1	The novel MuRF2 target SNX5 regulates PKA activity through stabilization of RI- $\!\alpha$ and
2	controls myogenic differentiation
3	
4	Ning Li ^{1,2} , Jida Hamati ³ , Yi Li ^{1,3} , Björn Brinschwitz ^{1,2} , Mohamed Ghait ^{1,2} , Elisa Martin ^{1,2} ,
5	Dörte Lodka ³ . Elke Hammer ^{1,4} . Britta Fielitz ^{1,2} . Uwe Völker ^{1,4} . Gunnar Dittmar ^{5,6} . Thomas

Sommer^{7,8,9}, Friedrich C. Luft³, Jens Fielitz^{1,2,3*}

Supplementary Methods

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Cell culture experiments

COS-7 cells (ATCC, CRL-1651) and HEK293 cells (ATCC, USA; CRL-1573) were cultured in Dulbecco's Modified Eagle Medium (DMEM, 4.5g/L glucose, GibcoTM, Thermo Fisher Scientific, USA) supplemented with 10% fetal bovine serum (FBS), 2 mM glutamine, 1 U/ml penicillin, and 1 µg/ml streptomycin (all from Sigma-Aldrich, Germany) at 37°C in a 5% CO₂ atmosphere. C2C12 cells (ATCC, USA, CRL-1772) were cultivated in growth medium (GM; DMEM, 1g/l glucose, PAN-Biotech, Germany) supplemented with 10% FBS, 2 mM glutamine, 1 U/ml penicillin, and 1 µg/ml streptomycin (all from Sigma-Aldrich, Germany). For differentiation, C2C12 myoblasts at 80% confluency were transferred to differentiation medium (DM; DMEM, 1g/L glucose, 2% FBS, 2 mM glutamine, 1 U/ml penicillin, and 1 μg/ml streptomycin (all from Sigma-Aldrich, Germany) for indicated time points with daily medium exchange. Following chemicals were used to treat cells: cycloheximide (100 µg/ml, CHX), chloroquine (50 µM, CO), dibutyryl cyclic adenosine monophosphate (1 mM, Bt2cAMP) (all Sigma-Aldrich, Germany), MG132 (C2C12: 10 μM, COS-7: 25 μM, Merck, Germany), bafilomycin A1 (200 nM, BafA1, Cell Signaling, USA), phorbol 12-myristate 13-acetate (100 nM, PMA, InvivoGen, USA), recombinant myostatin (100 ng/ml, MSTN, Proteintech, UK), reconstitution buffer (4 mM HCl, 0.1% BSA).

Generation of cDNA expression plasmids and site directed mutagenesis

The coding sequences of *Trim55* (MuRF2), *Trim54* (MuRF3) and *Snx5* (SNX5) were amplified from mouse muscle cDNA by PCR using primer pairs containing restriction enzyme consensus sequences (primer sequences are shown in Table S1). cDNA expression plasmids were used as a template with specific primer pairs (shown in Table S4) to synthesize deletion mutants. To generate E3 ligase deficient *Trim55* and *Trim63* cDNA expression plasmids cysteine residues Cys42 and Cys50 in MuRF2 and MuRF3 RING-finger domains were mutated

into serine residues using the Phusion™ site-directed mutagenesis kit (Thermo Fisher Scientific, USA). Primers were designed according to the manufacturer's protocol (Table S4). SNX5 lysine-to-arginine mutants were generated by using the QuikChange II site-directed mutagenesis kit (Agilent Technologies, USA) with primers that were designed according to the manufacturer's protocol (Table S4). cDNA expression plasmids were sequence verified.

Transfection

COS-7 and HEK293 cells were transfected using FuGENE-6 (Roche, Switzerland) according to the manufacturer's recommendations. Lipofectamine and PLUS[™] reagent (both Invitrogen, USA) were used to transfect cDNA expression plasmids into C2C12 cells according to the manufacturer's protocol. For siRNA transfection, non-target (NT)-siRNA (D-001810-10-05) and SNX5-siRNA (J-060939-09-1101) were transfected into C2C12 cells with Dharmafect3 (all from Dharmacon, USA) according to the manufacturer's protocol.

Retrovirus production and transduction of C2C12 cells

The coding sequence of *Snx5* were PCR amplified (Primers are shown in Table S5) and subcloned into a retroviral expression plasmid (pMP71-IRES-GFP). Plat-E cells (Platinum-E, Cell Biolabs, USA) that were used for retrovirus generation, were cultured in Eagle's Minimum Essential (EME) medium (4.5 g/l glucose, 10 % FBS, 1% penicillin and streptomycin, 1 μg/ml puromycin, 10 μg/ml blasticidin S (all from Sigma-Aldrich, Germany)) in a humidified 5% CO₂ atmosphere at 37°C. 16 μg of the retroviral constructs were transfected into Plat-E cells with 48 μg of polyethylenimine MAX (PEI "MAX", Polysciences, USA) according to the manufacturer's protocol. Retrovirus was isolated from cell culture supernatants 48 hours after transfection. Retrovirus was transduced into C2C12 cells using 5 μg/ml polybrene (Santa Cruz, USA) and spinoculation at 800xg for 90 min at 32°C.

RNA isolation, cDNA synthesis and quantitative real-time PCR

Total RNA was isolated from skeletal muscle or cultured cells using TRIzol® Reagent

(Invitrogen, USA) according to the manufacturer's protocol. cDNA synthesis of 1 μg of RNA per sample was carried out by using the SuperScript® First-Strand Synthesis System (Invitrogen, USA). Quantitative real-time polymerase chain reaction (qRT-PCR) was performed using Power SYBR® Green PCR Master Mix (Applied Biosystems, USA) and self-designed primers (for primer sequences see Table S6), in a Step-One Plus or a QuantStudio 3 thermocycler (both Applied Biosystems, USA) as described recently using a cDNA standard curve [1, 2]. Gene expression was normalized to the stably expressed glyceraldehyde-3-phosphate dehydrogenase (*Gapdh*).

Immunostaining of myoblasts and myotubes in vitro

For immunofluorescence microscopy cells were cultured in IBIDI slides (Ibidi GmbH, Germany), fixed with 4% paraformaldehyde (pH 7.0; 15 min, room temperature), permeabilized with 0.2% Triton X-100 in PBS for 30 min at room temperature, blocked with 5% goat serum (Dako, Germany) for 1 hour at room temperature corresponding to the primary antibodies host and incubated with specific primary antibody overnight at 4°C. After washing with PBS containing 0.2% Tween20 (Carl Roth, Germany), cells were incubated with fluorescent secondary antibody for 1 hour at room temperature in a dark environment. Stained cells were embedded in ProLong Gold® Antifade Reagent that contained DAPI for nuclei staining (Invitrogen, USA). Pictures were taken with a Keyence microscope (BZ-X810, Keyence, Japan) and the Zeiss confocal laser scanning microscope (LSM 980 with Airyscan 2, Carl Zeiss Inc., Germany), and analyzed with BZ-X800 Analyzer (Keyence, Japan) and analysis software (Zen v. 3.3.89, Carl Zeiss Inc., Germany), respectively. Myogenic differentiation index was calculated as the percentage of nuclei in fast MyHC positive myotubes related to the total number of nuclei per field of view. The fusion index was calculated as the percentage of nuclei number in fast MyHC positive myotubes.

Protein extraction and immunoblotting

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

Protein analyses were performed as recently published [1]. Shortly, cells were lysed in radioimmunoprecipitation assay (RIPA) buffer (50 mM Tris HCl, pH 7.5, 150 mM NaCl, 0.5% (w/v) sodium-deoxycholate, 1% (v/v) nonident P-40, 1 mM EDTA (ethylenediaminetetraacetic acid), 0.2% (w/v) sodium dodecyl sulfate (SDS)) containing protease (cOmplete, Roche, Germany) and phosphatase (1 mM Na₃VO₄, 1 mM phenylmethylsulfonyl fluoride, PhosSTOP (Roche, Germany)) inhibitors at 4°C. Lysates were cleared by centrifugation (4°C, 10 min, 12,000xg). The supernatant was assayed for protein concentration using the Bradford protein assay (Bio-Rad Laboratories, USA), frozen and stored at -80°C until usage. Proteins were separated by 10% sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) and blotted onto nitrocellulose membranes (NC; Amersham Pharmacia Biotech, UK). Membranes were blocked with 5% BSA or 5% dry milk in Tris-buffered saline with 0.1% Tween20 (TBST), then incubated with primary and secondary antibodies as indicated and the signal was visualized with the ChemiDocTM MP Imaging System (Bio-Rad Laboratories, USA). The ImageLabTM 6.0.1 software (Bio-Rad Laboratories, USA) was used for image analysis. Protein sample preparation for affinity purification followed by MS analysis: Cells were grown in 6-well plates or T75 cell culture flasks, and harvested using lysis buffer (10 mM TRIS, 150 mM NaCl, 100 ng/ml cOmplete). Following three freeze&thaw cycles cell membranes were destroyed using a syringe (needle size Ø 0.40 x 20 mm). The supernatant was precleared by low speed centrifugation (10 min, 300xg); resulting supernatants were subjected to high speed centrifugation (20 min, 50,000xg). The clear middle phase was collected for Nickel-NTA (Thermo Fisher Scientific, USA) pull-down and subsequent MS analysis. Protein sample preparation for mass spectrometry analysis of SNX5-enriched endosomes: Cell membranes were destroyed using a syringe (needle size Ø 0.40 x 20 mm) in homogenization buffer (250 mM sucrose, 3 mM imidazole, 1 mM EDTA, 0.03 mM cycloheximide, cOmplete and phosphatase inhibitor cocktail 1 and 2) to isolate the post-nuclear supernatant (PNS), in which endosomes are maintained. The SNX5-coated endosomes were purified from PNS using PierceTM Protein A/G Agarose (Thermo Fisher Scientific, USA) that was pre-coated with anti-SNX5 antibody overnight at 4°C. Subsequently, SNX5-precipitates were subjected to MS analysis or to other indicated assays. *For nucleus and cytoplasm fractionation:* All preparations were performed on ice. Cytoplasm fractions were obtained from the PNS as indicated. Next, nuclear proteins were isolated in NE-PERTM Nuclear Extraction Reagents (Thermo Fisher Scientific, USA). Nuclei pellets separated from the PNS isolation were resuspended in nuclear lysis buffer for 30 min, 4°C and cleared by centrifugation (4°C, 10 min, 12,000xg).

Affinity purification and coimmunoprecipitation

Proteins were isolated from transfected cells using lysis buffer (50 mM potassiumphosphate buffer (KH₂PO₄ (pH 4.0)/K₂HPO₄ (pH 9.3)), 150 mM NaCl, cOmplete, 0.2%
TritonX-100, pH7.4). 10% of cell lysates were used for input controls. Nickel-NTA and antiFLAG M2 Affinity Gel (Sigma-Aldrich, Germany) were used to precipitate His- and FLAGtagged proteins, respectively. Proteins from input control and precipitates were subjected to
Western blot analysis with the indicated antibodies. *Sample preparation for proteinase K and*PNGase F digestion: The SNX5-coated endosomes were purified from PNS using PierceTM
Protein A/G Agarose that was pre-coated with anti-SNX5 antibody overnight at 4°C. SNX5precipitates were subjected to proteinase K (New England Biolabs, Germany) digestion.
Afterwards, proteinase K was inactivated by 1 hour of PMSF (Sigma-Aldrich, Germany)
treatment. SNX5-precipitates were subjected to PNGase F (New England Biolabs, Germany)
as indicated referring to the manufacturer's protocol.

Cycloheximide chase and Ubiquitination assays

Protein stability assays were performed by exposing transfected cells to cycloheximide (CHX, $100 \mu g/ml$) to inhibit protein synthesis. Proteins were isolated at indicated time points and analyzed by Western blot analyses with indicated antibodies. All CHX experiments were

performed independently and at least twice using biological duplicates each. Representative Western blots and their densitometric analyses are shown.

In vitro ubiquitination assays were performed as recently published [1]. Briefly, COS-7 cells were transfected as indicated for 48 hours. Prior to harvesting, cells were treated with either vehicle (0.25% DMSO) or the proteasome inhibitor MG132 (25 μM) for 6 hours. Cells were lysed in lysis buffer (50 mM potassium-phosphate buffer (KH₂PO₄ (pH 4.0)/K₂HPO₄ (pH 9.3)), 150 mM NaCl, cOmplete, 25mM N-Ethylmaleimide (NEM, Sigma-Aldrich, Germany), 0.2% TritonX-100, pH7.4) and 10% of the lysates were used for input controls. Lysates were immunoprecipitated (IP) with anti-FLAG M2 affinity gel overnight at 4°C. Proteins from input control and precipitates were subjected to Western blot analyses with the indicated antibodies.

Cell fractionation and PKA assays

Sucrose gradient (30%, 40%, 50%, 60% sucrose) fractionation was performed from 400 µl PNS by ultracentrifugation at 130,000xg for 3 hours at 4°C. Nine fractions were collected for Western blot analyses with indicated antibodies. Endosome enriched fractions were isolated from PNS by ultracentrifugation at 120,000xg for 1 hour at 4°C. The supernatant was collected as the cytosol fraction. The membrane-containing pellet was washed with ice cold PBS and resuspended in RIPA buffer. Proteins from the isolated fractions were analyzed by Western blot analyses with indicated antibodies.

PKA activity was measured using the PKA Colorimetric Activity Kit (Thermo Fisher Scientific, USA) according to the manufacturer's instruction.

Cross-linking experiments

Cross-linking experiments were performed according to a previously published protocol [3]. Briefly, after treatment, cells were harvested in lysis buffer (20mM, pH7.5 HEPES-KOH, 10 mM KCl, 1.5 mM MgCl₂, 1 mM EDTA, 1 mM EGTA (ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid), and 320 mM sucrose). Following centrifugation, the

supernatant and the pellet were diluted in CHAPS ((3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate)) buffer (20mM, pH7.5 HEPES-KOH, 5 mM MgCl₂, 0.5 mM EGTA, 0.1 mM PMSF and 0.1% CHAPS) and then incubated with non-cleavable disuccinimidyl suberate (DSS, 4 mM, Thermo Fisher Scientific, USA) for 30 min at 4°C. After resuspension in Laemmli buffer (Bio-Rad Laboratories, USA), proteins were analyzed by immunoblotting.

ChIP-qRT-PCR

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

Chromatin immunoprecipitation (ChIP) assay was performed according to the manufacturer's protocol using the CUT&RUN Assay Kit (Cell Signaling, USA). Briefly, fixed C2C12 cells were incubated with concanavalin A-coated magnetic beads and permeabilization was performed with digitonin (0.05%)-containing buffer. Afterwards, cells were incubated with anti-MEF2D antibody (1 µg) or anti-tri-methyl-histone H3 (Lys4) (clone C42D8) antibody (0.5 μg) and rabbit IgG antibody (negative control for anti-MEF2D, 1 μg) or rabbit isotype specific IgG antibody (negative control for anti-Histone H3, 0.5 μg) overnight at 4°C. The cell-beadantibody slurry was incubated with protein A/G-MNase (Protein A and Protein G IgG binding domains fused to micrococcal nuclease) for 1 hour at 4°C. CUT&RUN fragments were released by incubation for 10 min at 37°C followed by centrifugation for 5 min at 16,000xg. Reverse crosslinking of released CUT&RUN fragments was performed in 10% SDS and proteinase K (20mg/ml) at 65°C overnight. An input sample was digested with proteinase K (20 mg/ml) and RNase A at 55°C for 1 hour. Afterwards, the input sample was sonicated (Bioruptor Pico, Diagenode, Belgium) for 35 cycles (30sec ON/ 30 seconds OFF) at 4°C. qPCR with selfgenerated primers for MEF2D and company provided primers for Histone H3 (Table S4) was used to determine changes in DNA amounts.

Antibodies

Following antibodies were used: mouse anti-GAPDH (clone 6C5), rabbit anti-Myc

(both from Merck, Germany), rabbit anti-FLAG, mouse anti-HA, rabbit anti-RI-α, rabbit anti-PKA catalytic subunit, rabbit anti-phospho-CREB (Ser133), rabbit anti-CREB (48H2), rabbit anti-HDAC4, anti-mouse IgG HRP linked, anti-rabbit IgG HRP linked (all from Cell Signaling, USA), mouse anti-Myc, mouse anti-myosin (slow, NOQ7), mouse anti-myosin (fast, My32), mouse anti-myogenin (all from Sigma-Aldrich, Germany), rabbit anti-SNX5, rabbit anti-Myostatin (GDF8), rabbit anti-RAB5 (RAB5A) (all from Proteintech, UK), rabbit anti-LaminB1, rabbit anti-Histone H3 (both from Abcam, UK), mouse anti-MEF2D, mouse anti-EEA1, mouse anti-LAMP1 (all from BD Biosciences, USA), rabbit anti-MuRF2, rabbit anti-MuRF3 (own production[2]), anti-mouse Alexa Fluor®488, anti-rabbit Alexa Fluor®488, anti-mouse Alexa Fluor®555, anti-rabbit Alexa Fluor®647 (all from Life Technologies, USA).

Mass spectrometric analysis

Determination of MuRF3 interaction partners: precipitates containing MuRF3 and protein-interaction partners were resuspended in 100 μl denaturation buffer (10mM HEPES, pH 8.0, 6M urea, 2M thiourea). Disulfide bonds were reduced with 10 mM tris(2-carboxyethyl) phosphine (TCEP) and cysteine groups were alkylated with 55 mM 2-chloroacetamide (CAA). The proteins were digested with Lys-C overnight. Peptides were extracted, desalted and stored on reversed-phase (C18) StageTips [4]. The SILAC labelled IP pairs were mixed prior to the MS analysis. High throughput LC-MS/MS analysis: After Stage-Tip extraction, the eluted peptides were lyophilized and resuspended in 3% trifluoroacetic acid/5% acetonitrile. Peptides were separated on a Proxeon nLC-II system (Thermo Fisher Scientific, USA), resolved with a reversed-phase column (Dr. Maisch GmbH C18) by a gradient from 4 to 42% acetonitrile in 240 min. MS and MS/MS spectra were recorded on a QExactive mass spectrometer (Thermo Fisher Scientific, USA). The mass spectrometer was operated in a data-dependent acquisition mode with dynamic exclusion enabled (30s). Survey scans (mass range 300-1500 Th) were

acquired at a resolution of 70,000, with the twenty most abundant multiply charged ($z \ge 2$) ions selected with a 3-Th isolation window for HCD fragmentation. MS/MS scans were acquired at a resolution of 35,000 and injection time of 120ms, ACG 10e5. Processing of mass spectrometry data: protein and peptide quantitation information were extracted from MaxQuant 1.2.2.5 [5]. Results were filtered to 1% false discovery rate (FDR) at peptide and protein level by MaxQuant. Variable modifications were set to oxidation of methionines and fixed modifications were set to carbamidomethylation of cysteines. The SILAC parameters were set to light and heavy labelling on lysine (+8Da). Additionally, the match between runs and the requantify option were activated. Further analysis was performed using the R-statistical language (www.R-project.org). Determination of proteins contained in SNX5 precipitates: Sepharose with precipitated SNX5 and interacting proteins were reconstituted in 30 µl Tris-HCl buffer (pH 8.0, 50 mM) containing 10 mM dithiotreitol (DTT) and 2% SDS. Samples were heated at 95°C for 5 min and the protein containing supernatant was collected after centrifugation (5 min, 13,800xg). Ten µl sample was subjected to a bead based SP3 protocol applied for protein digestion and peptide purification [6]. The resulting peptides were separated by Liquid chromatography (LC; Ultimate 3000, Thermo Electron, Germany) before datadependent acquisition of MS data on a Q Exactive Plus mass spectrometer (Thermo Electron, Germany). MS data were analyzed in Proteome discoverer 2.3 (Thermo Electron, Germany). Cysteine carbamidomethylation was set as static modification, oxidation at methionine and acetylation at protein N-terminus were defined as variable modifications, and up to two missed cleavages were allowed. Proteins were only considered for further analyses, when identified by at least one unique peptide (FDR<0.05). Further details are provided in Table S7. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE [7] partner repository with the dataset identifiers PXD058900 (MuRF3 interaction partners) and PXD057619 (proteins contained in SNX5 precipitates).

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

233 References for Supplementary Methods section

- 1. Li Y, Dormann N, Brinschwitz B, Kny M, Martin E, Bartels K, et al. SPSB1-mediated
- inhibition of TGF-beta receptor-II impairs myogenesis in inflammation. J Cachexia Sarcopenia
- 236 Muscle. 2023;14:1721-36.
- 237 2. Lodka D, Pahuja A, Geers-Knorr C, Scheibe RJ, Nowak M, Hamati J, et al. Muscle
- 238 RING-finger 2 and 3 maintain striated-muscle structure and function. J Cachexia Sarcopenia
- 239 Muscle. 2016;7:165-80.
- 240 3. Fernandes-Alnemri T, Wu J, Yu JW, Datta P, Miller B, Jankowski W, et al. The
- pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death
- via caspase-1 activation. Cell Death Differ. 2007;14:1590-604.
- 243 4. Rappsilber J, Mann M, Ishihama Y. Protocol for micro-purification, enrichment, pre-
- fractionation and storage of peptides for proteomics using StageTips. Nat Protoc. 2007;2:1896-
- 245 906.

255

- 246 5. Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized
- p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol.
- 248 2008;26:1367-72.
- 249 6. Sielaff M, Kuharev J, Bohn T, Hahlbrock J, Bopp T, Tenzer S, et al. Evaluation of
- FASP, SP3, and iST Protocols for Proteomic Sample Preparation in the Low Microgram Range.
- 251 J Proteome Res. 2017;16:4060-72.
- 252 7. Perez-Riverol Y, Bai J, Bandla C, Garcia-Seisdedos D, Hewapathirana S,
- 253 Kamatchinathan S, et al. The PRIDE database resources in 2022: a hub for mass spectrometry-
- based proteomics evidences. Nucleic Acids Res. 2022;50:D543-D52.

Supplementary References

- S1. Lange S, Xiang F, Yakovenko A, Vihola A, Hackman P, Rostkova E, et al. The kinase
- domain of titin controls muscle gene expression and protein turnover. Science. 2005;308:1599-

- 259 603.
- S2. Witt CC, Witt SH, Lerche S, Labeit D, Back W, Labeit S. Cooperative control of striated
- muscle mass and metabolism by MuRF1 and MuRF2. EMBO J. 2008;27:350-60.
- S3. Willis MS, Wadosky KM, Rodriguez JE, Schisler JC, Lockyer P, Hilliard EG, et al. Muscle
- 263 ring finger 1 and muscle ring finger 2 are necessary but functionally redundant during
- developmental cardiac growth and regulate E2F1-mediated gene expression in vivo. Cell
- 265 Biochem Funct. 2014;32:39-50.
- S4. Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, et al. Identification of
- ubiquitin ligases required for skeletal muscle atrophy. Science. 2001;294:1704-8.
- S5. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, et al. Stable
- 269 isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to
- expression proteomics. Mol Cell Proteomics. 2002;1:376-86.
- S6. Mann M. Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol.
- 272 2006;7:952-8.
- S7. Kvainickas A, Jimenez-Orgaz A, Nagele H, Hu Z, Dengjel J, Steinberg F. Cargo-selective
- 274 SNX-BAR proteins mediate retromer trimer independent retrograde transport. J Cell Biol.
- 275 2017;216:3677-93.
- S8. Pan T, Gao S, Cui X, Wang L, Yan S. APC/CCDC20 targets SCFFBL17 to activate
- 277 replication stress responses in Arabidopsis. Plant Cell. 2023;35:910-23.
- 278 S9. Da Graca J, Morel E. Canonical and Non-Canonical Roles of SNX1 and SNX2 in
- Endosomal Membrane Dynamics. Contact (Thousand Oaks). 2023;6:25152564231217867.
- 280 S10. Kwon SH, Oh S, Nacke M, Mostov KE, Lipschutz JH. Adaptor Protein CD2AP and L-
- type Lectin LMAN2 Regulate Exosome Cargo Protein Trafficking through the Golgi Complex.
- 282 J Biol Chem. 2016;291:25462-75.
- S11. Grade CVC, Mantovani CS, Alvares LE. Myostatin gene promoter: structure, conservation
- and importance as a target for muscle modulation. J Anim Sci Biotechnol. 2019;10:32.

SNX5 REGULATES PKA ACTIVITY IN MUSCLE

- S12. Moriscot AS, Baptista IL, Bogomolovas J, Witt C, Hirner S, Granzier H, et al. MuRF1 is
- a muscle fiber-type II associated factor and together with MuRF2 regulates type-II fiber
- trophicity and maintenance. J Struct Biol. 2010;170:344-53.
- S13. Otsuki T, Kajigaya S, Ozawa K, Liu JM. SNX5, a new member of the sorting nexin family,
- binds to the Fanconi anemia complementation group A protein. Biochem Biophys Res
- 290 Commun. 1999;265:630-5.
- 291 S14. Greig J, Bates GT, Yin DI, Briant K, Simonetti B, Cullen PJ, et al. CHC22 clathrin
- recruitment to the early secretory pathway requires two-site interaction with SNX5 and p115.
- 293 EMBO J. 2024 Oct;43(19):4298-4323.
- 294 S15. Hara S, Kiyokawa E, Iemura S, Natsume T, Wassmer T, Cullen PJ, et al. The DHR1
- domain of DOCK180 binds to SNX5 and regulates cation-independent mannose 6-phosphate
- 296 receptor transport. Mol Biol Cell. 2008;19:3823-35.
- 297 S16. Ghasemizadeh A, Christin E, Guiraud A, Couturier N, Abitbol M, Risson V, et al. MACF1
- 298 controls skeletal muscle function through the microtubule-dependent localization of extra-
- synaptic myonuclei and mitochondria biogenesis. Elife. 2021;10:e70490.
- 300 S17. Im SK, Jeong H, Jeong HW, Kim KT, Hwang D, Ikegami M, et al. Disruption of sorting
- nexin 5 causes respiratory failure associated with undifferentiated alveolar epithelial type I cells
- 302 in mice. PLoS One. 2013;8:e58511.
- 303 S18. Hierro A, Gershlick DC, Rojas AL, Bonifacino JS. Formation of Tubulovesicular Carriers
- from Endosomes and Their Fusion to the trans-Golgi Network. Int Rev Cell Mol Biol.
- 305 2015;318:159-202.
- 306 S19. Pizon V, Rybina S, Gerbal F, Delort F, Vicart P, Baldacci G, et al. MURF2B, a novel
- 307 LC3-binding protein, participates with MURF2A in the switch between autophagy and
- 308 ubiquitin proteasome system during differentiation of C2C12 muscle cells. PLoS One.
- 309 2013;8:e76140.
- 310 S20. Gupte RS, Weng Y, Liu L, Lee MY. The second subunit of the replication factor C

- 311 complex (RFC40) and the regulatory subunit (RIalpha) of protein kinase A form a protein
- complex promoting cell survival. Cell Cycle. 2005;4:323-9.
- 313 S21. Backs J, Worst BC, Lehmann LH, Patrick DM, Jebessa Z, Kreusser MM, et al. Selective
- 314 repression of MEF2 activity by PKA-dependent proteolysis of HDAC4. J Cell Biol.
- 315 2011;195:403-15.
- 316 S22. Lu J, McKinsey TA, Zhang CL, Olson EN. Regulation of skeletal myogenesis by
- association of the MEF2 transcription factor with class II histone deacetylases. Mol Cell.
- 318 2000;6:233-44.
- 319 S23. He T, Huang J, Chen L, Han G, Stanmore D, Krebs-Haupenthal J, et al. Cyclic AMP
- represses pathological MEF2 activation by myocyte-specific hypo-phosphorylation of HDAC5.
- 321 J Mol Cell Cardiol. 2020;145:88-98.

322

323

324

Supplementary Tables

Table S1. Primers crRNA targeting SNX5 and for generation of cDNA expression

325 plasmids.

Primer Name (restriction site)	Oligonucleotide sequence (5'-3')
SNX5-targeted crRNA	ACUGAAACAACGGAU
MuRF1 Flag for (EcoRI)	GCGAATTCGATTATAAATCTAGCCTGA
MuRF1 Flag rev (ApaI)	GCGGGCCCTCATTGGTGTTCTTCTTT
MuRF2 Flag for (ClaI)	GCATCGATAGCACTTCTCTGAATTACAAGTCTT
MuRF2 Flag rev (ApaI)	GCGGGCCCTTATTCATTTAGGGAATT
MuRF3 Flag for (EcoRI)	GCGAATTCAACTTCACGGTGGGTTTCAA
MuRF3 Flag rev (ApaI)	GCGGGCCCTCAGTGCAGGCCTGAGCCTTC
SNX5 His/Myc for (BamHI)	CGGGATCCATGGCCGCGGTTCCCGAGTT
SNX5 His/Myc rev (KpnI)	GGGGTACCGTTGTTCTTGAATAAGTCGATGCAGCTC

SNX5 REGULATES PKA ACTIVITY IN MUSCLE

SNX5 Flag for (ClaI)	CCATCGATGCCGCGGTTCCCGA
SNX5 Flag rev (XbaI)	GCTCTAGATCAGTTGTTCTTGAATAAGTCGATGC
MuRF1 His/Myc for (EcoRI)	CAGAATTCATGGATTATAAATCTAGCCTG
MuRF1 His/Myc rev (KpnI)	CTTGGTACCTTGGTGTTCTTCTTTACCCTC
MuRF2 His/Myc for (XhoI)	GACTCGAGATGAGCACTTCTCTGAATTAC
MuRF2 His/Myc rev (KpnI)	CTTGGTACCTTCATTTAGGGAATTCAACCAG
MuRF3 His/Myc for (XbaI)	TCTAGACTATGAACTTCACGGTGGGTTTCAA
MuRF3 His/Myc rev (KpnI)	GGTACCGTGCAGGCCTGAGCCTTCTGGCAC

				Ratio M/L Normalized	Ratio M/L Normalized MSC04526
Protein IDs	Protein Names	Gene Names	Uniprot	MSC04526	
	Transmembrane BAX inhibitor motif-containing		Q9D2C7;E0CX98;E0CXR0;		1,646E-16
		Ffr	Q3UVL4-1;Q3UVL4;Q3UVL		4,139E-07
IPI00830533;I		Tpm1	E9Q454;P58771-1;P58771 Q8K4J6-1;Q8K4J6;Q3U1I6		3,006E-09
	Myocardin-related transcription factor A Tumor suppressor p53	Mkl1 P53	P02340;O70366;Q549C9;		5,991E-06 8,696E-05
	AN1-type zinc finger protein 2A	Airap	Q9JII7;D3YUL0	3,425	5,317E-08
	DnaJ homolog subfamily A member 4	Dnaja4	Q9JMC3;Q8R1X2	3,402	6,639E-08
IPI00125140	Activity-regulated cytoskeleton-associated prote	Arc	Q9WV31	3,053	9,348E-04
	Cyclooxygenase-2	Cox2	Q05769;Q3UMR6;Q543K3	2,978	1,268E-03
		Hsp70a1	P17879;A1E2B8;Q61698	2,978	3,668E-05
	HCV NS5A-transactivated protein 9 homolog Alpha(B)-crystallin	Ns5atp9	Q9CQX4	2,873	1,925E-03
	Heat shock 25 kDa protein	Crya2 Hsp25	P23927;Q52L78;E9QMA0 P14602-1;P14602;Q545F4	2,867	6,884E-06 6,960E-06
	CCN family member 1	Ccn1	P18406;Q3TX21	2,848	8,171E-05
	CCN family member 2	Ccn2	P29268;Q91V29	2,825	9,599E-06
IPI00626662;I	Aldehyde dehydrogenase family 1 member A1	Ahd2	P24549	2,738	1,878E-05
	Dihydrolipoyl dehydrogenase	Dld	Q3TIE8;008749	2,730	3,319E-03
	CDK-interacting protein 1	Cdkn1a	P39689;Q4FK34;Q564P6	2,701	1,947E-04
	Nuclear distribution protein C homolog	Nudc	O35685;A2A9F5	2,615	8,901E-04
	SRY-box containing gene 9	Sox9	Q571J2;Q04887;B1AVH1;		5,525E-05
	DnaJ (Hsp40) homolog, subfamily B, member 1 RNA polymerase B transcription factor 3	Btf3	Q9QYJ3;Q3TIT6;Q3TU79;0 Q64152-1;Q64152;Q6415		3,624E-04 3,965E-04
IPI00313237,1		Grn	P28798;Q3TVQ3;Q3TW77		5,884E-03
IPI00124040	5	Ptrf	054724	2,547	4,601E-04
	NADH dehydrogenase [ubiquinone] 1 alpha subo		Q9DCJ5	2,537	6,646E-03
	Acyl-coenzyme A thioesterase 13	Acot13	Q9CQR4;Q4VA32	2,530	1,331E-03
	Heme oxygenase 1	Hmox1	P14901;Q3U5H8;Q3U5U6;		5,421E-04
	Basic transcription factor 3-like 4	Btf3l4	Q9CQH7;A2A7Z4;Q78IG7		1,595E-03
	Tissue inhibitor of metalloproteinases 3	Timp3	P39876;Q54AE5;Q6GXA7	2,487	1,161E-04
	DNA polymerase kappa DnaJ homolog subfamily B member 4	Dinb1 Dnaib4	Q9QUG2-1;Q9QUG2;Q5Q9 Q9D832	2,433 2,403	9,485E-03 2,393E-03
	Transcription elongation factor A protein-like 8		Q9CZY2	2,366	2,815E-03
IPI00421223		Tpm4	Q6IRU2	2,363	2,855E-03
	C9orf119 homolog	2900010J23Rik	Q8K3D3-2;Q8K3D3;Q8K3I		2,899E-04
IPI00111793;I	Entactin	Ent	P10493;Q3TKX9	2,326	1,350E-02
IPI00119202;I		S100a11	P50543	2,193	2,802E-03
	Transforming acidic coiled-coil-containing protein		Q6Y685-1;Q6Y685;Q6Y68		2,183E-02
	Inhibin beta A chain	Inhba	Q04998;Q3UXL8;Q3UY39;		6,891E-03
	Biphenyl hydrolase-like protein Heat shock protein 1 (Chaperonin 10)	Bphl Hspe1	Q8R164;Q3TDN8 Q64433;Q4KL76;Q9JI95	2,153 2,086	2,317E-02 9,122E-03
	Inosine triphosphate pyrophosphatase	Itpa	Q9D892;Q60I30;Q3U589	2,051	3,134E-02
	Sorting nexin-4	Snx4	Q91YJ2;Q80X54	2,035	1,112E-02
	Oligoribonuclease, mitochondrial	Rexo2	Q9D8S4;Q3T9B4;Q3TAV0		1,113E-02
		Opa1	P58281-2;P58281;Q8BK99		2,075E-03
IPI00125899;I		Ctnnb1	Q02248;Q3UZT7;Q80VE7;		1,172E-02
IPI00170101		Optn	Q8K3K8	2,018	3,444E-02
	Ferrochelatase, mitochondrial	Fech	P22315;Q3UC49;Q544X6;	1	2,703E-03
	Ubiquitin-fold modifier-conjugating enzyme 1 U1 small nuclear ribonucleoprotein 70 kDa	Ufc1 Snrnp70	Q9CR09 Q62376-1;Q62376;A2RS6	1,947 1,928	1,556E-02 4,433E-02
	DnaJ homolog subfamily A member 1	Dnaja1	P63037;Q3TK61;Q5NTY0;		1,005E-02
	Damage-specific DNA-binding protein 1	Ddb1	Q3U1J4;Q91YC8;Q3ULS8	1,897	4,828E-02
	3	Snx5	Q9D8U8;A2ANA4;Q3TJN6;		2,062E-02
IPI00830178;I		Amot	Q8VHG2-1;Q8VHG2;Q8VH		2,247E-02
		S100a6	P14069;Q545I9	1,845	1,300E-02
	Zinc finger protein 703	Znf703	POCL69	1,838	2,305E-02
		Ppt1	088531;Q3TAR8;Q3U6J9;		5,928E-03
	Acyl-CoA desaturase 1	Scd1	P13516;Q3UXG5;Q547C4; Q01237;Q6PB59;Q8BV96;		2,433E-02
	3-hydroxy-3-methylglutaryl-coenzyme A reduct Muscle-specific RING finger protein 2	Trim55	Q01237;Q6PB59;Q8BV96; O8C6Y1	1,806 1,804	2,586E-02 2,602E-02
IPI00073697		Cytsb	Q5SXY1-3;Q5SXY1;Q5SXY		2,647E-02
	AHNAK Nucleoprotein 2	Ahnak2	E9PYB0;Q3UUE0	1,754	3,096E-02
IPI00114209;I	Glutamate dehydrogenase 1, mitochondrial	Glud1	P26443;Q3TSQ7	1,732	2,034E-02
	Transient receptor potential cation channel subf		Q9JLV2-1;Q9JLV2;Q3TB80	1,692	3,805E-02
	Retinoid-inducible serine carboxypeptidase	Scpep1	Q920A5;Q9D625;Q99J29	1,686	3,882E-02
	Aldehyde dehydrogenase 2, mitochondrial, isofo		P47738;Q3TVM2;Q3U6I3;		2,685E-02
IPI00338785;I		Lamb-1	P02469;B9EKB0;E9QN70;		4,438E-02
	Caseinolytic peptidase B protein homolog Diaphanous-related formin-3	Clpb Diap3	E9PY58;Q3TXD4;Q3U3U6; Q9Z207;Q3TSX1;Q3UU77		1,571E-02 1,609E-02
	Translation initiation factor IF-2	Mtif2	Q5M6W6;Q91YJ5;Q5M6W		4,977E-02
	CTTNBP2 N-terminal-like protein	Cttnbp2nl	Q99LJ0;Q922L8	1,588	1,961E-02
	Protein disulfide isomerase-related protein	Pdia5	Q921X9;Q9CSM8	1,574	2,084E-02
IPI00135660		Sdpr	Q63918	1,555	2,273E-02
	Acetyl-CoA acyltransferase	Acaa2	Q8BWT1;Q3TIT9;Q3UKH3	1,548	4,000E-02
		Ifrd1	Q80XM4;P19182;E9Q949;		2,449E-02
	Vesicle amine transport protein 1 homolog (T ca		Q62465;Q3TXD3;Q3U331;		2,567E-02
IPI00116753 IPI00128671;I	Electron transfer flavoprotein subunit alpha, mit	Ccna2	Q99LC5;B1B1B4 P51943;Q8BRG1;D6RIK7	1,517 1,516	2,687E-02 2,694E-02
		Prdx5	P99029-1;P99029;Q3U7H		2,906E-02
	Mediator complex subunit 15	Med15	Q3TE00;E9Q7C1;Q6KAM1		3,358E-02
	TyrosinetRNA ligase	Yars2	Q8BYL4	1,432	3,847E-02
IPI00319830;I	Beta-II spectrin	Spnb2	Q62261-1;Q62261;Q8BQ3		3,858E-02
		Pitrm1	Q8K411-1;Q8K411;Q8K41	1,407	4,248E-02
	Flap endonuclease 1	Fen1	E9PYV9;Q3TGH6;Q8C5X6;	1	4,427E-02
		Dlg7	Q8K4R9-1;Q8K4R9;Q8K4F		4,775E-02
12111117311395.T.	Annexin A1	Anxa1	P10107;B7STB7;Q3U5N9;	1,373	4,877E-02

Accession Q9JLQ0	Protein name CD2-associated protein OS=Mus musculus OX=10090 GN=Cd2ap PE=1 SV=3	MB1 SNX vs Gapdh10 3024,58	MB2 SNX vs Gapdh11
Q9DBC7 Q9CWK8	cAMP-dependent protein kinase type I-alpha regulatory subunit OS=Mus musculus OX=10090 GN= Sorting nexin-2 OS=Mus musculus OX=10090 GN=Snx2 PE=1 SV=2	1906,24 1496,50	. 15: 5 530
P97793 Q91YL3	ALK tyrosine kinase receptor OS=Mus musculus OX=10090 GN=Alk PE=1 SV=2 Uridine-cytidine kinase-like 1 OS=Mus musculus OX=10090 GN=Uckl1 PE=1 SV=1	1493,39 1350,58	101; 7:
B1AVZ0 Q9QZQ1	Uracil phosphoribosyltransferase homolog OS=Mus musculus OX=10090 GN=Uprt PE=1 SV=1 Afadin OS=Mus musculus OX=10090 GN=Afdn PE=1 SV=3	1097,46 1097,03	. 225 1936
Q9D8U8 Q8R050	Sorting nexin-5 OS=Mus musculus OX=10090 GN=Snx5 PE=1 SV=1 Eukaryotic peptide chain release factor GTP-binding subunit ERF3A OS=Mus musculus OX=10090 G	830,60 790,76	261
Q99MR6 P97496	Serrate RNA effector molecule homolog OS=Mus musculus OX=10090 GN=Srrt PE=1 SV=1 SWI/SNF complex subunit SMARCC1 OS=Mus musculus OX=10090 GN=Smarcc1 PE=1 SV=2	763,33 751,59	3:
Q62188 Q9JJG0	Dihydropyrimidinase-related protein 3 OS=Mus musculus OX=10090 GN=Dpysl3 PE=1 SV=1 Transforming acidic coiled-coil-containing protein 2 OS=Mus musculus OX=10090 GN=Tacc2 PE=1	696,63 674,03	63:
P55194 Q5F226	SH3 domain-binding protein 1 OS=Mus musculus OX=10090 GN=Sh3bp1 PE=1 SV=3 Protocadherin Fat 2 OS=Mus musculus OX=10090 GN=Fat2 PE=1 SV=1	570,38 535,51	81: 180:
Q02105 P32261	Complement C1q subcomponent subunit C OS=Mus musculus OX=10090 GN=C1qc PE=1 SV=2 Antithrombin-III OS=Mus musculus OX=10090 GN=Serpinc1 PE=1 SV=1	484,01 452,50	683
P52430 Q6PAR5	Serum paraoxonase/arylesterase 1 OS=Mus musculus OX=10090 GN=Pon1 PE=1 SV=2 GTPase-activating protein and VPS9 domain-containing protein 1 OS=Mus musculus OX=10090 GN	396,00 320,22	720
Q62086 Q9WV80	Serum paraoxonase/arylesterase 2 OS=Mus musculus OX=10090 GN=Pon2 PE=1 SV=2 Sorting nexin-1 OS=Mus musculus OX=10090 GN=Snx1 PE=1 SV=1	316,25 289 30	44.
008638 06Z003	Myosin-11 OS=Mus musculus OX=10090 GN=Myh11 PE=1 SV=1	282,33	41:
19221 27TME2	Formin-binding protein 4 OS=Mus musculus OX=10090 GN=Fnbp4 PE=1 SV=2 Prothrombin OS=Mus musculus OX=10090 GN=F2 PE=1 SV=1 Sperm-associated antigen 5 OS=Mus musculus OX=10090 GN=Spag5 PE=1 SV=1	208,3	38
088783	Coagulation factor V OS=Mus musculus OX=10090 GN=F5 PE=1 SV=1	196,90	1 15
(80WV3 (99PM9	Carbohydrate sulfotransferase 2 OS=Mus musculus OX=10090 GN=Chst2 PE=2 SV=3 Uridine-cytidine kinase 2 OS=Mus musculus OX=10090 GN=Uck2 PE=1 SV=1	190,4. 186,24	26
(8C804 (9DCZ4	Spindle and centriole-associated protein 1 OS=Mus musculus OX=10090 GN=Spice1 PE=1 SV=2 MICOS complex subunit Mic26 OS=Mus musculus OX=10090 GN=Apoo PE=1 SV=2	172,34 170,49	. 17 1 22
9QWY8 2RSJ4	Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 1 OS=Mus musculus OX= UHRF1-binding protein 1-like OS=Mus musculus OX=10090 GN=Uhrf1bp1l PE=1 SV=2	150,44 145,76	. 16
52623 (3UYV9	Uridine-cytidine kinase 1 OS=Mus musculus OX=10090 GN=Uck1 PE=1 SV=2 Nuclear cap-binding protein subunit 1 OS=Mus musculus OX=10090 GN=Ncbp1 PE=1 SV=2	128,61 125,81	2
25976 27641	Nucleolar transcription factor 1 OS=Mus musculus OX=10090 GN=Ubtf PE=1 SV=1 X-ray repair cross-complementing protein 5 OS=Mus musculus OX=10090 GN=Xrcc5 PE=1 SV=4	115,65	1
4VBE8 67778	WD repeat-containing protein 18 OS=Mus musculus OX=10090 GN=Wdr18 PE=1 SV=1 Prohibitin OS=Mus musculus OX=10090 GN=Phb PE=1 SV=1	102,56	2
8R550	SH3 domain-containing kinase-binding protein 1 OS=Mus musculus OX=10090 GN=Sh3kbp1 PE=1 S	97,79	66
9DAW6 3UQI9	U4/U6 small nuclear ribonucleoprotein Prp4 OS=Mus musculus OX=10090 GN=Prpf4 PE=1 SV=1 Probable ubiquitin carboxyl-terminal hydrolase MINDY-4 OS=Mus musculus OX=10090 GN=Mindy4	93,5: 92,18	27
9R017 06684	YLP motif-containing protein 1 OS=Mus musculus OX=10090 GN=Ylpm1 PE=2 SV=2 Complement C5 OS=Mus musculus OX=10090 GN=C5 PE=1 SV=2	89,5; 78,7;	65
54276 9Q557	DNA mismatch repair protein Msh6 OS=Mus musculus OX=10090 GN=Msh6 PE=1 SV=3 Desmoplakin OS=Mus musculus OX=10090 GN=Dsp PE=1 SV=1	76,30 73.21	23
8K0V4 62191	CCR4-NOT transcription complex subunit 3 OS=Mus musculus OX=10090 GN=Cnot3 PE=1 SV=1 E3 ubiquitin-protein ligase TRIM21 OS=Mus musculus OX=10090 GN=Trim21 PE=1 SV=1	65,70 57-80	3
99KW3 4KWH5	TRIO and F-actin-binding protein OS-Mus musculus OX=10090 GN=Triobp PE-1 SV=3 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase eta-1 OS=Mus musculus OX=10090 GN	56,28 54,77	3:
08553 81157	1-pnospnatugvinositoi 4,5-bispnospnate pnospnodiesterase eta-1 OS=Mus musculus UX=10090 GF Dihydropyrimidinase-related protein 2 OS=Mus musculus OX=10090 GN=Dpysl2 PE-1 SV=2 Upstream-binding protein 1 OS=Mus musculus OX=10090 GN=Ubp1 PE=1 SV=1	54,7	5
91X43	SH3 domain-containing protein 19 OS=Mus musculus OX=10090 GN=Sh3d19 PE=1 SV=2	53,5.	
4U2R1 3TMW1	E3 ubiquitin-protein ligase HERC2 OS=Mus musculus OX=10090 GN=Herc2 PE=1 SV=3 Coiled-coil domain-containing protein 102A OS=Mus musculus OX=10090 GN=Ccdc102a PE=1 SV=2	49,51 48,71	. 28
70255 43275	Nuclear factor 1 C-type OS=Mus musculus OX=10090 GN=Nfic PE=1 SV=1 Histone H1.1 OS=Mus musculus OX=10090 GN=Hist1h1a PE=1 SV=2	48,04 47,88	
11103 9CQ49	Poly [ADP-ribose] polymerase 1 OS=Mus musculus OX=10090 GN=Parp1 PE=1 SV=3 Nuclear cap-binding protein subunit 2 OS=Mus musculus OX=10090 GN=Ncbp2 PE=1 SV=1	45,98 45,11	27
97386 9Z1N5	DNA ligase 3 OS=Mus musculus OX=10090 GN=Lig3 PE=1 SV=2 Spliceosome RNA helicase Ddx39b OS=Mus musculus OX=10090 GN=Ddx39b PE=1 SV=1	43,21	1 11
9DBR7 43247	Protein phosphatase 1 regulatory subunit 12A OS=Mus musculus OX=10090 GN=Ppp1r12a PE=1 SV DNA mismatch repair protein Msh2 OS=Mus musculus OX=10090 GN=Msh2 PE=1 SV=1	40,31	2
8C4Y3	Negative elongation factor B OS=Mus musculus OX=10090 GN=Nelfb PE=1 SV=2	38,35	
3U2K0 9JLC8	Protein FAM193B OS=Mus musculus OX=10090 GN=Fam193b PE=1 SV=2 Sacsin OS=Mus musculus OX=10090 GN=Sacs PE=1 SV=2	37,69 37,60	. 11
9DBD5 640N1	Proline-, glutamic acid- and leucine-rich protein 1 OS=Mus musculus OX=10090 GN=Pelp1 PE=1 SV Adipocyte enhancer-binding protein 1 OS=Mus musculus OX=10090 GN=Aebp1 PE=1 SV=1	37,61 36,99	26
01942 62159	Hemoglobin subunit alpha OS=Mus musculus OX=10090 GN=Hba PE=1 SV=2 Rho-related GTP-binding protein RhoC OS=Mus musculus OX=10090 GN=Rhoc PE=1 SV=2	34,96 34,69	; <u>1</u>
47757 91V81	F-actin-capping protein subunit beta OS=Mus musculus OX=10090 GN=Capzb PE=1 SV=3 RNA-binding protein 42 OS=Mus musculus OX=10090 GN=Rbm42 PE=1 SV=1	32,48 32,30	
91VZ6 08207	Stromal membrane-associated protein 1 OS=Mus musculus OX=10090 GN=Smap1 PE=1 SV=1 Protein S100-A10 OS=Mus musculus OX=10090 GN=S100a10 PE=1 SV=2	31,60 30,57	
39447 50518	Tight junction protein ZO-1 OS=Mus musculus OX=10090 GN=Tjp1 PE=1 SV=2	30,41	
8CGY8	V-type proton ATPase subunit E 1 OS=Mus musculus OX=10090 GN=Atp6v1e1 PE=1 SV=2 UDP-N-acetylglucosaminepeptide N-acetylglucosaminyltransferase 110 kDa subunit OS=Mus mus	28,2	
47753 810A7	F-actin-capping protein subunit alpha-1 OS=Mus musculus OX=10090 GN=Capza1 PE=1 SV=4 ATP-dependent RNA helicase DDX42 OS=Mus musculus OX=10090 GN=Ddx42 PE=1 SV=3	27,3: 26,0!	11
97384 33215	Annexin A11 OS=Mus musculus OX=10090 GN=Anxa11 PE=1 SV=2 Protein NEDD1 OS=Mus musculus OX=10090 GN=Nedd1 PE=1 SV=2	25,53 24,83	
9CWN7 02088	CCR4-NOT transcription complex subunit 11 OS=Mus musculus OX=10090 GN=Cnot11 PE=1 SV=1 Hemoglobin subunit beta-1 OS=Mus musculus OX=10090 GN=Hbb-b1 PE=1 SV=2	24,8 24,5	
80XI3 02104	Eukaryotic translation initiation factor 4 gamma 3 OS=Mus musculus OX=10090 GN=Eif4g3 PE=1 SV Hemoglobin subunit epsilon-Y2 OS=Mus musculus OX=10090 GN=Hbb-y PE=1 SV=2	23,33	
62141 70218	Serine/threonine-protein phosphatase PP1-beta catalytic subunit OS=Mus musculus OX=10090 GN Mitogen-activated protein kinase kinase kinase 1 OS=Mus musculus OX=10090 GN=Map4k1	21,59	
3UMT1 80YR4	Protein phosphatase 1 regulatory subunit 12C OS=Mus musculus OX=10090 GN=Ppp1r12c PE=1 SV E3 ubiquitin-protein ligase ZNF598 OS=Mus musculus OX=10090 GN=Znf598 PE=1 SV=1	21,5:	
91YR7 08113	Pre-mRNA-processing factor 6 OS=Mus musculus OX=10090 GN=Prpf6 PE=1 SV=1	20,60	
6PCZ4	Endoplasmin OS=Mus musculus OX=10090 GN=Hsp90b1 PE=1 SV=2 Melanoma-associated antigen E1 OS=Mus musculus OX=10090 GN=Magee1 PE=1 SV=1	19,00	1
19426 91VR8	Negative elongation factor E OS=Mus musculus OX=10090 GN=Nelfe PE=1 SV=2 Protein BRICK1 OS=Mus musculus OX=10090 GN=Brk1 PE=1 SV=1	18,86 18,86	3
98064 68181	Mannan-binding lectin serine protease 1 OS=Mus musculus OX=10090 GN=Masp1 PE=1 SV=2 cAMP-dependent protein kinase catalytic subunit beta OS=Mus musculus OX=10090 GN=Prkacb PI	18,33 18,25	
8BZN4 9D554	NUAK family SNF1-like kinase 2 OS=Mus musculus OX=10090 GN=Nuak2 PE=1 SV=2 Splicing factor 3A subunit 3 OS=Mus musculus OX=10090 GN=5f3a3 PE=1 SV=2	18,00 16,8	<u> </u>
47754 02384	F-actin-capping protein subunit alpha-2 OS=Mus musculus OX=10090 GN=Capza2 PE=1 SV=3 Son of sevenless homolog 2 OS=Mus musculus OX=10090 GN=Sos2 PE=1 SV=2	16,22 15,12	,
9QAM5 2AF47	Helicase with zinc finger domain 2 OS=Mus musculus OX=10090 GN=Helz2 PE=1 SV=1 Dedicator of cytokinesis protein 11 OS=Mus musculus OX=10090 GN=Dock11 PE=1 SV=1	14,54	
2AF47 58021 3TZX8	Transmembrane 9 superfamily member 2 OS=Mus musculus OX=10090 GN=Tm9sf2 PE=1 SV=1	13,77	
70274	Polynucleotide 5'-hydroxyl-kinase NOL9 OS=Mus musculus OX=10090 GN=Nol9 PE=1 SV=1 Protein tyrosine phosphatase type IVA 2 OS=Mus musculus OX=10090 GN=Ptp4a2 PE=1 SV=1	13,70 13,68	
61136 9CY57	Serine/threonine-protein kinase PRP4 homolog OS=Mus musculus OX=10090 GN=Prpf4b PE=1 SV= Chromatin target of PRMT1 protein OS=Mus musculus OX=10090 GN=Chtop PE=1 SV=2	13,4: 13,14	
9Z2K1 9JJ80	Keratin, type I cytoskeletal 16 OS=Mus musculus OX=10090 GN=Krt16 PE=1 SV=3 Ribosome production factor 2 homolog OS=Mus musculus OX=10090 GN=Rpf2 PE=2 SV=2	12,90 12,60	
61990 91WN1	Poly(rC)-binding protein 2 OS=Mus musculus OX=10090 GN=Pcbp2 PE=1 SV=1 Dnal homolog subfamily C member 9 OS=Mus musculus OX=10090 GN=Dnajc9 PE=1 SV=2	12,51 12,31	
921Q7 92315	Ras and Rab interactor 1 OS=Mus musculus OX=10090 GN=Rin1 PE=1 SV=1 U4/U6.U5 tri-snRNP-associated protein 1 OS=Mus musculus OX=10090 GN=Sart1 PE=1 SV=1	12,25	
62203 8BG30	Splicing factor 3A subunit 2 OS=Mus musculus OX=10090 GN=Sf3a2 PE=1 SV=2 Negative elongation factor A OS=Mus musculus OX=10090 GN=Sf3a2 PE=1 SV=2	11,10	
60930 8K1N4	Voltage-dependent anion-selective channel protein 2 OS=Mus musculus OX=10090 GN=Vdac2 PE= Spermatogenesis-associated serine-rich protein 2 OS=Mus musculus OX=10090 GN=Spats2 PE=1 S1	10,90	
97434	Myosin phosphatase Rho-interacting protein OS=Mus musculus OX=10090 GN=Mprip PE=1 SV=2	10,8 10,4	
9CY27 9Q1P8	Very-long-chain enoyl-CoA reductase OS=Mus musculus OX=10090 GN=Tecr PE=1 SV=1 Interferon regulatory factor 2-binding protein 2 OS=Mus musculus OX=10090 GN=Irf2bp2 PE=1 SV=	9,99 9,99	
6Y685 921M3	Transforming acidic coiled-coil-containing protein 1 OS=Mus musculus OX=10090 GN=Tacc1 PE=1 Splicing factor 3B subunit 3 OS=Mus musculus OX=10090 GN=Sf3b3 PE=1 SV=1	9,9 -8,9	
2AMM0 02819	Caveolae-associated protein 4 OS=Mus musculus OX=10090 GN=Cavin4 PE=1 SV=1 Nucleobindin-1 OS=Mus musculus OX=10090 GN=Nucb1 PE=1 SV=2	9,8: 9,6:	
0P678 9EP71	Zinc finger CCCH domain-containing protein 18 OS=Mus musculus OX=10090 GN=Zc3h18 PE=1 SV= Ankycorbin OS=Mus musculus OX=10090 GN=Rai14 PE=1 SV=1	9,43 9,00	
9391 62556	Ferritin light chain 1 OS=Mus musculus OX=10090 GN=FtI1 PE=1 SV=2 Butyrophilin subfamily 1 member A1 OS=Mus musculus OX=10090 GN=Btn1a1 PE=1 SV=2	8,99	1
6ZQ08 80TY0	CCR4-NOT transcription complex subunit 1 OS=Mus musculus OX=10090 GN=Cnot1 PE=1 SV=2 Formin-binding protein 1 OS=Mus musculus OX=10090 GN=Fnbp1 PE=1 SV=2	8,9	
54988	STE20-like serine/threonine-protein kinase OS=Mus musculus OX=10090 GN=Slk PE=1 SV=2	7,98	
9CW03 923Z0	Structural maintenance of chromosomes protein 3 OS=Mus musculus OX=10090 GN=Smc3 PE=1 St G-protein coupled receptor family C group 5 member B OS=Mus musculus OX=10090 GN=Gprc5b F	7,91 7,91	35
9WV55 149F3	Vesicle-associated membrane protein-associated protein A OS=Mus musculus OX=10090 GN=Vapa Eukaryotic peptide chain release factor GTP-binding subunit ERF3B OS=Mus musculus OX=10090 G	7,9: 7,9:	
922L6 8BFX3	Negative elongation factor D OS=Mus musculus OX=10090 GN=Nelfcd PE=1 SV=2 BTB/POZ domain-containing protein KCTD3 OS=Mus musculus OX=10090 GN=Kctd3 PE=1 SV=1	7,88 7.61	
07356 9ES28	Annexin A2 OS=Mus musculus OX=10090 GN=Anxa2 PE=1 SV=2 Rho guanine nucleotide exchange factor 7 OS=Mus musculus OX=10090 GN=Arhgef7 PE=1 SV=2	7,49	
29788 9JKY0	kno guarine nucleotide exchange factor / Userius musculus Ox=10090 GN=Ariger/ PE=1 SV=2 Vitronectin OS=Mus musculus OX=10090 GN=Vrn PE=1 SV=2 CCR4-NOT transcription complex subunit 9 OS=Mus musculus OX=10090 GN=Cnot9 PE=1 SV=1	7,31	
8C5L3	CCR4-NOT transcription complex subunit 2 OS=Mus musculus OX=10090 GN=Cnot2 PE=1 SV=2	6,7	
9CQQ4 28660	Gem-associated protein 2 OS=Mus musculus OX=10090 GN=Gemin2 PE=2 SV=1 Nck-associated protein 1 OS=Mus musculus OX=10090 GN=Nckap1 PE=1 SV=2	6,40 6,00	
60596 3TKT4	DNA repair protein XRCC1 OS=Mus musculus OX=10090 GN=Xrcc1 PE=1 SV=2 Transcription activator BRG1 OS=Mus musculus OX=10090 GN=Smarca4 PE=1 SV=1	5,84 5,65	
8R0X7 8VED5	Sphingosine-1-phosphate lyase 1 OS=Mus musculus OX=10090 GN=Sgpl1 PE=1 SV=1 Keratin, type II cytoskeletal 79 OS=Mus musculus OX=10090 GN=Krt79 PE=1 SV=2	5,54 5,53	
	ADP-ribosylation factor 5 OS=Mus musculus OX=10090 GN=Arf5 PE=1 SV=2	5.3	

341 Table S4. Primers for site-direct mutagenesis.

Primer Name	Oligonucleotide sequence (5'-3')
MuRF2 C42S His/Myc for	GCCTGTGGTCATTCTCCCTAGCCAGCACAA
MuRF2 C42S His/Myc rev	TTCGTGAACATCTCTAGGCAGATGGGACAG
MuRF2 C50S His/Myc for	GCACAACCTGTGCAGGAAAAGTGCCAGTGACATC
MuRF2 C50S His/Myc rev	TGGCAAGGGAGAATGACCACAGGCTTCGTGAACA
MuRF3 C42S His/Myc for	CCCGTGGTGATCTTGCCCAGCCAACACAC
MuRF3 C42S His/Myc rev	CTTGGAGAACATCTCCAGGCAGATGG
MuRF3 C50S His/Myc for	CTGTGCCGCAAGAGTGCCAACGACGTCTTC
MuRF3 C50S His/Myc rev	GTTGTGTTGGCAGGGCAAGATCACCACGGG
SNX5 K290R for	GTCTCATCAGATGAAGACTTAAGACTGACAGAGCT CCTCCGATAC
SNX5 K290R rev	GTATCGGAGGAGCTCTGTCAGTCTTAAGTCTTCATC TGATGAGAC
SNX5 K324R for	GACTATGAGAATTCAAACAGAGCTTTGGACAAGGC CCGG
SNX5 K324R rev	CCGGGCCTTGTCCAAAGCTCTGTTTGAATTCTCATA GTC

343 Table S5. Primers for generation of retroviral expression plasmid.

Primer Name	Oligonucleotide sequence (5'-3')
SNX5 His/Myc for	ATAAGAATGCGGCCGCATTCTTATGGCCGCGGTTC
(NotI)	
SNX5 His/Myc rev	ATAGTTTAGCGGCCGCTCAATGATGATGATGATGATG
(NotI)	

345 Table S6. Primers for quantitative real-time PCR.

Primer Name	Oligonucleotide sequence (5'-3')
Mm_Snx5 for	GTTCCCGAGTTGCTGGAG
Mm_Snx5 rev	GCGATGGGTCAACATTCAG
Mm_Prkar1a for	TGATGCTATGTTTCCAGTCTCC
Mm_Prkar1a rev	CAATCACATAGAAGTTATCCCCTTC
Mm_Mymk for	ATCGCTACCAAGAGGCGTT
Mm_Mymk rev	CACAGCACAGACAAACCAGG
Mm_Mymx for	CAGGAGGCAAGAAGTTCAG
Mm_Mymx rev	ATGTCTTGGGAGCTCAGTCG
Mm_Myog for	GACTTGACCTTGGACCTTGG
Mm_Myog rev	CGCTGTGGGAGTTGCATT
Mm_Ache for	GGGCTCCTACTTTCTGGTTTAC
Mm_Ache rev	TTCAGGTTCAGGCTCACATATT
Mm_Hdac5 for	GCATGAACTCTCCCAACGAG
Mm_Hdac5 rev	TTCACCTCCACTGCCACAG
Mm_Myh1 for	GAAGATGTTCCTGTGGATGG
Mm_Myh1 rev	TCGTTGGTGAAGTTGATGC
Mm_Myh2 for	AACTCCAGGCAAAAGTGAAATC
Mm_Myh2 rev	TGGATAGATTTGTGTTGGATTGTT
Mm_Myh3 for	AGTAGCCAGGATGGGAAAGTC
Mm_Myh3 rev	GTCCTCTGGCTTAACCACCA
Mm_Myh4 for	GGGAACATGAAATTCAAGCAA
Mm_Myh4 rev	ATAGGCAGCCTTGTCAGCAA
Mm_Myh7 for	CGCATCAAGGAGCTCACC

SNX5 REGULATES PKA ACTIVITY IN MUSCLE

Mm_Myh7 rev	CTGCAGCCGCAGTAGGTT
Mm_Mstn for	AGGGCAGTGAGAGAAGAA
Mm_Mstn rev	GTTTCCGTGGTAGCGTGATAA
Mm_Mstn-promoter for	ACAGCACTCCAAGTCTTAAAGG
Mm_Mstn- promoter rev	TCACAAGTCACCAAGCAGTATT
Mm_RPL30 for	TGGTGTTTGACGCTCTGG
Mm_RPL30 rev	GTTGGAGCCTAGAGTTGATCG
Mm_Gapdh for	GATCAAACGCTTGCGAATCT
Mm_Gapdh rev	ATGGTGAAGGTCGGTGTGA

Table S7. nano-LC MS/MS and search parameters

A. Description of the LC-MS/MS experiment settings – Ultimate-QExactive Plus

349 *configuration*

347

nanoLC-parameters for the chromato	nanoLC-parameters for the chromatographic separation of the peptides			
Equipment	Ultimate 3000 (Thermo Electron, Bremen,			
	Germany)			
Trap column	Acclaim PepMap 100-C18 trap column			
	(2cm x75μm, 3μm, 100Å) Thermo			
	Fisher Scientific Inc., Idstein, Germany			
Analytical column	Accucore 150-C18 column (25cm x 2.6μm,			
	2.6µm, 150Å) Thermo Fisher Scientific			
	Inc.,			
	Idstein, Germany			
Buffer system	0.1% acetic acid, 5% ACN in water (buffer			
	A) and 100% ACN in 0.1% acetic			
	acid (buffer B)			
Flow rate	300nL/min			
Gradient	linear gradient of buffer B from 5% up			
	to 25% for 120 min			
Column oven temperature	40°C			
Mas	s Spectrometry			
Equipment	QExactive Plus			
Ion source	FlexMap Ion source (Thermo Scientific)			
Fragmentation	high-energy collision dissociation (HCD)			
Charge state screening	positive			

DDA acquisition			
Full MS			
MS scan resolution	70,000		
AGC target	3 x 10E6		
Maximum ion injection time for the MS scan	120 ms		
MS full scan range	300 to 1650 m/z		
Spectra data type	profile		
dd-MS2	<u> </u>		
Resolution	17,500		
AGC target	2 x 10E5		
Maximum ion injection time for the MS2	120 ms		
scan			
Selection	Top10 z= +2 to +6 charge state		
Isolation width	3.0 m/z		
Scan range	200 to 2,000 m/z		
Fixed first mass	100 m/z		
Spectrum data type	centroid		
Minimum AGC target	1 x 10E4		
Intensity threshold	8.3 x 10E4		
Monoisotopic precursor selection rejected	+1 and +7, +8, and >+8 charged ions		
Dynamic exclusion	30 s		
Normalized collision energy	27.5eV		

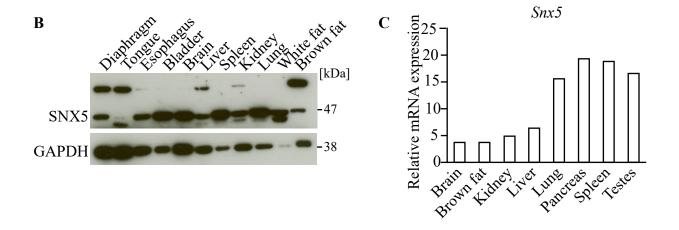
350

351 B. Presentation of Protein Identification Results

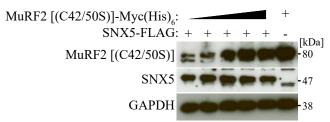
Protein identification/quantitation	

Search parameters	Settings
Name of peaklist-generating software	Proteome discoverer 2.3 (Thermo Scientific)
and release version (number or date)	using SequestHT as search engine
Protein database	Uniprot/Swissprot database limited to murine
	entries (version 11_2019)
Enzyme specificity considered	Fully tryptic
Precursor mass tolerance	10 ppm
Fragment mass tolerance	0.02 Da
# of missed cleavages permitted	2
Static modification	carbamidomethylation at cysteine
Variable modification	oxidation at methionine; acetylation at protein
variable mounication	N-terminus
FDR (peptide level)	1%
Data quantification	MS1 peak area of precursor

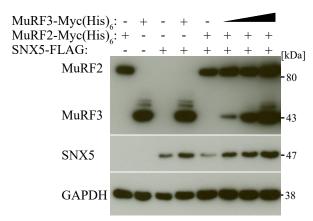
353	Supplementary Figures
354	Figure S1. A SILAC-AP-MS approach identified the novel MuRF3 interaction partner
355	SNX5. (A) Workflow of the SILAC-AP-MS approach. (B) Western blot analysis of proteins
356	isolated from different murine organs as indicated. (C) qRT-PCR analysis of Snx5 in different
357	murine organs as indicated. Snx5 mRNA expression was normalized to Gapdh.
358	Figure S2. MuRF3 reduces MuRF2-dependent SNX5 degradation. (A) C2C12 cells were
359	cotransfected with increasing amounts of MuRF2-[(C42S;C50S)]-Myc(His)6, and a constant
360	amount of SNX5-FLAG. Cells were lysed 24 h later and overexpressed proteins were analyzed
361	by Western blot using anti-Myc and anti-FLAG antibodies. (B) Western blot analysis of C2C12
362	cells co-transfected with SNX5-FLAG, MuRF2- or increasing amounts of MuRF3-Myc(His) ₆
363	as indicated.
364	Figure S3. MuRF2-mediated reduction in SNX5 stability is mediated by its K290 and
365	K324. (A) PyMOL visualization of putative ubiquitin chain binding sites on SNX5 (PDB
366	5tp1D) at K290 and K324 (indicated in red). (B) Schematic showing SNX5 ubiquitination sites
367	and K290R, K324R, K290/324R mutants. (C) Cycloheximide (CHX) chase assay in COS7
368	cells. MuRF2-Myc(His)6 was co-transfected with either SNX5-FLAG or each of K290R,
369	K324R, K290/324R mutants for 48 hours. Cells were then treated with CHX for indicated time
370	points prior to lysis. Proteins were analyzed by Western blot using the indicated antibodies.
371	Figure S4. SNX5 stabilizes RI-a upon PKA activation. (A) Workflow for identification of
372	SNX5 cargo proteins via mass spectrometry. (B) Sucrose gradient fractionation of PNS isolated
373	from C2C12 cells followed by Western blotting with the indicated antibodies. Individual
374	fractions are indicated. (C) DSS cross-linking of core RI-α oligomers detected via Western blot
375	in vehicle- or Bt2cAMP-treated C2C12 cells. Densitometrical analysis (right panel) was carried
376	out in Image Lab $^{\text{TM}}$ software. PKA tetramer-to-RI- α ratios are shown. (D) Immunofluorescence
377	using anti-RI-α (green) and anti-EEA1 (red) antibody in vehicle- or Bt2cAMP and CHX treated
378	NT-WT and SNX5-KO C2C12 myoblasts for 1 or 4 hours. Nuclei were stained with DAPI.

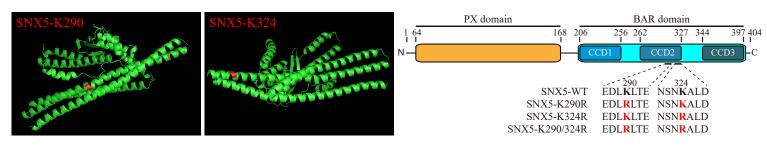

Scale bar, 20 µm. (E) Workflow to enrich endosomal fractions from SNX5-KO and NT-WT 379 myocytes. (F) Work flow of protease protection assay. (G) PNGase F digestion assay, SNX5-380 coated endosomes isolated from C2C12 cells by IP SNX5 were digested with PNGase F. 381 Western blot with anti-RI-α antibody was performed. 382 Figure S5. PKA activation is accompanied by an increase in Prkar1a expression in SNX5-383 KO myocytes. qRT-PCR analysis of Prkarla expression in NT-WT and SNX5-KO cells 384 treated with either vehicle or Bt2cAMP for the indicated time points. Prkarla mRNA 385 expression was normalized to Gapdh. Statistical significance was determined using one-way 386 ANOVA followed by Tukey's post-hoc test. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.001, **** 387 0.0001. 388 Figure S6. Reintroduction of SNX5 in SNX5-KO myocytes increases the stability of RI-α. 389 Western blot analysis of eGFP or SNX5-Myc(His)₆ transduced SNX5-KO myoblasts treated 390 with Bt2cAMP and CHX for indicated time points prior to cell lysis. Densitometric analysis of 391 RI- α levels was carried out in Image LabTM Software, with the "0-hour" intensity of RI- α set as 392 1. Protein amounts of RI-α were normalized to GAPDH and RI-α-to-GAPDH ratios per 393 indicated time point are shown. 394 Figure S7. SNX5 stabilizes RI-α upon PKA activation. (A, B) Western blot of NT-siRNA or 395 396 SNX5-siRNA transfected C2C12 myoblasts (A) and myotubes (B) co-treated with Bt2cAMP, CHX, and the inhibitors as indicated for 4 hours. 397 Figure S8. Reduction in free RI-a upon PKA activation is mediated by proteasomal 398 protein degradation in SNX5-HET cells. Western blot analysis of NT-WT and SNX5-HET 399 C2C12 myoblasts treated with Bt2cAMP, CHX, and one of the indicated inhibitors (MG132, 400 CQ, or BafA1) for 4 hours prior to cell lysis. 401 Figure S9. SNX5 via regulation of PKA activity contributes to myogenic differentiation. 402 (A) qRT-PCR analysis of *Hdac5* mRNA expression from C2C12 cells treated with Bt2cAMP 403

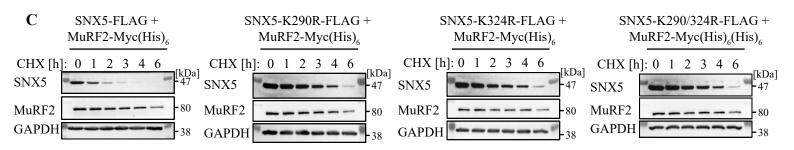
for different time points. Hdac5 mRNA expression was normalized to Gapdh. Data were

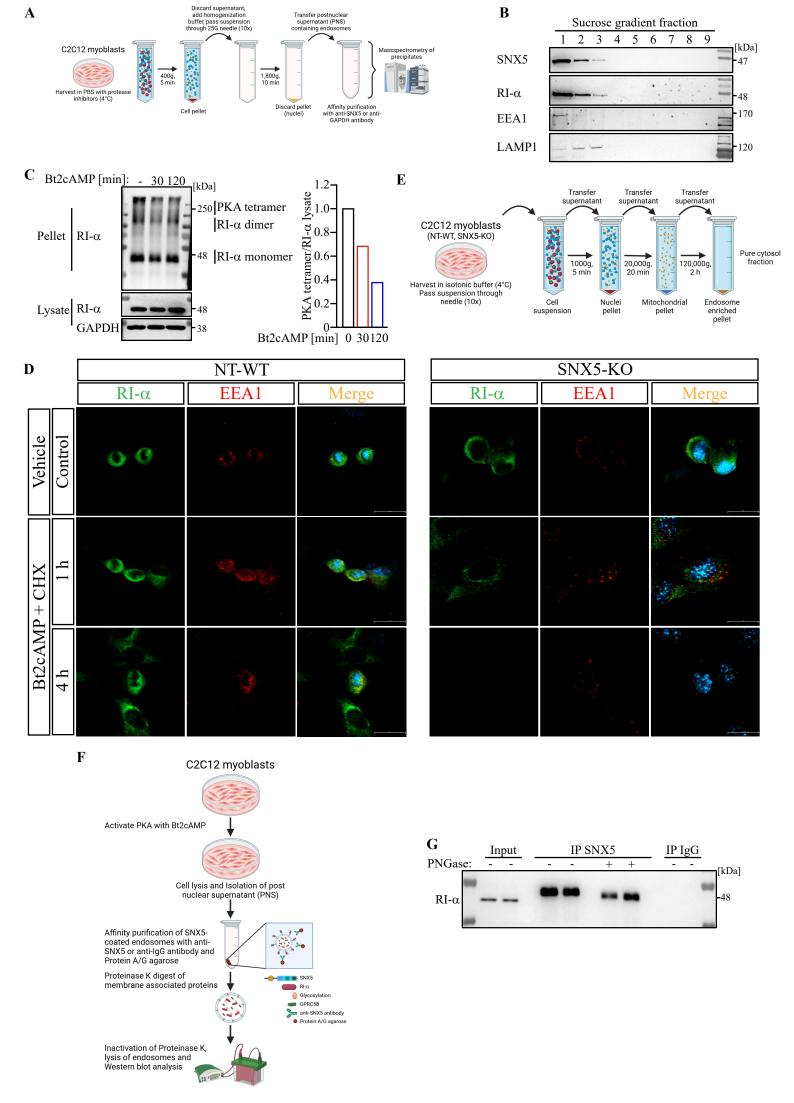

SNX5 REGULATES PKA ACTIVITY IN MUSCLE

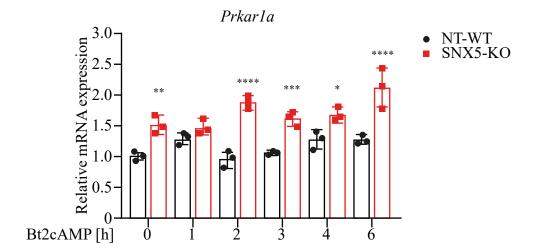
405	analyzed with one-way ANOVA followed by Tukey's post-hoc test. ****P < 0.0001. (B)
406	Nuclear and cytoplasmic fractionation followed by Western blot analysis of NT-WT and
407	SNX5-KO C2C12 cells with indicated antibodies. (C) Western blot analysis of vehicle or
408	recombinant myostatin treated C2C12 myotubes (MT3) for 3 days.

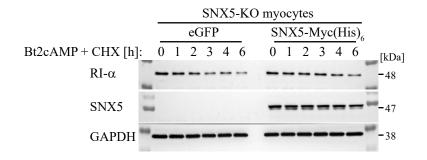







B




A B

