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Summary

Drug resistance in cancer therapy continues to significantly contribute to treatment failure and
disease progression, and is linked to intratumoral heterogeneity. Mass spectrometry (MS)-based
single-cell proteomics (SCP) provides a unique opportunity to uncover the mechanisms underlying
drug-resistant phenotypes; however, current methods lack clonal resolution and are often
confounded by cell cycle and cell size differences. Here, we introduce PhenoSCoP, a microscopy-
guided discovery proteomics concept for mapping clonal proteomic heterogeneity. By
distinguishing between transient and long-lived protein level changes, our approach uncovered
hereditary and clone-specific programs associated with chemotherapeutic responses in head and
neck squamous cell carcinoma (HNSCC) cells. Combined with fluorescence barcoding and drug
treatment assays, we identified pre-existing proteotypes that strongly dominated drug-resistant cell
populations. These programs also emerged in HNSCC patient samples and in relapsed tumors after
chemoradiotherapy, linking drug-resistant proteotypes to intra- and inter-tissue spatial
heterogeneity. In summary, we describe a robust, versatile and phenotype-resolved approach for
uncovering single-cell-derived proteotypes associated with the therapeutic responses of distinct

tumor cell clones.
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Introduction

Resistance to anti-cancer therapies, including targeted, chemo, and immunotherapies, remains a
major obstacle for successful treatment outcomes *. While extensive research has focused on the
genetic mechanisms of drug resistance and tumor heterogeneity *3, non-genetic mechanisms that
confer transient or permanent resistance are increasingly being recognized as important drivers of
therapeutic responses 4. Cancer cells exploit both genetic and non-genetic drug resistance
programs, emphasizing the importance of methodologies that capture both mechanisms on a
global, phenotype-centric and quantitative scale . Studying the global proteome of distinct tumor
cell clones, a close proxy for cellular function ®, is therefore of paramount importance to unravel
the mechanisms underlying differential treatment responses and for identifying clone-specific

vulnerabilities.

A growing body of literature supports the notion that cellular states before drug treatment dictate
treatment outcomes ’~°, including observations from clinical samples %!, Identifying such pre-
existing molecular programs associated with clone-specific survival is hence of high clinical value
for discovering novel therapeutic strategies and for eradicating the most aggressive and resistant
clones within heterogeneous tumors. However, the extent to which clonal proteomic heterogeneity
and pre-existing proteotypes drive therapeutic outcomes and drug resistance remains poorly
understood. Based on imaging-based proteomics, it has been estimated that one-fifth of the human
proteome exhibits cell-to-cell variability 2, emphasizing the importance of single-cell analyses in
the context of treatment responses. High-content imaging offers great insights into the proteome
at subcellular and spatiotemporal resolutions, yet only a few proteins can be profiled
simultaneously 726, A promising and emerging methodology to study drug-resistant proteotypes
is single-cell proteomics (SCP) by mass spectrometry, which currently achieves a depth of a few
thousand proteins "~?!. However, compared to bulk based profiling, SCP poses considerable
challenges for data interpretation, for example due to data sparsity and confounding factors from
cell size and cell cycle differences 22724, This emphasizes the importance of hybrid methods that
combine the complementary strengths of bulk and SCP to capture single-cell-derived proteotypes

on a global and quantitative scale.
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To bridge this gap, we propose PhenoSCoP, a discovery proteomics concept that combines
fluorescence microscopy, laser microdissection (LMD), and ultrasensitive MS-based proteomics.
Instead of analyzing true single cells, we developed a scalable workflow to profile single-cell-
derived colonies without extensive serial dilution and clonal expansion experiments. Inspired by
elegant work conducted on transcriptional memory, spanning time frames of several cell cycles °

to weeks & and even years 2°

, we hypothesized that single-cell clones maintain distinct and
quantifiable proteomic traits that underlie stable drug-resistant phenotypes. The concept of protein
level memory and its implications in driving cellular function have been demonstrated previously
2627 however, the extent to which the cellular proteome features clone-specific, heritable, and
phenotype-dictating traits remains largely unexplored. Our approach offers an easy-to-implement
solution to prioritize heritable protein level changes while mitigating short-lived and transient
fluctuations that often confound SCP experiments. By applying PhenoSCoP to head and neck
cancer cell lines, we demonstrated the unique ability of our method to identify rare, pre-resistant
proteotypes from drug-naive populations. Combined with spatial proteomics of primary and

recurrent tumor samples, we demonstrated the relevance of the prioritized proteins in specimens

from patients with head and neck cancer.
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Results

An optimized workflow for immunofluorescence microscopy guided discovery proteomics

Our goal was to develop an imaging-guided discovery proteomics method that captures clone-
specific proteotypes functionally linked to differential drug responses (Fig. 1A). We devised
Phenotype-resolved Single-Colony Proteomics (PhenoSCoP), which combines clonogenic cell
growth, fluorescence microscopy, laser microdissection (LMD) and ultrasensitive mass
spectrometry (MS)-based proteomics. Our method was inspired by the clonogenic survival assay
first described in 1956 by Puck and Marcus 28, This assay is a gold standard for evaluating cellular
viability and measuring the proportion of surviving reproductive cells following treatment, thereby
enabling the investigation of long-term cellular outcomes ?°. Instead of analyzing single cells, we
sought to analyze single-cell-derived phenotypes. Cells are seeded on microscopy slides at low
concentrations, exposed to drug treatment, and outgrowth into multicellular colonies is monitored,
visualized and quantified. Finally, drug-tolerant and colony-forming cells are isolated and

quantitatively compared to untreated controls using MS-based proteomics.

To realize PhenoSCoP, we first optimized the staining and imaging workflow and assessed the
impact of fixation and permeabilization on the quantitative proteomic read-out. FaDu cells, an
established polyclonal model for studying CP resistance in head and neck squamous cell carcinoma
(HNSCC) 3°, were seeded on polyphenylene sulfide (PPS) metal frame slides required for laser
microdissection, grown to ~ 80% confluence, and subjected to different protocols prior to LMD
and MS-based proteomics (Fig. 1B). The comparison of fresh FaDu cells with formaldehyde-fixed
cells (4%, 10 min) resulted in almost identical protecome coverage, in line with a recent study 3.
From the small 100-cell regions, we quantified more than 6,000 unique proteins in a 15-min active
liquid chromatography (LC) gradient on a Bruker timsTOF Ultra instrument operated in diaPASEF
mode 32 and based on library-free DIA-NN 33 analysis (Fig. 1B). To enable the staining of
intracellular proteins critical for image-based cell phenotyping, we tested two standard
permeabilization protocols based on 90% ice-cold methanol or 0.2% Triton X-100. While both
protocols resulted in slightly lower proteome coverage than fixation alone (< 4%), quantitatively,
the methanol protocol performed better and was closer to the fixation-only condition than Triton

X-100 treated cells (Fig. 1C, Suppl. Fig. 1B), in agreement with previous work **. Importantly,
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despite the lower number of identified proteins after permeabilization, global proteomic inter-
group correlations were still excellent (median Pearson » = 0.97, Fig. 1D). Therefore,
formaldehyde fixation combined with methanol permeabilization was selected as our final protocol.
Next, we seeded FaDu cells onto PPS metal frame slides and monitored colony formation over ten
days of growth. At day ten, cells were formaldehyde-fixed and subjected to whole-slide
immunofluorescence imaging (Fig. 1E). We validated the high staining and imaging quality using
primary conjugated antibodies targeting cytoplasmic pan-cytokeratin (panCK) and the S-phase
marker Ki-67, as well as EdU (replicating cells) and DAPI (DNA) staining (Fig. 1E). Following
imaging, we isolated distinct colonies by laser microdissection, providing sufficient cellular input

for deep and robust proteome profiling (Fig. 1F).
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Fig. 1 Phenotype-resolved Single-Colony Proteomics (PhenoSCoP) workflow optimization.

(A) Schematic representation of the PhenoSCoP approach. (B) Comparison of protein identifications from
approximately 100 laser microdissected cells prepared using four different protocols: fresh cells, formaldehyde (FA)
fixed cells, FA fixed cells permeabilized using ice-cold methanol and Triton-X-100. (C) Quantitative proteomic
comparison of fixation-only and permeabilized cells relative to untreated (fresh) control cells. Only common proteins
were used without data imputation. (D) Sample Pearson correlation matrix of all replicates for fixation-only and
methanol-permeabilized cells. (E) Whole-slide immunofluorescence imaging of colonies grown on a PPS membrane
slide using the optimized staining protocol. One representative colony corresponding to the white box is shown in the
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right panel, highlighting nuclear and cytosolic staining. Hoechst (grey), Ki-67 (green), Pan-CK (orange) and EdU
stained S-phase cells (pink). Scale bar for the overview image (left panel) is 5,000 um, and 200 pm for example
colonies (right panel). (F) Image of the PPS slide after colony isolation using laser microdissection.

PhenoSCoP effectively captures clonal differences while mitigating SCP confounders

We aimed to develop a method that captures and quantifies single-cell-derived phenotypes while
minimizing SCP confounders, such as cell cycle and cell size differences 2 (Fig. 2A). Working
with clonal averages instead of single cells has several advantages for studying the mechanisms
underlying treatment resistance. Protein level variations from transient fluctuations (e.g., cell cycle
regulation) are averaged out, whereas heritable, long-lasting (i.e., propagated to several daughter
generations), and clone-specific molecular programs are preserved and reflected in the quantitative

proteomic read-out.

To test whether our approach effectively captured clone-specific proteotypes (Fig. 2A), we applied
PhenoSCoP to the polyclonal HNSCC model FaDu. We isolated and profiled 36 colonies as well
as and 10 mini-bulk samples acting as controls samples. Mini-bulk samples consisted of
homogenous and non-sparsely seeded cells that failed to grow into individual colonies but were
otherwise cultivated under identical growth conditions (Fig. 2B). All samples were processed and
measured within the same experimental batch. On average, we consistently quantified 6,208
proteins per colony with high data completeness across samples, which was, as expected, much
superior to single-cell proteomic measurements of the same cells (Suppl. Fig. 2A-B). This allowed
us to successfully capture biological differences between individual colonies, as proteomic
variation from different colonies significantly exceeded that of our mini-bulk measurements
(median CV 20% vs. 14%, p <2.2e-16) (Fig. 2B). In support of this, the proteomes of cells isolated
from the same colony were quantitatively more similar than those of cells from neighbouring
colonies (Pearson » = 0.98 vs. 0.95, respectively, Fig. 2C). Together, these results showed that our

approach captured hereditary proteomic traits shared between cells of the same (sub)clonal origin.

Next, we reasoned that our precise protein quantification strategy in combination with clonal
average measurements would additionally allow us to distinguish different biological sources of
protein-level variability. As expected, rapidly and transiently fluctuating proteins (i.e., within one
cell cycle), such as cell cycle-regulated proteins, showed little variation across colonies (Fig. 2D;

for example, MCM proteins). Similarly, proteins involved in reported ‘housekeeping’ functions
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(e.g., GAPDH, ATP1A1, and PGK1) showed stable protein levels across colonies (Fig. 2D-E).
Notably, we identified dozens of proteins that showed significant differences in abundance among
single-cell-derived colonies, including the metastasis-associated protein DPYSL3 3°, interferon-
response protein DDX60, and heat shock protein beta-1 (HSPB1) (Fig. 2D-E). Overall, we found
an inverse correlation between protein level variability and protein essentiality, as revealed by the
integration of cancer dependency map data (DepMap) 3¢ (Fig. 2F). In other words, the most
variable proteins were less likely to be essential, whereas cell cycle regulators and ‘housekeeper’
proteins generally showed low variation, but high dependency scores (below 0).
Immunofluorescence microscopy confirmed the different protein level patterns revealed by
PhenoSCoP. For example, while DDX60 showed variable and clone-specific expression (Fig. 2E),
ATP1A1 (Na/K ATPase) staining was positive for the majority of cells independent of the colony.
Globally, the most variable and non-essential proteins were strongly enriched for cancer and
immune-related pathways, such as the interferon response, KRAS signalling, and epithelial-to-

mesenchymal transition (Fig. 2F)

Our quantitative proteomics data suggested that the overall cell cycle profile was comparable
across colonies, as estimated by the quantification of S-phase-specific proteins, such as the
minichromosome maintenance (MCM) protein family (Fig. 2D), essential for genomic DNA
replication. Integrating EdU staining coupled with machine-learning-based image analysis showed
that for most colonies, approximately half of all cells (on average 47% + 11%) were in early or
late S-phase (Fig. 2H-I). Interestingly, our microscopy-guided approach also enabled us to identify
rare outlier phenotypes that deviated from this cell line average. For example, one colony mostly
featured slow-cycling cells, with only 25% of EdU+ cells, whereas two colonies were highly
proliferative, with over 70% EdU+ cells (Fig. 2H). Our matching proteomics data of such colonies
confirmed significantly higher MCM protein levels (e.g., MCM4 and MCMS5) when we compared
the least and most proliferative phenotypes (Fig. 2I). Importantly, we observed no difference in
proteome coverage, despite the expected differences in the total number of cells per colony (Fig.
2I). Hence, our approach provides a robust and balanced solution to capture clone-specific and
rare cellular phenotypes while mitigating cell size and cell cycle differences that often confound

single-cell proteomics data.
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Fig. 2 PhenoSCoP captures clone-specific proteomic signatures while mitigating SCP confounders.

(A) Schematic scenarios of protein level variation in single-cell-derived colonies. Fluctuating, stable, and hereditary
protein level changes are distinguished from quantitative protecome measurements. (B) Left: Example images of
Hoechst-stained colonies and homogenously grown cells (mini-bulk). Right: Density plot showing the coefficient of
variation (CV) of protein quantification from single-cell-derived colonies (n = 36) and mini-bulk replicates (n = 10).
(C) Intra-colony proteomic comparison. Seven colonies were separated into two to three replicates using laser
microdissection and subjected to proteome analysis. Unsupervised hierarchical clustering based on 6,088 quantified
proteins. Sample correlations between segments from the same colony (intra-colony) and different colonies (inter-
colony) are shown. (D) Relative protein levels of 36 colonies illustrating the three scenarios shown in panel A. Upper
panel: S-phase proteins (MCMS5-7) represent cell cycle-dependent proteins. Note that fluctuating protein levels were
averaged out in the colony proteomes. Middle panel: Stable housekeeping proteins (ATP1A1, GAPDH, and PGK1).
Lower panel: Variable proteins between different colonies (DDX60, DPYSL3, and HSPB1). (E) Immunofluorescent
images of representative markers from different colonies, corresponding to the three protein types shown in panel D.
Scale bar is 200 um for colonies and 20 pm for the indicated regions. (F) Protein variability (coefficient of variation)
versus gene essentiality (loss of fitness score in FaDu cells). Proteins from panel D are highlighted: yellow (cell cycle),
blue (housekeeping), and red (variable proteins). Cell cycle and housekeeping proteins are essential proteins. (G)
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Hallmark pathway enrichment of non-essential variable proteins from panel F. (H) Upper panel: Histogram showing
the proportion of S-phase cells across 73 colonies determined by counting EdU-positive cells from IF image data.
Lower panel: Representative images of colonies with low, medium, and high proportions of S-phase cells,
corresponding to the upper panel. (I) Boxplots of cell counts, protein identifications, and MCM protein levels per
colony for the top ten and bottom ten colonies shown in panel H. Student's ¢-test p values are indicated for each plot.

PhenoSCoP identifies molecular drivers of cisplatin resistance

Cisplatin (CP) is a cornerstone chemotherapy drug used to treat HNSCC, particularly in advanced
stages; however, treatment failure due to primary and acquired resistance is common, particularly
in human papilloma virus (HPV)-negative carcinomas 3. High intratumoral heterogeneity and
expansion of pre-resistant clones are the main drivers of cisplatin resistance in HNSCC 3840, The
HPV-negative FaDu cell line is an established model for studying CP resistance in HNSCC and
consists of multiple genetically and transcriptionally distinct subclones with varying CP
sensitivities, differing by more than 100-fold *. In this cell line, Niehr et al. revealed a causal
relationship between the p53 gain-of-function (GOF) missense mutation 7P53 p.R248L and
increased CP resistance. Importantly, stabilizing 7P53 GOF mutations are associated with poor

patient outcomes #1743

, emphasizing the need to better understand the molecular underpinnings and
therapeutic vulnerabilities of such resistant clones. To test whether our method could identify pre-
existing proteotypes associated with CP resistance, we employed a two-tiered strategy. First, we
characterized two previously established single-cell-derived FaDu subclones with a known genetic
background and CP sensitivity (Fig. 3). Second, we used an unbiased approach to determine
whether chemotherapy resistance-associated proteotypes could be identified directly from

treatment-naive parental cells (Fig. 4).

We profiled the proteomes of two single-cell-derived and drug-naive clones representing stable
CP-sensitive (C46 clone) and resistant (C5 clone) phenotypes, previously characterized by bulk-
based genomics, transcriptomics, and phosphoproteomics (Niehr et al, 2018). Although both
clones had an intronic 7P53 mutation (7P53 ¢.673 G>A) resulting in an early stop codon, the CP-
resistant C5 clone carried an additional TP53%%L GOF mutation and an extra copy on
chromosome 17 (encoding mutant p53). Additional mutations are summarized in Suppl. Fig. 3A.
To confirm the stability of different levels of CP resistance, we combined PhenoSCoP with CP
treatment. Cells from both clones were plated as single-cell dilutions on PPS membrane slides and
treated for 24 h with their expected IC-50 CP concentrations (C46:30 ng/ml, C5:150 ng/ml).
Qinetal. - Page 10
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Colony formation was then monitored over 10 days (Fig. 3B). On day 10, the colonies were fixed,
stained, and subjected to whole-slide imaging and global proteomic analysis. CP treatment resulted
in a reduction of approximately 50% in colony formation for both clones, confirming their
respective IC-50 dosages. We isolated and profiled ~20 colonies of each clone and observed strong
quantitative differences with 656 differentially abundant proteins (FDR < 0.05, Fig. 3C-D, Suppl.
Fig. 3B). Consistent with our previous findings (Fig. 2D), non-significant proteins included
‘housekeeping’ proteins, such as GAPDH, ATPI1A1, and PGKI1, which showed little clonal
variation. Notably, p53 was the most upregulated protein in CP-resistant clone 5 (Fig. 3D),
confirming the strong protein stabilization effect of the R248L. GOF mutation and its functional
role as a driver of CP resistance. In the sensitive clone, pS3 was undetectable at the baseline level
(Suppl. Fig. 3C), in agreement with the destabilizing intronic mutation. Our exploratory proteomic
data also shed light on the cellular mechanisms underlying p53 stabilization. We identified the
chaperones HSP70 (HSP1A1) and HSP90 (HSP90AA1), which are critical mediators of mutant

p53 stabilization and localization 444>

, among the top significantly regulated proteins (Fig. 3C).
Previously reported amplification of chromosome 17 of the resistant clone was also strongly
reflected in the quantitative proteome (Suppl. Fig. 3D). Interestingly, we uncovered an
upregulation of chromosome 20 encoded proteins. Pathway enrichment analysis revealed
upregulated DNA damage repair, ribosomal processes, and p53 signaling in the resistant clone,
whereas the sensitive clone showed higher levels of proteins related to antigen presentation,
interferon, and TNF signalling (Suppl. Fig. 3D). The strong and constitutive upregulation of DNA
damage repair and DNA replication signatures in the resistant clone at baseline was intriguing, as

it could explain one of the biological mechanisms behind the five-fold higher CP tolerance of this

clone.

We next analyzed how these two genetically and proteomically distinct clones responded to CP
treatment and whether drug-tolerant cells from both clones featured similar or diverging molecular
programs. We found that drug tolerant cells that survived a single IC-50 dose of CP and formed
reproductive colonies, featured similar protein and pathway-level changes (Fig. 3E-G). These
included biological processes related to mitochondrial metabolism, DNA damage repair,
proteasome degradation, and interferon response. While the genetically driven difference in p53
protein abundance remained stable between the two clones (Fig. 3G), proteins that showed similar

changes after treatment included the complex I mitochondrial protein NDUFBI11, the Fanconi
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anemia ubiquitin ligase FANCL (a critical regulator of CP crosslink repair), ubiquitin conjugating
enzyme UBE2D2, and interferon-stimulated ubiquitin-like protein ISG15. Notably, several
enriched processes have been previously associated with non-genetic resistance programs and
cancer cell plasticity. For example, constitutive type-I-interferon signaling has been identified as

a non-genetic driver of primary drug resistance in several cancers 724647,

We identified several proteins involved in mitochondrial metabolism and redox metabolism that
were downregulated in drug-tolerant, colony-forming cells. NDUFB11, a complex I mitochondrial
protein, was of particular interest, as it was the most downregulated protein after CP treatment in
both clones (Fig. 3E). Reduced NDUFBI11 protein levels have recently been linked to enhanced
CP resistance in ovarian cancer models through increased protein degradation #8. In agreement
with Salovska et al, pathway enrichment analysis also showed an increase in the proteasome
degradation machinery in drug-tolerant cells derived from both clones (Fig. 3G). To test whether
NDUFBI11 was indeed functionally relevant for CP tolerance in the FaDu model, we performed
an NDUFBI11 siRNA (3nM) knockdown experiment with and without CP. This resulted in a
marked decrease in colony formation in the resistant C5 clone (-53%), whereas the polyclonal
parental line was much less affected (-17%) (Fig. 3H-I). Notably, when combined with CP
treatment, colony formation was nearly abolished in the resistant clone. The more detrimental
effect on cell survival could be explained by the 2.5-fold lower NDUFBI11 protein level at the
baseline (Fig. 3G). Although NDUFBI11 is a non-essential gene in most cancer cell lines, FaDu
cells exhibit moderate dependency on NDUFBI11, as shown by CRIPSR-based knock-out data
(Suppl. Fig. 3E). Our data showed clone-specific effects of NDUFB11 knockdown and suggested
that p53-mutant clones could be particularly sensitive to NDUFB11 deficiency. Further research
is needed to determine whether targeting NDUFBI11, or more globally mitochondrial redox

metabolism, could be exploited therapeutically to eradicate p53-mutant HNSCC clones.

Collectively, these data demonstrate the potential and versatility of PhenoSCoP in uncovering the

genetic and non-genetic drivers of drug resistance.
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Fig. 3 PhenoSCoP captures genetic and non-genetic mechanisms of primary chemoresistance.

(A) Schematic representation of two previously characterized drug-naive clones isolated from the FaDu parental cell
line. Clone C5 showed higher primary cisplatin resistance than clone C46. (B) Top: Representative images of untreated
and cisplatin-treated (ICso) colonies grown on membrane slides. Bottom: Quantification of colony numbers for
cisplatin-sensitive (C46) and cisplatin-resistant (C5) clones under untreated and respective ICso treatment
conditions. (C) Volcano plot comparing protein expression between C5 and C46 single cell-derived colonies. The
stable housekeeping proteins GAPDH, PGK1, and ATP1A1 are depicted in black and do not show significant
differential expression. (D) Principal component analysis (PCA) of resistant clone C5 (untreated n = 20, drug tolerant
n = 20) and sensitive clone C46 (untreated n = 19, drug tolerant n = 20) colonies analyzed using PhenoSCoP.
(E) Diagonal scatter plot comparing log: protein fold changes upon cisplatin treatment in resistant (C5, x-axis) versus
sensitive (C46, y-axis) colonies, calculated as the ratio of treated to untreated cells for each clone. (F) Scatter plot
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showing two-dimensional pathway enrichment scores for drug-tolerant C5 and C46 clones compared to their drug-
naive controls (FDR < 0.05). T-test statistics values (treated vs. untreated) were used as input for enrichment analysis.
(G) Boxplot of protein levels for selected genes comparing drug-tolerant and drug-naive colonies of clones 5 and 46.
Significance was assessed by a two-sided Student’s t-test. (H) Representative images from clonogenic assays showing
the effects of NDUFB11 knockdown and cisplatin (CP) treatment on both parental and resistant (C5) FaDu cells. (I)
Quantification of colonies from knockdown experiments is shown in panel H. Data represent the average number of
colonies from three independent experiments. Significance was assessed by a two-sided Student’s t-test.

PhenoSCoP identifies pre-existing proteotypes driving primary cisplatin resistance

Increasing evidence suggests that the cellular state prior to drug administration plays a crucial role
in determining therapeutic responses 4!, Therefore, we next investigated whether PhenoSCoP
could uncover the proteotypes associated with primary drug resistance. As both the C46 and C5
clones were derived from treatment-naive FaDu parental cells, these proteotypes served as
excellent ground truths to be picked using our method. To increase the likelihood of comparing
different clones, we integrated fluorescence-based RGB barcoding, which is a powerful imaging-
based technique for tracking individual clones in vitro and in vivo 4°°°. Through stochastic color
mixing after lentiviral expression of different fluorescent proteins in varying but stable amounts,
the RGB color profile serves as an inheritable marker and clonal fingerprint. This approach also
enabled us to monitor clonal selection after long-term cyclic CP treatment and assess whether

drug-resistant proteotypes were already pre-existing or developed through proteome remodelling.

To this end, FaDu parental cells were stably transduced with RGB vectors, enabling the
visualization of diverse clonal populations (Fig. 4A). Following whole-slide RGB imaging using
a widefield fluorescence microscope (Fig. 4B), we isolated 52 color-unique colonies and
quantified over 7,200 proteins in total, with a median of more than 5,800 proteins per colony (Fig.
4C). Our dataset included many known oncogenes and tumor suppressors involved in HNSCC
carcinogenesis, such as EGFR, TP53, BRCA1, and CDH2 (Fig. 4D). To systematically identify
the most variable fraction of the proteome across single-cell-derived colonies, we plotted the
coefficient of variation (CV) for each protein versus the mean protein abundance (Fig. 4E). To
avoid potential bias from low-abundance proteins, which tended to exhibit higher variability, we
binned the data into 100 segments and retained only the top 5% of each segment. Additionally, the
5% lowest-abundant proteins and those showing high variation in our mini-bulk controls were
excluded. Using this strategy, we prioritized 357 variable proteins with high confidence. The

protein sequence coverage of the selected proteins was similar to that of the full dataset (Suppl.
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Fig. 4A), further supporting the idea that our approach prioritizes true biological and clone-specific
signals rather than technical noise. An independent replicate dataset also confirmed a substantial
overlap among the prioritized proteins, which was most pronounced at the pathway level (Suppl.
Fig. 4B). We not only captured C5 and C46 clone-specific signatures, such as p53, DPYSL3, and
the interferon-response proteins HLA-B, IFIT1, and DDX60 (Fig. 4E), but the quantified RGB
reporter peptides (e.g., mTagBFP) also showed the expected variability, confirming that different
clones were compared. Cell cycle-dependent (CCD) proteins 12 instead exhibited only low colony
variation, consistent with their transient fluctuations (i.e., within one cell cycle) (Suppl. Fig. 4C).
Repeated doses of CP led to strong clonal selection, as was evident from the dominant orange
clone revealed by immunofluorescence imaging (Suppl. Fig. 4D). Interestingly, principal
component analysis closely grouped drug-resistant clones with a small fraction of colonies derived
from the untreated parental population. This finding was clearly obscured when we compared
clonal mixtures (mini-bulk) (Fig. 4F), underlining the unique resolution of our method in
identifying clone-specific molecular programs. P53, DPYSL3, CYP24A1, and N-cadherin (CDH2)
were the most strongly elevated in these pre-resistant cells (Fig. 4G-H). Proteome correlation
analysis further showed that the resistant proteotypes were highly related to a few drug-naive
parental clones (Pearson r > 0.9, Fig. 4I). While immunofluorescence (IF) imaging and RGB
pseudo-color inference from reporter peptide quantification (Suppl. Fig. 4E) suggested that one
dominant yellow/orange clone survived multiple rounds of CP (Fig. 4H-I), proteomics data
revealed two distinct proteotypes of similar color (Fig. 4I-K). Although this observation could
possibly be explained by one pre-resistant clone that underwent additional proteome remodelling
after cyclic CP exposure, comparison with untreated cells of the same color-matched subcluster
revealed no significant and quantifiable differences (Fig. 4J). Both resistant clones in clusters 1
and 2 showed high mutant p53 levels and DNA damage repair signatures (Fig. 41 and 4K), but
with nuanced differences. While the resistant clone of cluster 1 was characterized by higher protein
levels related to nucleotide excision repair, the main pathway for detecting and repairing CP-
induced DNA adducts >**2, the cluster 2 clone showed higher homologous recombination-based

DNA damage repair and mitochondrial proteins (Fig. 4K).

In summary, through PhenoSCoP, we identified and characterized pre-existing, rare proteotypes

that dominated CP-resistant cell populations in the FaDu HNSCC model.
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Fig. 4: PhenoSCoP identifies pre-existing proteotypes driving primary cisplatin resistance.

(A) Schematic of the lentiviral vector-mediated RGB-marked FaDu model system. (B) Representative images of
colonies derived from single FaDU RGB clones. Scale bar: 200 pum. (C) Depth of 52 colony proteomic measurements.
(D) Dynamic range of protein abundance from colony proteome measurements, with examples of oncogenes and
tumor suppressor proteins highlighted. (E) Comparison of protein level variability (CV) and mean protein levels of
all identified proteins. Variable proteins (red) are defined as the top 5% of the most variable proteins per binned
segment. One hundred bins were used to cover the entire protein level range. Proteins with high variation in pseudo-
bulk samples were excluded. (F) Principal component analysis (PCA) of FaDu primary clones (n = 52), primary mini-
bulk samples (n =9), resistant clones (n = 9), and resistant mini-bulk samples (n = 5) using 357 variable proteins. (G)
Top 20 features contributing to principal component two of PCA in panel F. (H) Immunofluorescence staining of TP53
in primary and resistant FaDu cells. Scale bar: 20 um. (I) Proteome correlation analysis based on the most variable
proteins (related to panel E, filtered for 70% valid values). Distances were calculated using Euclidean metrics and
hierarchical clustering using average linkage, revealing four main clusters. (J) Volcano plots comparing cisplatin-
resistant versus drug-naive colonies from Cluster 1 (top) and Cluster 2 (middle). Bottom: Volcano plot comparing
cisplatin-resistant colonies from Cluster 1 versus Cluster 2. Cluster information was extracted from panel I.
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(K) Enriched Gene Ontology pathways of proteins significantly upregulated in cisplatin-resistant clones (panel I and
J, clusters 1 and 2) compared to clusters 3 and 4, which included drug-naive proteomes of FaDu parental cells.

Resistant proteotypes are present in patient-derived HNSCC tissues

To address whether the identified proteins and pathways associated with CP responses in the FaDu
model also emerged in HNSCC patient tissues, we profiled a cohort of 29 HPV-negative,
treatment-naive HNSCC patients obtained from a previous phase III clinical trial of definitive
radiochemotherapy (RCTx) for locally advanced HNSCC °3. In this cohort, patients in the
experimental arm received CP-based RCTx. Guided by H&E staining, we laser-microdissected
tumor-specific regions of each tissue microarray core, quantifying ~ 6,500 proteins per sample
(Suppl. Fig. 5A). Of the 357 variable proteins identified in the drug-naive FaDu parental cells
(Fig. 4E), which were associated with different clones and CP responses (Fig. 4E-G), 296 (82.9%)
were also found in the patient tissue proteomes, illustrating their relevance in vivo. Compared to
all identified proteins, our signature showed a clear and significant trend towards higher protein
level variability across the 29 tumors (Fig. SC, p =3.7 % 10°®). The most variable proteins included
aldehyde dehydrogenase ALDH3Al1, interferon-related proteins (e.g., ISG15 and IFIT2),
glutamine synthetase GLUL, and calcium-binding proteins from the S100 family (e.g.,
S100A8/A9), which have been implicated in epithelial differentiation and HNSCC progression
through NF-kB and PI3K/Akt/mTOR signaling >**> (Fig. 5D). To assess whether these proteins
also exhibited spatially related abundance differences, indicative of potential clone-specific
proteotypes within distinct spatial niches, we compared the proteomes of several intra-tissue
replicates from 29 patients (Fig. 5SD). Indeed, compared to GAPDH, many of the most variable
proteins (e.g., ALDH3A1, S100A8, IFIT2, and GLUL) also exhibited intra-tissue protein level
variability of varying degrees (Suppl. Fig. 5SB). For example, SI00A8/A9 showed strong spatially
related differences in patient 1, GLUL in patient 2, and ALDH3A1 was the most variable protein
in patient 4. To test whether these proteins were also enriched in chemoresistant, recurring, or
metastatic disease, we profiled an additional HNSCC case diagnosed as an aggressive, locally
advanced squamous cell carcinoma of the mandible that recurred within six months after surgery
with CP-based adjuvant RCtx and subsequently metastasized to multiple organs (Suppl. Fig. 5C).
We profiled several tumor microregions (50,000 um? per tissue region) from the primary tumor (n

= 4), local recurrence (n = 4), lymph node metastasis (n = 4), and distant metastasis (paratracheal
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[n = 4] and skin [n = 3]) to a depth of ~7,000 proteins per single measurement (Fig. SE). Tissue
proteomes showed strong tumor stage and anatomic site specificity, as revealed by principal
component analysis (Fig. SF). To determine which proteins and biological pathways were
differentially abundant between the primary and recurrent tumors, we performed ANOVA coupled
with pathway enrichment analysis. Notably, our FaDu-derived signature of variable proteins was
significantly overrepresented among the proteins that showed abundance differences between the
primary and metastatic tumors (Fig. SG-H). Examples of these proteins included GLUL and
DPYSL3, which were associated with the CP-resistant 7P53 mutant FaDu clone (Fig. 4G). At the
pathway level, ribosomal proteins were upregulated in the relapse biopsy, as well as in the distant
skin metastasis (Fig. SH). This finding was consistent with our observations in the resistant C5
clone (Suppl. Fig. 3D). Instead, the primary tumor featured strong mesenchymal characteristics
(e.g., epithelial-mesenchymal transition (EMT), and TGF[} signaling), as well as higher focal
adhesion and PI3K/AKT pathway levels (Fig 5I).

Together, our data support the existence of diverse, spatially distinct proteotypes associated with
chemoresistance, tumor progression, and metastasis in HNSCC patient samples. The observed
overlap between our in vitro derived signatures and spatial tissue proteomics results underlines the

translational relevance of the biological discoveries enabled by PhenoSCoP.
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Fig 5: Proteotypes associated with differential cisplatin responses in vitro are present in HNSCC patient tissues
(A) Schematic workflow of laser microdissection guided proteomics applied to tissue microarrays of patients with
primary head and neck squamous cell carcinoma (HNSCC). Tumor-specific compartments were identified by H&E
staining, with three replicates per tissue cut for proteome analysis. (B) Protein identification in tissue samples from
29 patients with head and neck cancer. (C) Boxplot of inter-patient protein coefficients of variation comparing all
quantified proteins to the variable proteins identified using PhenoSCoP in the FaDu cell line model. (D) Ranked inter-
patient coefficients of variation for variable proteins (from the in vitro FaDu cell model). Proteins with the highest
variability are listed and marked in blue. (E) Barplot showing the number of proteins identified in multiple cancer
tissue samples from a patient with relapse, including the primary tumor (n = 4), lymph node metastasis (n = 4), local
recurrence (n =4), and two distant metastases (paratracheal [n = 4] and skin [n = 3]). (F) Principal component analysis
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(PCA) of multiple cancer tissue samples based on proteomic data. (G) Pathway enrichment analysis (Fisher’s exact
test) of significantly differentially expressed proteins across multiple cancer tissue samples (ANOVA, p < 0.05).
Analyses were performed using the HALLMARK gene sets from the Human Molecular Signatures Database
(MSigDB), Reactome, WikiPathways, and a custom list of variable proteins identified from the in vitro FaDu cell
model using PhenoSCoP. (H) Boxplots showing the relative levels (z-scores) of the selected proteins across multiple
cancer tissue samples. ANOVA p-values are indicated for each protein. (I) Heatmap of significantly differentially
expressed proteins across multiple cancer tissue samples (ANOVA, p < 0.05). The heatmap shows the average protein
abundance (row-wise z-score) for each tissue, and hierarchical clustering identifies seven gene clusters. Enrichment
analysis of representative gene clusters identified in panel H. The top five significantly enriched pathways are shown
for four clusters.

Discussion

Here, we introduce Phenotype-resolved Single-Colony Proteomics (PhenoSCoP), a novel
discovery proteomics approach that combines clonogenic cell growth, fluorescence microscopy,
laser microdissection (LMD), and ultrasensitive mass spectrometry (MS)-based proteomics. It
enables robust and deep proteome profiling through data-independent acquisition, yielding
consistent and sufficient proteome coverage to comprehensively study oncogenic signaling
pathways and biological processes associated with cellular treatment responses. Instead of
analyzing single cells, we developed a scalable workflow to profile single-cell-derived colonies
without extensive serial dilution experiments, focusing on small cell populations consisting of a
few hundred cells. PhenoSCoP provides reliable protein quantification while preserving clonal
heterogeneity, combining key strengths of bulk and single-cell proteomics. Moreover, it captures
clone-specific and inherited genetic or non-genetic molecular traits. While cell cycle-regulated
proteins showed minimal variation across colonies, we identified hundreds of proteins with
significant differences in clone-specific abundances. For example, the identification of p53,
DPYSL3, and GLUL among the most upregulated proteins in drug-resistant cells underscores their
potential role in mediating cisplatin resistance. High GLUL levels can facilitate cancer cell survival
in glutamine-depleted environments, such as those induced by genotoxic stress °°, through de novo
glutamine synthesis °’. DPYSL3 can act as a metabolic and DNA repair enhancer that promotes
chemoresistance and poor outcomes 3>°8. The dominant upregulation of p53 aligns well with its
established role in chemoresistance 3, proving that PhenoSCoP illuminates the molecular drivers

of therapy resistance.

Qin et al. - Page 20


https://doi.org/10.1101/2025.10.11.681009
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.10.11.681009; this version posted October 14, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

However, a current limitation of PhenoSCoP is that it might overlook transiently expressed
proteins that may also play critical roles in immediate drug response mechanisms *°. Future studies
could incorporate dynamic sampling strategies to capture these transient changes and combine
them with live-cell imaging to monitor clonal dynamics in a time-resolved manner. Moreover,
despite being broadly applicable across cancer types and cellular models, our method requires
adherent and proliferative cells that ultimately form colonies. Some cellular phenotypes are
generally less proliferative or may not grow as colonies. These cells can be captured by single-cell
laser microdissection as conceptualized in our recent deep visual proteomics method ©°,
independent of their capacity to grow out as colonies. While our method currently supports the
imaging of 4-6 markers, multiplex immunofluorescence imaging !> represents a promising future

addition to our pipeline for more fine-resolved cell phenotyping to guide proteomic profiling.

A considerable advantage of integrating immunofluorescence microscopy and proteomics is the
ability to study insightful phenotype-to-proteome associations. For example, EAU and DAPI
staining provide important cell cycle information. Applying this strategy, we discovered rare
phenotypes of slow- or fast-cycling cells that are likely to be missed by current single cell or bulk
proteomics approaches. RGB fluorescent barcoding is another powerful addition to our method
and adds a new dimension for clonal tracking and deconvolution of proteomic data. We devised
an MS-based approach to directly quantify RGB reporter peptides to infer pseudo-colors for clonal
tracking. This approach could also be highly relevant in microscopy-free setups, for example, for
clonally deconvoluting SCP data. Combined with drug treatment assays, this RGB strategy enabled
us to identify distinct proteotypes associated with primary cisplatin resistance in drug-naive FaDu
cells. Although initially rare, these proteotypes strongly dominated the resistant populations after
multiple rounds of cisplatin exposure. Notably, our rich proteomic data also indicated that long-
term drug exposure had only a minimal effect on the quantitative proteome of these clones,
underlining the importance of studying clonal proteomic heterogeneity before treatment to better

understand the biological mechanisms underlying therapeutic responses.

The ability of PhenoSCoP to identify pre-existing resistant proteotypes offers a new avenue for the
development of predictive biomarkers, potentially enabling the stratification of patients who are

likely to benefit from cisplatin therapy. The clinical relevance of our in vitro findings is supported
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by the observation that proteins that varied across cultured colonies also showed intra- and inter-
tumor heterogeneity in primary head and neck squamous cell carcinoma (HNSCC) tissues. Our
spatially resolved proteomic analysis of patient-matched primary and relapsed HNSCC tumor
samples revealed that several of these proteins were upregulated upon disease recurrence and
metastasis. An interesting finding that emerged in both the FaDu model and the relapsed HNSCC
case was the upregulation of ribosomal proteins in chemoresistant cells and disease progression.
This finding suggests a potential role in drug resistance and disease progression ®!. Future studies
could explore the functional significance of these (onco)ribosomal protein changes and their
potential as therapeutic targets and oncogenic signaling mediators ®2. Additionally, investigating
the mechanisms underlying proteomic changes observed during disease recurrence and metastasis
could provide valuable insights into HNSCC progression and guide the development of more

effective treatment strategies.

In summary, PhenoSCoP is a powerful and versatile discovery tool for dissecting intratumoral
heterogeneity and drug resistance mechanisms. The ability to identify hereditary, clone-specific
proteomic signatures associated with treatment responses addresses the key limitations of current
single-cell and bulk proteomic approaches. Further development and application of this method
may reveal new predictive biomarkers and therapeutic vulnerabilities for improving cancer

treatment.
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Methods and Materials

HNSCC patient tissue collection

Primary cancer patient samples were obtained from a multicenter phase III trial (ARO-0401)
conducted between 2004 and 2008. All the samples included in this study (n = 29) were HPV-
negative treatment-naive tumors. Multiple tumor specimens from the recurrent patient (HPV-
negative) were collected between 2022 and 2023 during surgery, including the primary tumor,
lymph node metastasis, local recurrence, and distant metastases to the skin and paratracheal region.
All tissue blocks were stored at room temperature in the archive of the Institute of Pathology at
Charité University Hospital, Campus Benjamin Franklin. The study was performed according to
the ethical principles for medical research of the Declaration of Helsinki, and approval was
obtained from the Ethics Committee of the Charite” University Medical Department in Berlin

(EA1/222/21). Informed consent was obtained from all participants included in the study.

Cell lines

The hypopharyngeal tumor cell line FaDu (ATCC®HTB-43™) was purchased from ATCC
(Manassas, VA, USA). FaDu clonal cell lines (C5 and C46) were obtained from the laboratory of
Prof. Dr. Ingeborg Tinhofer-Keilholz *°. The cells were cultured in Minimum Essential Medium
(MEM) supplemented with 12% fetal bovine serum (FBS), 1x non-essential amino acids (NEAA),
and penicillin/streptomycin (penicillin/streptomycin). Cells were regularly tested for mycoplasma

by PCR.

Transduction of Fadu cells with RGB

Fadu cells were transduced with the lentiviral vectors LeGO-B2-NLS-Puro+, LeGO-V2-NLS-
Puro+, and LeGO-C2-NLS-Puro+ for RGB nuclear barcoding, followed by molecular barcoding
with LeGO-EBFP2-Hygro-LTRXX3-BC24 for clonal tracking. Dr. Kristoffer Riecken from the
University Hospital Hamburg-Eppendorf provided all virus particles 3. For transduction, 50,000
cells per well were seeded in a 24-well plate (Greiner Bio-One #353047). Cells were incubated for
2-5 hours to facilitate cell attachment. The medium was replaced with polybrene-containing

medium (8 pg/mL), and lentiviral particles were added to the wells. Spinoculation (1,000 x g, 1 h,
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25 °C) was performed on the plate, and cells were incubated for another 16 h. The medium was
then exchanged for a regular, non-polybrene-containing medium.

The efficiency of RGB transduction was determined by flow cytometry. The most efficient
transduction combination (all three 3 vectors) was used for molecular barcoding. The efficiency
of molecular barcoding was determined by ddPCR using the ratio of Hygro/FAMI9B. A ratio of 1

or the closest to 1 was used for further experiments with irradiation (IRR) and drug treatment.

Colony growth for PhenoSCoP

Steel-frame PPS (polyphenylene sulfide) membrane slides (Leica, #11600294) and 12 mm round
glass coverslips were sterilized by exposure to ultraviolet (UV) light for 30 min before use. They
were then incubated with 0.1 mg/mL poly-L-lysine (Sigma #P1274) at 37°C for 30 min, rinsed
once with sterilized water, and allowed to dry under UV light. For seeding, 4,000-5,000 cells were
placed into a 10 cm cell culture dish containing a single PPS slide, while approximately 500 cells
were seeded into each well of a 24-well plate, each containing a sterilized coverslip. The culture

medium was replaced every 2—3 days to ensure optimal cell growth.

Drug treatment

Cells were seeded onto membrane slides and incubated overnight at 37°C to allow cell attachment.
The following day, cells were treated with cisplatin at concentrations corresponding to their
individual ICso values for 24 h. After treatment, the cells were washed once with phosphate-
buffered saline (PBS), and fresh drug-free medium was added. The medium was replaced at regular
intervals to support colony growth.

For cyclic CP treatment, 30,000 FaDu cells were seeded in each well of a 6-well plate. Cells were
treated with four doses of 100 ng/ml and four doses of 150 ng/ml, with a cumulative dose of 1000
ng/ml. Cells were split and reseeded after every cisplatin dose and harvested for further

experiments. The drug used for drug testing included cisplatin (NeoCorp GmbH, Germany).
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SiRNA transfection

siRNA pools (siPOOLs) were obtained from siTOOLs Biotech GmbH. Gene knockdown was
performed in untreated FaDu parental cells and the cisplatin-resistant clone (CS5) using either
control siRNA (siCTRL) or an siPOOL targeting NDUFBI11, according to the manufacturer’s
instructions. Briefly, 240,000 cells were seeded per well in 6-well plates and allowed to adhere
overnight prior to transfection. Cells were transfected with 3 nM siRNA and incubated for 48 h.

For the clonogenic assay, 500 cells were seeded per condition.

Immunofluorescence microscopy

After 8-10 days of growth, colonies were fixed with 4% paraformaldehyde (PFA, Thermo
Scientific, # 28908) for 10 min at room temperature. A silicon frame (0.5 mm thickness,
Technikplaza GmbH) was mounted onto the slide to facilitate the subsequent steps.
Immunofluorescence staining was performed on PPS slides. In brief, cells and colonies were
permeabilized by adding 90% cold methanol (in 10% PBS) for 2 min. After thoroughly washing
away the methanol, Odyssey Blocking Buffer PBS (Li-Cor, 927-40000) was applied to block non-
specific binding sites for 30 min at room temperature. Antibodies were diluted to optimal
concentrations in blocking buffer and incubated with the cells overnight at 4°C. When
unconjugated primary antibodies were used, a secondary antibody was added and incubated for 1
h at room temperature. Hoechst 33342 (Thermo Scientific, # 62249) was applied for 10 min at
room temperature for nuclear staining. Images were acquired using an Axioscan 7 (Carl Zeiss
Microscopy GmbH, Germany) with a 10x objective. The optimal antibody concentrations used
were as follows: Na/K ATPase (1:500, Abcam, # 76020), panCK (1:100, Thermo Fisher Scientific,
41-9003-82), DDX60 (1:20, Novus, NBP1-91826), TP53 (1:50, Agilent Dako, M7001), and Ki-
67 (1:100, Cell Signaling Technology, #11882). The secondary antibodies used were goat anti-
mouse (1:500, Alexa Fluor™ 750, Thermo Fisher Scientific, A-21037) and goat anti-rabbit
(1:1000, Alexa Fluor™ 488, Thermo Fisher Scientific). EAU staining was performed using a

commercial kit according to the manufacturer's instructions (Thermo Fisher Scientific, C10338).

Colony isolation and proteomic sample preparation
Colony selection was performed using QuPath (v0.5.1) and exported to LMD using an in-lab
pipeline  (https://github.com/Coscial.ab/Qupath_to LMD). LMD7 (Leica Microsystems,
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Germany) was used to isolate the colonies. Sample preparation for colony and patient samples was
performed based on our previous work ®*. Briefly, samples in 384-well plates were lysed with 2
pL of lysis buffer consisting of 0.1% DDM, 5 mM TCEP, 20 mM CAA, and 100 mM TEAB at 95
°C for 1 h. Sequential digestion was applied by adding 1 pL of LysC (2 ng) and incubating for 4
h, followed by the addition of 1 pL of trypsin (2 ng) and overnight incubation at 37 °C. All buffers
were added using a liquid dispenser (MANTIS, Formulatrix) for better accuracy. Peptides were
desalted using Evotips (Evosep Biosystems, Denmark) according to the manufacturer's

instructions.

Single-cell proteomics

Single FaDu cells were sorted and prepared using the CellenONE system (Cellenion) on
proteoCHIP EVO 96 plates according to an adapted published protocol ®. Briefly, 3 pL of
hexadecane was added to each well prior to cell sorting, followed by dispensing 150 nL of Master
Mix (0.2% DDM, 100 mM TEAB, and 10 ng/uL trypsin) into each well. During lysis and
enzymatic digestion, the on-deck temperature was maintained at 50 °C, with continuous
rehydration of samples by adding 60 nL H.O at 2-minute intervals for 2 h. Subsequently, the

samples were loaded onto Evotips by centrifugation.

Liquid chromatography-mass spectrometry (LC-MS/MS)

LC-MS/MS was performed using timsTOF Ultra/Ultra 2 mass spectrometers (Bruker Daltonics,
Germany) coupled to an EASYnLC-1200 system (Thermo Fisher Scientific, USA). Peptide
separation was conducted on 20 cm home-packed columns (75 pum inner diameter) packed with
1.9 um ReproSil-Pur C18-AQ silica beads (Dr. Maisch GmbH, Germany). A 21-minute gradient
was used for peptide separation, employing buffer A (3% acetonitrile [ACN], 0.1% formic acid)
and buffer B (90% ACN, 0.1% formic acid). The gradient was initiated at 2% buffer B and
increased to 10% over 1.5 minutes at a flow rate of 0.4 pL/min to minimize dead time at the start
of chromatography. Subsequently, the flow rate was reduced to 0.25 pL/min, and buffer B was
ramped up to 60% over 15 min, followed by a washing step at 90% buffer B. All mass
spectrometric analyses were conducted using the dia-PASEF method 32, employing the factory
default settings in high sensitivity mode. Eight dia-PASEF windows were distributed across three
trapped ion mobility spectrometry (TIMS) scans, covering an m/z range of 400 to 1,000. The ion
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mobility range was set from 0.64 to 1.37 Vs cm ~ 2, with an accumulation and ramp time of 100
ms.

Primary patient samples were measured using the Evosep ONE 30 SPD system with a 15 cm
column (EV1106). Multi-cancer samples from the recurrent patient and single-cell samples were
analyzed using the Whisper Zoom 40 SPD system (Evosep) equipped with an Aurora Elite column
(15 x 75 pm, 1.7 pm).

Raw file analysis

We used DIA-NN 3 (versions 1.8.1 and 1.9) for proteome quantification. Colony and patient
samples were searched against an in silico spectral library generated from the UniProt human
reference proteome (2023 release) supplemented with a FASTA file containing common
contaminants. In addition, three color vector sequences (RGB) were included in the library to
enable RGB sample identification. For single-cell samples, a FaDu cell-specific spectral library
was generated using eight fractions of pooled cell lysate. Carbamidomethylation of cysteine
residues was specified as a fixed modification, whereas oxidation of methionine was included as
a variable modification. The maximum number of missed cleavages and variable modifications

per peptide was set to one. Match-between-runs (MBR) functionality was enabled for all analyses.

Data analysis

Data analysis was carried out using the pg.matrix output file of DI-ANN with a global protein FDR
of max. 1%. Perseus (v1.6.15.0) and R (v4.4.1) were used for further data analysis. The following
R packages were used: tidyverse (2.0.0), ggplot2 (4.0.0), dplyr (1.1.4), cluster (2.1.8.1), factoextra
(1.0.7), stringr (1.5.1), tidyr (1.3.1), clusterProfiler (4.15.1.2), doBy (4.7.0), ComplexHeatmap
(2.20.0), circlize (0.4.16).

Variable proteins in primary FaDu cells were calculated as follows: The data were filtered to retain
proteins with at least five valid replicates. The intensity values were then log2-transformed to
prepare for the imputation of missing values. Missing values were replaced by sampling from a
normal distribution. The coefficient of variation (CV) was calculated in linear space, while the
mean expression level for each protein was log-transformed. To obtain variable proteins across the
whole dynamic range, the mean expression levels of proteins across colonies were divided into

100 bins. The top 5% of proteins with the highest CV were selected from each bin. Low-intensity
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proteins below 5% of the colony mean distribution were removed to reduce the influence of
technical noise on the results. Proteins were excluded if their CV in mini-bulk samples was larger

than that of the colony samples.

Declaration of generative Al and Al-assisted technologies in the writing process
During the preparation of this manuscript, the authors used Paperpal in order to improve readability
and language of the text. After using this tool, the authors reviewed and edited the content as

needed and take full responsibility for the content of the publication.

Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium
(http://proteomecentral.proteomexchange.org) via the PRIDE partner ® and will be available upon
acceptance of the manuscript. Any additional information required to reanalyze the data reported

in this paper is available from the lead contact upon request.
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Supplementary Figures
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Fig. S1, related to Fig. 1. Comparison of summed intensity ratios from different cellular compartments across four
experimental conditions: Fresh cells, formaldehyde fixed cells (FA, fixation), FA fixed cells and permeabilized cells
based on ice-cold methanol (Methanol) and Triton-X-100 (Triton). ‘Sum’ represents the total intensity of proteins
shared across all conditions (normalized to the average intensity of fresh cells). Other cellular compartments represent
the summed intensity of proteins assigned to Gene Ontology Cellular Component groups (normalized to the total
protein intensity of each sample).
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Fig. S2, related to Fig. 2. (A) Boxplot showing the number of proteins quantified using single-cell proteomics (SCP;
n = 147) and PhenoSCoP (n = 36). (B) Comparison of protein group numbers and data completeness under different
data-filtering criteria in SCP and PhenoSCoP. ‘None’ indicates no data filtering.
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Fig. S3, related to Fig. 3. (A) Genetic background of clone-derived cell lines from FaDu. (B) Principal component
analysis (PCA) of C5 (n=20) and C46 (n = 19) colonies analyzed using PhenoSCoP. (C) Boxplot of p53 protein level
(Log2) in C5 and C46 colonies. (D) Comparison of protein levels by chromosomal location revealed chromosome 17
and 20 specific differences. Note that C5 carried chromosome 17 amplification. (E) Enriched pathways (Reactome)
comparing C5 and C46 colonies to identify biological differences between clones. (F) Dynamic plot showing the
ranked scaled Bayesian factor of NDUFBI11 in 930 cell models. The score of the FaDu cell line is indicated in the
plot. (CRISPR: Dependencies data were downloaded from the Sanger Institute).
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Fig. S4, related to Fig. 4. (A) Histogram of proteomic coverage for all proteins and variable proteins. (B) Pathway
enrichment analysis of variable proteins in repeat experiments. The HALLMARK gene sets were obtained from the
Human Molecular Signatures Database (MSigDB) and Reactome pathways. (C) Violin plots showing the distribution
of the coefficient of variation (CV) for all proteins, cell cycle-related proteins (Mahdessian et al., 2021b), and variable
proteins. (D) Representative images of RGB-labelled primary and resistant FaDu cells. Individual fluorescence
channels are shown: red (mCherry), green (Venus), and blue (mTagBFP), as well as the merged RGB image. Scale
bar: 100 um.
(E) Quantified RGB color values for three biological replicates (each representing one-third of a colony) from each
of the three colonies (n =9 replicates in total). Upper panel: Bar plots display the mean log:-transformed protein levels
corresponding to the red, green, and blue components, with error bars representing the standard deviation across
replicates. The protein abundance for each RGB vector was normalized to a 0-255 scale across all colonies. Lower
panel: RGB values for individual replicates are shown separately for each colony along with the corresponding
composite virtual RGB colors generated from the quantified levels.
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Fig. S5, related to Fig. 5. (A) Representative tissue microarray cores showing tumor regions microdissected for four
patients (P1-P4). (B) Intra-patient heterogeneity of the most variably expressed proteins across patients. Protein CVs
were calculated from three spatially distinct tumor areas per tissue section. Colors correspond to Fig. 5D. (C)
Representative H&E images of multiple cancer tissue samples from a patient with relapse, including the primary
tumor, lymph node metastasis, local recurrence, and two distant metastases (paratracheal and skin). Example regions
isolated for proteomic measurements are shown in the lower panel.
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