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Abstract 27 

Neuroblastoma, a neural-crest-derived malignancy of the peripheral nervous system, is 28 

a devastating pediatric disease, characterized by high intra- and intertumoral 29 

heterogeneity. While expression of several tumor expression modules correlates with 30 

poor patient survival, the determinants of their emergence and plasticity remain elusive. 31 

Here, we systematically dissected neuroblastoma transcriptional heterogeneity and 32 

measured how tumor expression programs are determined by early developmental 33 

signaling versus local tumor environment. To achieve this, we combined single-cell 34 

transcriptomics with high-throughput lineage tracing and tumor cell transplantations in 35 

zebrafish models of high-risk neuroblastoma. We observed transcriptional programs 36 

determined by the cell of origin, including an ALK-activated state linked to poor disease 37 

prognosis in humans – in contrast to plastic states associated with physiological 38 

processes. Even lineage-determined tumor states can be reprogrammed upon 39 

exposure to a developmental signaling environment, indicating high plastic potential in 40 

vivo and a crucial role for the signals received in early tumorigenesis for tumor 41 

phenotype. 42 

 43 

Main text 44 

Introduction 45 

Transcriptional heterogeneity and phenotypic plasticity are increasingly recognized as 46 

drivers of tumorigenesis, metastatic dissemination and treatment evasion1–3. Phenotypic 47 

differences between tumor cells can be described by their transcriptional states, which 48 

are defined by expression of gene modules - groups of co-regulated genes that 49 

comprise both cell identity-specific as well as physiological programs4,5. Plasticity, the 50 

ability of a cell to switch between different transcriptional states, is crucial during e.g. 51 

development, but is largely lost in fully differentiated cells in healthy tissues. Cancer 52 

cells override these rules, exhibiting the capability to switch between different 53 

phenotypes6. A key question is how the gene expression programs they access relate 54 

to their cell of origin and capacity for phenotypic plasticity. 55 
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Recent pan-cancer studies suggest that tumor cells access a common set of 56 

transcriptional programs related to general cellular processes, such as stress response 57 

or cell cycle4,5. In contrast to this, cell identity programs are cancer type-specific and 58 

derive from the cell type of origin and developmentally related cell types7. Efforts to link 59 

tumor cell lineage and state in cancer animal models have elucidated that a single cell 60 

can give rise to a complex tumor with diverse cell identities, e.g. alveolar type I, type II 61 

and gastric-like states in lung adenocarcinomas8–10. This plastic behavior arises from 62 

the interplay of cell-intrinsic mechanisms, including genetic and epigenetic state and 63 

interaction with the tumor microenvironment. 64 

The link between differentiation and tumor cell state is particularly relevant for 65 

pediatric cancers, which arise from developmental precursor cells and where cell of 66 

origin and early developmental environment can profoundly influence tumor behavior11. 67 

Neuroblastoma (NB) is a childhood cancer with heterogeneous disease progression, 68 

high metastatic potential and low survival rates for high-risk patients12,13. NB arises from 69 

cells of the developing sympathoadrenal lineage with the earliest tumorigenic events 70 

occurring in the first trimester of pregnancy14. Amplification of the MYCN oncogene is 71 

observed in 20 % of NB patients and is a strong predictor for poor prognosis15,16. 72 

MYCN-amplification is an early event in NB-formation and studies have shown that 73 

MYCN alone can induce NB in neural crest derivatives14,17–19. Despite the strong 74 

changes that sympathoadrenal cells undergo during development, the impact of the cell 75 

of origin on the tumor state of MYCN-driven NB remains unknown. 76 

In cell culture, NB has been shown to exist in two different, interconvertible tumor 77 

states, being either adrenergic or mesenchymal20–22. Adrenergic NB cells are 78 

neuroblastic and express sympathoadrenal genes and enzymes for neurotransmitter 79 

biosynthesis20. In contrast, mesenchymal NB cells rather resemble non-neuronal neural 80 

crest derivatives such as smooth muscle or Schwann cells in their gene expression 81 

profile. MYCN, together with the transcriptional co-activator LMO1, has been shown to 82 

reinforce the adrenergic core regulatory circuit of transcription factors and to thus keep 83 

NB cells in an undifferentiated neuronal progenitor state22,23. Extensive single-cell RNA-84 

sequencing (scRNA-seq) studies on patient samples and healthy fetal adrenal glands 85 

have shown that NB cells are also mostly adrenergic in vivo, but show transcriptional 86 
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heterogeneity associated with their lineage, resembling developmental cell types such 87 

as neuroblasts, chromaffin cells or earlier precursor states24–28. While these studies 88 

show that NBs display transcriptional heterogeneity associated with disease risk, little is 89 

known about the regulation of these states in vivo. In particular, it remains unclear to 90 

which degree their activation and plasticity are shaped by the state of the cell of origin. 91 

Studying these questions in patient data is challenging due to limited experimental 92 

accessibility and confounding factors, including population genetic and tumor genome 93 

diversity and technical batch effects. Thus, we currently cannot distinguish between the 94 

following two scenarios: 1) Transcriptional programs are stable over long periods of time 95 

and are hence indicative of the earliest events in neoplastic transformation in a specific 96 

cellular origin; and 2) Transcriptional programs are highly plastic and represent attractor 97 

states in gene expression space between which tumor cells can readily transition. 98 

Here, we address these questions using well-established zebrafish models of 99 

NB29,30, in which we find substantial heterogeneity of tumor expression programs. In 100 

these transgenic lines, human MYCN is specifically activated in sympathoadrenal cells, 101 

leading to growth of tumors that histopathologically resemble human NBs. This well-102 

controlled system allows measurement of transcriptional cell states together with clonal 103 

structure via high-throughput lineage tracing. We found that tumors in this model are 104 

composed of clones from multiple cells of origin, allowing us to directly measure the 105 

influence of lineage on gene expression within individual tumors. We identified a range 106 

of NB transcriptional states that are either related to general cellular processes or to 107 

specific cell identity-programs. We found that cell-identity related states tend to be 108 

determined by the cell of origin and are subsequently stably expressed within cells of 109 

one clone, suggesting an important role for the developmental state of the cell of origin 110 

for tumor state. By transplanting primary zebrafish NB cells into zebrafish embryos, we 111 

showed that even stably activated transcriptional states can be reprogrammed when 112 

exposed to developmental signals. This highlights the role of developmental signals 113 

received during early tumorigenesis for tumor cell state and potentially disease severity. 114 

 115 

 116 
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Results 117 

Dissecting tumor expression heterogeneity by multiplexed single-cell transcriptomics 118 

We used single-cell transcriptomics to analyze the diversity of tumor transcriptional 119 

states in the two established transgenic zebrafish lines that closely reiterate the 120 

pathogenesis of human neuroblastoma tg[dbh:MYCN, dbh:EGFP] and tg[dbh:MYCN, 121 

dbh:LMO1, dbh:EGFP, dbh:mCherry]29,30 (hereafter called MYCN and MYCN;LMO1, 122 

respectively). To enable later assessment of the influence of cell lineage on 123 

transcriptional state, we combined scRNA-seq with high-throughput lineage tracing 124 

using CRISPR/Cas9 induced lineage barcodes31–33 (Fig. 1A, details described later in 125 

Fig. 3). Single-cell expression profiles and lineage barcodes were read out jointly by 126 

scRNA-seq in tumors from adult fish, using the cell hashing method MULTI-seq34. With 127 

this cell hashing approach, we jointly processed up to 14 tumors in one scRNA-seq run, 128 

thereby minimizing experimental batch effects (Fig. 1A, Table S1). 129 

 In agreement with previous reports, we found efficient induction of tumors 130 

between 6 and 15 weeks post fertilization (wpf), with faster induction in the 131 

MYCN;LMO1 line (Fig. 1B). As expected, the fish developed tumors in the interrenal 132 

gland (IRG), which is equivalent to the human adrenal gland, and the superior cervical 133 

ganglion; we refer to these tumor locations as lateral. Additionally, only MYCN;LMO1 134 

fish developed tumors in the arch-associated complex (AAC)18,29,35, a location we refer 135 

to as ventral (Fig. S1A). Thus, LMO1 expression does not only increase MYCN-driven 136 

tumor penetrance, but also enables tumorigenic transformation in additional 137 

sympathoadrenal progenitor populations that MYCN expression alone cannot transform. 138 

Tumors in both locations showed the typical small round blue cell phenotype of 139 

neuroblastoma (NB)36 (Fig. 1C). In total we sequenced the transcriptomes of 141,812 140 

single cells from 60 tumors and 9405 cells from three healthy control samples (head 141 

kidneys with IRG). Whenever possible, we split larger tumors into multiple samples to 142 

gain sub-tumor resolution (Table S2). We detected 101,872 NB cells, expressing 143 

sympathoadrenal and known NB markers phox2bb, hand2, dbh and tumor transgenes 144 

(Fig. 1D, Fig. S1, Table S3). In the stromal and immune compartment of tumor samples, 145 

we detected 39,940 cells, including various kidney cell types (e.g. kidney tubule and 146 
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multiciliated cells37) and steroidogenic interrenal cells from the IRG (Fig. S1B-C). 147 

Immune cells were likely derived from tumor immune invasion, but also partially from 148 

the hematopoietic tissue in the zebrafish kidney marrow, equivalent to human bone 149 

marrow (Fig. S1B). 150 

 Within individual MULTI-seq runs, technical batch effects were minimal with 151 

tumor microenvironmental (TME) cells from different tumor samples intermixing in 152 

clusters and on the UMAP (Fig. 1E). By contrast, tumor cells exhibited substantial inter- 153 

and intra-tumor transcriptional heterogeneity, reflected by clusters composed of cells 154 

from one or only few samples as well as cells of one tumor spread across multiple 155 

clusters. This is reminiscent of the pronounced phenotypic heterogeneity observed 156 

between patient samples, often driven by genetic variation. However, we detected 157 

neither additional mutations in whole exome sequencing nor copy number variants 158 

when inferring copy numbers from scRNA-seq data (Fig. S2). This suggests that the 159 

detected differences are largely transcriptional and may therefore originate from the cell 160 

of origin of the tumor or the influence of the tumor niche. 161 

 To better understand the overall transcriptional profile of NB cells, we performed 162 

differential expression analysis between NB cells and all other cells. This showed that 163 

NB cells are characterized by clear expression of the tumor transgenes and known 164 

adrenergic genes (dbh, hand2, elavl3; signature ‘NB_markers’) (Fig. 1F, Table S4). The 165 

100 most highly expressed genes in NB cells comprised almost exclusively ribosomal 166 

genes (signature ‘ribosomal_genes’, Fig. 1G, Table S4), in line with the reported 167 

increase in ribosomal biogenesis induced by MYCN38,39. We further calculated 168 

expression of the human cell line-derived adrenergic and mesenchymal NB signatures. 169 

In line with findings in human primary tumors, we found the adrenergic signature to be 170 

expressed in zebrafish NB cells, whereas the corresponding mesenchymal signature 171 

was more highly expressed in TME cells (Fig. 1G). Taken together, these findings show 172 

that zebrafish NB transcriptomes are overall adrenergic and shaped by MYCN-activity. 173 

 Beyond the overarching NB cell transcriptomic profile, we next sought to 174 

investigate the observed transcriptional heterogeneity within the population (Fig. 1E) by 175 
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performing a systematic de novo analysis of tumor gene expression programs in our 176 

zebrafish NB data. 177 

 178 

The spectrum of MYCN-driven NB transcriptional programs 179 

Gene expression in tumor cells has been shown to be composed of multiple gene 180 

expression programs, which can be active to different degrees in individual cells4,5,40. 181 

Non-negative matrix factorization (NMF)-based approaches have previously been 182 

shown to reliably detect groups of co-varying genes, typically called gene modules in 183 

heterogeneous scRNA-seq data of malignant cells4,5. 184 

In order to identify gene modules that capture both intra- and inter-tumor 185 

expression variation, we performed NMF on three different levels (Fig. 2A). In the first 186 

instance, we ran NMF on NB cells from individual tumors separately, resulting in a list of 187 

modules representing expression variation between NB cells within each tumor. We 188 

grouped these modules by their similarity in gene content to derive recurrently activated 189 

consensus modules (Fig. S3A, Methods4,5,38). We then repeated this analysis using NB 190 

cells from individual MULTI-seq runs as input. This approach allowed the identification 191 

of gene modules that are differentially activated between tumors without suffering from 192 

batch effects in the data. Lastly, we also ran NMF on the whole NB cell population from 193 

all samples. While this method is more prone to capture technical, in addition to 194 

biological variation, it is useful to identify gene modules that are only activated in few 195 

samples or cells. We annotated modules by associated GO-terms and the functional 196 

annotation of individual genes contributing to them (Tables S4-5). All three approaches 197 

showed some overlap in detected gene modules (Fig. S3B). We therefore compiled a 198 

final combined list of modules that are largely non-overlapping in terms of their gene 199 

content and which represent the spectrum of NB cell states (Fig. 2B, Table S6, 200 

Methods).  201 

 The resulting 17 gene modules comprise programs related to sympathoadrenal 202 

tissue development and thus the cell identity of the lineage NB is derived from (Fig. 2C, 203 

termed sympathoadrenal-specific; e.g. catecholamine_production, 204 

early_adrenergic_development, immature_neuronal). In addition, the list comprised 205 
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modules associated with general cellular processes, which are not cell type specific 206 

(termed cellular process; e.g. interferon_signaling, stress_response, cell_cycle). Of 207 

note, the module immature_neuronal includes the gene alk, increased activation of 208 

which is associated with poor prognosis in patients41–43. We found that the detected 209 

modules varied across individual cells and tumors, validating that they capture some of 210 

the observed expression heterogeneity (Fig. 2C, Fig. S3C). Some modules also showed 211 

a clear dependence on tumor location, especially immature_neuronal, which was only 212 

activated in ventral tumors; conversely, catecholamine_production was more highly 213 

activated in lateral tumors. 214 

 Multiple modules contain the MYCN transgene (early_adrenergic_development, 215 

neuron_projection, immature_neuronal), supporting the notion that MYCN drives 216 

several distinct zebrafish NB cell transcriptional states. Expression of the 217 

early_adrenergic_development and immature_neuronal modules was particularly 218 

associated with MYCN expression levels and the expression of published MYCN-driven 219 

genes in the zebrafish data (Fig. 2D, Fig. S4A)44, while catecholamine_production was 220 

more weakly associated with MYCN expression. In contrast, PRC2-target gene 221 

expression showed a negative association with expression of the detected modules, 222 

consistent with MYCN-mediated gene silencing via EZH245. Notably, we did not observe 223 

a correlation between expression of MYCN or downstream targets and the cell_cycle 224 

module. This may be explained by the cell cycle-independent nature of the MYCN-225 

upregulated signature as well as the dbh-driven MYCN transgene, which is likely not 226 

transcribed in a cell cycle-dependent manner. 227 

To further test the relevance of these modules for human cancer, we compared 228 

them to gene modules from recent cancer studies and scored their expression in 229 

published human NB datasets. As expected, programs like stress_response and 230 

interferon_signaling resembled general programs activated in many cancers4,5 (Fig. 231 

S4B). Conversely, multiple sympathoadrenal-specific zebrafish modules overlapped 232 

with broad adrenergic / neuronal programs derived from human NB20,28,46,47 (Fig. S4C). 233 

Notably, the zebrafish immature_neuronal module overlapped with a human ALK-234 

activated program and the ribosomal_genes module matched known MYCN-driven 235 

modules. We then scored expression of the zebrafish NB modules in a published 236 
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scRNA-seq dataset of human NB25 and found variable activation across modules (Fig. 237 

S4D). In a compendium of published human NB bulk RNA-seq datasets from the 238 

TARGET and SEQC cohorts12,48–50, the modules cell_cycle, ribosomal_genes, and 239 

immature_neuronal scored significantly higher in MYCN-amplified and high-risk tumors 240 

(Fig. 2E Fig. S4E), underscoring their relevance for high-risk disease. In contrast, the 241 

catecholamine_production module was more highly expressed in low-risk and non-242 

MYCN-amplified tumors, consistent with a more differentiated neuroendocrine state. 243 

The immature_neuronal module further showed variable expression in both ALK-244 

mutated and non-mutated tumors (Fig. 2F, Fig. S4F), with a slightly, albeit non-245 

significant, higher expression in the former, further indicating it may represent an ALK-246 

activated state. 247 

Together, these findings demonstrate that the zebrafish-derived modules capture 248 

key oncogenic and differentiation-associated programs relevant to human NB biology. 249 

We hypothesized that activation of some modules might be clonally determined, for 250 

instance by the cell of origin that a tumor cell was derived from, while others may be 251 

regulated in a niche-dependent manner. We further speculated that the degree of 252 

lineage determination might be higher for modules related to sympathoadrenal 253 

development compared to modules related to general cellular processes. In order to test 254 

this, we next analyzed the clonal structure of zebrafish NB tumors using lineage tracing. 255 

 256 

High-throughput lineage tracing identifies multiple cells of origin per tumor  257 

To experimentally measure the influence of lineage on transcriptional state, we 258 

combined scRNA-seq with high-throughput lineage tracing using CRISPR/Cas9 induced 259 

lineage barcodes31–33, which are created by injection of Cas9 and sgRNAs targeting 260 

lineage recording sites into zebrafish embryos at the one-cell stage (Fig. 3A, Methods). 261 

In our system, lineage barcodes are created on multiple integrations of a cassette of 262 

three Cas9 target sites in the 3′-untranslated region (UTR) of a dsRed transgene (Fig. 263 

S5A-C) as well as in the 3′-UTRs of seven endogenous genes (Fig. 3A). Lineage 264 

barcodes mostly present as small insertions or deletions around the Cas9 target site 265 

(Fig. 3B). We measured that lineage barcodes are created within the first 8 hours post 266 
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fertilization (hpf) (Fig. 3C). This precedes the onset of dbh expression at 14 hpf51 (Fig. 267 

3D). Consequently, activation of the tumor-inducing dbh:MYCN transgene occurs after 268 

lineage barcode creation, ensuring that all progeny of a given transformed cell inherit 269 

the same lineage barcodes18 (Fig. 3A). By contrast, tumor cells derived from different 270 

cells of origin can be distinguished based on differing lineage barcodes. 271 

 Joint analysis of single-cell transcriptomes and lineage barcodes revealed that 272 

NB cells and TME cells typically have separate lineage scar profiles, in line with the 273 

distinct lineage origins of these cell types (Fig. 3E). Furthermore, we found that the NB 274 

cells of a single tumor were composed of cells with multiple distinct lineage barcode 275 

profiles and were hence derived from multiple cells of origin (Fig. 3E). We attribute this 276 

to the strong effect of MYCN in our genetic models, which induces tumorigenic 277 

transformation in many cells. We hereafter refer to these groups of cells from different 278 

origins as clones. We clustered NB cells from all 38 tumors with lineage information into 279 

clones according to their lineage barcode pattern across all lineage reporter sites, 280 

focusing on maximizing clonal resolution (Methods, Fig. S5D-G). We typically found 281 

between 2 and 6 NB cell clones (and hence cells of origin) per tumor (Fig. 3F, S5H-L). 282 

We found that ventral and lateral tumors originating from the same fish always had 283 

completely distinct clonal composition, indicating different lineage origins between these 284 

two tumor types (Fig. S6A). The multi-cellular origin of individual tumors now allows us 285 

to study gene expression differences between NB cell clones in a shared environment, 286 

and thus assess lineage effects on transcriptional state independently of confounding 287 

effects related to differences between individual tumors. 288 

 289 

Clonal analysis reveals differential plasticity of tumor states 290 

We next sought to use this approach for quantifying to which degree transcriptional 291 

heterogeneity within one tumor is driven by different cells of origin. In an extreme 292 

scenario, tumor states are fixed by the cell of origin, with no expression state transitions 293 

and thus no plasticity, leading to co-segregation of cells by gene expression and clone 294 

(Fig. 4A). In the opposite scenario, cells are highly plastic, and tumor states are 295 

independent of the cell of origin. 296 
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To assess the clonal determination of specific states, we first examined 297 

expression of the modules identified in Fig. 2 in the different clones of selected 298 

individual tumors. We found that some modules, such as cell_cycle, were expressed at 299 

similar levels across the different clones of a tumor, while sympathoadrenal-specific 300 

modules (e.g. catecholamine_production) tended to vary between the clones of a tumor 301 

(Fig. 4B, Fig. S6A). For a systematic analysis of tumor state association with clonal 302 

origin, we next calculated the differential module expression between all clone pairs 303 

within the same (sub-)tumor (Methods, Fig. 4C-D, S6B). The inter-clone differences 304 

reported by this analysis correspond to the effective state determination by the clonal 305 

origin. We observed considerable differences in lineage-determination between the 306 

gene modules, with the sympathoadrenal-specific modules catecholamine_production, 307 

immature_neuronal and neurogenesis being particularly lineage-determined and thus 308 

different between clones (63 %, 56 % and 53% significant comparisons respectively). 309 

By contrast, modules related to cellular activity (e.g. interferon_signaling, cell_cycle, 310 

stress_response) tended to be less lineage-determined (25 %, 28 % and 38 % 311 

significant comparisons respectively). Conversely, when we calculated differential 312 

module expression between groups of cells from the same clone residing in different 313 

sublocations of the same tumor, we found more frequent expression differences for 314 

cellular process modules than for sympathoadrenal-specific modules, further indicating 315 

that activation of the former is more context-dependent, for example on the location of a 316 

cell in the tumor (Fig. S6B). 317 

 The inter-clone expression differences we observed suggest that 318 

sympathoadrenal-specific modules tend to be determined by their clonal origin and will 319 

likely be activated at a similar level across cells within a clone. To test this hypothesis, 320 

we next determined the intra-clone expression variance of the gene modules. Indeed, 321 

we found a tendency for sympathoadrenal-specific modules to exhibit lower intra-clone 322 

variance than modules associated with general cellular processes (Fig. 4E, Methods). 323 

Together, these two metrics (inter-clone module expression difference and intra-clone 324 

variance) suggest stable activation after lineage-determination for sympathoadrenal-325 

specific programs and context-dependent activation for general cellular process 326 

programs (Fig. 4F).  327 
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To exclude the possibility that an uneven distribution of clones within a tumor 328 

would confound the observed inter-clonal expression differences, we performed Open-329 

ST52-based spatial transcriptomics to assess the localization of clones. All major cell 330 

types identified in scRNA-seq data were also found in the spatial data and we found 331 

most of the previously detected modules activated in spots across the tumor mass (Fig. 332 

4G, Fig. S7). To identify clones in the spatial transcriptomics data, we extracted clone-333 

specific lineage barcode sequences from scRNA-seq data of the same tumor and 334 

analyzed their distribution in space (Fig. 4G, Fig. S8A-C). All six NB cell clones 335 

identified in the scRNA-seq data were found in the spatial data. Cells from all these 336 

clones were spread across a large area of the tumor section and were well intermixed. 337 

Co-occurrence of distinct lineage barcodes in spatial spots confirmed that cells from 338 

different clones often occupied the same neighborhoods (Fig. S8D). This example 339 

indicates that clones show expression differences even when they occupy the same 340 

region of a tumor, emphasizing the importance of the cell of origin for emergence of 341 

inter-clonal expression differences. 342 

Spatial transcriptomics further allows the analysis of effects of intercellular 343 

interactions on tumor cell transcriptional states, such as for example interferon signaling 344 

activation close to immune cells4. Spatial analysis revealed that TME composition has 345 

an overall effect on NB transcriptional states with most NB expression modules 346 

correlating positively with TME cell presence, whereas the ribosomal_genes module 347 

was enriched in the tumor core and inversely associated with presence of most TME 348 

cell types (Fig. S9A-B, Methods). We also observed a correlation between the 349 

abundance of multiple macrophage populations as well as cytotoxic T-cells and the 350 

activation of the interferon_signaling module, indicating TME cell types can influence 351 

context-dependent modules (Fig. S9C-E). Overall, this analysis confirms that the niche 352 

impacts tumor cell transcriptional state, both regarding tumor area (core vs. periphery) 353 

as well as presence of certain immune cell populations. However, in contrast to lineage 354 

origin, it does not explain the specific activation of most modules. 355 

In summary, we performed a direct experimental measurement of tumor state 356 

plasticity based on lineage tracing, which revealed different levels of regulation across 357 

the spectrum of NB gene modules. These range from cellular process modules that are 358 
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dynamically regulated in cells regardless of their clonal origin to more stable modules, 359 

which are determined by the cell of origin. Among the stably clonally activated modules, 360 

we identified the low-risk-associated catecholamine_production module, as well as the 361 

high-risk-associated alk-positive immature_neuronal module. This suggests that such 362 

states related to developmental programs and with potential relevance for disease 363 

progression are either inherited from the cell of origin or established very early in 364 

tumorigenesis. 365 

 366 

Tumor cell transplantation into an embryonic environment 367 

We next wanted to explore the limits of tumor state stability, and we hypothesized that 368 

exposure to a developmental signaling environment might induce reprogramming of 369 

lineage-determined states in tumor cells. To test this, we transplanted batches of 370 

around 150 lineage-barcoded cells from primary tumors into wildtype zebrafish embryos 371 

at the blastula stage. Transplantation of cells from the same clones into multiple 372 

embryos enabled their subsequent recovery from different hosts at several timepoints. 373 

We profiled cells with scRNA-seq directly after primary tumor dissociation and at two 374 

engraftment stages: Tumor cells were FACS-enriched and sequenced together with 375 

larval host cells 2 days post transplantation (dpt; early allografts) and whole graft tumors 376 

were processed several months post transplantation (mpt; late allografts) to track clonal 377 

states over time (Fig. 5A). We processed and transplanted cells from multiple tumors at 378 

once, thereby increasing the number of clones observed per experiment and providing 379 

sufficient material for the transplantation. Zebrafish NB cells spread throughout the host 380 

larvae after transplantation and started re-growing tumors two to six months later (Fig. 381 

5B, Fig. S10A-B), most commonly in the orbital cavity of the eye, near the arch-382 

associated complex (heart-proximal) and the superior cervical ganglion, all of which are 383 

sites populated by neural crest derivatives or known to be NB primary or metastatic 384 

sites53,54 (Fig. 5C). Integrated analysis of scRNA-seq data of all primary tumors and 385 

graft samples revealed that tumor cells from the grafts, identified by the presence of 386 

lineage barcodes, cluster together with the primary tumor cells (Fig. 5D-E, Fig. S10C-E). 387 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 14, 2025. ; https://doi.org/10.1101/2025.10.13.682025doi: bioRxiv preprint 

https://doi.org/10.1101/2025.10.13.682025
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Thus, NB cells retain a broad adrenergic identity, but may activate different programs 388 

within this profile.   389 

 390 

Exposure to embryonic environment drives re-emergence of expression plasticity 391 

 To compare gene expression modules before and after transplantation, we 392 

repeated the NMF-based gene module identification on both early and late graft tumor 393 

cells (Methods, Fig. S10F). We found that the vast majority of modules represented 394 

processes also identified in the primary tumors, indicating that they do not reflect novel 395 

transcriptional states induced by engraftment (Fig. S10G). Analysis of module 396 

expression across time points and locations revealed a generally high degree of 397 

transcriptional variation (Fig. 5F), both in cellular process and in sympathoadrenal-398 

specific modules. We thus continued to use the list of modules identified in primary 399 

tumors for all further analyses  400 

 To better understand state plasticity upon transplantation, we tracked individual 401 

clones over time using lineage barcodes. We assigned a graft cell to a primary tumor 402 

clone based on shared lineage barcode patterns, allowing us to track 9 clones over 403 

three and 18 clones over two time points (Methods, Fig. S11A-B). Overall, grafted NB 404 

cells transiently upregulated genes related to interferon signaling and the cell cycle, 405 

reflecting a short-term cellular response to the early developmental environment (Fig. 406 

6A, Fig. S11C). Interestingly, we observed multiple cases in which lineage-determined 407 

modules such as catecholamine_production or immature_neuronal were down- or 408 

upregulated upon transplantation, indicating reprogramming of stable states through 409 

transplantation. We then looked at an individual clone in more detail: Clone 6_8 in 410 

dataset #1 – derived from a lateral MYCN;LMO1 tumor – which had contributed to 411 

seeding of multiple graft tumors in different host fish and tumor locations. Depending on 412 

the specific graft tumor, cells from this clone exhibited varying expression levels of 413 

programs previously found to be stably expressed within a single primary tumor clone 414 

(e.g. catecholamine_production), further suggesting that even such stable states can be 415 

reprogrammed upon transplantation (Fig. 6B). 416 
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 To substantiate these findings, we next performed a systematic analysis of 417 

differential module expression between primary tumor and late allografts using all 418 

clones captured in these two timepoints. Unlike the analysis in Fig. 4C which was 419 

focused on pairwise comparison of clones within one time point, we now computed the 420 

expression differences within individual clones across time points (Fig. 6C-D, Fig. 421 

S11D). The difference score reported by this analysis corresponds to the sensitivity of 422 

expression programs to transplantation. The modules interferon_signaling and 423 

immature_neuronal stood out by having particularly large expression differences 424 

between primary tumor and late allografts. Comparison with the intermediate “early 425 

allograft” time point showed that interferon_signaling expression is rapidly upregulated 426 

after transplantation, whereas the immature_neuronal program is markedly altered only 427 

in the late allograft tumors, suggesting activation by reprogramming later than two dpt 428 

(Fig. S11D). 429 

 The observed state plasticity prompted us to investigate if module regulation 430 

within the graft tumors still largely follows the same general principles as in primary 431 

tumors – namely that sympathoadrenal-specific programs are clonally determined within 432 

a single tumor (Fig. 4F,G). Therefore, we compared module expression scores between 433 

distinct clones that were found in the same graft tumor. This revealed that 434 

sympathoadrenal-specific programs remain clonally determined after transplantation 435 

(Fig. 6E, Fig. S11E). Similarly, the relative levels of intra-clone variance of the different 436 

modules are maintained after transplantation (Fig. 6E, Fig. S11E). 437 

 Overall, this suggests that the lineage-determined cellular state undergoes 438 

reprogramming during a bottle-neck after transplantation, likely within a developmental 439 

time window. During this phase, individual transplanted clonal cells can alter their 440 

expression of previously stably activated modules. Subsequently, module activation 441 

stabilizes and is maintained in the graft tumor, where cells from the same clone 442 

consistently express lineage-determined modules and diverge from other clones with 443 

distinct primary tumor- and transplantation-signaling exposure histories. This highlights 444 

the importance of the developmental signaling environment for NB state determination. 445 
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 Comparing the two measures obtained in these experiments – lineage 446 

determination (Fig. 4C) and sensitivity to transplantation into an embryonal environment 447 

(Fig. 6C) – revealed different scenarios, exemplified by the following four cases (Fig. 448 

6F): The module immature_neuronal is highly lineage determined in primary tumors, but 449 

also highly sensitive to transplantation, possibly due to sensitivity to a developmental 450 

signaling environment. The module catecholamine_production is highly lineage 451 

determined and displays relatively low sensitivity to transplantation, which indicates 452 

overall low plasticity. By contrast, the module interferon_signaling has low lineage 453 

determination in primary tumors and is highly sensitive to transplantation, in line with a 454 

strong dependence on the local environment. Finally, the module cell_cycle is neither 455 

lineage determined nor sensitive to transplantation and rather represents an 456 

autonomous cellular program. 457 

 Taken together, this analysis shows that tumor modules do not only vary in their 458 

lineage determination, but also in the degree to which they are influenced by local 459 

developmental signaling and the tumor niche. Importantly, expression states 460 

consistently activated or completely absent in the primary tumor clone can be 461 

(de)activated upon transplantation, after which they are stable again. 462 

 463 

Discussion 464 

Making use of well-controlled experimental conditions in the zebrafish model, our 465 

systematic analysis of intra- and inter-tumor heterogeneity allowed us to determine the 466 

spectrum of MYCN-driven NB tumor states consisting of 17 distinct gene expression 467 

modules, which represent both lineage-specific and general biological processes that 468 

are co-opted by tumor cells. 469 

 Overall, zebrafish NB cells show strong signs of known MYCN-driven gene 470 

expression, such as activation of cell cycle genes, ribosomal genes and adrenergic 471 

core-regulatory circuit factors. However, expression of the identified programs varied 472 

strongly depending on clonal or tissue context, indicating that MYCN has differential 473 

effects based on the specific tissue context, even in this controlled system. We found 474 

that expression of some programs is associated with high-risk disease, namely a 475 
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ribosomal gene module and the immature_neuronal module, which resembles an ALK-476 

activated state38,46. Activating mutations in ALK and high levels of ALK expression are 477 

associated with poor prognosis in human NB. ALK mutations are most frequently 478 

observed in MYCN-amplified NB, where ALK prohibits MYCN-induced apoptosis and 479 

induces transcription of MYCN itself, potentially leading to further stabilization of this 480 

cooperative state18,42,43,55–58. In the zebrafish model, we observe this state in primary 481 

tumors in the AAC (ventral) region. Importantly, tumorigenic transformation in the AAC 482 

requires both MYCN and LMO1 transgenes, suggesting that the cell state of origin in 483 

this location is less permissive to MYCN-driven tumorigenesis, but can specifically give 484 

rise to the immature_neuronal state, This program is also newly activated in graft 485 

tumors after transplantation into an embryonic environment, suggesting that it is 486 

determined by lineage factors and highlighting that such an aggressive, but potentially 487 

targetable state can emerge via non-genetic mechanisms in vivo59. 488 

 In our clonal analysis, we found that modules associated with general cellular 489 

processes tend to exhibit high plasticity, while modules associated with 490 

sympathoadrenal tissue development - and thus likely the cell state of origin - are 491 

mostly lineage-determined. Assessment of clones in space showed that cells from 492 

multiple clones are spatially intermixed and their differential states are thus determined 493 

by their clonal origin and not their spatial position in the tumor tissue. The distinct clonal 494 

states may represent remnants of the cell state of origin or, alternatively, represent 495 

divergent states that can be induced by MYCN during neoplastic transformation that 496 

subsequently stabilize. Their stable activation at an early timepoint in tumorigenesis 497 

suggest that the differentiation state and location of the cell at tumorigenic 498 

transformation are important factors in determining tumor phenotype. It is conceivable 499 

that specific tumor cell states arise from distinct effects of MYCN-overexpression on 500 

different cell of origin states or that tumor cell state diversity is shaped by the 501 

differentiation status of the cell of origin, with less differentiated progenitors giving rise to 502 

a more diverse tumor cell population.  Addressing these questions will be important for 503 

advancing our understanding and the treatment of NB. 504 

Transplantations allowed us to determine how tumor cells from the same cell of 505 

origin behave in a different environment. Interestingly, some cellular process, but also 506 
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some sympathoadrenal-specific modules were particularly affected by transplantation. 507 

Within fully developed graft tumors, many sympathoadrenal-specific programs are once 508 

again clonally determined, indicating that state reprogramming only occurs in a distinct 509 

time window, after which cellular states stabilize. Overall, this analysis showed that 510 

even the most stable tumor states can be reprogrammed upon exposure to a different 511 

signaling environment. Mechanisms of plastic adaptation have also recently been 512 

proposed to drive NB metastatic dissemination and emergence of drug tolerant persister 513 

cells3,60,61. Thus, understanding the exact cues that lead to state transitions and the cell-514 

intrinsic mechanisms enabling them will be important steps in finding ways to block 515 

transitions into more aggressive states.  516 

Limitations 517 

While we did not detect mutations by WES, we cannot rule out that undetected 518 

mutations may influence the observed states. However, the observed sustained 519 

polyclonality and the high plasticity of tumor states upon transplantation suggests that 520 

modules are largely determined in a non-genetic manner. Furthermore, we only 521 

consider MYCN-driven NB, an important high-risk disease type, which may however 522 

behave differently from other NB subtypes. 523 

 Here we used spatial transcriptomics to assess the intermixing of clones within 524 

tumors. Larger number of samples and more advanced analysis of spatial gene 525 

expression patterns would be required to investigate the effect of the TME in more 526 

detail.  527 

 While we can associate tumor states with human disease progression, we do not 528 

have a direct measurement of a tumor state driving tumor aggression. Additionally, the 529 

set-up of our allografting experiment is not suited for a quantitative assessment of 530 

selective advantage of individual tumor states. To address such questions, it would be 531 

necessary to analyze tumor state changes upon treatment e.g. in patient-derived 532 

xenografts and to identify strategies for inducing targeted state transitions. 533 

 534 

 535 
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Methods 586 

 587 

Ethics statement. 588 

All experiments were performed in accord with the legal authorities approved license ‘G 589 

0325/19’ and were conducted in accordance with the European Community Council 590 

Directive of November 24, 1986 (86/609/EEC). 591 

 592 

Zebrafish lines. 593 

Zebrafish (Danio rerio) were raised and maintained according to standard protocols at 594 

28°C with a 14/10 hour light-dark cycle62. Experiments in this study used the zebrafish 595 

wild-type strain AB. For lineage tracing, we used the transgenic tg[ubi:zebrabow-M]63, 596 

tg[bActin2:dsRed_LinRecorder] and tg[hsp70:dsRed_LinRecorder] (created in this 597 

study). Transgenic neuroblastoma lines used were tg[dbh:MYCN, dbh:EGFP] and 598 

tg[dbh:LMO1, dbh:mCherry]29,30.  599 

Adult zebrafish of random sex were included in an experiment, when they had apparent 600 

growth of a dissectible tumor. Fish were euthanized immediately before tumor 601 

dissection by hypothermic shock as described by Wallace et al.64. 602 

 603 

Histological staining and imaging 604 

Specimens were fixed in 4% phosphate-buffered formaldehyde (Labochem, L01-605 

LC64701) for 48 hours, then washed in PBS and decalcified in 0.25M EDTA for 24 606 

hours. Sections were mounted on microscope slides, deparaffinized, rehydrated, and 607 

stained with hematoxylin (Agilent Dako, CS70030-2) and eosin (Sigma-Aldrich) in 608 

Coplin jars following this protocol: 5 min xylene, 10 min xylene, 5 min 95% EtOH, 2x 2 609 

min 80% EtOH, 5 min ddH2O, 6 min hematoxylin, dip into tap water, 6 min running tap 610 

water, 3 min eosin, dip into tap water, 1 min 70% EtOH, 1 min 80% EtOH, 1 min 95% 611 

EtOH, 2x 1 min 100% EtOH, 3 x 5 min xylene. Sections were mounted with Eukitt quick-612 

hardening medium (Sigma-Aldrich, 03989) and a glass coverslip. 613 
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Cloning of the lineage tracing recording cassette. 614 

The dsRedExpress coding sequence was sequence-optimized for zebrafish. We 615 

designed the recording cassette by placing three 23 bp sequences (including PAM) 616 

from RFP that had been tested for CRISPR/Cas9 editing before in an array interspersed 617 

by 7 bp spacers31. Sequences containing multiple restriction sites were placed on either 618 

side of the cassette. We further added the 10x capture sequence 165 downstream of the 619 

cassette to enable more efficient capturing of transcripts in the 10x 3’ GE assay. Both 620 

sequences were synthesized by Twist Bioscience. The dsRed and the recording 621 

cassette were then inserted consecutively into the MCS of pME with the NEBBuilder 622 

HiFi DNA Assembly (NEB, E2621L), after linearizing the vector with KpnI+HindIII or 623 

BamHI+XbaI, respectively. The transgene was then cloned downstream the bActin2- or 624 

hsp70-promoter and upstream of a polyA-signal by Gateway LR reaction (Thermo 625 

Fisher, 11791020) into a pDest carrying the Tol2-TIRs for insertion of transgenes into 626 

the zebrafish genome. Finally, two integration barcodes were inserted into the 627 

transgene flanking the recording cassette. A 7-base-pair random sequence with a stable 628 

G in the middle flanked by 20-basepair overhangs complementary to the integration site 629 

was obtained as a single-stranded DNA oligo (IDT). The plasmid was linearized with 630 

EcoRI upstream of the cassette and the barcode oligo was inserted using the 631 

NEBBuilder HiFi DNA Assembly. A plasmid library with high barcode diversity was 632 

isolated from transformed bacteria. This process was repeated to integrate a second 633 

barcode downstream of the recording cassette after linearizing with NruI. The final 634 

plasmid library was subjected to Sanger sequencing to confirm a near-complete 635 

insertion of the barcode and the presence of barcode-diversity in the library. 636 

 637 

Generation of a lineage tracing line. 638 

The plasmid (at 6.25 ng/µl) was injected together with Tol2-mRNA (25 ng/µl) in 2 nl 639 

droplets into the yolk of wildtype zebrafish at the one cell stage. Larvae showing strong 640 

and widely spread red fluorescence in the body at 48 hpf to 5 dpf were selected for 641 

raising. Adult founders producing large fractions of red-fluorescent offspring were 642 

selected. Individual larvae were genotyped by next generation sequencing to identify 643 
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integration barcodes and thereby number of integrations per larva. Two pairs of one 644 

male and one female founder each conferring several integrations with distinct 645 

integration barcodes to their offspring were bred to produce two F1-lines. F1 fish were 646 

mated with the transgenic NB lines for the lineage tracing experiments shown here. 647 

 648 

Cas9 and sgRNA injections for high-throughput lineage tracing and bulk barcode 649 

creation dynamics. 650 

For experimental batches 1 and 2 (Fig. S5H), we used a similar approach for 651 

sgRNA/Cas9 preparation as described before31,32. For experimental batch 3 Alt-R 652 

crRNAs (100 µM) were ordered from IDT and annealed to the constant tracrRNA (100 653 

µM, IDT) individually by incubation of the mix at 85 °C for five minutes, followed by 654 

cooling at room temperature and subsequently on ice. Hybridized gRNAs for different 655 

targets were then pooled in multiple batches at the desired ratio. SpCas9 (MDC protein 656 

facility) was diluted to 26.8 µM in Cas9 freezing buffer (20 mM Tris-HCl pH7.5, 600 mM 657 

KCl, 20 % glycerol; all nuclease-free). Each gRNA-pool was mixed with an equal 658 

volume of diluted spCas9 and guides were loaded onto the protein by incubation at 37 659 

°C for five minutes. Batches of loaded ribonucleoprotein complexes (RNPs) were then 660 

mixed at the desired ratio, aliquoted and frozen at -80 °C. 2 nl of freshly thawed RNPs 661 

were injected into one cell stage offspring of a cross between a transgenic lineage 662 

tracing line and tg[dbh:MYCN, dbh:EGFP, dbh:LMO1, dbh:mCherry]. Successfully 663 

injected specimens were selected after 48 hours based on loss of pigmentation induced 664 

by cleavage of the tyr-CDS by Cas9 with a gRNA included in each mix.  665 

 666 

Sample collection and library preparation for bulk lineage barcode creation dynamics. 667 

Zebrafish (tg[bActin2:dsRed_LinRecorder]) were injected with 2 nl RNPs at the one-cell 668 

stage. Batches of embryos or larvae were transferred to Eppendorf tubes at selected 669 

time points. For RNA-extraction, zebrafish samples were homogenized in TriZol reagent 670 

(Thermo Fisher, 15596026) and RNA was extracted following the manufacturer’s 671 

instructions. Up to 3 µg of RNA were used as input for reverse transcription with 672 
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SuperScript IV (Thermo Fisher, 18090010) and a poly-dT primer as used for 673 

CELseq266, but with a 22 bp UMI. After second strand synthesis, cDNA from multiple 674 

samples was pooled and cleaned up as in the CELseq2 protocol66. Each target 675 

sequence of interest was enriched by a three-round nested PCR approach with 676 

NEBNext High Fidelity Master Mix (NEB, M0541) using target-specific primers, thereby 677 

also introducing the overhang sequences needed for sequencing. For DNA-extraction, 678 

zebrafish samples were incubated in 50 µl lysis buffer (10 mM Tris-HCl pH 8.0, 1 mM 679 

EDTA, 0.3 % Tween-20, 0.3 % Triton-100; all nuclease-free) with 1 mg/ml proteinase K 680 

(Invitrogen, 25530049) at 55 °C overnight, followed by 30 minutes at 85 °C to inactivate 681 

proteinase K. gDNA was precipitated using isopropanol, washed twice with 70 % 682 

ethanol and finally resuspended in 10 mM Tris-HCl pH 8.0. gDNA was directly used as 683 

input for a two-round nested PCR approach using gene-specific primers. All libraries 684 

were sequenced on Illumina NextSeq2000 200 bp kits (R1 28 cycles, R2 155 cycles). 685 

 686 

Analysis of lineage scar creation dynamics. 687 

Sequencing reads from individual libraries were demultiplexed using bcl2fastq 688 

(v.2.19.0.316). A custom python script was used to further demultiplex reads from each 689 

individual sample based on barcodes introduced during PCR and sequenced on a non-690 

index read. FASTQ files were aligned to references of the target genes using bwa mem 691 

(v.0.7.17)67. Sequences with less than three reads were removed. Reads were 692 

shortened to a sequence identifier 30 bases around the expected Cas9 cut site for 693 

endogenous targets and to a 92 base sequence identifier covering all three target genes 694 

for dsRedLinRecorder. Sequence identifiers matching the reference sequence were 695 

classified as wildtype, while all other sequence identifiers were classified as edited by 696 

Cas9. These assignments were used for calculation of the fraction of wildtype UMIs or 697 

wildtype reads for RNA-based and DNA-based libraries, respectively. 698 

 699 

 700 

 701 
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Whole exome sequencing. 702 

Genomic DNA from tumor and control tissue (clipped fins of the same fish) was 703 

extracted with the DNeasy Blood & Tissue Kit (Qiagen, 69504) and WES libraries were 704 

constructed with the SureSelect XT HS2 DNA Reagent Kit (Agilent, G9981A) following 705 

manufacturer’s instructions with zebrafish-specific probes (SSXT Zebrafish All Exon, 706 

Agilent 5190-5450). Libraries were sequenced on the NovaSeq system (R1 150 cycles, 707 

R2 150 cycles). 708 

FASTQ files were trimmed and aligned to the zebrafish genome GRCz11 using bwa 709 

mem and read duplicates were removed. Somatic mutations for a tumor sample taking 710 

into account the individual’s matched healthy tissue were called using GATK’s 711 

Mutect268. These variants were used to calculate variant allele frequencies. 712 

Segmental copy number variants were called with the CNVkit software69. The genome 713 

was first split into bins containing an equal number of bait-targets (excluding 714 

centromeric and telomeric regions), in which reads were piled up. Pile-ups were 715 

compared between tumor and matched control samples. For calling CNVs the in-built 716 

circular binary segmentation approach was used70,71. 717 

 718 

Tissue dissociation. 719 

Tumors were excised from adult zebrafish, carefully cleaned from non-fluorescent 720 

tissues and placed into ice-cold PBS. The tissue was then minced into small pieces. 721 

Tissue fragments were pelleted and resuspended in dissociation solution. Primary 722 

tumors used for scRNA-seq only were dissociated in 0.01% papain (Sigma-Aldrich, 723 

1495005), 0.1% dispase II (Sigma-Aldrich, D4693-1G), 0.01% DNase I (AppliChem 724 

GmbH, A3778) and 12.4mM MgSO4 in calcium- and magnesium-free Hank’s balanced 725 

salt solution at room temperature for 25 min with trituration through a micropipette tip 726 

every 5 minutes. Primary tumors used for transplantations as well as larval samples and 727 

allograft tumors were dissociated in 500 µl 30 mg/ml type II Collagenase (Sigma-728 

Aldrich, C2-28) (approx. 700 U/ml), 25 mM HEPES, 10% FCS. The tissue was 729 

incubated at 37 °C for 30 minutes with trituration through a micropipette tip every 5 730 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 14, 2025. ; https://doi.org/10.1101/2025.10.13.682025doi: bioRxiv preprint 

https://doi.org/10.1101/2025.10.13.682025
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

minutes. 200 µl 2U/ml dispase II (Sigma-Aldrich, D4693-1G, in 50 mM HEPES, 150 mM 731 

NaCl, pH7.4) was added for the last five minutes of dissociation. Following dissociation 732 

with either protocol, the opaque cell suspension was pipetted on a 5mL polystyrene 733 

Falcon® round-bottom tube with a 30 µm-mesh cell strainer cap (Corning, 352003) pre-734 

filled with 500 µl ice-cold PBS with 1 % BSA and centrifuged at 500 g at 4 °C for 5 735 

minutes. Cells were washed once with 500 to 1000 µl ice-cold PBS depending on the 736 

cell pellet size. Cells were then pelleted again and resuspended in the desired volume 737 

for downstream processing. Live and dead cells were counted manually using a 738 

Neubauer counting chamber and Trypan Blue as a stain for dead cells. The dissociation 739 

protocol used for each tumor sample is listed in Table S2. 740 

 741 

MULTI-seq labelling. 742 

MULTI-seq lipid-modified oligos (LMOs) and co-anchor were kindly gifted by Zev 743 

Gartner’s lab and later acquired from Sigma Aldrich (LMO001)34. After counting cells in 744 

the suspension, an equal number of live cells from each tumor (200 to 500 thousand, 745 

depending on material availability) were incubated in 100 µl to 200 µl 200 nM LMO-746 

Barcode-oligo mix in PBS on ice for five minutes. Then the co-anchor was added and 747 

mixed into the cells at 200 nM, followed by another 5 minute incubation on ice. The 748 

labeling reaction was quenched by addition of 800 µl PBS with 1 % BSA. Cells were 749 

pelleted and washed once before pooling in a large volume of PBS with 1 % BSA. 750 

Before droplet encapsulation or FACS cells were again passed through a 30 µm 751 

strainer. 752 

 753 

Gene expression, MULTI-seq barcode and lineage library preparation. 754 

Single cells from individual tumors or samples pooled after MULTI-seq labelling were 755 

counted manually using a counting chamber and Trypan Blue as a stain for dead cells. 756 

Cells were then used for scRNA-seq library preparation with the 10x 3' GE kit (V3.0 or 757 

3.1), aiming for 10,000 cells per library. The gene expression library was prepared 758 

following the 10x protocol. For MULTI-seq runs, the small fraction of the cDNA 759 
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containing most barcode molecules was cleaned up in addition to the large cDNA 760 

fraction used for the gene expression library. To this end, the supernatant remaining 761 

during cDNA clean-up was incubated with SPRIselect beads (Beckman Coulter 762 

B23318, final ratio 3.2X) and isopropanol (final ratio of 1.8X) and cDNA was eluted in 763 

EB (Qiagen, 19086) after two ethanol washes. The small cDNA fraction was then used 764 

for library preparation using a two-step PCR protocol with primers amplifying the 765 

MULTI-seq barcode oligos specifically. For specific amplification of genetic lineage 766 

barcodes, we used an approach similar to the one previously described31,32. Briefly, a 767 

targeted library was prepared for each lineage tracing target gene using a three-round 768 

nested PCR approach with gene-specific primers and 100 ng 10x cDNA as input 769 

material. All libraries were sequenced on Illumina NextSeq500, NextSeq2000 or 770 

NovaSeq. 10x gene expression libraries and MULTI-seq LMO libraries were sequenced 771 

with a minimum Read-2 length of 90 cycles. Lineage tracing libraries were sequenced 772 

with a minimum Read-2 length of 120 cycles. 773 

 774 

Sequencing data processing and mapping. 775 

All zebrafish single cell sequencing data was demultiplexed using bcl2fastq 776 

(v.2.19.0.316). Gene expression data was mapped to a zebrafish transcriptome 777 

(GRCz11, Ensembl release 92) extended to include all transgenes present in the fish 778 

lines used (MYCN, LMO1, EGFP, mCherry, dsRedLinRecorder) using Cell Ranger 779 

(v.7.0.0). Lineage tracing libraries were further processed using custom pipelines as 780 

described below. 781 

 782 

Zebrafish NB transcriptome analysis. 783 

Gene expression data was analyzed using Seurat v.4.0.0. Cells with over 10 % 784 

mitochondrial transcripts (genes named ‘mt-’) were removed. Datasets derived from one 785 

individual sample using the standard 10x workflow were filtered to only contain cells 786 

with at least 250 distinct genes and 500 UMIs (Table S1). Cells from MULTI-seq 787 

datasets were filtered more leniently and subsequently assigned to a sample of origin 788 
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using the classification approach described in the following section. Cells that could not 789 

be assigned a sample of origin or that were classified as doublets in this process were 790 

removed, thereby ensuring that only Bonafide cells are kept for downstream analysis. 791 

The data was then processed using the standard Seurat pipeline with log-normalization, 792 

scaling and identification of highly variable genes. The list of highly variable genes was 793 

filtered to remove batch-associated genes (genes expressed in 80 % of cells from a 794 

dataset and log2FC > 0.2 compared to cells from all other datasets) and known cell 795 

cycle markers72 (translated to zebrafish genes using https://www.flyrnai.org/diopt) to 796 

reduce their impact on dimensionality reduction and clustering. This was followed by 797 

PCA and selection of a suitable number of components to use for Louvain clustering 798 

and UMAP. Differentially upregulated genes were used to assign a cell type to each 799 

cluster (Table S3). (Sub-) cell type assignment was further refined iteratively by sub-800 

clustering all non-NB cells, followed by a further separation of blood / immune cells and 801 

other stromal cells (Fig. S1B). cNMF73 was used to identify gene modules active in each 802 

cell subset. Modules and differentially upregulated genes were used to assign cell types 803 

and specific functions. Marker genes for cell type classification were mainly taken from 804 

two previous zebrafish scRNA-seq studies37,74. 805 

 806 

MULTI-seq sample demultiplexing. 807 

MULTI-seq libraries were first processed using the deMULTIplex34 pipeline to obtain a 808 

count matrix of observations of each sample barcode in each cell. Cells were then 809 

assigned to a sample of origin based on three different classification approaches. First, 810 

the deMULTIplex R package (https://github.com/chris-mcginnis-ucsf/MULTI-seq) was 811 

used to classify cells. Second, a manual thresholding approach was used, where cells 812 

are assigned to a sample of origin, if the associated barcode is found in them at a high 813 

frequency. Cells that passed the threshold for multiple barcodes were labelled as 814 

doublets, whereas cells below the thresholds for all barcodes were labelled negative. In 815 

the third approach, cells were classified according to the dominant barcode found in 816 

them. Cells were assigned to a sample, if the associated barcode had at least 2.3 times 817 

as many molecules as the second-most highly detected barcode and if the molecules 818 
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from the dominant barcode made up over 40 % of the total molecules found. Cells that 819 

did not fulfill these criteria were classified as doublets or negative if their total amount of 820 

barcode molecules was above or below the mean of total barcode molecules across all 821 

cells, respectively. To make sure cell-sample-assignment was stringent, a consensus of 822 

the three approaches was taken. Only cells with a matching assignment in at least two 823 

of the classification approaches were classified according to this label. Cells with 824 

ambiguous classification across the three approaches were labelled doublets. Doublets 825 

and negative cells were removed from further analysis. 826 

 827 

Identification of gene expression modules in NB cells and identification of consensus 828 

modules. 829 

To capture both intra- and inter-tumor variation in gene expression, we performed NMF 830 

on NB cells on three levels: individual tumor samples, individual MULTI-seq datasets 831 

and the entire dataset. Modules from all individual tumor samples or MULTI-seq runs 832 

were aggregated into recurring consensus modules following approaches similar to 833 

those described in4,5,38. Count matrices and highly variable genes lists as determined in 834 

Seurat for NB cells from a) an individual tumor sample, b) an individual MULTI-seq run 835 

or c) all samples were passed as input to cNMF41. We ran cNMF with output module 836 

numbers (k) from 5 to a) 25 for individual samples and MULTI-seq runs or b) 50 for the 837 

entire NB cell dataset. We ran cNMF with 200 iterations for each sample, from which 838 

the algorithm builds a consensus result and a measure of stability for the results 839 

obtained for a given k. A suitable number of modules (k) displaying good stability across 840 

NMF-iterations was chosen for each sample, mostly in the range of 5 to 15 modules per 841 

sample or MULTI-seq run. 842 

For consensus module generation, all modules from individual tumor samples (or all 843 

MULTI-seq runs) were compared to each other in terms of their gene content using 844 

Pearson correlation across all genes with a positive z-scored contribution to one of the 845 

modules. (Figure S3A). Modules with a Pearson's R of at least 0.1 with at least two 846 

other modules were selected. Modules that passed this filter were clustered using 847 

hdbscan from the dbscan package75 and a consensus module was generated for each 848 
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cluster by keeping genes found in over 25 % of all modules in that group. Each 849 

consensus module was named according to function and modules were further merged, 850 

if they were assigned the same function as well as modules with strong overlap in gene 851 

content. Finally, ambiguous genes that were found in multiple modules were removed: 852 

For each module, a gene that is found in a more prominent position in another modules 853 

is flagged. One such duplicate was allowed, but all duplicates from the second onwards 854 

were removed. The final list of modules was compiled by adding MULTI-seq derived 855 

modules to those derived from individual tumors, followed by modules derived from 856 

whole dataset NMF (Figure S3B). Modules that overlapped strongly with existing 857 

modules as well as modules that were only very spuriously expressed or could not be 858 

assigned a function were removed (Table S5). 859 

 860 

Gene module expression scoring. 861 

Two different approaches were used for gene module expression scoring. To classify 862 

cells into those that express a module and those that do not and to thus be able to 863 

determine the fraction of cells expressing a module in a given population, we scored the 864 

expression following the approach published by Barkley et al.4. Briefly, the average 865 

centered expression of the module and 1000 random gene lists was calculated. The 866 

expression score for the module of interest was defined as -log10(fraction of random 867 

modules higher than module of interest) and rescaled linearly to [0,1]. Here, a score 868 

higher than 0.5 means that the module of interest scored higher than half of the random 869 

gene sets and this value was used as a cut-off to determine whether a module is 870 

expressed in a cell. To derive expression scores that can be used for differential module 871 

expression calculations, scores were calculated using AUCell76. AUCell uses the “Area 872 

Under the Curve” (AUC) to calculate whether a given list of genes is enriched in the 873 

expressed genes of a cell. The AUCell score is relative measure of gene module 874 

expression and can thus be used to compare module expression levels between cells. 875 

Scores were calculated in NB cells from each tumor sample or early allograft dataset 876 

separately. 877 

 878 
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Translation of zebrafish to human orthologs and vice versa. 879 

Zebrafish gene modules were input into DIOPT (https://www.flyrnai.org/diopt) to get a 880 

list of orthologs. Only orthologs with the following metrics were kept: rank = high OR 881 

rank = moderate, best score = yes, DIOPT-score >= 10 (max = 19). Mitochondrial genes 882 

were manually translated using the same DIOPT criteria to make sure that current gene 883 

name versions are used. Human modules were similarly translated using DIOPT 884 

keeping matches with rank = high. Importantly, all comparisons between zebrafish and 885 

human gene modules were carried out in ‘human gene space’, as assigning a single 886 

human gene match to a zebrafish gene is more reliable than vice versa, due to the 887 

genome duplication in teleosts. 888 

 889 

Human cancer gene expression modules. 890 

Published gene expression modules were retrieved from the indicated sources. In Fig. 891 

2D and Fig. S4A, the signature ‘MYCN_upregulated’ corresponds to the signature 892 

determined as constitutively upregulated MYCN-targets across cell cycle phases in Ryl 893 

et al44. The PRC2-targets signature consists of the intersection of the 300 top EZH2-894 

bound genes in a ChiP-seq assay from two human NB cell lines as reported in Chen et 895 

al45. 896 

 897 

Human NB scRNA-seq analysis. 898 

FASTQ files from scRNA-seq of sixteen primary NBs from Dong et al.25 were 899 

downloaded from GEO (GSE137804) and mapped to the human reference genome 900 

(GRCh38, Ensembl release 98) with Cell Ranger (v.4.0.0). Doublets were identified 901 

using Scrublet77 and removed in addition to cells with less than 250 genes or 600 UMIs 902 

detected in the following analysis performed with Seurat v.4.0.0. Each dataset was 903 

downsampled to contain a maximum of 7000 cells. Then, all samples were integrated 904 

using the Seurat-integrated reciprocal PCA approach77, followed by Louvain clustering 905 

and dimensionality reduction for data visualization on a UMAP. Gene module 906 

expression scores were calculated on non-integrated data for each tumor dataset 907 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 14, 2025. ; https://doi.org/10.1101/2025.10.13.682025doi: bioRxiv preprint 

https://doi.org/10.1101/2025.10.13.682025
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

separately after single-cell data was normalized and scaled following the Seurat 908 

workflow. Module expression was calculated as described above using the approach 909 

described by Barkley et al.4 to obtain an expression score between 0 and 1. 910 

 911 

Human bulk RNA-seq analysis. 912 

Bulk gene expression data for 498 NB samples from the SEQC cohort was retrieved 913 

from GEO (GSE49711) as log2(1 + FPKM). Genes expressed in less than four samples 914 

were removed. Gene expression data from the TARGET-NBL-cohort was retrieved from 915 

the GDC data portal (https://portal.gdc.cancer.gov/) as STAR gene counts. Information 916 

on ALK mutational status was retrieved from Brady et al.48. Entrez gene IDs were 917 

translated to gene symbols. If this introduced duplicated gene symbols, the one with the 918 

higher variance was kept. Genes with less than 10 counts in less than five samples 919 

were removed. Counts were then normalized with a variance standardized 920 

transformation (VST) as implemented in DESeq2 (v.1.30.1)79. 921 

In all datasets, expression scores were calculated following an approach implemented 922 

by Decoene et al.80, similar to the approach developed for single cell data by Tirosh et 923 

al.81. To test for significance, pairwise Wilcoxon rank sum tests between expression 924 

scores in groups were carried out and significance was adjusted for multiple 925 

comparisons using Bonferroni correction. 926 

 927 

Mapping and filtering of lineage barcode libraries. 928 

The lineage tracing libraries for endogenous targets were processed as previously 929 

described32. Briefly fastqs were aligned to individual references of the endogenous 930 

targets using bwa mem (v.0.7.17). Reads associated with a valid cell barcode present in 931 

the transcriptome library were kept. Subsequently, scar sequences were filtered to 932 

remove PCR and sequencing errors or sequences arising from doublets, following the 933 

assumption that there can be at most two distinct alleles of an endogenous target within 934 

a cell. Cells, in which one or two sequences made up 80 % or more of the gene-specific 935 

transcripts were kept and only these top sequences were kept. 936 
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The lineage tracing libraries for transgenic targets were processed similar to our 937 

previously described approach31. Briefly, sequencing reads were aligned to individual 938 

transgene references using bwa mem and only reads associated with a valid cell 939 

barcode in the transcriptome data were kept. Scar sequences with only one read were 940 

removed. Following this, for each combination of cell barcode and UMI, only the scar 941 

sequence with the highest number of reads was kept. Furthermore, sequences derived 942 

from sequencing errors were reduced by comparing sequences found within a cell and 943 

removing those that had a low Hamming distance to others and a comparatively low 944 

read number. Finally, scar sequences with a relatively low number of reads (determined 945 

by distribution of reads for all scar sequences that passed previous filtering steps) were 946 

removed. 947 

Sequences derived from the dsRedLinRecorder were subsequently split by integration 948 

ID. Only sequences carrying a valid integration ID barcode were kept. These were 949 

determined as sequences that contain a G in the middle position and have a 950 

considerably higher number of reads than invalid sequences. As a given transgene 951 

integration in an individual cell can only carry a single scar sequence, ambiguous 952 

sequences and cells were removed. Only cells, in which a single scar sequence 953 

contributed to 60 % or more of the detected transcripts, were kept. In these cells, only 954 

the sequence with the highest number of UMIs was kept. Cells and sequences that 955 

passed these filters were used as input for the clone calling pipeline. 956 

 957 

Clone calling. 958 

Clone calling is illustrated in Fig. S5C-G and was performed for each fish individually, as 959 

the possibility that scar sequences are created in multiple fish hampers a joint analysis. 960 

Clone determination starts out with a separate analysis of each endogenous target 961 

gene, similar to our previously developed approach32. Briefly, the sequences were 962 

shortened to a sequence-ID of 30 bases around the CRISPR target site. Sequence-IDs 963 

that were only observed once across all cells were removed. First, only cells with two 964 

distinct alleles (one being wildtype is allowed) were kept. For each sequence-ID, the 965 

fraction of the total observations of this ID that occur in cells together with a given other 966 
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sequence-ID is determined. If at least 80 % of observations of one or both sequence-967 

IDs were found in a specific combination, this combination is kept. If possible, a 968 

hierarchy of a sequence-ID that was created first (‘parent scar’) and one that was 969 

created later (‘child scar’), was determined on the fractions of co-occurrence. 970 

Subsequently, cells with only a single sequence ID are assigned to a group defined by a 971 

combination of sequence IDs, provided that this single ID could be unambiguously 972 

matched to that combination. Finally, cells that have multiple UMIs of wildtype sequence 973 

IDs only are labelled as wildtype cells. Cells and sequence-ID combinations that passed 974 

these filters are passed on to clone calling based on all target genes. 975 

For final clone calling, information from all targets is merged, with input for transgenic 976 

targets directly taken from scar filtering step. Here, each endogenous target is 977 

represented with one joint combination of two sequence-IDs. Each transgene 978 

integration (as distinguished by integration ID barcode sequence) is input as an 979 

individual target gene. Wildtype sequences are excluded. Each contributing sequence 980 

(or sequence combination) is hereafter called a seq-ID. The overlap in associated cell 981 

barcodes is calculated (Jaccard index) for each seq-ID pair and a threshold of 0.3 was 982 

determined to derive a binary adjacency matrix for all seq-IDs. This is used as input for 983 

an undirected graph, serving as a basis for clustering of seq-IDs. Cell barcodes and 984 

seq-IDs are aggregated by cluster, but this often leaves several distinct clusters with 985 

overlap in cell barcodes. Therefore, two overlap fractions are calculated for each cluster 986 

pair: the two clusters’ cell barcode intersection size divided by the total cell barcode 987 

count of either one of the clusters. The higher of the two values is kept. Based on this 988 

adjacency matrix, clusters are flagged for merging using an overlap threshold, set to 0.8 989 

by default (i.e. 80 % of cells associated with one cluster are also associated with the 990 

other cluster). A cluster is flagged as ambiguous, if it overlaps with multiple other 991 

clusters, but those clusters share barcodes with each other only below a secondary 992 

threshold (default 0.6). Such ambiguity can arise from two scenarios: a) a lineage 993 

barcode (or combination) was created multiple times in independent events or b) a 994 

cluster is defined by lineage barcode(s) (‘parent’) that were created early and overlap 995 

with multiple clusters represented by lineage barcode(s) that were created later (‘child’). 996 

To account for the latter case and to avoid removal of many cells that only carry an 997 
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early lineage barcode, larger clusters can optionally be treated as a ‘parent’ and smaller 998 

‘child’ clusters can be merged into it. This option leads to the establishment of lower 999 

resolution clusters as used for analysis in Fig. 6 (Fig. S10A). If this option is not 1000 

activated, ambiguous clusters are removed, e.g. two independent ‘child clusters’ would 1001 

be kept, while the ‘parent cluster’ overlapping with both of them is removed, leading to 1002 

higher resolution clustering (as used for analysis in Fig. 3 and 4). Remaining clusters 1003 

flagged for merging are merged. Cell barcode overlap between these merged clusters is 1004 

again determined by Jaccard similarity and if new clusters with significant barcode 1005 

overlap (default Jaccard index of 0.3) have emerged, these are marked as ambiguous 1006 

and removed. The remaining clusters are the final clones. Finally, cell barcodes that 1007 

were assigned to multiple clones are removed. 1008 

Once clones had been determined, a seq-ID is classified as being clone-specific, if 90 1009 

% of cells it was observed in came from one specific clone in a given experiment. 1010 

Clone-specific seq-IDs were later used as identifiers to match allograft-cells to primary 1011 

tumor clones. 1012 

 1013 

Differential module expression analysis. 1014 

Differential module expression analysis was performed in a pairwise manner between 1015 

cells from two different groups. In the analysis of primary tumors, cells were grouped 1016 

according to clone and tumor (sub-)sample to allow for comparison of clones within one 1017 

tumor location and of cells from one clone in different sub-samples. In the analysis of 1018 

allograft tumor cells, cells from the early allograft were grouped by clone only, whereas 1019 

cells from the late allograft tumors were again grouped by clone and (sub-)sample to 1020 

enable comparison between clones across time in one late graft tumor or between 1021 

several graft tumors. For all comparisons, only groups of at least 10 cells were 1022 

considered, where the two combined groups contained at least 25 cells. The differential 1023 

expression score for each module was calculated based on module AUCell expression 1024 

scores using a Wilcoxon rank sum test (as implemented in the Seurat function 1025 

FindMarkers). To assess significance, group assignments of the tested cells were 1026 

randomly shuffled 1000 times, while preserving group sizes, and the differential 1027 
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expression test was repeated for each shuffle. All differential expression values were 1028 

ranked and significance p was determined as the rank of the test group of interest 1029 

relative to the 1000 permutations and the p-value was calculated as this rank divided by 1030 

1,000. This means that p < 0.05 is equivalent to the test group of interest exceeding 95 1031 

% of random outcomes. In order to make results comparable between different 1032 

modules, the differential expression score was normalized to the overall expression 1033 

level of the module. To this end, the differential expression score for the comparison of 1034 

interest was divided by the mean differential expression score of all random 1035 

permutations for that module. Only results with p < 0.05 were considered. Furthermore, 1036 

comparisons, in which a given module was expressed in less than 5 % of cells in both 1037 

clones were removed. 1038 

 1039 

Calculation of module expression variance. 1040 

In order to obtain module expression variance measures that are comparable between 1041 

different modules, we used the expression-standardized variance values generated by 1042 

Seurat’s FindVariableFeatures function (selection.method = ‘vst’) (Seurat v.4.0.0). First, 1043 

counts for all genes in a module were summed to get raw module expression scores 1044 

that were added to the gene count matrix. The counts matrix containing genes and gene 1045 

module counts was then log-normalized using Seurat’s NormalizeData function. Log-1046 

normalized expression values were used as input for the FindVariableFeatures function, 1047 

which fits the mean-variance relationship across genes and rescales observed 1048 

variances by the expected variance at a given mean expression level. Expression-1049 

standardized variance was calculated per clone or other group of cells of interest. 1050 

Groups of less than 30 cells were removed as well as groups of cells, which only had 1051 

module expression in less than 5 % of cells. 1052 

 1053 

 1054 

 1055 
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Tissue processing, library preparation and data preprocessing for spatial 1056 

transcriptomics of zebrafish tumors 1057 

Open-ST spatial transcriptomics and sequencing: Dissected entire tumors or pieces of 1058 

tumor tissue (if another piece was used for scRNA-seq) were embedded in optimal 1059 

cutting temperature compound (O.C.T., Tissue-Tek, 4583) in plastic cryomolds. The 1060 

filled mold was frozen by placing it on a flat metal surface cooled down with dry ice. 1061 

Frozen samples were subsequently stored at -80 °C. Cryosections were then cut at 10 1062 

µm thickness and mounted on Open-ST capture areas. Tissue handling and spatial 1063 

barcoding were performed following the Open-ST protocol52. Brightfield images of H&E-1064 

stained sections were acquired using a Keyence BZ-X700 to assist with downstream 1065 

image registration and background removal. Following cDNA elution, the whole 1066 

transcriptome library was prepared following the Open-ST protocol. Gene-specific 1067 

libraries were generated using a two-round nested PCR approach using target-specific 1068 

primers. All final products were size-selected on a BluePippin HT system (Sage 1069 

Science) Spatial transcriptomics libraries were sequenced on an Illumina NextSeq 2000 1070 

using a 200-cycle kit (R1: 37 cycles, R2: 191 cycles). 1071 

Alignment and generation of count matrices: Raw spatial transcriptomics data were 1072 

processed and aligned using SpaceMake82, which produced a gene-by-spot count 1073 

matrix from sequencing reads. Individual tiles were stitched, and expression was 1074 

aggregated on a hexagonal grid with 5 µm diameter bins using custom Python code. 1075 

Image-based spot filtering: The brightfield image of the tissue section was used to 1076 

create two images: one inverted in Fiji for alignment and one thresholded (black and 1077 

white) for spatial filtering. Using a custom Python code, the first image was aligned to a 1078 

synthetic transcriptomic image rendered by showing the number of spots aggregated 1079 

into each hexagon of the grid. Manual landmarks were selected on both optical and 1080 

spatial transcriptomic images. An affine or homography transformation was computed 1081 

using OpenCV and applied to the binarized version of the optical image. Only spots 1082 

falling within foreground tissue regions were retained for downstream analysis. 1083 

Transcriptomic filtering and normalization: Following image-based subsetting, spatial 1084 

transcriptomic data were filtered to remove spots with fewer than 5 detected genes and 1085 
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genes expressed in fewer than 5 spots. Total counts per spot were normalized to 1086 

10,000 and log-transformed using log1p. Highly variable genes were selected using 1087 

Scanpy’s variance-based method, retaining the top 2,500 genes. 1088 

 1089 

Spatial analysis of modules 1090 

Cell type label transfer: Single-cell RNA-seq reference data were integrated on shared 1091 

highly variable genes using Scanpy’s implementation of Harmony83, and spatial spots 1092 

were projected into a shared PCA space. For each spot, a k-nearest neighbor model 1093 

was used to infer a probability distribution over reference cell types, resulting in per-spot 1094 

soft cell type scores. 1095 

Module scoring: Gene modules were quantified by computing the fraction of total 1096 

expression per spot attributable to each module. For each spot, expression of all valid 1097 

module genes was summed and divided by the total spot-wise expression. 1098 

Spatial correlation: To assess local co-variation of cell type or module scores, values 1099 

were smoothed across spatial neighborhoods defined by a fixed Euclidean distance 1100 

using a cKDTree search. Pearson correlations were then computed between smoothed 1101 

scores across spots. 1102 

Proximity to tissue boundaries: To evaluate spatial positioning relative to tissue borders, 1103 

connected component analysis was used to define tissue regions. We manually 1104 

retained the three largest regions of the tumors. A Euclidean distance transform was 1105 

applied to compute each spot’s distance to the nearest external boundary, and 1106 

Spearman correlations were computed between distance and module scores within 1107 

each region. 1108 

 1109 

Spatial clonal analysis 1110 

Spatial gene-specific libraries were used for spatial clonal analysis: Scar gene barcodes 1111 

were extracted from read 1 and assigned to spatial coordinates based on their title and 1112 

lane identifiers. Read 2 was aligned to reference scar genes using bwa mem, and a 1113 

spatial barcode-scar sequence count matrix was constructed. Barcode matrices were 1114 
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filtered using the same imaging-derived tissue mask applied previously. Clone identities 1115 

inferred from matched scRNA-seq data were transferred to spatial spots by aligning 1116 

shared scar sequences (seqIDs) across modalities. Clone presence at each spot was 1117 

binarized by thresholding to ≥ 1 supporting read per scar gene. 1118 

 1119 

Allogeneic transplantations into zebrafish embryos. 1120 

The pool of dissociated tumor cells from multiple tumors was divided between the 1121 

workflow for scRNA-seq and allogeneic transplantation. For transplantation, the cells 1122 

from multiple tumors were counted and mixed. Cells were centrifuged through a 20 µm 1123 

mesh filter at 500 g at 4 °C for 5 minutes. The supernatant was removed almost entirely 1124 

and cells were resuspended in a tiny volume of PBS to keep the suspension very 1125 

dense. Glass pipettes with a 20 µm outer diameter (BioMedical Instruments) connected 1126 

to an air-pressure injector (IM-400) were used to inject 100 - 150 cells into each embryo 1127 

4 h after fertilization. Embryos were allowed to recover in E3 medium (5mM NaCl, 1128 

0.17mM KCl, 0.33mM CaCl, 0.33 mM MgSO4, pH 7.4) supplemented with 1% 1129 

penicillin/streptomycin for 1 h at 28 °C before manually sorting for transplantation 1130 

success on a M165 FC stereomicroscope (Leica Microsystems). 1131 

 1132 

Isolation of tumor cells from larvae via fluorescence activated cell sorting (FACS) 1133 

Larvae at 2 dpt (days post transplantation) were collected in batches of 15 to 20 and 1134 

placed on ice for 10 minutes. Larvae were then washed once in ice-cold HBSS and 1135 

dissociated with collagenase II and dispase as described above. If multiple larval 1136 

batches were processed at once, cells were then labelled with MULTI-seq barcodes as 1137 

described above. After quenching of the labelling reaction and thorough washing with 1138 

PBS with 1 % BSA, cells were resuspended in PBS with 0.05 % BSA for FACS sorting 1139 

(BD Biosciences FACSAria III). Cells were selected by first gating for GFP-1140 

fluorescence, followed by side- and forward-scatter gating. Cells were sorted into a 1141 

cooled 1.5 ml eppendorf tube pre-filled and coated overnight with 500 µl PBS with 2 % 1142 

fetal calf serum. Cells were sorted with a flow rate below 4 and an event-rate below 1143 
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2000 events per second. Every 20 minutes, the sort was halted and the source cell 1144 

suspension was vortexed. The receiving tube was closed and inverted before placing it 1145 

back into the sorter. Sorting was done until either a) 50000 cells had been sorted into 1146 

the tube, b) at least 20000 cells had been sorted and the cell suspension was close to 1147 

running out, c) sorting time reached two hours. In the two latter scenarios, the gate 1148 

sorting for fluorescence was inactivated, so that all live cells were sorted until 40000 1149 

total cells had been sorted into the tube. After sorting the receiving tube was inverted a 1150 

few times before centrifugation at 4 °C, 1000 g for 5 minutes. Most of the supernatant 1151 

was removed, leaving an estimated 10 µl around the cell pellet. The cells were 1152 

resuspended after addition of 50 µl PBS and subsequently counted in a counting 1153 

chamber prior to single cell encapsulation. 1154 

 1155 

Assignment of allograft cells to primary tumor clone. 1156 

Lineage tracing target-specific libraries were processed as described for primary 1157 

tumors. Sequences from endogenous target genes were shortened to a sequence-ID of 1158 

30 bases around the CRISPR target site. Cells with two distinct sequence-IDs for a 1159 

given target were selected. For transgenic targets, valid integration ID barcodes were 1160 

extracted and other sequences were removed. Thereafter, sequences were filtered, so 1161 

that each cell retained at most one sequence per integration ID as described for the 1162 

primary tumors. Combined sequence IDs from the endogenous targets as well as 1163 

individual sequence-IDs from each transgene integration were used to match allograft 1164 

cells to a primary tumor clone defined by one or more of these sequence-IDs. Here, we 1165 

used primary tumor clones called at slightly lower resolution to increase the number of 1166 

allograft cells that could be assigned to a clone (Fig. S11A-B). Ambiguous assignments 1167 

of one graft cell to multiple primary clones were removed. 1168 

  1169 
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Fig. 1: Multiplexed scRNA-seq to understand NB intra- and inter-tumor 1345 

transcriptional heterogeneity. 1346 

A) Overview of the main experiment: The two transgenic zebrafish lines MYCN and 1347 

MYCN;LMO1 grow NB tumors in the interrenal gland (lateral site) and the latter 1348 

also in the arch-associated complex (ventral site). We inject Cas9 and sgRNAs to 1349 

later analyze cellular lineage relationships. We performed multiplexed scRNA-seq 1350 

with MULTI-seq to gather single cell transcriptome data from several tumors at the 1351 

same time, allowing inter-sample analysis with reduced batch effects. hpf = hours 1352 

post fertilization, mpf = months post fertilization. 1353 

B) Tumor incidence curves (monitoring between six and 25 wpf) for the two transgenic 1354 

zebrafish models. 1355 

C) H&E-stained sagittal section of a 3 mpf MYCN;LMO1 fish with magnified views of 1356 

the lateral tumor in the middle and ventral tumor in the bottom image. 1357 

D) UMAP of the entire dataset (around 150 thousand cells) colored by cell types: NB 1358 

cells in pink, blood cells in green and blue hues, other stromal cells in brown to 1359 

yellow hues. Cells with ambiguous marker gene expression are termed doublets 1360 

and are shown in grey. 1361 

E) 3451 TME cells (left) and 16482 NB cells (right) from one individual MULTI-seq 1362 

run (multi_seq_09) sub-clustered and colored by tumor sample of origin or Louvain 1363 

cluster in the UMAP. Barplots show the fraction of cells in each cluster made up of 1364 

cells from a given sample. 1365 

F) Top positively differentially expressed genes in NB cells when compared to all 1366 

other cell types. Known adrenergic genes and transgenes are highlighted by blue 1367 

and pink boxes, respectively. UMAP of all cell types shows expression score for 1368 

the 46 most differentially expressed genes (signature ‘NB_markers’). 1369 

G) Expression scores for the genes most differentially upregulated (‘NB_markers’ as 1370 

in F) or most highly expressed (‘ribosomal_genes’) in NB cells, as well as for 1371 

adrenergic and mesenchymal gene signatures derived from human NB cell lines. 1372 

Significance of differential expression between NB cells and all other cells was 1373 

determined with Wilcoxon rank sum test (*** p < 0.0001). 1374 
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Fig. 2: The spectrum of transcriptional states of MYCN-driven zebrafish NB. 1376 

A) Gene expression module identification process: A three-fold approach to detect 1377 

both modules describing intra-tumor heterogeneity (expressed in a subset of cells 1378 

in most tumors) and inter-tumor heterogeneity (expressed only in some tumors and 1379 

absent in others). Modules from all approaches were summarized to derive 1380 

consensus-modules shown in B. 1381 

B) Summary of final list of modules compiled from all three approaches in A with 1382 

Jaccard index of gene content overlap for all modules as well as the NB differential 1383 

and high expression signatures (‘NB_markers’ and ‘ribosomal_genes’ as in Fig. 1384 

1G) and the human adrenergic and mesenchymal NB signatures (as in Fig. 1G). 1385 

The top three genes contributing to each gene module are shown on the right. 1386 

C) UMAPs of NB cells with expression scores for the indicated modules. Box plots 1387 

and jitter show the fraction of cells that express a given module per tumor. Modules 1388 

were grouped into sympathoadrenal-specific (pink box) and general cellular 1389 

processes (yellow box). 1390 

D) Pearson correlation between expression scores of zebrafish NB-derived gene 1391 

modules (rows) and expression of MYCN (‘MYCN_expression’) or expression 1392 

scores for known human MYCN-driven or PRC2-target genes across all zebrafish 1393 

NB cells. 1394 

E) Expression of selected zebrafish NB modules in bulk RNA-seq data from the 1395 

SEQC NB cohort (n = 498), grouped by risk factor (HR = high-risk, non-HR = non-1396 

high-risk) and MYCN-status (amplified or non-amplified). Significance determined 1397 

with Wilcoxon rank sum test (ns = non-significant, * p < 0.01, ** p < 0.001, *** p < 1398 

0.0001). 1399 

F) Expression of selected zebrafish NB modules in bulk RNA-seq data from the 1400 

TARGET NB cohort (n = 151), grouped by ALK-status (mutated or wildtype). 1401 

Significance tested and denoted as in E. 1402 
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Fig. 3: Tracing tumor cell clones derived from distinct cells of origin. 1404 

A) Experimental strategy for early developmental lineage tracing via CRISPR/Cas9. 1405 

Cas9 and sgRNAs targeting a transgene carrying three target sites in the 3’ UTR 1406 

as well as single target sites in the 3’ UTR of the listed highly expressed 1407 

endogenous genes are injected at the one-cell stage. The repair of Cas9-induced 1408 

DNA-lesions results in the formation of indels used as lineage barcodes. Lineage 1409 

barcodes are read out together with the cell transcriptomes, when tumors are 1410 

processed via scRNA-seq. 1411 

B) Base position plots for one NB MULTI-seq dataset showing the fraction of UMIs 1412 

with edits in a given base in the transgenic recording cassette locus (dsRed-1413 

RecCas, left) and the endogenous rpl39 3’ UTR locus (15 bases upstream and 1414 

downstream of the expected Cas9 cut-site). Border between target (spacer) and 1415 

PAM-sequence for each target is marked by a vertical grey line. 1416 

C) Lineage barcode creation dynamics show a rapid loss of uncut alleles and thus 1417 

introduction of lineage barcodes in the first hours of development after 1418 

CRISPR/Cas9 injection. Lineage barcode introduction on DNA saturates around 5 1419 

hpf and unedited RNA is largely replaced at 11 hpf. Samples from at least two 1420 

separate injection experiments were taken for each time point and assay. 1421 

D) Expression dynamics of dbh in scRNA-seq of zebrafish development (Daniocell 1422 

atlas51). dbh expression is only observed in few individual cells prior to broad 1423 

activation at around 14 hpf. 1424 

E) Hierarchical clustering of 1099 cells from a single tumor (MYCN_lat_m9_1) based 1425 

on assigned clone-IDs (dark blue heatmap color: assigned to clone). Cells are 1426 

annotated by cell type at the bottom of the heatmap. We found clear lineage splits 1427 

between one immune/blood cell clone and two stromal cell clones and identified 1428 

six distinct NB cell clones. The UMAPs show cells from the same tumor including 1429 

those that could not be assigned to a clone (total of 1410 cells) colored by cell type 1430 

or clone-ID. 1431 

F) Number of clones detected in NB cells (top) or the TME cell compartment (bottom) 1432 

per individual tumor (n = 38). 1433 
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Fig. 4: Clonal analysis of NB reveals lineage-determined transcriptional programs. 1435 

A) Opposing scenarios of tumor state regulation: In the first scenario, module 1436 

expression is determined by the cell of origin (i.e. clone, indicated by color). In 1437 

contrast, if tumor states depend on the current conditions in the tumor niche, cells 1438 

dynamically take on different tumor states, regardless of their origin. 1439 

B) UMAP showing NB cells from one tumor colored by the assigned clone for a lateral 1440 

tumor (left) and a ventral tumor (right). The AUCell-determined expression scores 1441 

for four modules in NB cells grouped by clone is shown right to the UMAP. 1442 

C) Differential module expression scores for comparisons between pairs of clones 1443 

coming from the same tumor (= one dot) with the median differential expression 1444 

score indicated by a blue line. Only pairs with detectable module expression in at 1445 

least one clone were included (Methods), ranging from 18 pairs for module 1446 

‘NB_markers’ to 188 pairs for module ‘ribosomal_genes’. The distributions of 1447 

module expression scores for three example comparisons are shown in D. 1448 

D) Distribution of AUCell-determined expression scores for the pairs of clones 1449 

compared in the highlighted examples in C. 1450 

E) Standardized intra-clone variance of gene modules expression with the median 1451 

variance indicated by a blue line. Only clones with detectable module expression 1452 

were included (Methods), ranging from 2 clones for module ‘NB_markers’ to 63 1453 

clones for module ‘ribosomal_genes’. 1454 

F) Summary plot showing median inter-clone difference (as in C) versus median intra-1455 

clone variance (as in E) for each module, highlighting sympathoadrenal-specific 1456 

and cellular process associated modules. 1457 

G) Clonal distribution in space using spatial transcriptomics data. Left: Microscopic 1458 

image of the tumor section and indication of spots assigned to immune or blood 1459 

cell and stromal cell types. Other spots are mainly NB cells. Right: Spatial outline 1460 

of the tumor section highlighting spots, in which lineage barcode sequences 1461 

representative of the indicated clones (derived from scRNA-seq data) were found. 1462 

  1463 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 14, 2025. ; https://doi.org/10.1101/2025.10.13.682025doi: bioRxiv preprint 

https://doi.org/10.1101/2025.10.13.682025
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 14, 2025. ; https://doi.org/10.1101/2025.10.13.682025doi: bioRxiv preprint 

https://doi.org/10.1101/2025.10.13.682025
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Fig. 5: Tumor cell transplantation into an embryonic environment. 1464 

A) Experimental workflow for transcriptional profiling of clones over multiple 1465 

transplantation time points: Lineage-barcoded cells from multiple tumors are 1466 

extracted and a part is sequenced, while the rest is pooled and transplanted into 1467 

many wildtype zebrafish blastulae. Transplanted cells are extracted for sequencing 1468 

two days or months after transplantation (d/mpt). 1469 

B) Fish engrafted with a mix of MYCN (green) and MYCN;LMO1 (red and green) 1470 

tumor cells three days after transplantation (left) or 2.5 months after transplantation 1471 

(right). 1472 

C) Prevalence of tumors in different engraftment sites three months after 1473 

transplantation in three separate transplantation experiments. Error bars denote 1474 

the standard error of the mean. 1475 

D) UMAP of all cells from primary tumors, 2 dpt allografts and late allograft tumors 1476 

colored by cell type (around 208 thousand cells). Cell types derived from healthy 1477 

tissues of the host larvae at 2 dpt are colored in beige tones (mesenchymal cells, 1478 

pigment cells, radial glia, neuronal). 1479 

E) UMAP of NB cells from all time points (around 131 thousand cells) colored by 1480 

sample type (primary tumor, early allograft, late allograft). 1481 

F) UMAP of NB cells from all time points colored by sample type (primary tumor, early 1482 

allograft) or by tumor location for samples derived from late allografts. Fraction of 1483 

cells per tumor expressing the indicated module with samples grouped as in the 1484 

UMAP. Significance is only shown for significant comparisons as determined by 1485 

pairwise Wilcoxon rank sum test (* p < 0.01, ** p < 0.001, *** p < 0.0001). 1486 
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Fig. 6: Exposure to embryonic environment drives re-emergence of expression 1488 

plasticity. 1489 

A) Fraction of cells per clone and time point that express a given module. Each dot 1490 

shows a clone in a specific time point and groups of cells from the same clone in 1491 

different time points are connected via lines. 1492 

B) Fraction of cells from a clone in a time point and location expressing the indicated 1493 

modules. Each dot represents cells of the clone in distinct locations (as illustrated 1494 

in the sketch above the plot: primary tumor, early allograft timepoint, multiple late 1495 

allograft timepoint tumors). Grey violins show background distribution of module 1496 

expression fraction for all clones in that dataset. 1497 

C) Differential module expression scores for comparisons between cells from one 1498 

clone found in two different timepoints (one dot = comparison between group of 1499 

cells from one clone in primary tumor with group of cells of the same clone in late 1500 

allograft tumor). Only pairs of cell groups with detectable module expression in at 1501 

least one group were included (Methods), ranging from 2 pairs for module 1502 

‘neuron_projection’ to 19 pairs for module ‘stress_response’. Module expression 1503 

score distributions for three examples are shown in D. 1504 

D) AUCell-determined module expression distribution for the respective module in the 1505 

cells from one clone in the primary tumor and the late allograft tumor is shown for 1506 

three examples highlighted with circles in C. 1507 

E) Median inter-clone difference (left) and median intra-clone variance (right) for each 1508 

module across clones in the three sampled timepoints. Inter-clone difference was 1509 

calculated for pairs of clones found in the same tumor or allograft sample. For both 1510 

measures, only clones with detectable expression of a given module were 1511 

included, as described in Fig. 4C and E. 1512 

F) Summary plot showing median module expression difference between cells from 1513 

one clone in two time points (primary tumor and late allograft, as in C) versus 1514 

median inter-clone difference in the primary tumor (as in Fig. 4C). Highlighted 1515 

modules are classified as sympathoadrenal-specific or cellular process-1516 

associated. 1517 
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Fig S1: Information on zebrafish NB models, cell type composition and annotation. 1519 

A) Stereomicroscopic images of two MYCN;LMO1 fish with a lateral tumor (both fish) 1520 

and a ventral tumor (fish on the right). 1521 

B) UMAP showing sub-clustered immune and blood cell types (upper plots) or sub-1522 

clustered stromal cell types (lower plots) with detailed sub-cell type annotation (left) 1523 

and indication of the sample of origin (right). In the plots showing samples of origin, 1524 

only the colors used for control samples are highlighted, as these contributed a 1525 

large amount of immune and blood cells that separate slightly from tumor-derived 1526 

cells on the UMAP. These cells are derived from the hematopoietic tissue of the 1527 

head kidney. 1528 

C) Dotplot showing expression level and prevalence of the top four cell type marker 1529 

genes (as determined by differential expression analysis, Table S3) for each final 1530 

cell type. 1531 

D) UMAP of all NB cells (left) and all other cell types (middle and right) colored by the 1532 

sample of origin (left and middle) or cell type (right). In the plots showing samples 1533 

of origin, only the colors used for control samples are highlighted, as these 1534 

samples show larger differences compared to TME cells. 1535 
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Fig S2: Genetic analysis of zebrafish NB based on inferred CNVs and whole exome 1537 

sequencing. 1538 

A) inferCNV result for a human NB scRNA-seq dataset (T92 from Dong et al.). 1539 

Reference cells and background CNV probability profiles are shown at the top. The 1540 

tumor cells in the bottom part of the plot show strong signals of CNVs, e.g. for an 1541 

amplification of part of chromosome 17, which is frequently observed in NB. 1542 

B) inferCNV result for all zebrafish NB tumors from one MULTI-seq run 1543 

(multi_seq_09). Reference cells and background CNV probability profiles are 1544 

shown at the top. Cells from different tumors are grouped and marked with a 1545 

distinct color in the legend on the left. There is no strong CNV-signal. 1546 

C) WES copy number profiles for two samples (Z2 on the left, Z7 on the right). CNV 1547 

profiles are shown for healthy control tissue taken from the fin (top) and tumor 1548 

tissue (bottom). 1549 

D) WES variant allele frequencies for the Z2 and Z7 healthy control tissue and tumor 1550 

tissue. 1551 
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Fig S3: Detection of NB gene expression modules using a three-level NMF 1553 

approach. 1554 

A) Heatmap and T-SNE showing modules detected in the analysis of individual 1555 

tumors plotted according to their pairwise correlation to each other (Pearson). 1556 

Modules in the heatmap are annotated by the individual tumor sample they were 1557 

derived from (color legend in top row) and by the consensus module they were 1558 

assigned to after clustering with HDBScan (color legend on the left side). Modules 1559 

in the T-SNE plot are colored according to the consensus module they were 1560 

assigned to after clustering with HDBScan. Modules that were not assigned to any 1561 

consensus module are labelled NA and colored in grey. 1562 

B) Overlap in terms of gene content (measured by Jaccard index) for all consensus 1563 

modules derived from the analysis of individual datasets (as in A), MULTI-seq 1564 

datasets or classical cNMF analysis of all NB cells from the entire dataset (Table 1565 

S4). 1566 

C) UMAPs of NB cells with expression scores for those of the 17 curated consensus 1567 

modules not shown in the main figure 2 as well as the signatures for NB cell 1568 

differential and NB high expression (‘NB_markers’ and ‘ribosomal_genes’, 1569 

respectively). Box plots and jitter plots show fraction of cells expressing a given 1570 

module per tumor. Tumors are grouped by genotype (MYCN or MYCN;LMO1) and 1571 

primary tumor location (lateral or ventral). 1572 
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Fig S4: Similarity between zebrafish NB and human NB gene expression programs 1574 

and expression of zebrafish NB modules in human NB. 1575 

A) Correlation between expression scores of all zebrafish NB-derived gene modules 1576 

(rows) and expression of MYCN (‘MYCN_expression’) or expression scores for 1577 

human MYCN-driven or PRC2-target genes across all zebrafish NB cells as in Fig. 1578 

2D. 1579 

B) Gene content overlap as measured as Jaccard index between zebrafish NB gene 1580 

modules (rows) and gene expression modules derived from analyses of many 1581 

human cancer types (columns, named by study of origin and module function).  1582 

C) Gene content overlap as measured as Jaccard index between zebrafish NB 1583 

modules (rows) and gene expression modules derived from human NBs (columns, 1584 

named by study of origin and module function). 1585 

D) UMAP of integrated human NB cells from 16 tumors (Dong et al.) colored by risk 1586 

(low, intermediate, high) and MYCN-status (non-amplified or amplified). Upper 1587 

heatmap shows the fraction of cells from a given group of tumors that express the 1588 

indicated zebrafish NB modules (columns). Bottom heatmap shows the average 1589 

expression score for the indicated modules across all NB cells of a given group. 1590 

E) Expression score of zebrafish NB modules in bulk RNA-seq data from the SEQC 1591 

NB cohort (n = 498), grouped by risk (HR = high-risk, non-HR = non-high-risk) and 1592 

MYCN-status (non-amplified or amplified). Significance of inter-group differences 1593 

in E and F were tested with a Wilcoxon rank sum test (ns = non-significant, * p < 1594 

0.01, ** p < 0.001, *** p < 0.0001). 1595 

F) Expression score of selected zebrafish NB modules in bulk RNA-seq data from the 1596 

TARGET NB cohort (n = 151), grouped by ALK mutational status. 1597 
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Fig S5: Lineage tracing target design, data processing, clone calling and clone 1599 

detection statistics 1600 

A) Lineage tracing cassette design: Three Cas9-target sites are encoded in the 3’ 1601 

UTR of a dsRed-gene sequence, optimized for expression in zebrafish, flanked by 1602 

two 7 basepair barcode sequences (BC1 and BC2) that function as integration IDs 1603 

to distinguish multiple genome insertions of the transgene. 1604 

B) Expression levels of dsRed-RecCas (considering reads from the full length of the 1605 

gene) and endogenous actb1 and actb2 in scRNA-seq data derived from zebrafish 1606 

larvae of the hsp70:dsRedLinRecorder or bActin2:dsRedLinRecorder lines. Violin 1607 

plots show expression of the transgene and two highly expressed endogenous 1608 

genes in the two lines. 1609 

C) Sequence of dsRed-RecCas with aligned CRISPR/Cas9-edited example reads. 1610 

Edits include small alterations at one cut site as well as larger deletions induced 1611 

by cutting of multiple target sites. 1612 

D) Workflow for pre-processing and filtering of lineage target sequencing data from 1613 

endogenous and transgenic targets as well as clone calling. E-G show data 1614 

representations of an example dataset at various stages of the workflow and are 1615 

referenced in the corresponding steps in the flowchart. 1616 

E) Pairs of sequence-IDs found in three different cells on rpl39 (left) and actb1 (right) 1617 

3’ UTRs. 1618 

F) Heatmap of cells (rows) and alleles (columns) clustered by their presence (red). 1619 

Data represents all cells from one fish that passed filtering for at least one target 1620 

gene and alleles (for transgene) or allele combinations (for endogenous targets) 1621 

from all target genes (columns). Alleles were clustered based on cell barcode 1622 

overlap with clusters indicated above the heatmap. 1623 

G) Heatmap as in F. Final clone-assignments are indicated above the heatmap with 1624 

alleles that did not pass filtering shown in grey. Cells that could unambiguously be 1625 

assigned to a single clone are highlighted in blue on the left side of the heatmap. 1626 

The heatmap represents maximum resolution clone calling. One allele is shared 1627 

between many cells from multiple different clones (large box and smaller box 1628 

insets). Cells that only carry the allele that is shared between the clones (which is 1629 

thus ambiguous) are not assigned to a clone and are excluded (orange legend on 1630 

the side of the heatmap). In order to increase the number of cells and lineage 1631 

barcodes used, the clone calling resolution can be lowered, so that all cells in the 1632 

large box would be merged into one clone. 1633 

H) Conditions used for lineage tracing injections in three experimental rounds. 1634 

Different endogenous 3’ UTRs and transgenic loci were targeted in the conditions. 1635 

Adult fish from one injection round were used for one or multiple MULTI-seq runs 1636 

(datasets). 1637 
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I) Fraction of cells per MULTI-seq dataset (dots) with lineage information at different 1638 

steps of the filtering and clone calling pipeline (in library = cells with at least two 1639 

UMIs with more than one read each in all targeted libraries; in_endo_library = cells 1640 

with at least two UMIs with more than one read each in targeted libraries for 1641 

endogenous genes; in_transgene_library = cells with at least two UMIs with more 1642 

than one read each in targeted library for transgene target; with_useful_lin_info = 1643 

cells with a valid combination of alleles on any endogenous target and/or a valid 1644 

lineage barcode (uncut) on a transgenic target; in_clone = cells that could be 1645 

assigned to a high resolution clone). lt_types as in H. 1646 

J) Fraction of cells assigned to a high-resolution clone per tumor (dots) grouped by 1647 

MULTI-seq dataset considering only TME cells or only NB cells (right). lt_types as 1648 

in H. 1649 

K) Number of high-resolution clones per tumor (dots) grouped by MULTI-seq dataset 1650 

considering only TME or only NB cells (right). lt_types as in H. 1651 

L) Number of clones detected considering all cells (TME and NB) per individual tumor 1652 

(as in Fig. 3F for NB and TME cells separately). 1653 
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Fig. S6: Lineage-dependence of gene expression in zebrafish NB tumors. 1655 

A) UMAPs of NB cells taken from three example fish colored by the tumor location or 1656 

the clone-ID. Fish 17_5 and 08_2 had a ventral and lateral tumor each that show 1657 

clear separation on the UMAP as well as distinct clonal composition. Expression 1658 

scores of selected gene modules are shown as box- and jitter-plots. Inter-clone 1659 

expression differences are particularly strong for clones found in distinct tumor 1660 

locations. 1661 

B) Fraction of significantly different module expression scores between groups of 1662 

cells in four different comparisons. First pairwise differences between clones in a 1663 

single tumor (sub-)sample are shown (as in Fig. 4C). Comparison of one clone vs. 1664 

cells from all other clones in the same (sub-)sample show similar results. 1665 

Comparison between cells from the same clone found in different sub-locations of 1666 

the tumor shows overall lower differences. Comparisons between different clones 1667 

found in the same fish, but in ventral and lateral locations show overall larger 1668 

differences. 1669 
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Fig S7: Spatial transcriptomics of two lateral MYCN-tumors. 1671 

A) Light microscopic image of the section taken for Open-ST from tumor 1 as well as 1672 

scores for the indicated cell types in 5 µm spots, using cell type marker genes 1673 

derived from scRNA-seq data. 1674 

B) Expression score for NB gene expression modules in 5 µm spots across the tumor 1675 

section. 1676 

C) Light microscopic image of the section taken for Open-ST from tumor 2 as well as 1677 

scores for the indicated cell types in 5 µm spots, using cell type marker genes 1678 

derived from scRNA-seq data. 1679 

D) Expression score for all NB gene expression modules in 5 µm spots across the 1680 

tumor section. 1681 
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Fig S8: Spatial transcriptomics with lineage tracing. 1683 

A) UMAP of single cell transcriptomes derived from scRNA-seq from the same tumor 1684 

that was profiled with spatial transcriptomics. Cells are colored according to the 1685 

clone that they were assigned to. The barplot of fraction of cells from each clone 1686 

assigned to a given Louvain cluster shows that clones occupy different areas in 1687 

transcriptional space. Boxplots and jitter plots show the expression score for the 1688 

indicated modules per clone. 1689 

B) Comparison between number of cells in the scRNA-seq dataset that were 1690 

assigned to a clone (x-axis) and number of spatial spots, in which a clone-specific 1691 

sequence was found (y-axis) shows an overall agreement in the relative clone 1692 

sizes across both data modalities. 1693 

C) Spatial outline of the tumor section highlighting spots, in which lineage barcode 1694 

sequences representative of the indicated clones (derived from scRNA-seq data) 1695 

were found. Clones 1 to 6 were defined as large NB cell clones in the scRNA-seq 1696 

data and are also shown in Fig. 4G. The other clones shown here either had very 1697 

few NB cells or were completely composed of TME cells in the scRNA-seq data. 1698 

D) Heatmap showing spatial overlap of clones. The numbers indicate the number of 1699 

spots, in which at least one read for each of two clonal lineage barcodes was found. 1700 

The diagonal shows the total number of spots in which at least one lineage barcode 1701 

of a particular clone was found. Most clones overlap in space to a certain extent 1702 

with differences between clone pairs, e.g. almost 80 % of all spots with clone 6 1703 

labels also have a clone 1 label; in contrast, only about 20 % of all spots with clone 1704 

4 labels also have a clone 1 label and clone 4 and clone 6 have little overlap in 1705 

space. 1706 
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 1708 
Fig S9: Association of NB gene expression program activation with presence of 1709 

TME cell types in spatial transcriptomics and scRNA-seq data. 1710 

A) Co-localization of NB cells expressing distinct modules and TME cell types in 1711 

spatial transcriptomics: Correlation of activation of NB gene expression programs 1712 

and scores for TME cell types in spots that are directly neighboring each other (left) 1713 

or that are found in a slightly larger neighborhood (right). Spots directly neighboring 1714 

each other (6 µm) have an average of 6.53 neighbors, while the larger 1715 

neighborhood (20 µm) contains an average of 56.69 neighbors for one spot. 1716 

B) Spatial distribution of module expression relative to the tumor border for three 1717 

modules (ribosomal_genes, catecholamine_production, muscle_process). The 1718 

tumor border was defined from the microscopic image and is indicated in orange, 1719 

green or blue depending on tumor region. Next to expression scores on the tissue 1720 

section, spots are plotted according to their distance from the tumor border and 1721 

their expression of a given module. Ribosomal_genes expression is positively 1722 

correlated with distance from the border, catecholamine_production is inversely 1723 

correlated with it and muscle_process doesn’t show a systematic association. 1724 

C) Co-occurrence of NB cells in a specific state and individual TME cell types in 1725 

scRNA-seq data: Heatmap showing t-values of association of fraction of TME cells 1726 

with expression of modules representative of immune / blood cells (rows) and 1727 

fraction of NB cells expressing NB modules (columns) in a generalized linear 1728 

model considering the dataset, dissociation method and tumor location as 1729 

covariates. Only modules with at least one significant association after correction 1730 

for multiple testing are shown. Association of interferon signaling activation in NB 1731 

cells and immune cells expressing macrophage-like programs is highlighted as an 1732 

example of putative functional association (see scatterplot in E). 1733 

D) Heatmap showing t-values of association of fraction of TME cells expressing 1734 

modules representative of stromal cells (rows) and fraction of NB cells expressing 1735 

NB modules (columns) in a generalized linear model (as in C). Only modules with 1736 

at least one significant association are shown. 1737 

E) Scatter plot showing fraction of NB cells expressing the module 1738 

interferon_signaling and fraction of TME cells expressing the module 1739 

‘Macrophages_GPCR’ per tumor (top) shows a visible association of the two 1740 

values. Tumors are colored by dissociation protocol used and shaped according 1741 

to the tumor location. Association of TME cells expressing the module 1742 

‘Epithelial_krt93’ and NB cells with immature_neuronal activation looks less clear 1743 

(bottom). 1744 
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Fig S10: Tumor cell allogeneic transplantation and scRNA-seq of allograft tumors. 1746 

A) Example images of fluorescent tumor cells (mCherry- and GFP-channels overlaid 1747 

on the light microscopic image) in host fish from 1 day post transplantation (dpt) to 1748 

2.5 months post transplantation (mpt). 1749 

B) H&E-stained sagittal section of a 3 months old host fish with graft tumors. The 1750 

insets highlight (1) a large lateral tumor mass close to the superior cervical 1751 

ganglion and (2) tumor cell foci along the gills. 1752 

C) UMAPs of all cells from all timepoints colored by sampling time point, showing that 1753 

a large population of putative NB cells from the early and late allograft stage cluster 1754 

together with primary tumor NB cells. 1755 

D) Dotplot showing top four marker genes determined by differential expression for 1756 

each cell type in the dataset with cells from all timepoints (shown in C). 1757 

E) Detection of NB-clone-specific lineage barcodes (derived from primary tumors) in 1758 

cells of late allograft tumors in two separate experiments, in which data from all 1759 

three timepoints was collected (primary tumor, early allograft, late allograft). Mainly 1760 

graft cells identified as NB cells based on gene expression were assigned to 1761 

primary tumor clones, while relatively few other cell types carried lineage barcodes 1762 

also found in the primary tumor. 1763 

F) Module detection in late allograft tumors. Heatmap and T-SNE showing modules 1764 

detected in the analysis of individual late allograft tumors plotted according to their 1765 

pairwise correlation to each other (Pearson). Modules in the heatmap are 1766 

annotated by the individual late graft tumor sample they were derived from (color 1767 

legend in top row) and by the consensus module they were assigned to after 1768 

clustering with HDBScan (color legend on the left side). Modules in the T-SNE are 1769 

colored according to the consensus module they were assigned to after clustering 1770 

with HDBScan. Modules that were not assigned to any consensus module are 1771 

labelled NA and colored in grey. 1772 

G) Summary of final list of modules derived from the primary tumor samples, the 1773 

human adrenergic and mesenchymal gene signatures and the modules derived 1774 

from early graft NB cells (modules with prefix ‘eAs’) or late graft tumors (modules 1775 

with prefix ‘lAs’). Jaccard index shows gene content overlap for all modules. 1776 
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Fig. S11: Clonal dynamics and gene module expression changes across 1778 

allografting timepoints 1779 

A) Heatmaps of all cells from one tumor (columns) that passed filtering for at least 1780 

one target gene versus alleles (for transgene) or allele combinations (for 1781 

endogenous targets) from all target genes (rows). Alleles are colored by the clone 1782 

they are definitive of left of the heatmap. Alleles that did not pass filtering are shown 1783 

in grey. Cells that could unambiguously be assigned to a single clone are 1784 

highlighted in orange (left heatmap) or blue (right heatmap). The left heatmap 1785 

represents clone calling, which maximizes resolution in the assignment of cells to 1786 

clones. This leads to the exclusion of cells, which only carry lineage barcodes that 1787 

were created early, in favor of splitting subgroups of this population into smaller 1788 

clones based on lineage barcodes created later (black boxes). The heatmap on 1789 

the right shows the result of lower resolution clone calling as used for the analyses 1790 

in Fig. 5 and 6. Here, retaining the large group of cells excluded in the high-1791 

resolution analysis is favored (black box). Many cells are placed into one clone 1792 

regardless of the additional lineage barcodes they may have obtained later. 1793 

B) Clonal dynamics for one experiment with cells from all three timepoints (primary 1794 

tumor, early allograft, late allograft). Barplot shows composition of primary tumors, 1795 

early graft samples and late graft tumors by clone. Very small clones were grouped 1796 

(‘summed_small_clones’). Cells that could not be assigned to a clone, but to a 1797 

primary tumor fish of origin are shown in black (‘fish_def_lineage_info’). Cells that 1798 

only carry lineage barcodes that are ambiguous in terms of their origin are shown 1799 

in dark grey (‘ambiguous_lineage_info’). Cells with only uncut lineage reads or 1800 

lacking lineage info entirely are shown in lighter grey hues. Left UMAP shows cells 1801 

colored according to fish of origin (for primary tumors) or assigned fish of origin 1802 

(for graft samples) and sampling time point (PTs = primary tumor, eA = early 1803 

allograft, lA = late allograft). Right UMAP shows cells colored according to 1804 

clone/fish of origin (for primary tumors) or assigned clone/fish of origin (for graft 1805 

samples) and sampling time point. 1806 

G) Fraction of cells per clone and time point that express a given module. Each dot 1807 

shows a clone in a specific time point and groups of cells from the same clone in 1808 

different time points are connected via lines (as in Fig. 6A). 1809 

C) Differential module expression scores for comparisons between cells from one 1810 

clone found in two different time points (as indicated above the plots) with the blue 1811 

bars indicating the median. Summary plot on the right shows median values of 1812 

differential expression for each timepoint and module. 1813 

D) Scatterplots as in Fig. 4F for early allograft (left) and late allograft (right) timepoints. 1814 

Plots show median inter-clone difference in module expression (between clones 1815 

within one early allograft sample or late allograft tumor) and median intra-clone 1816 

variance for cells from individual clones found in one early or late graft sample. 1817 
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