denmark) according to the manufacturer's 

instructions.   

 

Single-cell proteomics  

Single FaDu cells were sorted and prepared using the CellenONE system (Cellenion) on 

proteoCHIP EVO 96 plates according to an adapted published protocol 65. Briefly, 3 µL of 

hexadecane was added to each well prior to cell sorting, followed by dispensing 150 nL of Master 

Mix (0.2% DDM, 100 mM TEAB, and 10 ng/µL trypsin) into each well. During lysis and 

enzymatic digestion, the on-deck temperature was maintained at 50 °C, with continuous 

rehydration of samples by adding 60 nL H₂O at 2-minute intervals for 2 h. Subsequently, the 

samples were loaded onto Evotips by centrifugation. 

 

Liquid chromatography-mass spectrometry (LC-MS/MS) 

LC-MS/MS was performed using timsTOF Ultra/Ultra 2 mass spectrometers (Bruker Daltonics, 

Germany) coupled to an EASYnLC-1200 system (Thermo Fisher Scientific, USA). Peptide 

separation was conducted on 20 cm home-packed columns (75 μm inner diameter) packed with 

1.9 μm ReproSil-Pur C18-AQ silica beads (Dr. Maisch GmbH, Germany). A 21-minute gradient 

was used for peptide separation, employing buffer A (3% acetonitrile [ACN], 0.1% formic acid) 

and buffer B (90% ACN, 0.1% formic acid). The gradient was initiated at 2% buffer B and 

increased to 10% over 1.5 minutes at a flow rate of 0.4 μL/min to minimize dead time at the start 

of chromatography. Subsequently, the flow rate was reduced to 0.25 μL/min, and buffer B was 

ramped up to 60% over 15 min, followed by a washing step at 90% buffer B. All mass 

spectrometric analyses were conducted using the dia-PASEF method 32, employing the factory 

default settings in high sensitivity mode. Eight dia-PASEF windows were distributed across three 

trapped ion mobility spectrometry (TIMS) scans, covering an m/z range of 400 to 1,000. The ion 
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mobility range was set from 0.64 to 1.37 Vs cm ⁻ ², with an accumulation and ramp time of 100 

ms. 

Primary patient samples were measured using the Evosep ONE 30 SPD system with a 15 cm 

column (EV1106). Multi-cancer samples from the recurrent patient and single-cell samples were 

analyzed using the Whisper Zoom 40 SPD system (Evosep) equipped with an Aurora Elite column 

(15 × 75 µm, 1.7 µm). 

  

Raw file analysis 

We used DIA-NN 33 (versions 1.8.1 and 1.9) for proteome quantification. Colony and patient 

samples were searched against an in silico spectral library generated from the UniProt human 

reference proteome (2023 release) supplemented with a FASTA file containing common 

contaminants. In addition, three color vector sequences (RGB) were included in the library to 

enable RGB sample identification. For single-cell samples, a FaDu cell–specific spectral library 

was generated using eight fractions of pooled cell lysate. Carbamidomethylation of cysteine 

residues was specified as a fixed modification, whereas oxidation of methionine was included as 

a variable modification. The maximum number of missed cleavages and variable modifications 

per peptide was set to one. Match-between-runs (MBR) functionality was enabled for all analyses.  

 

Data analysis 

Data analysis was carried out using the pg.matrix output file of DI-ANN with a global protein FDR 

of max. 1%.  Perseus (v1.6.15.0) and R (v4.4.1) were used for further data analysis. The following 

R packages were used: tidyverse (2.0.0), ggplot2 (4.0.0), dplyr (1.1.4), cluster (2.1.8.1), factoextra 

(1.0.7), stringr (1.5.1), tidyr (1.3.1), clusterProfiler (4.15.1.2), doBy (4.7.0), ComplexHeatmap 

(2.20.0), circlize (0.4.16). 

Variable proteins in primary FaDu cells were calculated as follows: The data were filtered to retain 

proteins with at least five valid replicates. The intensity values were then log2-transformed to 

prepare for the imputation of missing values. Missing values were replaced by sampling from a 

normal distribution. The coefficient of variation (CV) was calculated in linear space, while the 

mean expression level for each protein was log-transformed. To obtain variable proteins across the 

whole dynamic range, the mean expression levels of proteins across colonies were divided into 

100 bins. The top 5% of proteins with the highest CV were selected from each bin. Low-intensity 
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proteins below 5% of the colony mean distribution were removed to reduce the influence of 

technical noise on the results. Proteins were excluded if their CV in mini-bulk samples was larger 

than that of the colony samples.  

 

Declaration of generative AI and AI-assisted technologies in the writing process  

During the preparation of this manuscript, the authors used Paperpal in order to improve readability 

and language of the text. After using this tool, the authors reviewed and edited the content as 

needed and take full responsibility for the content of the publication. 

 

Data availability 

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium 

(http://proteomecentral.proteomexchange.org) via the PRIDE partner 66 and will be available upon 

acceptance of the manuscript. Any additional information required to reanalyze the data reported 

in this paper is available from the lead contact upon request. 
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Supplementary Figures 

 

 
Fig. S1, related to Fig. 1. Comparison of summed intensity ratios from different cellular compartments across four 
experimental conditions: Fresh cells, formaldehyde fixed cells (FA, fixation), FA fixed cells and permeabilized cells 
based on ice-cold methanol (Methanol) and Triton-X-100 (Triton). ‘Sum’ represents the total intensity of proteins 
shared across all conditions (normalized to the average intensity of fresh cells). Other cellular compartments represent 
the summed intensity of proteins assigned to Gene Ontology Cellular Component groups (normalized to the total 
protein intensity of each sample). 
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Fig. S2, related to Fig. 2. (A) Boxplot showing the number of proteins quantified using single-cell proteomics (SCP; 
n = 147) and PhenoSCoP (n = 36). (B) Comparison of protein group numbers and data completeness under different 
data-filtering criteria in SCP and PhenoSCoP. ‘None’ indicates no data filtering. 
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Fig. S3, related to Fig. 3. (A) Genetic background of clone-derived cell lines from FaDu. (B) Principal component 
analysis (PCA) of C5 (n = 20) and C46 (n = 19) colonies analyzed using PhenoSCoP. (C) Boxplot of p53 protein level 
(Log2) in C5 and C46 colonies. (D) Comparison of protein levels by chromosomal location revealed chromosome 17 
and 20 specific differences. Note that C5 carried chromosome 17 amplification. (E) Enriched pathways (Reactome) 
comparing C5 and C46 colonies to identify biological differences between clones.  (F) Dynamic plot showing the 
ranked scaled Bayesian factor of NDUFB11 in 930 cell models. The score of the FaDu cell line is indicated in the 
plot. (CRISPR: Dependencies data were downloaded from the Sanger Institute).  
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Fig. S4, related to Fig. 4. (A) Histogram of proteomic coverage for all proteins and variable proteins. (B) Pathway 
enrichment analysis of variable proteins in repeat experiments. The HALLMARK gene sets were obtained from the 
Human Molecular Signatures Database (MSigDB) and Reactome pathways. (C) Violin plots showing the distribution 
of the coefficient of variation (CV) for all proteins, cell cycle-related proteins (Mahdessian et al., 2021b), and variable 
proteins. (D)  Representative images of RGB-labelled primary and resistant FaDu cells. Individual fluorescence 
channels are shown: red (mCherry), green (Venus), and blue (mTagBFP), as well as the merged RGB image. Scale 
bar: 100 µm.   
(E) Quantified RGB color values for three biological replicates (each representing one-third of a colony) from each 
of the three colonies (n = 9 replicates in total). Upper panel: Bar plots display the mean log₂-transformed protein levels 
corresponding to the red, green, and blue components, with error bars representing the standard deviation across 
replicates. The protein abundance for each RGB vector was normalized to a 0–255 scale across all colonies. Lower 
panel: RGB values for individual replicates are shown separately for each colony along with the corresponding 
composite virtual RGB colors generated from the quantified levels.  
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Fig. S5, related to Fig. 5. (A) Representative tissue microarray cores showing tumor regions microdissected for four 
patients (P1-P4). (B) Intra-patient heterogeneity of the most variably expressed proteins across patients. Protein CVs 
were calculated from three spatially distinct tumor areas per tissue section. Colors correspond to Fig. 5D. (C) 
Representative H&E images of multiple cancer tissue samples from a patient with relapse, including the primary 
tumor, lymph node metastasis, local recurrence, and two distant metastases (paratracheal and skin). Example regions 
isolated for proteomic measurements are shown in the lower panel.  
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