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Abstract 
Glycoproteins cover the surface of enveloped viruses such as herpes simplex virus 1 (HSV-1). Whilst essential for cellular attachment 
and entry, they also are excellent targets for host immune responses. This dichotomy culminates in an evolutionary struggle in which 
receptor recognition and immune escape are intricately balanced. Herpesviruses feature a variety of different glycoproteins with diverse 
molecular functions. Here, we describe the rapid evolution of HSV-1 towards syncytial plaque phenotypes in Vero cell culture, as well as 
anti-gD antibody resistance in human foreskin fibroblast cells. Using a mild hypermutator virus to accelerate experimental evolution, we 
identified multiple genetic variants leading to syncytial plaques. Strikingly, these variants differentially affect interactions within viral 
populations. Whilst gK mutants engage in collective syncytia formation upon entry, accelerate superinfection exclusion and maintain 
fitness advantages at high multiplicities of infection, gB and gD mutants do not. Furthermore, we find gE mutants which lead to mouse 
anti-gD antibody resistance and cross protect wt virus in mixed populations. Our findings suggest complex social interactions within 
herpesvirus populations and illustrate the evolutionary plasticity and diverse function of their glycoproteins. 
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Introduction 
Glycoproteins constitute the outermost layer of enveloped virions 
(Flint et al. 2015, Howley et al. 2021). Herpesviruses like herpes 
simplex virus type 1 (HSV-1), encode a multitude of different 
glyco- and membrane proteins to ensure proper virion production 
and stability, as well as effective cellular attachment and entry 
(Agelidis and Shukla 2015, Eisenberg et al. 2012, Hilterbrand and 
Heldwein 2019). Specifically, HSV-1 encodes 12 glyco- and 5 mem-
brane proteins. Glycoproteins are usually referred to by using a 
protein-based nomenclature which denotes gB, gC, gD, gE, gG, gH, 
gI, gJ, gK, gL, gM, and gN whilst membrane proteins are named 
according to their genetic locus, UL20, UL56, US9, UL24, and UL43 
(Hilterbrand and Heldwein 2019). Together, these proteins form 
a dynamic and diverse viral envelope, important for interactions 
between viral particles as well as between virus and host cell. 
Essential for attachment and entry are 4 glycoproteins: gD, gH, 
gL, and gB (Cai et al. 1988, Eisenberg et al. 2012). Initially, gD 
recognizes one of the 4 cellular receptors, namely, nectin-1 and 2, 
herpes virus entry mediator and 3-O-sulfonated heparan sulphate 
(Campadelli-Fiume et al. 2000, Yoon and Spear 2004). Through 
conformational changes upon receptor binding, the entry signal 
is transmitted via the gH/L heterodimer to gB, which triggers 
membrane fusion (Atanasiu et al. 2010, Agelidis and Shukla 2015, 
Hilterbrand et al. 2021). Multiple other viral glycoproteins influ-
ence membrane fusion by diverse interactions with a variety of 
cellular receptors (Satoh et al. 2008). 

Syncytia, multinucleated cells created by cell-to-cell fusion, 
play an important biological role, whether it is in skeletal mus-
cles or the mammalian placenta (Huppertz et al. 2001). Some 
viruses also induce syncytia formation as a mean to increase 
cell-to-cell spread (Jessie and Dobrovolny 2021). Viruses capable 
of syncytia formation include respiratory syncytial virus (RSV), 
paramyxoviruses, severe acute respiratory syndrome coronavirus 
2, human immune deficiency virus (HIV) and many more (Syme-
onides et al. 2015, Buchrieser et al. 2020, Gamble et al. 2021, Jessie 
and Dobrovolny 2021). Syncytia formation in viruses is especially 
important for cell associated viruses like RSV, for which it is 
directly linked to replicative fitness (Norrby et al. 1970, Krzyzaniak 
et al. 2013). Extensively studied are syncytia in HIV where they 
promote viral spread and particle production but also play a 
role for intersubtype recombination and diversification of HIV 
populations around the globe (Chowdhury et al. 1992, Steain et al. 
2008, Han et al. 2022). However, syncytia also lead to increased 
apoptosis, which can decrease overall virion production (Ferri et al. 
2000, Ma et al. 2021). 

Since glycoproteins decorate the surface of virions, they are 
the primary targets of adaptive immunity (Corti and Lanzavecchia 
2013, Pelegrin et al. 2015). Especially gD and gB epitopes are known 
targets of neutralizing antibodies, as preventing receptor binding 
or membrane fusion both prevent viral entry and stop infection 
(Lee et al. 2013, Hilterbrand et al. 2021). The dichotomy between 
receptor recognition, binding and cellular entry on one, as well
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as evading immune responses on the other hand, presents an 
enormous evolutionary constrain for glycoproteins (Geller et al. 
2015, Thomson et al. 2021, Tenthorey et al. 2022). Many viruses 
bypass the immunological pressure by rapidly evolving numerous 
serotypes or by altering glycosylation patterns of surface proteins 
(Sommerstein et al. 2015, Tse et al. 2017). 

Experimental evolution already allowed for in vitro selection 
of syncytial phenotypes in HSV-1 (Kuny et al. 2020), whilst the 
utilization of mild hypermutator viruses, enabled adaptation to 
non-permissive cells in Marek’s disease virus (Xing et al. 2022), and 
significantly sped-up antiviral resistance development in HSV-1 
(Höfler et al. 2024). 

Here we use hypermutator viruses to accelerate experimen-
tal evolution of HSV-1 glycoprotein variants. We observe diverse 
genotypes which share key phenotypes, however, we also report 
nuances to their respective behaviour. Additionally, we take note 
of phenotypes that suggest mutual and beneficial interactions 
within viral populations (Díaz-Muñoz et al. 2017, Sanjuán 2021, 
Leeks et al. 2023b). This study highlights the power of experimental 
evolution and defines HSV-1 populations as a diverse and inter-
acting community rather than a congregation of clonal viruses. 

Material and methods 
Cells and viruses 
Vero cells (ATCC CCL-81) and human foreskin fibroblast (HFF) 
cells (ATCC SCRC-1041) were propagated in Dulbecco’s modified 
eagle medium (DMEM, Pan Biotech) containing 10% foetal calf 
serum (FCS, Pan Biotech), 100 IU/ml penicillin G (Carl Roth) and 
100 μg/ml streptomycin (Carl Roth) at 37◦C and  5%  CO2. All  HSV-
1 viruses presented in this study derived from the F-strains used 
in our former studies (Brunialti et al. 2023, Höfler et al. 2024). 

Viral reconstitution 
Polyethylenimine (pei) transfection was used for viral reconstitu-
tion. In brief, a mixture of DNA (2–3 μg) and pei (12 μl, 1 mg/ml 
polyethylenimine, linear (mw 25 000); Polysciences) was diluted 
in 100 μl Opti-mem (Thermo Fisher Scientific). The reaction was 
incubated for 30 min at room temperature (RT) and afterwards 
mixed with 1 ml cell culture medium. A sub-confluent 6-well 
plate well of Vero cells was overlayed with the transfection DNA-
Medium mix for 4 h and afterwards replaced by fresh medium. 
Plates were kept in culture till 70%–100% of cells showed cyto-
pathic effects (CPE). 

Propagating of cells and virus 
Viral stocks were prepared and passaged on Vero cells as described 
previously (Höfler et al. 2024). For propagation on HFF cells 100 μl 
of a 1:100 dilution was used to infect a confluent 5 cm cell culture 
dish (corresponding to a MOI of ca. 0.01). To select for antibody 
resistance, 1 μl of the stock solution (mouse-αgD clone E317, The 
Native Antigen Company, UK; 1 mg/ml) was used to obtain a final 
concentration of 200 ng/μl. 

Viral titer determination 
Plaque assays were utilized as described previously (Höfler et al. 
2024). In brief, 10-fold serial dilutions were prepared and 100 μl 
were incubated on single wells of confluent 24-well plates of 
Vero cells. Inoculate was replaced by semisolid overlay (2.5% 
colloid microcrystalline cellulose, Aldrich; in 1× DMEM, Biochrom; 
supplemented with 10% FCS, 100 IU/ml penicillin G, 100 μg/ml 
streptomycin and 0.15% sodium bicarbonate, Sigma Life Science). 
Once visible plaques formed, plates were washed twice with PBS 

and fixed with 4% formaldehyde for 20% at RT. For staining a 
0.75% crystal violet solution was used. 

Plaque size assays 
Around 100 pfu were utilized per sample to infect single wells of 
12-well plates of either Vero or HFF cells. Wells were overlayed,
incubated for 2 days, washed and fixed as described above, fol-
lowed by permeabilization (PBS supplemented with 0.1% triton
X-100) for 10 min and blocking (PBS containing 1% FCS) for 2 h
at RT. Overnight incubation (4◦C) of the first antibody (C2D8, 1:100
dilution in PBS + 1% FCS) (Borchers and Ludwig 1991) was followed
by secondary antibody (goat-anti-mouse alexa fluor 568 conju-
gated, 1:3000 dilution in PBS + 1% FCS, Thermo Fisher Scientific)
incubation for 2 h at RT. PBS washing steps were performed in
between and after antibody incubations. Plaque pictures were
taken at a Zeiss Axio Vert.A1 inverted fluorescence microscope
with 100x magnification and analysed with NIH ImageJ 1.52n
(Schneider et al. 2012). To wt p0 normalized plaque areas were
converted to diameters.

Viral growth kinetics 
Multiplicities of infection (MOI) of 0.001 and 0.01 in 6-well plates 
or 10 in 24-well plates were prepared in triplicates for multi- and 
single-step growth curves respectively. For single-step, inoculum 
was removed after 1 h, washed and overlayed with fresh medium. 
Timepoints for stock preparation and titration (see above) were 
set after  12  h,  1 d,  2  d,  3 d,  4 d,  and 5 d as well as 1 h,  3  h,  6 h,  12 h,
and 24 h post infection. 

Serum neutralization tests 
Resistance to neutralizing antibodies was measured by serum 
neutralization tests. 2-fold serial dilutions of the antibody (mouse-
αgD clone E317, The Native Antigen Company, UK) were prepared 
in 96-well plates and mixed with 200 pfu of each respective 
virus. After 1 h incubation at 37◦C and 5%  CO2, the  antibody-
virus mixture was transferred to a confluent 96-well plate of 
Vero cells. Three to four days later, plates were fixed and crystal 
violet stained as described earlier. Affected areas were measured 
using NIH ImageJ 1.52n (Schneider et al. 2012) and used for IC50 

calculation following a non-linear model: 

fa 

fu 
=

(
IC50 

d

)m

(1) 

With fa and fu being the affected and unaffected fraction 
respectively, d being the antibody concentration and m the 
magnitude. 

Plaque reduction assay 
Susceptibility to foscarnet was measured by plaque reduction 
assay as described previously (Höfler et al. 2024). 

Competition assays 
Competition assays were performed as described previously 
(Höfler et al. 2024), via quantitative polymerase chain reaction 
(qPCR) for evolved HFF populations and via fluorescently labelled 
reporter viruses for p0 isolates. Primers for qPCR can be found in 
Supplementary Table 1. 

Particle stability tests 
Viruses were diluted in DMEM supplemented with 10% FCS, 
100 IU/ml penicillin G and 100 μg/ml streptomycin to titers of
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105 pfu/ml in ventilated 13 ml plastic tubes at 37◦C and 5% CO2. 
Samples were titrated as described above every day for 5 days. 

DNA isolation 
DNA for sequencing was isolated by a micrococcal nuclease 
extraction protocol (Volkening and Spatz 2009), as described previ-
ously (Brunialti et al. 2023). To exclude fragmented chromosomal 
DNA (< 3000 bp) polyethylen glycol (PEG) based size exclusion 
was performed (Clarke et al. 2014) as described previously (Höfler 
et al. 2024). DNA for qPCR was isolated with the innuPREP virus 
DNA/RNA kit (Innuscreen) according to the manufacturer’s 
instructions. Bacterial artificial chromosom (BAC) DNA was 
isolated from 200 to 500 ml of Escherichia coli overnight cultures 
using Qiagen’s MidiPrep kit. 

Next generation sequencing and bioinformatics 
Sampled populations were sequenced on the Illumina MiSeq 
platform as described earlier (Höfler et al. 2024). FASTQ files are 
available at NCBI SRA, BioProject accession number PRJNA927130. 
Sequencing reads were analysed with Trimmomatic v0.39 (Bolger 
et al. 2014), Burrows-Wheeler aligner v0.7.17 (Li and Durbin 
2009), Samtools v1.10 (Danecek et al. 2021), BCFtools v1.11, 
and LoFreq v2.1.3.1 (Wilm et al. 2012). For further information 
see https://github.com/hoeflet/antiviral-resistance-evolution.git. 
Non-synonymous to synonymous substitution rates (dN/dS) were 
calculated by normalizing nucleotide replacements to per site 
rates (dN and dS), multiplied by allele frequency and summarized 
per gene: 

dN 
dS gene 

=
∑n 

i=1 
AFN,i 
cN,i∑m 

i=1 
AFS,i 
cS,i

(2) 

With AFN and AFS being the allele frequency of a non-
synonymous and synonymous mutations, respectively, as well 
as cN and cS being how often a mutation at that nucleotide site 
leads to an amino acid change or not (1 ≤ cN, cS ≥ 3). 

Alphafold3 predictions were performed by using Alphafold-
server.com (Abramson et al. 2024) and visualized with PyMOL 
(Retrieved from http://www.pymol.org/pymol). Principal com-
ponent analysis was performed with a custom python script 
(https://github.com/hoeflet/antiviral-resistance-evolution.git) as
described previously (Höfler et al. 2024). 

Genotype phenotype correlations were performed by correlat-
ing SNP allele frequencies (Supplementary Table 2) with corre-
sponding syncytia frequencies for the respective lineage (Fig. 1B). 
Strong and significant positive correlating variants (r ≥ 0.9; 
P < 0 .05) were arranged by their gene locus and displayed as 
variants per 1 kb of gene (Fig. 3A). Mutations that correlated in 
some lineages but didn’t in others were excluded. 

BAC mutagenesis and reverse genetics 
To reverse engineer viral mutations, en passant mutagenesis in E. 
coli was utilized (Tischer et al. 2010) as described in earlier studies 
(Brunialti et al. 2023, Höfler et al. 2024). Mutagenesis primers can 
be found in Supplementary Table 1. 

Statistical analysis 
All statistics given in this study were performed in GraphPad 
Prism v.9.4.0. For further information regarding specific tests, 
please see the respective figure legends. 

Results 
YS hypermutators are quickly adapting to cell 
culture conditions and antibody pressure 
In a recently published study, we used a hypermutator HSV-1 
mutant to study accelerated antiviral resistance development in 
Vero cell culture (Höfler et al. 2024). Whilst exploring evolution 
of antiviral resistance, we parallelly observed increases in plaque 
sizes in virus populations (Fig. 1A). Additionally, plaque pheno-
types also shifted towards syncytia, which became the predom-
inant plaque phenotype after 5–10 passages in the PolY557S (YS) 
hypermutator (Fig. 1B). Importantly, those phenotypes evolved 
irrespective of the different selective pressures applied here and 
were neither promoted nor suppressed by antiviral treatment. 

To increase our understanding of accelerated adaptation and 
expand our research into an environment comprised of more 
natural HSV-1 host cells, we passaged wt and YS hypermutator 
viruses on HFF cells in presence and absence of anti-gD antibody 
(αgD) pressure. Similar to previous results on Vero cells, wt 
and YS are growing with comparable kinetics on HFF cells, 
with only minor differences 4–5 days post infection (dpi) in 
multi-step growth curves (Fig. 1C, left). However, burst sizes are 
larger for wt in single-step growth curves (Fig. 1C, right). Initial 
differences in virus growth are largely compensated by passage 
20 (Fig. 1D), particularly in single-step growth curves (Fig. 1D, 
right). Antibody resistance (Fig. 1E) and plaque sizes on HFF cells 
(Fig. 1F) are similar for passage 0 viruses, whereas after 10 and 
20 passages, respectively, YS αgD display significantly increased 
antibody resistance (Fig. 1G). Plaque sizes increase in YS control 
populations only, whilst YS αgD tended towards smaller plaques 
(Fig. 1H). Initial competitive advantages observed in favour of wt 
completely disappear after 20 passages of selection on HFF cells, 
whereas antibody adaptation of YS became apparent only under 
αgD pressure (Fig. 1I). 

Glycoproteins evolve rapidly under multiple 
selective conditions 
To understand genetic mechanisms underlying the phenotypes 
observed here, we performed whole genome sequencing of viral 
populations studied above and traced genetic changes across 
passages and under different selective pressures. In agreement 
with our observations for viral populations evolved on Vero cells 
(Höfler et al. 2024), genomes extracted from YS passaged on 
HFF cells contain around twice as many single nucleotide poly-
morphisms (SNPs) as wt (Supplementary Fig. 1A). Furthermore, 
evolutionary space is explored more rapidly by YS populations, 
as exemplified by 2-dimensional principal component analysis 
of per gene non-synonymous to synonymous substitution 
rates (dN/dS; Supplementary Fig. 1B, distances shown in 
Supplementary Fig. 1C). In line with the more natural environ-
ment for HSV-1, less genes feature mutations upon HFF selections, 
when compared to Vero cell selection (Supplementary Fig. 1D) 
(Höfler et al. 2024). Collectively, these results are in excellent 
agreement with our previous data on Vero cell derived HSV-1 
populations. 

We identified many genes under positive selection (defined 
by dN/dS ratios above 2 for at least 2 out of 3 replicate popula-
tions) upon Vero cell passaging, whilst HFF passaging yields fewer 
selected genes (Fig. 2A). Many of the genetic variants identified 
here affect glycoproteins. Specifically, positive selection is evident 
for genes encoding gD, gC, gK and gB in Vero and gE, gC, and gH 
in HFF cells. Genetic screening across our passaging experiment 
confirms that many glycoprotein mutations increase their allele
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Figure 1. Rapid evolution of syncytial plaque phenotypes and antibody resistance in YS hypermutator. (A) Relative plaque sizes of on Vero cells 
evolved viruses. To passage 0 wt normalized areas were converted into diameters and used for the graph. Depicted are 30 plaques from three replicate 
populations (10 per replicate) as well as median and interquartile range. Similar data is displayed for HFF cells at passage 0 (F) and for passage 10 and 
20 (H). These viruses were plated on HFF cells. ∗ indicates significant differences (P < .05) measured by 2-way ANOVA followed by Dunnett’s (a, against 
wt H2O) and Tukey’s (H, as indicated) multiple comparison test, respectively. (B) Frequency of syncytial plaques throughout the passaging experiment 
on Vero cells. ∗ indicates significant differences (P < .05) against wt H2O measured by 2-way ANOVA followed by Dunnett’s multiple comparison test. 
Growth curves on HFF cells for passage 0 (C) and passage 20 populations (D). Both multi-step (MOI 0.001, left) and single-step (MOI 10, right) growth 
kinetics were performed. ∗ indicated significant differences (P <.05) observed via 2-way ANOVA and Šidák’s multiple comparison test. Resistance 
against αgD antibody measured by serum neutralization tests for passage 0 (E) as well as passage 10 and 20 (G). Displayed are 6 independent 
measurements per populations for passage 0 as well as 12 for passage 10 and 20 (4 per replicate population), respectively. Dashed lines indicate 
concentrations chosen for antibody selection. ∗ indicates significant differences (P <.05) measured by 2-way ANOVA followed by Tukey’s multiple 
comparison test. (I) Competition assays for passage 0 and evolved passage 20 populations on HFF cells. Log2 transformed competition coefficients 
(number of wt genomes/number of YS genomes) were determined via qPCR for all possible wt/YS combinations (n = 9) in duplicates. ∗ indicates 
significant differences (P <.05) against p0 w/o competition measured by 1-way ANOVA followed by Dunnett’s multiple comparison test. 

frequency over time and become fixed in the population ( Fig. 2B 
and C). Strong and uniform selection of specific glycoproteins 
becomes evident in replicate populations that show consistent 
affects across biological replicates (e.g. gC and gE in YS αgD 
populations; Fig. 2D). 

Mutations in glycoproteins gB, gD, and gK 
facilitate syncytia formation in Vero cell culture 
Membrane fusion is an essential step in the life cycle of enveloped 
viruses. Therefore, viruses need to encode at least one fusogenic 

envelope protein, often a glycoprotein. In many viruses, syncytia 
formation occurs as a result of the fusogenic potential of those 
essential proteins. For individual lineages, we correlated allele 
frequencies of isolated genetic variants (Supplementary Table 2) 
with incidence of syncytia formation in the lineage (Fig. 1B) to
identify specific mutations that may enhance cell fusion (Fig. 3A, 
see Material and Methods for more information). Our large dataset 
obtained from viruses facing different selective environments 
allowed us to focus on variants that independently occur in 
multiple lineages. Applying this strategy, we reduced the number

https://academic.oup.com/ve/article-lookup/doi/10.1093/ve/veaf072#supplementary-data
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Figure 2. Genomic changes in glycoprotein genes upon Vero cell adaptation and gD antibody pressure. (A) Open reading frames (ORFs) under positive 
selection (dN/dS ratios above 2 for at least 2 out of 3 replicate populations) after multiple Vero cell adaptations as well as after HFF cell passages with 
and without αgD antibody pressure. Labelled ORFs indicates genes with dN/dS ratios above 2 for all three replicate populations. Framed ORFs mark 
glycoprotein genes. Individual SNP allele frequencies over passaging time for populations evolved on Vero cells (B) and HFF cells (C). Curves in grey and 
colour signify synonymous and non-synonymous changes, respectively. Dotted grey lines indicate the limit of detection (0.05 for Vero and 0.1 for HFF 
selections). Non-synonymous variants detected at passage 30 are labelled next to the respective plot at the corresponding end-point (p30 for B and p20 
for C) allele frequency. (D) Map of glycoproteins affected by non-synonymous changes per replicate populations at endpoint passage. 

of targets to 15 non-synonymous variants highly correlated which 
increased syncytia formation and occurring independently in 
multiple lineages. Next, we reverse engineered these mutations 
individually in the parental HSV-1 wt BAC to test their involve-
ment in syncytia formation. We found that nearly all mutations 
lead to increased plaque sizes ( Fig. 3B). However, only 5 amino acid 
changes indeed cause syncytia formation: L304P and L62S in gK, 
R858H in gB and, albeit to a lesser extent, L50P and Q52R in gD 
(Fig. 3C, plaques depicted in Supplementary Fig. 2). 

To better understand and visualize the structural impact those 
amino acid changes might have on a protein level, we performed 

alphafold3 predictions (Abramson et al. 2024) and aligned mutant 
proteins with wt counterparts. Experimentally determined 
structures are available for both, gD and gB, and are in excellent 
agreement with our alphafold predictions (Supplementary Fig. 3A 
and B). However, as the structure of intrinsically disordered 
regions are notoriously difficult to predict, in silico modelling 
only allows for crude approximations of biological significance 
in those domains. As gB is a trimeric protein, we predicted the 
structure of the complete wt and mutant complex (Fig. 3D) to
visualize impacts on quaternary structure. These predictions 
suggest that R858H might impact gB structure by changing the

https://academic.oup.com/ve/article-lookup/doi/10.1093/ve/veaf072#supplementary-data
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Figure 3. Glycoprotein mutations facilitate syncytia formation on Vero cells. (A) Genetic changes that correlate with syncytia frequency. Arrows mark 
genes we focused on. The table on the right shows individual SNPs, mutations that occurred multiple times independently are underlined whereas 
non-identical but similar changes are italicized. Relative plaque sizes (B) and syncytia frequencies (C) for reverse engineered mutants are displayed for 
30 plaques + median and interquartile range. ∗ indicates significant differences (P <.05) against wt measured by 1-way ANOVA followed by Dunnett’s 
multiple comparison test. Alphafold3 predictions for gB (D), gK (E), and gD (F) are displayed in overall structural alignments as well as surface changes. 
Mutated amino acids are displayed as dots and pointed towards with arrows. 
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triangular head observed in the wt into a circular structure in 
the mutant. Additionally, the alphafold model only predicts the 
post-fusion conformation of gB, preventing us from drawing any 
conclusion on the pre-fusion state. For gK, L62S appears to impact 
the proteins head domain by forming a cavity and breaking a 
hydrophobic ring present in the wt protein. In the same protein, 
L304P may introduce a structurally subtler change by tilting (or 
probably breaking) the last transmembrane helix (Fig. 3E). Both 
gD mutants that affected syncytia formation (L50P and Q52R) 
appear to change surface structures in the head and might tilt 
transmembrane helices (Fig. 3F). 

High multiplicity of infection allows for syncytia 
formation upon cell entry 
Since we discovered multiple amino acid changes in different 
glycoproteins that facilitate syncytia formation, we set out to 
further characterize phenotypes of cell fusion within that subset. 
In principle, cell-to-cell fusion could occur during viral entry 
via virus mediated cross linking of multiple cells, or upon viral 
egress when glycoproteins are transported to the cell membrane. 
Although widely studied, it remains unclear at which step syn-
cytia are generally formed. To distinguish between those two 
possibilities, we investigated syncytia formation at different mul-
tiplicities of infection (MOIs) with and without foscarnet (FOS) 
treatment. FOS acts as a direct inhibitor of the viral DNA poly-
merase and thus prevents replication, virion assembly and egress. 
Consequently, syncytia formation observed under high-dose FOS 
treatment could be attributed to viral entry. Indeed, we found 
that high MOIs cause little syncytia formation upon entry in all 
mutants studied by us. However, gK mutants display a substantial 
degree of apparently entry mediated syncytia formation which 
occurs despite complete abolishment of egress and plaque for-
mation under FOS treatment (Fig. 4A–C). 

Increased particle stability and superinfection 
exclusion contributes to selective advantages of 
gK mutants 
Next, we aimed at uncovering further phenotypic differences con-
ferred by syncytial virus variants. Since glycoproteins are impor-
tant structural elements of virions and determinants of infectivity, 
we investigated the effect of the above-described mutants on viral 
infectivity over time. Exposing virions to prolonged incubation 
in growth media (see Material and Methods), we found that gK 
L304P appears to confer a significant stability advantage and 
endows virus particles with prolonged infectivity. Contrarily, gD 
L50P and gB R858H appear to be less stable than wt and show 
a faster decay in viral titers (Fig. 5A). Apart from stability, we 
also investigated the ability of mutants to exclude superinfecting 
wt virus from Vero cells. Interestingly, superinfection exclusion 
(SIE) seems to be somewhat independent of syncytia formation, 
as both gK mutants exclude superinfecting virus significantly 
faster whilst gD mutants are more susceptible to superinfec-
tion (Fig. 5B and C). Collectively, these findings suggest potential 
trade-offs and implications of syncytia formation, especially for 
gK L304P. 

To assert selective advantages conferred by gK variants, we 
performed competition assays against mCherry tagged wt virus 
at different MOIs. As expected, all mutants have a significant 
advantage and are outcompeting wt virus (Fig. 5D). Interestingly, 
competition coefficients are decreasing with increasing MOI, 
indicated by negative slopes observed in competition curves 
(Fig. 5E). However, gK variants exhibit fitness advantages at all 
tested MOIs. L304P maintains a significant competitive advantage 

over wt across all tested MOIs, whilst L62S shows a stable 
advantage for MOIs of 0.01, 0.1, and 1, however, decreases to gD 
and gB mutant levels at a MOI of 2. As likelihood of infection 
and coinfection of cells drastically increases at higher MOIs 
(Fig. 5F), the stable advantage of gK variants over wt across rising 
MOIs suggests some protection against coinfecting particles and 
genotypes. 

Resistance against neutralizing gD antibody is 
mediated by gE in a collectively beneficial 
manner 
Immune evasion is an essential mechanism of viral survival and 
persistence (Vossen et al. 2002). Immune escape mutants that, for 
example, evade specific neutralizing antibodies, are therefore of 
special importance. To study immune escape, we selected for gD 
antibody resistance by passaging HSV-1 wt and YS hypermutator 
in the presence of monoclonal murine αgD derived from the 
potently neutralizing human clone E317 (Lee et al. 2013) on HFF
cells. Contrarily to what we expected, we failed to detect muta-
tions in US6 (gD), even after 20 passages of αgD treatment. How-
ever, we evaluated gD variants previously evolved on Vero cells 
for antibody resistance. Indeed, gD L50P significantly increased 
resistance against αgD (Fig. 6A). To investigate why gD mutants 
were not selected on HFF cells, despite conferred resistance to αgD, 
we performed competition assays on both cell lines. We find that 
on Vero cells, gD mutants are positively selected, whereas they 
are outcompeted by wt on HFF cells (Fig. 6B). Even αgD resistance 
mediated by gD L50P is not enough to overcome the intrinsic 
fitness cost of this mutant on HFF cells, arguing for evolutionary 
constrains on gD receptor recognition. Higher antibody concen-
trations, however, might result in scenarios in which gD mediated 
resistance is more beneficial than the associated cost. 

Even though there was an absence of changes in the epitope 
targeted by the antibody, we did observe rapid protein evolution 
and positive selection in US8 (gE; Fig. 2A). Resistance against αgD 
increased in gE K52N and R201P, but not in other gE or any gI 
mutants (Fig. 6C). Both of those mutants fail to exhibit signifi-
cant advantages over wt upon antibody treatment in competition 
assays (Fig. 6D). To further explore resistance profiles of our gE 
mutants, we performed multi-step growth kinetics in presence 
and absence of αgD. Whilst wt, gD L50P as well as a mixture of 
both (wt + L50P) were significantly inhibited by αgD treatment, 
gE R201P and the wt + R201P mixture both grew significantly 
better and similarly well despite αgD treatment (Fig. 6E). Area 
under the curve transformation of that data confirms this obser-
vation. We calculated an ‘area between the curves’ to illustrate 
the differences in growth in presence and absence of antibodies 
(Fig. 6F). A larger titer difference in this graph indicates stronger 
suppression by αgD. Since wt is not outcompeted by resistant gE 
mutants and wt growth is rescued by gE R201P, it is tempting to 
speculate that the occurrence of this mutation in the population 
presents an advantage not only for viruses carrying the mutation, 
but also other members of the population. This speculation is 
further supported by the low allele frequency of R201P in YS 
αgD populations (∼0.1; Fig. 2C). Mutually beneficial interactions 
between co-infecting genotypes can lead to negative frequency 
dependent selection as shown for influenza viruses, hepatitis C 
and in theoretical models (Skums et al. 2015, Xue et al. 2016, 
Leeks et al. 2018). Both gE amino acid changes occur within the 
ectodomain of the gI/E heterodimer as shown by our alphafold3 
predictions and in experimentally determined structures (Fig. 6G, 
Supplementary Fig. 3C), a position known to act as a Fc receptor 
(Baucke and Spear 1979, Dubin et al. 1991). R201P maps to an

https://academic.oup.com/ve/article-lookup/doi/10.1093/ve/veaf072#supplementary-data
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Figure 4. gK mutants engage in collective syncytia formation independently from genome replication. (A) Vero cells infected with glycoprotein 
mutants at different multiplicities of infection (MOI), with or without foscarnet (FOS) treatment. Pictures were taken with an inverted Zeiss Axio 
Vert.A1 fluorescence microscope at 100× magnification. The EGFP marker featured in the BAC backbone was utilized for visualization. Scale bar 
marks 100 μm. (B) Normalized counts of nuclei within syncytia from three independent infections. Filled green dots indicate infections without FOS 
whereas grey circles signify infections with FOS. ∗ indicates significant differences (P <.05) measured by 2-way ANOVA followed by Tukey’s multiple 
comparison test. Black and grey ∗ indicate significance (P <.05) against gK L304P and L62S, respectively, at the indicated MOI. (C) Plaque reduction 
assays for glycoprotein mutants against FOS. Dotted line indicates 50% survival. 

Figure 5. Advantages for gK mutants in particle stability, superinfection exclusion and competitions at increasing MOIs. (A) Survival curve for 
glycoprotein mutants in media. Dotted line indicates limit of detection. Coloured ∗ indicate significant differences (P <.05) of the respective mutant 
against wt determined by 2-way ANOVA followed by Dunnett’s multiple comparison test. (B) Superinfection exclusion measured by superinfecting 
glycoprotein mutants with mCherry labelled wt at indicated timepoints post infection. Superinfection index (mCherry plaques/EGFP plaques) were 
log2 transformed and plotted over time. Dotted line shows no superinfection exclusion. Coloured ∗ indicate significant differences (P <.05) of the 
respective mutant against wt determined by 2-way ANOVA followed by Dunnett’s multiple comparison test. (C) Area under the curve (AUC) of 
superinfection exclusion data from (B). Dotted line signifies wt levels. ∗ indicates significant difference (P <.05) to wt. (D) Competition assays of 
glycoproteins against wt at different MOIs. ∗ indicates significant differences against wt/wt competition measured by 2-way ANOVA followed by 
Dunnett’s multiple comparison test. (E) Slope of data from (D) calculated by linear regression. ∗ indicates significant difference (P <.05) to a slope of 0. 
(F) Proportions of uninfected, single infected, double infected, and multiple infected (upper) as well as uninfected, single infected, and coinfected
(lower) cells for single genotype and double genotype infections at indicated MOIs, respectively. 
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Figure 6. gD antibody resistance is mediated by gE mutations, which rescue wt virus. Antibody resistance measured by serum neutralization tests for 
wt,  YS as well as gD (A) and gI/gE  mutants (C).  IC50 values are given for 6 independent dilution series, depicted with median and interquartile range. 
∗ indicates significant difference (P <.05) to wt measured by 1-way ANOVA followed by Dunnett’s multiple comparison test. Competition assays for gD 
(B) and gI/gE mutants (D). ∗ indicate significant difference (P <.05) as indicated (red ∗ against wt/wt competition) measured by 1-way ANOVA followed 
by Tukey’s (B) as well as 2-way ANOVA followed by Šidák’s (D) multiple comparison tests, respectively. (E) Multi-step growth curves (MOI 0.01) for wt, 
gD, gE, wt + gD, and wt + gE populations with and without gD antibody pressure. ∗ indicates significant difference (P <.05) between curves with and 
without antibody treatment, measured by 2-way ANOVA followed by Tukey’s multiple comparison test. (F) Difference between non-treated and treated
area under the curve for data from E (coloured areas). ∗ indicate significant differences (P <.05) in antibody inhibition. (G) Alphafold3 structure 
predictions for gI/E glycoprotein complexes. Structure of gE is given in coloured cartoon configuration (red for wt, blue for R201P and light blue for 
K52N). gI is presented in grey whilst single mutations (R201P and K52N) are shown as spheres. 

intrinsically disordered domain, a region which is difficult to 
predict, however, such regions have been shown to be important 
for protein–protein interactions ( Uversky 2018). 

Discussion 
Surface glycoproteins belong to the most rapidly evolving proteins 
of viruses (Schulze and Manger 1992, Elder et al. 1977, Shamblin 
et al. 2004, Lamers et al. 2015). Essential for host-cell attachment 
and entry, whilst at the same time exposed to humoral and 
cellular immune responses, surface proteins are under immense 
evolutionary pressure (Vossen et al. 2002, Thomson et al. 2021). 
HSV-1 virions feature 12 glyco- and 5 membrane proteins, mak-
ing the viral envelope a highly diverse and complex microen-
vironment (Hilterbrand and Heldwein 2019). In this study we 
discovered HSV-1 glycoprotein variants that mediate phenotypes 
beneficial to in vitro evolved viral populations. 

We recently established a mild hypermutator virus to 
accelerate experimental evolution of HSV-1 (Höfler et al. 2024). 
In our previous work, we used Vero cell culture to study antiviral 
resistance development. However, upon Vero cell passage, we 
also observed increased plaque sizes and syncytial phenotypes in 
evolved populations. Syncytia are in many ways beneficial to in 
vitro evolved viruses and thus rapidly selected in cell culture 
(Symeonides et al. 2015, Kuny et al. 2020). Primarily, syncytia 
allow for more efficient cell to cell spread (Jessie and Dobrovolny 
2021). This, in turn, allows infecting viruses to better exploit 
cellular resources and gives them selective advantages, resulting 
in their rapid fixation. Also, higher fusogenic potential decreases 
attachment and entry time, facilitating faster infection and 
initiation of genome replication (Tang et al. 2019). However, there is 
a cost to syncytia formation: syncytia associated apoptosis limits 
selective advantages by shortening cellular survival which may 
reduce formation of infectious viral progeny (Ferri et al. 2000, Ma 
et al. 2021). Despite this, beneficial aspects of syncytia formation
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appear to generally outweigh deleterious ones, resulting in 
selection for highly fusogenic particles. 

Whilst only four out of 15 reverse engineered mutations 
enabled syncytia formation, it is conceivable that a combination 
of multiple mutations, potentially located on different genomes, 
could also rescue the phenotype. Such observations are reported 
for Measles virus, where mutations located on the same genome 
had negative effects on fusogenicity. However, spread across 
different genomes, these same mutations did facilitate syncytia 
formation (Shirogane et al. 2023). 

Only four glycoproteins are known as essential for HSV-1 
attachment and entry, namely gD, gH, gL, and gB (Hilterbrand 
et al. 2021). We identified syncytial mutations in two out of those 
four essential glycoproteins. Additionally, we found gK mutants 
to mediate hyper-fusiogenic behaviour. In agreement with our 
findings, gK is described as involved in cell fusion (Hutchinson 
et al. 1992). Evidently, interactions between gK and other 
glycoproteins alter cell fusion, an interplay in which gK plays an 
inhibitory role (Avitabile et al. 2003). Interestingly our results show 
that only gK mutants displayed any significant ability to promote 
syncytia formation upon viral entry. This may be due to high local 
concentrations of gK in close proximity to gB on the particles 
surface, where gK/gB interaction can inhibit fusogenic activity 
of gB in wt particles (Jambunathan et al. 2011). One possible 
interpretation of our data would suggest that upon egress, dilution 
of viral glycoproteins across the cell surface may abolish gK’s local 
effect on gB inhibition. Additionally, gK dependent cell fusion 
upon viral entry is highly influenced by MOI, as viral particles 
are the limiting factor in this scenario and only simultaneous 
infection of neighbouring cells produces syncytia. 

Strikingly, gK also appears to be critical for particle stability. 
gK variants observed by us endowed virions with significantly 
prolonged infectivity under typical cell culture conditions. This 
phenomenon is most likely due to higher association to cellular 
membranes which protect virions from initial degradation 
(Musarrat et al. 2018, Rider et al. 2019). Furthermore, our gK 
variants initiated earlier SIE. From 3 h post infection on, gK 
mutants significantly decrease reproduction of superinfecting 
wt virus. Whether this is due to faster attachment and cell entry, 
more efficient cell to cell fusion, or the presence of mutant gK 
on cellular surfaces, is difficult to untangle. Since other syncytial 
mutants do not accelerate SIE, we do not directly ascribe SIE 
to a syncytial phenotype. However, early syncytia formation as 
observed in gK mutants may contribute to the observed increase 
in SIE (Musarrat et al. 2018). SIE in HSV-1 is dependent on viral gene 
expression, and specifically on downregulation and shutoff of the 
cellular receptors (Stiles et al. 2008, 2010, Criddle et al. 2016, Friedel 
Caroline et al. 2021). Syncytia formation induced by gK mutants 
might increase the number of infected cells simply by fusion 
of infected and uninfected cells, rendering a higher percentage of 
cells refractory to superinfection. In agreement with this hypothe-
sis, gK mutants maintain their fitness advantages with increasing 
MOIs. In other mutants, specifically gB R858H, syncytia formation 
depends on viral genome replication and egress. Increasing MOI 
diminishes their ability to outperform wt, as viral spread is less 
important under conditions of high MOI. gK mutants, however, 
which also form syncytia upon cell entry, still excel at higher MOIs, 
suggesting an advantage conferred by their ability to exclude 
superinfecting particles from cells occupied by them. 

With humans as reservoir host (Reichman 1984, Everett 
2014), HSV-1 is expected to be well adapted to human cells and 
experience comparatively little change upon culture in such. 
Indeed, compared to the notable diversity of proteins under 

positive selection in Vero cells, HFF cells provide less adaptive 
genome space, leading to fewer mutations, purifying selection and 
slower protein evolution. However, antibody pressure clearly led to 
positive selection of gE and gC (possibly even some co-evolution), 
at least in YS hypermutator populations. Those populations also 
display selection for UL13 and UL49, although to a lesser degree. 
Nevertheless, mutations in these genes could be relevant to the 
observed increase in antibody resistance. UL49 encodes VP22, a 
tegument protein important for neurovirulence and effective cell-
to-cell spread (Brignati et al. 2003, Yu et al. 2010, Tanaka et al. 2012). 
Antibody treatment may select for intracellular viral phenotypes 
which remain inaccessible to neutralizing antibodies throughout 
the viral life cycle. UL13 on the other hand encodes a protein 
kinase phosphorylating numerous cellular and viral proteins 
(e.g. VP22), hitchhiking regulatory networks in the infected cell 
(Kawaguchi et al. 2003, Asai et al. 2007), which may be selected 
as a consequence of antibody pressure. Except for UL36, no
convergently selected genes appear in wt populations upon 
antibody exposure, this finding is consistent with the observed 
absence of any antibody resistance in wt populations. Other 
than that, gH mutants seem to be selected for under relaxed 
conditions, probably enhancing the attachment and entry as the 
mediator protein. Surprisingly, antibody treatment suppressed 
any selection of gH mutants. This could be due to an overall 
lower genetic diversity observed in viral populations evolved 
on HFF cells, which limits the pool of genotypes available to 
selection. High selection pressure for antibody evasion might 
have interfered with gH selection because of limited mutational 
input. Another possible explanation could be the exposure 
of conformational epitopes in gD upon mutant gH binding 
and henceforth enhanced antibody recognition (Mortimer and 
Minchin 2016). Since plaque sizes do only increase in the absence 
of antibody pressure, there might be a gH mediated trade-off 
between cell-to-cell spread and antibody resistance. 

In revealing paths to antibody resistance within an evo-
lutionary extremely short time frame, our YS hypermutator, 
again, proves its outstanding ability to accelerate evolutionary 
processes by providing extended genomic sequence space which 
is inaccessible to wt (Xing et al. 2022, Höfler et al. 2024). This 
ability of our hypermutator virus to shorten observation periods 
will likely be useful in future work on experimental evolution of 
HSV-1, and possibly other herpesviruses in which homologous 
mutations confer similar effects (Trimpert and Osterrieder 2019, 
Xing et al. 2022). 

Our in vitro selection of YS hypermutator populations for gD 
antibody resistance suggested multiple targets for resistance 
development. As gE is known to act as a Fc receptor (Dubin 
et al. 1991), and gC as well as UL13 are established interaction 
partners of gE (Ng et al. 1998, Hook et al. 2008), we decided to 
concentrate on gE mutations and reverse engineered them along 
with gI mutations. We find that indeed, gE mutations K52N 
and R201P significantly increase resistance against αgD. Both 
mutations occur exclusively in YS populations selected for αgD 
resistance. Initially, we found the absence of gD mutations in 
those populations puzzling, however, resistant gD substitutions, 
independently selected in absence of antibody pressure on 
Vero cells, exhibited fitness costs in vitro in HFF cells. Opposing 
selection pressures for sustained or increased receptor binding 
and antibody evasion potentially led to gene capture events or 
duplications. This might have enabled ancestral herpesviruses to 
bind antibodies via Fc receptors, endowing them with a significant 
selective advantage (Gibson and Spear 1983, Elde et al. 2012, 
Gao et al. 2017, Brito and Pinney 2020). Indeed, gene captures of
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immune modulatory genes are described for HSV-1 (Schönrich 
et al. 2017). As part of a human virus, HSV-1’s gE evolved to 
bind human Fc domains (Ndjamen et al. 2014). However, since 
we used a mouse monoclonal IgG antibody in this study, gE may 
have rapidly evolved to accommodate binding of mouse Fc and 
circumvent antibody pressure. It is tempting to speculate that, 
had we used human antibodies or only Fab fragments, we might 
had selected for gD or even gH/L variants that allow immune 
evasion. Adaptation to mouse Fc also provides insights into how 
host spillovers in herpesviruses can occur, a process frequently 
overlooked in their evolution (Brito et al. 2021). Overcoming 
the immune response mounted by a novel host is an essential 
step to successfully establish reliable transmission within new 
host species (Plowright et al. 2017). Remarkably, gE mediated 
antibody binding appears to be beneficial for other co-infecting 
genotypes, shielding them from neutralization in a social manner. 
Whilst our results demonstrate social interaction within our viral 
populations, more work is needed to fully describe the costs 
and benefits of such interactions and to uncover underlying 
biological mechanisms. Indeed, social interactions within viral 
communities are frequently overlooked, but play important 
roles in the life cycles of many viruses (Díaz-Muñoz et al. 2017, 
Sanjuán 2021, Leeks et al. 2023b). Both, syncytia formation and Fc 
antibody binding, may be considered social phenotypes. Syncytia 
enable manifold intracellular interactions between viruses in 
neighbouring cells (Steain et al. 2008), which also expands the 
spatial scale of public goods use (Chao and Elena 2017). Similar 
phenotypes have been observed for multipartite plant viruses 
which share proteins across cells (Sicard et al. 2019). This type 
of interaction would also benefit defective viral genomes, which 
cannot independently establish productive infection (Rezelj et al. 
2018, Vignuzzi and López 2019). Syncytia might influence virion 
aggregation and allow for collective transmission of defective 
genomes (Andreu-Moreno and Sanjuán 2020). Similarly, Fc 
receptors such as gI/E bind antibodies, thus clearing them from 
the extracellular environment and enabling all members of the 
viral population to infect susceptible cells irrespective of their 
gI/E genotype (Dubin et al. 1991, Ndjamen et al. 2014). More and 
more social interactions within and between viral populations 
have been discovered in recent years (Díaz-Muñoz et al. 2017, 
Sanjuán 2021, Haney et al. 2022, Leeks et al. 2023a, 2023b). Just 
as molecular pathways and interactions are driven by evolution, 
population dynamic and social interactions drive viral evolution 
in response to specific selective pressures. Future research should 
be directed at further elucidation of novel aspects in sociovirology. 

A limitation of this study is presented by the singular focus on 
cell culture systems. Whilst HFF cells are human, HSV-1 does 
not primarily infect fibroblasts in a natural infection setting 
(Howley et al. 2021). Vero cells are neither derived from a natural 
host, nor are they a tissue and are furthermore defective in the 
type I interferon response (Emeny and Morgan 1979). However, 
this apparent disadvantage may prove useful when considering 
spillover events. Many spillovers require immunosuppressed 
initial hosts to accumulate essential adaptations (Bean et al. 2013, 
Weigang et al. 2021, Warren et al. 2022, Li et al. 2023). In this 
context, Vero cells might provide a valuable environment to 
mimic some aspects of host spillovers under relaxed immunolog-
ical conditions. Specifically, the rapid evolution of glycoproteins 
upon Vero cell selection argues towards their importance 
for exploring new hosts. gD mutants which confer selective 
advantages on Vero cells are deleterious on HFFs, suggesting 
improved foreign receptor recognition or exploration of novel host 
cell receptors, which are likely encountered upon host spillovers. 

HSV-1 does occasionally infect other primates. Whilst infections 
of old world monkeys are usually well tolerated (McClure et al. 
1980, Eberle and Hilliard 1989), they are often fatal in new world 
monkeys (Huemer et al. 2002). Vero cells are derived from Chloroce-
bus sabaeus, an old world monkey species. Given the evolutionary 
distance between those two clades, immune recognition might 
be an important determinant of virulence. Another major aspect 
of pathogenicity in non-host species might be the complement 
system (Huemer et al. 1993), usually antagonized by HSV-1 via gC 
interactions (Friedman et al. 1984). More work is required to fully 
understand herpesvirus host spillovers. 

Overall our study contributed to the already known diversity 
of glycoprotein functions in HSV-1 and elucidated novel aspects of 
their evolution. In addition, we provide evidence for the advantage 
conferred by the use of a hypermutator virus in experimental evo-
lution. Future studies will be aimed at advancing our understand-
ing of glycoprotein variants and their role as immune modulatory 
factors, targets of viral interaction and pivotal effectors of viral 
attachment and entry. 
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