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Spatial multiomics of acute myocardial 
infarction reveals immune cell infiltration 
through the endocardium
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Myocardial infarction (MI) continues to be a leading cause of death 
worldwide. Even though it is well established that the complex interplay 
between different cell types determines the overall healing response after 
MI, the precise changes in the tissue architecture are still poorly understood. 
In this study, we generated an integrative cellular map of the acute phase 
after murine MI using a combination of imaging-based transcriptomics 
(Molecular Cartography) and antibody-based highly multiplexed imaging 
(Sequential Immunofluorescence). This enabled us to evaluate cell 
type compositions and changes at subcellular resolution over time. We 
observed the recruitment of leukocytes to the infarcted heart through the 
endocardium and performed unbiased spatial proteomic analysis using 
Deep Visual Proteomics (DVP) to investigate the underlying mechanisms. 
DVP identified von Willebrand factor (vWF) as an upregulated mediator of 
inflammation 24 hours after MI, and functional blocking of vWF reduced 
the infiltration of C-C chemokine receptor 2 (Ccr2)-positive monocytes and 
worsened cardiac function after MI.

Myocardial infarction (MI) is an acute disease characterized by large 
shifts in cellular composition and tissue architecture due to cell death 
of cardiac muscle tissue caused by local hypoxia1. MI remains one of the 
leading causes of death worldwide, despite considerable improvements 
in the prevention and treatment of the disease2,3. Although advance-
ments in restoring blood flow to the heart muscle (termed reperfusion) 
and pharmacological treatment strategies have largely reduced short-
term deaths, long-term mortality after MI continues to be high4–6. One 
of the reasons why mortality remains high is that we do not understand 
how molecular cues and tissue microenvironment alterations during 
acute disease affect healing and remodeling in the long run. During an 
acute infarct, necrotic cells in the heart release stress signals, including 

pro-inflammatory cytokines and chemokines, leading to the invasion 
of the infarct zone by immune cells—specifically neutrophils, mono-
cytes/macrophages (Mo/Mɸ) and later T cells, B cells and natural killer 
cells1,7–10. Modulation of the types and amount of immune cells infiltrat-
ing the infarct have been postulated as potential treatment targets 
to improve healing and outcome after MI11,12. A better understanding 
of the immune cell infiltration routes and pathways, detailed tissue 
microenvironment and cellular interactions in the heart during the 
early phases of MI thus holds the promise to deliver potential novel 
treatment strategies.

Extensive research has been performed on the temporal dynam-
ics of immune cell infiltration during the course of MI in humans and 
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mice1,8,13,14. Cell count estimations of the immune infiltrate have been 
generated using fluorescence-activated cell sorting (FACS) of left 
ventricular cardiac tissue14–17. Single-cell RNA sequencing (scRNA-seq) 
provided further insight into the diverse subtypes of immune cells 
that infiltrate the necrotic myocardium and their different pathway 
activities and physiological roles18–21. Two recent studies applied single-
nucleus RNA sequencing (snRNA-seq) alongside untargeted spatial 
transcriptomics to investigate the border infarct zone during MI in 
mice22,23. Combining the spatial readout with transcriptome-wide meas-
urements, both studies identified important transcriptional signatures 
of the infarct border zone. Another large study generating a spatial 
multiomic map of human MI also used untargeted transcriptomics to 
investigate the different cell neighborhoods and tissue architectures 
during MI progression in humans24. Although these studies were able 
to connect critical molecular patterns and processes during MI to their 
spatial context, they could not accurately quantify the tissue microenvi-
ronment and cellular neighborhoods, due to the limited spatial resolu-
tion (approximately 55 µm) of the technology used, which effectively 
captures a mix of 10–20 cells per measurement. Novel targeted spatial 
omics technologies with subcellular resolution are transforming our 
understanding of tissue architecture and the corresponding cell type 
interactions in health and disease25,26. Highly multiplexed approaches to 
measure tens to thousands of transcripts, antibodies or both combined 
enable a detailed description of the changing cellular phenotypes and 
neighborhoods during homeostasis and disease27–30. Furthermore, 
developments in computer vision now enable cell identification using 
automated cell segmentation and classification algorithms31–34.

In the present study, we used combinatorial imaging technologies 
based on RNA detection via fluorescence in situ hybridization (FISH) 
barcoding (Molecular Cartography) and antibody-based Sequential 
Immunofluorescence (SeqIF, Lunaphore COMET), respectively, to 
characterize the changing tissue microenvironment during acute MI 
in mice. Subsequently, we developed scalable computational pipelines 
(nf-core/molkart) tailored for cardiac tissues, using state-of-the-art 
methodology to process these complex, highly multiplexed imag-
ing datasets. Using Molecular Cartography and SeqIF across a time-
course of the acutely infarcted heart (control prior to infarct, 4 hours, 
24 hours, 2 days and 4 days after MI), in a minimally invasive MI model, 
we were able to characterize the acute MI microenvironment at single-
cell resolution35. From this spatiotemporal map of MI, we discovered 
that myeloid cells (specifically Mo/Mɸ) enter the infarct region not only 
via the border and epicardial infarct zone but also via the endocardial 
infarct zone, which was previously unknown. Laser microdissection of 
endocardial regions 24 hours after infarction followed by ultrasensitive 
proteomics was performed to investigate this infiltration route, which 
revealed local signatures of inflammation and coagulation factors and 
highlighted vWF as an immune mediating agent in endocardial cells36. 
To further investigate the role of vWF, antibody-based functional block-
ing of vWF during the first day after MI showed a significant reduction 
of Mo/Mɸ infiltration via the endocardial route and reduced left ven-
tricular function. Therefore, our study highlights, to our knowledge 
for the first time, a critical role of the endocardium for infiltration of 
immune cells into the infarct via local upregulation of adhesion fac-
tors such as vWF. These results highlight previously unknown routes 
of immune cell infiltration and provide novel potential targets for 
pharmacological intervention.

Results
Single-cell resolved spatial transcriptomic analysis of acute MI
To characterize the cellular environment during homeostasis and 
acute MI in the mouse heart, we used a combinatorial single-molecule 
FISH (smFISH)-based technology called Molecular Cartography by 
Resolve Biosciences (Fig. 1a and Extended Data Fig. 1a–c). Molecular 
Cartography allows for the detection of RNA transcripts for up to 100 
candidate genes at single-molecule resolution with high sensitivity 

in selected regions of interest (ROIs). Based on marker gene expres-
sion from existing publicly available scRNA-seq datasets and expert 
knowledge, we subsequently designed a 100-gene transcript panel 
specifically for this study, to capture major cell types as well as inflam-
matory signals during acute MI (Supplementary Table 1)37–41. Using this 
panel, we selected one ROI per heart (2.09 mm2 to 2.97 mm2) cross-
section to measure endocardial, myocardial and epicardial regions 
at four different timepoints during acute MI (control prior to infarct, 
4 hours, 2 days and 4 days) (Extended Data Fig. 1a–c). Identification and 
abundance of RNA transcript spots were highly reproducible across 
technical replicate slides of Molecular Cartography, as highlighted 
by a strong correlation of pseudobulk transcript counts across sec-
tions from the same biological sample (Supplementary Fig. 1a). On 
average across all timepoints, we detected 980,000 RNA transcript 
spots per mm2 of heart tissue with lower transcript density in infarcted 
tissues due to fewer viable cells within the infarct region (Supple-
mentary Fig. 1b). Principal component analysis (PCA) of pseudobulk 
transcriptional profiles showed separation of samples by time relative 
to the induced infarct, confirming strong transcriptional shifts in 
response to acute infarction (Supplementary Fig. 1c). For each time-
point (control, 4 hours, 2 days and 4 days), we assayed two biological 
replicates using Molecular Cartography and processed the data with 
an in-house-developed, open-source computational pipeline that 
we call nf-core/molkart (Fig. 1b). Despite advances in deep-learning-
based methods, segmentation of cardiac cells from microscopy images 
remains extremely challenging due to their differences in cell size, 
shape, orientation, multinucleation and RNA content. Comparing four 
different cell segmentation approaches (DeepCell Mesmer’s ‘nuclear’ 
and ‘whole-cell’ models, the Cellpose cytoplasmic model (‘cyto’) and 
a custom Cellpose 2 model), we found that Cellpose with a human-in-
the-loop trained model performed best on our murine cardiac tissue 
samples when evaluating against independently annotated ground 
truth segmentations; it also showed an overall higher percentage of 
assigned RNA spots to cells (Extended Data Fig. 2)33,34,42. Cell typing of 
cell transcript profiles across all images (69,028 cells in total, average 
number of cells per sample = 8,629) identified all major cardiac cell 
types during acute MI (Fig. 1c). We found healthy as well as stressed 
cardiomyocytes distinguished by their expression of atrial natriuretic 
peptide (Nppa) and brain natriuretic peptide (Nppb), cells of the vas-
culature (pericytes, smooth muscle cells and endothelial cells), cardiac 
fibroblasts as well as infiltrating myeloid and lymphoid cells (Fig. 1d). 
The hypoxic environment in the left ventricle during acute MI leads to 
massive cell death and changes in tissue composition and architecture 
within the left ventricle. In line with these expectations and known cell 
dynamics from literature, we observed a strong shift in the cell type 
composition from healthy to infarcted left ventricular tissue during the 
first 4 days after MI (Extended Data Fig. 3a,b). Healthy left ventricular 
tissue composed of cardiomyocytes, endothelial cells and fibroblasts 
showed compositional changes toward an environment of dying and 
stressed cardiomyocytes (Nppa+) surrounded by extracellular matrix 
(ECM)-producing cardiac fibroblasts and invading myeloid cells after 
MI. Because our selected ROI contained large areas of infarct tissue, 
healthy cardiomyocytes showed the highest decrease in cell number 
from an average of 57.9% of identified cells in controls to only about 
10% at day 4 in the processed regions. In line with increased ECM pro-
duction and early scar formation, cardiac fibroblasts increased from 
6.6% to 30.8% of cells within the ROIs. Notably, we observed a strong 
increase of myeloid cells (neutrophils, Mo/Mɸ and dendritic cells) from 
4% in controls to almost 28% at day 4 in the imaged ROIs, indicating 
ubiquitous infiltration of myeloid cells into the infarct (Extended Data 
Fig. 3b). A deeper analysis of immune cell types allowed classification 
of neutrophils, different types of Mo/Mɸ as well as lymphoid cells and 
dendritic cells (Extended Data Fig. 3c,d). Overall, our analysis high-
lights the cellular landscape of acute MI, recapitulating many known 
cellular dynamics in a spatial context.
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Cellular neighborhood analysis of spatial transcriptomic data 
highlights the dynamic spatiotemporal changes during acute MI
To get a global understanding of the tissue architecture and intercel-
lular relationships across acute MI tissues, we applied the Multiview 
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Fig. 1 | Molecular Cartography of acute MI enables spatial cell typing of the 
left ventricular infarct tissue. a, Schematic overview of the study design. Two 
biological replicates chosen across two technical replicate slides were used for 
Molecular Cartography. Two or three biological replicates were used for SeqIF.  
b, Schematic for spatial transcriptomics data generation (Molecular Cartography)  
and processing (nf-core/molkart). c, UMAP showing the joint embedding of 

69,028 cells from eight samples (two biological replicates per timepoint) over 
four timepoints across acute MI. d, Representative spatial cell type distributions 
for a sample at 2 days after MI. A composite image with all cell types is shown 
on the left, and each cell type’s individual distribution is shown on the right. 
Schematics in a and b were created with BioRender.com. d, days; h, hours;  
LV, left ventricular.

Intercellular SpaTial (MISTy) modeling framework to our dataset43. 
MISTy captures the cell type relationship patterns across entire slides 
and datasets in an unbiased manner (Methods). In homeostatic car-
diac control tissue, the majority of cell types were distributed mostly 
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Fig. 2 | Spatial analysis of Molecular Cartography cell composition during 
MI highlights myeloid interactions with the endocardial layer. a, Spatial cell 
type relationships in cardiac control tissue as calculated by MISTy. Importance 
indicates spatial interactions across the slide between the two cell types 
highlighted. For all MISTy analyses, only interactions with an importance >0.4 
and only cell types with a gain in R2 > 5% are shown. R2 represents the change of 
variance when including the spatial context (paraview, radius = 125 µm).  
b,c, Local bivariate analysis between endocardial cells and cardiomyocytes Nppa+ 
(b) and endocardial cells and myeloid cells (c), respectively. Color indicates the 
local product as calculated by LIANA+. d, RNA spot localization in an endocardial 
region of control tissue, highlighting spatial co-localization of marker genes 
for endothelial/endocardial cells (Pecam1), cardiomyocytes (Pln and Nppa), 
fibroblasts (Pdgfra and Col1a1) and myeloid cells (Cd74, Lyz2 and C1qa). e, MISTy 
analysis for left ventricular tissue 2 days after MI shows an interaction between 
endocardial cells and myeloid cells. f,g, Local interaction analysis shows the 
interaction of endocardial cells with cardiomyocytes Nppa+ (f) and myeloid 
cells (g) in the endocardial infarct zone. h, RNA marker expression confirming 

localized expression of myeloid markers in the endocardial infarct zone. i, MISTy 
analysis for 4 days after MI highlights the spatial relationship between cardiac 
fibroblast and myeloid cells around the infarct core. j,k, Local interaction analysis 
shows the interaction of myeloid cells with cardiomyocytes Nppa+ (j) and cardiac 
fibroblasts (k). l, RNA spot localization within the infarct tissue at 4 days after MI. 
m, Euclidean distances between all pairs of cell types were calculated. Euclidean 
distances between all pairs of cell types were calculated and the distance to the 
closest myeloid cell was used for endocardial cells and cardiac fibroblasts.  
n, Euclidean distances between endocardial cells to myeloid cells were 
significantly different across the first 4 days after MI (n = 2 biological replicates 
for all groups, type II ANOVA P = 0.0095). Post hoc analysis showed significant 
differences at 2 days (post hoc t-test with Bonferroni correction, P = 0.022 after 
MI relative to control but no difference between 2 days and 4 days (P = 0.084)). 
o, Euclidean distances between cardiac fibroblasts and myeloid cells were 
significantly reduced at 4 days after MI (n = 2, same biological samples as in 
n, post hoc t-test with Bonferroni correction, P = 0.038). Bars represent mean 
distance in micrometers, and points represent individual measurements. d, days.
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homogeneously, with cardiomyocytes interspersed with cardiac fibro-
blasts, vascular endothelial cells and pericytes. The location of the 
majority of cell types was, therefore, not informative as a predictor 
of the localization of other cell types. MISTy did, however, identify a 
spatial signature for Nppa+ cardiomyocytes, whose spatial localization 
was best predicted by endocardial cells (Fig. 2a). Myeloid cells in con-
trol tissue were rare, with a relatively homogeneous distribution across 
the tissue during homeostasis and 4 hours after MI, indicating that 
these are likely resident leukocytes. To further explore the potential 
co-localization and interaction between cell types, we performed local, 
bivariate analysis between pairs of cell types using LIANA+ (ref. 44). This 
local analysis between endocardial cells and Nppa+ cardiomyocytes 
in controls pinpointed the interaction between these cell types to the 
subendocardial region close to the left ventricular lumen (Fig. 2b). 
This aligns well with known localization of Nppa in trabecular ventricle 
regions during development, which is maintained in homeostatic adult 
hearts45–47. By contrast, no spatial interaction was identified between 
myeloid cells and endocardial cells in controls (Fig. 2c). Visualization 
of the RNA signal within that region confirmed strong Nppa expres-
sion close to markers for endocardial/endothelial cells (Pecam1) (Fig. 
2d). Two days after MI, MISTy analysis revealed interactions that were 
not identified in control conditions. Besides the remaining strong 
relationship between endocardial cells and Nppa+ cardiomyocytes, 
MISTy also identified a spatial context between endocardial cells and 
myeloid cells (Fig. 2e). Both of these spatial interactions showed clear 
demarcation of a (sub)endocardial infarct zone around the infarct 
core (Fig. 2f,g). In line with this finding, we observed a strong RNA 
signal of myeloid markers within the endocardium and the suben-
docardial layers (demarcated by Nppa) (Fig. 2h). The local relation-
ship between endocardial cells and myeloid cells was also identified 
at 4 days after MI alongside a signal between cardiac fibroblast and 
myeloid cells (Fig. 2i). Myeloid cell locations at 4 days after MI were 
additionally predicted by Nppa+ cardiomyocytes, cardiac fibroblasts 
and cardiomyocytes (Fig. 2j). Interestingly, the interaction between 
myeloid cells and fibroblasts was enriched in the border zone and 
epicardial infarct zone (Fig. 2k). The highly increased abundance of 
cardiac fibroblasts and their spatial co-localization with myeloid cells 
were further highlighted by the drastic increase of RNA molecules 
encoding ECM components such as Col1a1 (Fig. 2l). As multiple spatial 
analyses highlighted unexpected but potentially important interac-
tions between endocardial cells and myeloid cells, we aimed to validate 
and quantify this increased local relationship using simple measures. 
Therefore, we calculated the Euclidean distance in two-dimensional 
tissue space between each endocardial cell and its nearest neighbor 
myeloid cell to quantify myeloid cell proximity to endocardial cells 
during acute MI (Fig. 2m). Average distances between endocardial 
cells and myeloid cells showed significant differences over the MI time-
course (Fig. 2n). At day 2 and day 4 after MI, endocardial cells showed 
significantly shorter distances to myeloid cells compared to the con-
trol, whereas the average distance to myeloid cells did not change 
significantly between day 2 and day 4 (Fig. 2n). We performed the same 
distance analysis to see whether myeloid cells show a similar relation-
ship with cardiac fibroblasts at the interface to the infarct core and 
found increased proximity between both cell types after MI (Fig. 2o).  
Taken together, our cellular neighborhood analysis identified and 
highlighted an unexpected spatial relationship between endocardial 
cells and myeloid cells, suggesting that immune infiltration to the 
infarct might be mediated via the endocardium and the subendocardial 
Nppa+ infarct zone (collectively referred to as endocardial infarct zone).

Highly multiplexed antibody-based imaging confirms immune 
cell infiltration via the endocardial layer in acute MI
To further investigate the regional distribution of myeloid cells after MI 
and capture spatial temporal patterns across entire heart sections, we 
performed SeqIF on samples from the acute phase after MI, independent 

of Molecular Cartography samples (control in biological triplicate; 
4 hours, 24 hours and 2 days in biological duplicate) (Fig. 3a)48.  
We optimized an antibody panel to identify healthy and stressed car-
diomyocytes (Tnnt2 and Ankrd1), endothelial cells (CD31), smooth 
muscle cells (αSMA), cardiac fibroblasts (Pdgfra), myeloid cells (CD45, 
CD68, CCR2, Trem2 and Mpo) as well as DAPI and wheat germ agglutinin 
(WGA) to capture nuclei and the cell membrane, respectively (Fig. 3b  
and Supplementary Table 2). We performed image processing of SeqIF 
data using MCMICRO, a Nextflow-based pipeline that performs sub-
traction of autofluorescence signal from each antibody channel, cell 
segmentation and fluorescence intensity quantification (Fig. 3a)49. 
Based on our experience with segmentation for Molecular Cartography 
data, we applied the same strategy of using WGA and DAPI to train a 
custom Cellpose 2 model to segment cells in the SeqIF dataset. To assign 
phenotypes to cells, we used the Pixie workflow, which performs pixel 
clustering using self-organizing maps (SOMs) to generate pixel maps 
of tissues (see Methods for more details) (Extended Data Fig. 4a)50.  
In these pixel maps, groups of pixels with similar marker intensity 
profiles across the SeqIF dataset are clustered together, allowing for 
classification of different cell types and tissue regions across the entire 
timecourse of acute MI (Extended Data Fig. 4b)50. In line with our results 
from Molecular Cartography, we found a continuous decrease in pixel 
phenotype clusters for cardiomyocyte marker Tnnt2 and an increase 
in pixel phenotype clusters for myeloid cells (Mo/Mɸ and neutrophils) 
in the first 2 days after MI (Extended Data Fig. 4b,c). We also found 
stressed and dying cardiomyocytes positive for an Ankrd1 pixel cluster, 
clearly demarcating the infarct core starting already at 4 hours after 
MI (Extended Data Fig. 4a). We used the pixel maps to perform cell 
phenotyping using Cellpose cell masks in a second clustering step 
(Fig. 3c,d and Extended Data Fig. 4d). This pixel-level phenotyping 
workflow enabled us to profile the spatial localization of cardiac cells 
within the infarcted heart based on our highly multiplexed imaging 
data, at an unprecedented scale for entire heart cross-sections. To 
further investigate and independently validate the potential relation-
ship between endocardial and myeloid cells that we found in Molecular 
Cartography data, we repeated the distance analysis between these two 
groups of cells. In line with our findings with Molecular Cartography, 
the distance between myeloid cells and endocardial cells decreased 
during the first 2 days after MI (Fig. 3e). Interestingly, myeloid cells 
were closest to endocardial cells only 24 hours after an infarct (median 
distance = 24 µm), suggesting that attachment and infiltration of these 
immune cells via the endocardial layer might be a rapid process. To 
quantify the extent of different infiltration routes of myeloid cells into 
the infarct, we partitioned the infarcted heart images into regional 
compartments (endocardial infarct zone, epicardium, infarct core 
and border zone) guided by expression patterns of Tnnt2, Ankrd1, 
WGA and CD31 (Methods) with subsequent cell quantification (Fig. 3f, 
Supplementary Figs. 2 and 3 and Extended Data Fig. 5a). Using SeqIF 
and conventional immunofluorescence staining, we found a strong 
increase specifically for Mo/Mɸ expressing CCR2 (CCR2+ Mo/Mɸ) in 
the endocardial infarct zone, peaking at 24 hours after MI (Fig. 3g and 
Extended Data Fig. 5). At 2 days after MI, the relative number of myeloid 
cells remained high within the endocardial infarct zone. However, we 
additionally found an increased density of CCR2+ Mo/Mɸ within the 
epicardial infarct layer. Quantification of absolute CCR2+ Mo/Mɸ num-
bers over time identified the border zone as the predominant invasion 
route after 2 days. Closer inspection of CCR2+ Mo/Mɸ distribution in 
the endocardial layer showed CCR2+ Mo/Mɸ already being attached to 
the endocardium at 4 hours after MI, with occasional infiltration events 
(Fig. 4a–c and Extended Data Fig. 6). Of note, we did not observe a high 
abundance of non-endocardial endothelial cells in regions with high 
CCR2+ Mo/Mɸ density within the endocardial infarct zone during the 
first 24 hours (Extended Data Fig. 6).

In the epicardial layer, CCR2+ Mo/Mɸ were either directly 
attached to the epicardium or in close proximity to epicardial vessels 
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(Supplementary Fig. 4a–c). Taken together, our results—across mul-
tiple technologies and quantification methods—clearly indicate a 
progressive infiltration of myeloid cells via different cellular layers 
during the acute phase after MI in a non-reperfusion context and 
highlight a previously undescribed route via the endocardial infarct 
zone that immune cells can take to infiltrate the left ventricle to reach 
the infarct region.

Spatial proteomics of the endocardial layer highlights vWF 
involvement in immune cell infiltration
Following the discovery of early immune cell infiltration into the endo-
cardial infarct zone, we aimed to identify potential factors mediating 

the recruitment, adhesion and infiltration of myeloid cells via the 
endocardium using ultrasensitive mass spectrometry-based proteom-
ics36. Therefore, we used laser capture microdissection to excise the 
endocardial region from healthy mouse hearts (control) and hearts 
24 hours after MI. For hearts with MI, we split endocardial cells into 
two groups: those that were within the infarct zone (MI IZ) and those 
that were remote to the infarct (MI remote) (Fig. 5a). Proteomes of the 
different endocardial tissue samples encompassed an average number 
of 3,274 proteins after quality control filtering (Supplementary Fig. 5a). 
Despite the very low amount of input tissue material, the proteomic 
data were of high quality with a low amount of missing protein values 
(4–16% across samples) (Supplementary Fig. 5b). PCA of proteomic 
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samples showed clear separation of control endocardial samples 
compared to endocardial cells from infarcted samples, indicating a 
reproducible perturbation of the endocardial layer protein signature 

24 hours after MI (Fig. 5b and Supplementary Fig. 5c). Interestingly, the 
remote endocardial layer signature from infarcted hearts (MI remote) 
was sufficiently different from control endocardial cells to distinguish 
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them in the PCA, but there were very few significantly differentially 
expressed proteins (DEPs) between these two conditions (Supplemen-
tary Fig. 5d). By contrast, significant differential protein expression of 
many proteins was observed in the endocardial region in the infarct 
zone (MI IZ) relative to the remote endocardial region (MI remote) 
(Fig. 5c). Pathway analysis using hallmark gene sets of DEPs between 
MI IZ and MI remote revealed upregulated pathways related to immune 

cell activation (complement system, inflammatory response and IFNγ 
response) as well as downregulated pathways related to energy metab-
olism (oxidative phosphorylation and fatty acid metabolism) (Fig. 5d). 
Interestingly, we identified genes for coagulation pathways strongly 
upregulated in MI IZ samples relative to MI remote regions (Fig. 5d). 
We investigated the cell specificity of these pathway results using 
a published snRNA-seq dataset and found vWF as the most specific 
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endocardial protein that was significantly upregulated in MI IZ com-
pared to MI remote, similar to known endothelial adhesion molecules 
such as Vcam1 (Fig. 5e,f)22. vWF is a multimeric protein that plays a 
central role in vascular homeostasis and is involved in inflammatory 
processes51. Interestingly, vWF was not significantly upregulated in 
the remote endocardial regions of infarcted hearts (MI remote) com-
pared to endocardial regions of control hearts (Fig. 5f). To confirm 
increased localization of vWF proteins in the endocardial infarct zone, 
we performed conventional immunofluorescence staining of vWF in 
infarcted hearts and found a significantly stronger signal in the endo-
cardial infarct area, with an almost absent signal in the remote region  
(Fig. 5g and Extended Data Fig. 7a,b). The distribution of vWF+ staining, 
interestingly, was not uniform across the infarct adjacent endocardial 
layer but stronger at endocardial sites where the ventricular tissues 
formed pockets, compared to smooth regions. Immunofluorescence 
stainings of murine hearts 24 hours after ischemia/reperfusion injury 
also showed similar staining patterns with increased vWF expression 
(Extended Data Fig. 7c,d). To investigate whether vWF also plays a role 
in human MI, we reprocessed a cellular indexing of transcriptomes and 
epitomes by sequencing (CITE–seq) dataset of explanted human hearts 
from donors and patients with acute MI by Amrute et al. 52 (Fig. 5h).  
This dataset consists of healthy donors, patients with acute MI and 
patients with chronic ischemic and non-ischemic cardiomyopathy, 
from which we focused on healthy donors (n = 6) and patients with 
acute MI (n = 4). Differential gene expression analysis demonstrated 
a significant increase of endocardial vWF expression in patients after 
acute MI compared to healthy donors (Fig. 5i). Collectively, our DVP 
analysis during acute MI revealed local spatial differences between 
endocardial regions within the same heart and highlighted upregu-
lation of vWF as a specific response of the endocardium to the local 
inflammatory signals from the infarct zone.

Functional blocking of vWF modifies immune cell infiltration 
and infarct recovery
Immunofluorescence co-staining of CCR2 and vWF highlighted a 
strong correlation between the presence of vWF within the endocardial 
infarct region and locally attached or already infiltrated CCR2+ Mo/Mɸ 
after MI and myocardial ischemia/reperfusion (Fig. 6a,b, Extended Data 
Fig. 7d,e and Supplementary Fig. 6a,b). Of note, immunofluorescent 
co-staining of platelets revealed their presence in some, but not all, 
of these infiltration areas with expression of vWF (Supplementary 
Fig. 6c). We conclude that vWF-dependent immune recruitment in 
this context is, at least partially, platelet independent. To investigate 
the functional role of vWF in the recruitment and infiltration of mye-
loid cells via the endocardium during acute MI, a well-characterized 
polyclonal antibody (against human vWF, which is also highly cross-
reactive with murine vWF) was used to block vWF function in murine MI  
(Fig. 6c)53–55. Under baseline conditions, anti-vWF blockade led to no 
cardiac-specific phenotype in healthy mice (Supplementary Fig. 7a–d). 
Control IgG or anti-vWF antibodies were injected intravenously at 
0 hours and 24 hours after MI. Blockade of vWF resulted in a significant 
decrease in recruited Mo/Mɸ in the infarcted myocardium as quanti-
fied by flow cytometry 2 days after MI, whereas blood levels of Mo/
Mɸ were unaltered (Supplementary Fig. 7e,f). Immunofluorescence 
staining demonstrated that this effect was mainly explained by dra-
matically reduced Mo/Mɸ within the endocardial infarct zone (Fig. 6d).  
Interestingly, blockade of Mo/Mɸ recruitment mediated by vWF 
blocking at the endocardium led to impaired healing and deteriorated 
long-term outcome 2 weeks after MI induction as shown by echocardi-
ography (Fig. 6f–j). Moreover, histopathological evaluation revealed 
more pronounced infarct thinning in anti-vWF-treated mice compared 
to control mice (Fig. 6k–m). Our findings using DVP and functional 
experiments have, therefore, uncovered a potentially critical role 
of the endocardium in facilitating infiltration of myeloid cells that is 
likely mediated by vWF.

Discussion
This study reveals a previously undescribed route for immune cell 
infiltration of monocytes during the acute phase of MI in mice. Using 
a combination of state-of-the-art spatial omics approaches such as 
Molecular Cartography, SeqIF and DVP, we identified the endocardium 
as an important region of immune cell attachment and infiltration, 
mediated by the local upregulation of vWF.

A wide range of clinical trials are currently testing the potential of 
immunomodulation to prevent adverse remodeling after MI. A better 
mechanistic understanding of leukocyte accumulation and the differ-
entiation of beneficial and harmful players in this context might lead to 
novel and improved strategies to improve MI healing. High-resolution 
spatial assays allowed us to observe and identify the attachment and 
infiltration of myeloid cells through the endocardial layer of the left 
ventricle during the critical early timeframe of acute MI. Over time, the 
healing heart appears to develop different hubs of local inflammation: 
early on, a large number of monocytes accumulate via the endocardial 
layer and, at later stages, with a dominant and well-described focus in 
the border zone. Depending on the timepoint, it should also be con-
sidered that additional infiltration might occur via the subendocardial 
microvasculature. Although most experiments were carried out after 
permanent coronary occlusion, we also observed this effect in the 
context of cardiac ischemia/reperfusion.

The central mediator for the attachment of monocytes in the 
lumen of the left ventricle was identified to be vWF, released from 
endocardial cells in the infarct zone. vWF is known to be involved in 
platelet adhesion and aggregation, and, although we did observe some 
vWF cell clusters with platelets present, many myeloid cell–endocardial 
cell interactions occurred in the absence of platelets, suggesting that 
the vWF effect on immune cell infiltration is at least partially platelet 
independent56. The in vivo blockade of vWF resulted in a significant 
reduction in subendocardial monocyte accumulation. Recent studies 
suggest that vWF can have direct effects on immune cells, independent 
of platelets57. vWF might not only impact migratory capabilities but 
might also modify their pro-inflammatory activation or shift mac-
rophage metabolism toward glycolysis in a p38-dependent manner. 
Although we did not observe any hemorrhage or other signs of bleeding 
in the treated animals, blockade of vWF might also affect primary hemo-
stasis and, thereby, impact monocyte accumulation subsequently. The 
observed effect that a reduced accumulation of CCR2+ monocytes (by 
vWF blockade) results in impaired left ventricular function was surpris-
ing and could indicate that this particular subset plays a beneficial role 
in the context of infarct healing and might be distinct from monocyte 
subsets present in the border zone of the infarcted heart. Whether the 
route of infiltration or the local micro-milieu instructs the flavor of the 
myeloid cell remains to be explored.

We observed a localized upregulation of vWF only in endocardial 
cells within the infarct zone, suggesting potential signaling effects from 
dying cardiomyocytes and other cells in the spatial neighborhoods of 
the infarct. It appears that vWF is primarily released from endocardial 
cells within hypokinetic or akinetic areas of the left ventricle, which 
could also indicate an impact of altered blood flow on the secretome 
of this cell layer. Although we do not have any data to confirm these 
hypotheses, future studies might investigate the signaling molecules 
reaching endocardial cells and try to isolate which factors are causing 
the upregulation of vWF.

Although our findings are based on multiple types of experimental 
approaches, and we consistently observed immune cell infiltration 
via the endocardial infarct zone regardless of the technology used, 
our study does have several limitations. First, the transcript panel 
that we selected for Molecular Cartography is limited to 100 different 
transcripts and was manually curated and is, therefore, lacking many 
potentially interesting and important markers for detailed descrip-
tion of immune cell types. Furthermore, some transcripts are not 
reliably detected with probes that we selected in our target tissue and, 
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therefore, might observe dropout in cells that do express these RNA, 
leading to dropout effects. Another limitation we face is the lack of 
high-quality reference data for cardiac cell segmentation. Although 
we trained a custom cell segmentation model using Cellpose 2, with 
as little bias as possible, this segmentation does not represent a real 
ground truth but solely an approximation. Hopefully, as more high-
resolution spatial omics datasets become available, public datasets 
with representative cardiac cell segmentation masks will become 
available for future studies.

We attempted additional validations using publicly available data 
sources to find a signature of endocardial immune cell infiltration 
during acute MI. Unfortunately, most published studies either do not 
match the temporal window that is critical to observe this effect or 
employ spatial methods with insufficient resolution22,23. Although we 
employed cell deconvolution methods on some of these datasets, it was 
not possible to identify endocardial regions with sufficient sensitivity 
to validate our findings using such datasets.

In conclusion, our findings of immune cell infiltration via the 
endocardial infarct zone in acute MI open new and exciting avenues 
to modulate the immune response after an infarct and provide novel 
opportunities for therapeutic avenues and drug delivery.

Methods
Mouse experiments
C57BL/6NRj female mice were obtained from Janvier Labs and were 
studied at 10–12 weeks of age. Mice were housed under standard labo-
ratory conditions with a 12-h light/dark cycle and access to water and 
food ad libitum. All animal procedures were approved by the institu-
tional review board of the University of Heidelberg, Germany, and the 
responsible government authority of Baden-Württemberg, Germany 
(project numbers G-106/19 and G-94/21).

Minimally invasive induction of MI
MI was induced in a minimally invasive manner under echocardio-
graphic guidance35. In brief, mice were anesthetized with inhalation of 
2% isoflurane and placed on a Vevo imaging station connected to a Vevo 
2100 system (VisualSonics). After a brief evaluation of cardiac func-
tion, the left coronary artery was visualized. After attaching a neutral 
electrode, a monopolar needle controlled by a micromanipulator was 
inserted into the chest and placed on the coronary artery. The vessel 
was coagulated with high-frequency electricity using an electrosurgi-
cal station that was connected to both electrodes. After removal of the 
needle, successful MI was confirmed by persisting absence of a Dop-
pler signal and akinesia in the affected part of the left ventricular wall. 
For induction of myocardial ischemia/reperfusion, the left coronary 
artery was occluded (60 minutes) via two micromanipulator-controlled 
needles under echocardiography guidance as previously described58. 
Healthy untouched mice showed similar Mo/Mɸ levels in the myocar-
dium compared to sham-treated mice and were, therefore, used as 
biological controls (Supplementary Fig. 8).

Organ removal and preparation
Peripheral blood was collected by facial vein puncture in heparin-
ized tubes. Hearts were excised after cervical dislocation and rinsed 
extensively in ice-cold PBS to remove remaining blood within the left 
ventricular lumen and vasculature. After transverse sectioning using 
a scalpel, freshly dissected mouse cardiac samples were embedded in 
Tissue-Tek Optimal Cutting Temperature (OCT) compound (Sakura) in 
a plastic cassette and were immediately placed in an isopentane bath 
on dry ice for further processing.

Molecular Cartography (highly multiplexed smFISH) of murine 
MI samples
Next, 10-µm-thick cryosections were placed within the capture areas 
of cold Resolve Biosciences slides. Samples were sent to Resolve 

Biosciences on dry ice for analysis. Upon arrival, mouse tissue sec-
tions were thawed and fixed with 4% v/v formaldehyde (Sigma-Aldrich, 
F8775) in 1× PBS for 30 minutes at 4 °C. After fixation, sections were 
washed three times in 1× PBS for 1 minute, followed by a 1-minute wash 
in 70% ethanol at room temperature. Fixed samples were used for 
Molecular Cartography (100-plex combinatorial smFISH) accord-
ing to the manufacturer’s instructions and as previously described59. 
The probes for 100 genes were designed using Resolve Biosciences’ 
proprietary design algorithm. Supplementary Table 1 highlights the 
gene names and catalog numbers for the specific probes designed by 
Resolve Biosciences.

Image processing of Molecular Cartography data
Slides used for combinatorial smFISH imaging with Molecular Car-
tography for 100 candidate transcripts were subsequently stained 
for nuclei (DAPI) and WGA. DAPI and WGA images as well as RNA spot 
tables from Molecular Cartography were processed using an in-house-
developed Nextflow pipeline: nf-core/molkart (https://doi.org/10.5281/
zenodo.10650748, revision: 81eafe9f9993d4daf16371ba3804ce-
9ae08053ad). The pipeline is part of the nf-core collection of workflows 
adhering to strict guidelines for best practices in Nextflow workflow 
development. Many core components of the pipeline were made avail-
able as nf-core DSL2 modules to facilitate easy enhancement of the 
pipeline by other users and to enable reuse of pipeline components by 
Nextflow imaging pipelines in the future60. First, consecutive Gaussian 
blurring was used to fill in black grid lines from Molecular Cartography 
imaging using the Python tool MindaGap61. Next, image stacks of DAPI 
and WGA were created, and contrast-limited adaptive histogram equali-
zation (CLAHE) was applied to improve contrast across stainings for 
automated segmentation62. Training images for Cellpose (TIFF format) 
were created with the use of the ‘create training subset’ functionality of 
the nf-core/molkart pipeline. Cell segmentation was performed using 
several different segmentation algorithms to compare them on cardiac 
images (Supplementary Fig. 3). The segmentation algorithms used here 
were DeepCell Mesmer, which performs nuclear and whole-cell seg-
mentation, and Cellpose33,34,42. For Cellpose segmentation, we applied 
the ‘cyto’ model, but we additionally trained a custom Cellpose 2 model, 
by selecting small crops (1,000 × 1,000 pixels) of DAPI and WGA image 
stacks across the entire dataset, using a human-in-the-loop approach, 
as described by Pachitariu and Stringer33,34. We used the baseline model 
CPx with flow_threshold = 0.6 and cellprob_threshold = 0 to segment 
an initial image crop, and we corrected wrong segmentations and 
retrained the model. This process was consecutively applied to retrain 
the model on new image crops until segmentation captured most cells 
correctly in the presented image. After segmentation, the resulting 
masks were size filtered to remove extremely small and extremely large 
objects that do not represent real cells (below 200 and above 200,000 
pixels). To assign spots to cells, spots are first filtered for potential 
duplicates using the MindaGap duplicatefinder function, which filters 
potential duplicate RNA spot calls along black grid lines. Deduplicated 
RNA spots are then assigned to segmentation masks using spot2cell. 
Finally, quality control metrics of all relevant steps are collected and 
compiled for inspection via MultiQC. Images and spots were visualized 
using the napari toolkit, which enables fast and interactive visualization 
of large imaging data 63.

Single-cell analysis of Molecular Cartography data
Cell-by-feature matrices from nf-core/molkart were imported into R 
and processed using the Seurat package (version Seurat_5.0.1)64–67. We 
filtered out cells with fewer than 20 and more than 4,000 RNA counts. 
We also filtered outlier cells based on their segmentation mask shape 
with extent <0.25 and solidity <0.75 (as estimated by the regionprops_
table function from the scikit-image package in Python) to ensure 
that only high-quality segmented cells are included in the analysis. 
Cell transcript profile counts were normalized using SCtransform 
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in Seurat; principal components were calculated; and the first 30 
principal components were used for integration of samples across 
time using the IntegrateLayers function in Seurat with the method 
set to ‘HarmonyIntegration’65,67–71. Harmony embeddings were then 
used for uniform manifold approximation and projection (UMAP) and 
cluster identification using shared nearest neighbor analysis using 
the first 30 harmony dimensions. We used cell type label transfer to 
annotate the Molecular Cartography cells using a reprocessed snRNA-
seq reference from Calcagno et al.22. To reprocess the snRNA-seq data 
from Calcagno et al., we performed Seurat analysis on the raw data as 
described by the authors in the original publication. The transferred 
labels from Calcagno et al. were used to guide manual annotation of 
cells into cell types and states and produce final labels for all cell clus-
ters. To improve the annotation of endocardial cells, we additionally 
manually labeled the endocardial region in all DAPI+WGA images using 
QuPath72. We exported endocardial masks as GeoJSON files in QuPath 
and processed them using the sf package in R to overlay centroid 
positions of cell masks. Cells that overlapped the endocardial region 
and expressed Pecam1 (normalized count >0) or were clustered into 
an Npr3+ cell cluster were considered as endocardial cells. Although 
Npr3 is primarily expressed in the endocardial cells in our dataset, the 
absence of detected Npr3 transcripts in a subset of endocardial cells 
may reflect transcriptional heterogeneity and/or technical limitations 
of Molecular Cartography in capturing low-abundance transcripts 
(Supplementary Fig. 9).

We characterized structural patterns in immediate cellular neigh-
borhoods by extracting cell type to cell type relationships with MISTy 
(R package mistyR, version 1.99.9)43. MISTy is a multiview framework 
for analysis of spatial omics data by identification of robust relation-
ships within the data coming from different spatial contexts. Based on 
Molecular Cartography-assigned cell types, we represent each cell type 
intrinsically as a one-hot encoded vector. To capture the structure of 
the spatial neighborhood of each cell, we added a paraview with a radius 
of 125 µm. The paraview captures the neighborhood composition by 
distance-weighted sum of one-hot encoded representation of the cell 
types in the surrounding of each cell. The weights are calculated by a 
radial basis function with parameter equation to the chosen radius. 
Subsequently, a MISTy model was trained using the same view compo-
sition for each sample independently. The MISTy models are trained 
on the task of predicting each intrinsic cell type by using all variables 
from the paraview. The MISTy output consists of the gain of variance 
explained per target and importances of each predictor–target interac-
tion. The importance of each interaction was standardized to 0 mean 
and unit s.d. across all predictors for a given target. The performance 
and interaction results were aggregated per timepoint and filtered 
to exclude all targets with gain of variance explained less than 5% and 
relationships with importances lower than 0.4. MISTy captures robust 
relationships on a global scale—that is, consistently across the whole 
slide. Additionally, MISTy can learn not only simple linear relationships 
but also complex nonlinear relationships. To linearly approximate the 
sign of the remaining relationships and estimate their consistency 
across each slide, we calculated the correlation between the predictor 
variables from the paraview and the target variables from the intraview. 
Although strong correlations are indicative of linear and consistent 
relationships, correlations close to 0 point toward nonlinearity or 
heterogeneity of the form of the interaction across the slide, warrant-
ing a more targeted local bivariate spatial analysis. We used LIANA+ 
(version 1.0.4) to calculate spatially informed local bivariate metrics 
between pairs of cell types of interest. Similar to MISTy, we used one-hot 
encoded cell type vectors and calculated the cell neighborhoods using 
a Gaussian kernel with a cutoff of 0.1 and a bandwidth of 125 µm and l1 
standardization of terms. We then use the lr_bivar function in LIANA+ 
to calculate the normalized weighted product between two cell type 
vectors as input. Interactions were visualized by plotting local scores 
on tissue coordinates. To calculate Euclidean distances between pairs of 

cells, we used the Scipy spatial packages cdist function73. Statistical test-
ing on distances was performed with ANOVA with a linear ordinary least 
squares (OLS) model and post hoc t-tests with Bonferroni correction 
using the statsmodel application programming interface in Python74.

SeqIF imaging using Lunaphore COMET platform
To establish an antibody panel for SeqIF, we sourced high-quality 
antibodies from trusted vendors and performed test stainings at the 
vendor-recommended concentrations on the COMET priority access 
platform. If staining was too strong or weak, dilution curves were per-
formed, and staining specificity was manually evaluated. Fluorescence 
signal acquisition in the Cy5 channel demonstrated higher signal-to-
noise ratios and overall cleaner results, whereas the TRITC channel 
exhibited increased autofluorescence. Of the 16 antibodies initially 
selected, 12 were imaged in the Cy5 channel due to the predominance 
of functional antibodies raised in rabbit (Supplementary Table 2). 
The panel was finalized after 58 optimization runs, supported by the 
Lunaphore COMET priority access platform for evaluating intensity, 
sensitivity, elution efficacy, incubation time, antibody dilution, expo-
sure time and cycle position. For the SeqIF stainings, samples were sec-
tioned on a cryotome (8 μm) and collected on adhesion slides (Epredia 
SuperFrost Ultra Plus GOLD; Thermo Fisher Scientific) and dried on a 
37 °C heat plate for 15 minutes. After storage at −80 °C, sections were 
brought to room temperature and were incubated in 4% formalde-
hyde for 40 minutes at room temperature. Samples were washed for 
5 minutes at room temperature in Multistaining Buffer (Lunaphore 
Technologies, BU06), followed by incubation with Multistaining Buffer 
supplemented with 0.2% Triton for 20 minutes at room temperature. 
Subsequently, slides were stored in Multistaining Buffer until use. 
Slides were dried off and placed into COMET stainers with microfluidic 
chips positioned on top of the tissue section as described by Rivest et 
al.48. Antibody mixes were prepared by diluting the stock antibody 
solutions in Intercept-T20 to help with blocking of non-specific bind-
ing (Supplementary Table 2). Automated SeqIF staining and imaging 
were performed on the COMET platform (Lunaphore Technologies). 
Slides underwent 13 cycles of iterative staining and imaging, followed 
by elution of the primary and secondary antibodies75. The 16-plex 
protocol template was generated using COMET Control Software, and 
reagents were loaded onto the device to perform the SeqIF protocol. A 
list of primary antibodies with corresponding incubation times can be 
found in Supplementary Table 2. Secondary antibodies were used as 
a mix of two species-complementary antibodies: Alexa Fluor Plus 647 
goat anti-rabbit (Thermo Fisher Scientific, cat no. A32733, 1:250 dilu-
tion) and Alexa Fluor Plus 555 goat anti-rat (Thermo Fisher Scientific, 
cat no. A48263, 1:250 dilution). Nuclear signal was detected using DAPI 
(Thermo Fisher Scientific, cat no. D1306, 1:1,000 dilution) by dynamic 
incubation of 2 minutes. All reagents, if not otherwise stated, were 
diluted in Multistaining Buffer (Lunaphore Technologies, BU06). The 
elution step lasted 2 minutes for each cycle and was performed with Elu-
tion Buffer (Lunaphore Technologies, BU07-L) at 37 °C. The quenching 
step lasted for 30 seconds and was performed with Quenching Buffer 
(Lunaphore Technologies, BU08-L). The imaging step was performed 
with Imaging Buffer (Lunaphore Technologies, BU09). The output from 
the COMET platform is a stitched and registered, multistack OME-TIFF 
file that was directly used for further processing with MCMICRO and 
downstream applications49.

Image processing and analysis of SeqIF (Lunaphore  
COMET data)
Post-acquisition registration of full-slide images was needed for two 
images due to interrupted runs and was performed with Palom (https://
github.com/labsyspharm/palom). Processing of multichannel OME-
TIFF files was performed using a modified version of MCMICRO49. Raw 
marker intensities were corrected for autofluorescence signal with 
Backsub (https://github.com/schapirolabor/background_subtraction) 
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by subtracting the respective autofluorescence image intensity scaled 
to each marker’s exposure time. The corrected intensity was computed 
using equation (1): Markercorrected = Markerraw − Background × Expo-
sureMarker / ExposureBackground. Preprocessing of the images to improve 
segmentation was performed using CLAHE on the DAPI and membrane 
(WGA) channels. Cell segmentation was performed similarly to Molecu-
lar Cartography data using CLAHE-adjusted images to train a custom 
Cellpose 2 model via the human-in-the-loop approach. Feature quan-
tification was performed on the autofluorescence-subtracted images 
based on the labeled segmentation masks. To assign cell phenotypes, 
we used a pixel-level clustering workflow using SOMs implemented via 
the Pixie pipeline50. For that purpose, we manually annotated the image 
region containing the heart using QuPath (0.4.3, MacOS version) and 
set all background pixels to 0 across all channels to reduce the number 
of pixels to be processed by Pixie72. We then performed pixel clustering 
with 10 functional markers: Ankrd1, αSMA, CCR2, CD31, CD45, CD68, 
Mpo, Pdgfra, Tnnt2 and Trem2 across all nine COMET images using 5% of 
pixel subsets to train the SOM. Pixel meta-clusters were visualized using 
the Pixie Jupyter widget, and 100 SOM clusters were manually merged 
and visualized as pixel phenotype maps for validation. Pixel clusters 
were subsequently used in a second clustering step with Cellpose masks 
to assign cell phenotypes via SOM clustering across all images. Similar 
to pixel clustering, 100 SOM clusters were manually merged into cell 
phenotypes, and each cell segmentation mask was assigned a pheno-
type. For phenotyping accuracy evaluation, we compared assigned 
cell phenotypes to an independently annotated subset of ground truth 
data and quantified performance using confusion matrices (raw and 
normalized) as well as per-class precision, recall and F1 scores (Supple-
mentary Fig. 10). To quantify cell type abundances in different regions 
of the heart (endocardial infarct zone, epicardial infarct zone, infarct 
core and border zones), we manually annotated regions in QuPath and 
used them to subset cells based on their presence or absence in the 
annotation. For the quantification of myeloid cells in the endocardial 
infarct zone, we included cells in the left ventricular lumen, only if they 
were in direct contact with endocardial cells. Endothelial cells in the 
manually annotated endocardial layer were assigned as ‘Endocardial 
cells’. The endocardial infarct zone was annotated as the endocardial 
layer and the adjacent 2–3-cell-thick layer of cardiomyocytes express-
ing Tnnt2 near the infarct core, not including papillary muscles. The 
infarct core was defined based on heart geometry in the region where 
the infarct was transmural. The epicardial infarct zone was annotated 
as the epicardial layer and a 3–4-cell-thick layer along the infarct core. 
The border zone was annotated as the border region of the infarct 
including both stressed and Tnnt2-expressing cardiomyocytes. The 
remote endocardial region was annotated as the endocardial layer and 
a 3–4-cell-thick region on the opposite side of the lumen to the infarct 
core with no nearby stressed cardiomyocytes, and the same applies for 
the control samples. The areas outside the tissue samples are denoted 
as ‘Background’, and the areas within the left ventricular lumen were 
annotated as ‘Lumen’. Matching the size thresholds adapted for pixel 
size from Molecular Cartography data, cells with an area below 72 and 
above 72,000 pixels were excluded. Additionally, cells were filtered 
based on small size, low solidity and high eccentricity. Based on the 
distance of each cell to the lumen, cells were binned into strips with 
18.4-μm thickness (Extended Data Fig. 6). A Minerva Story was created 
using Minerva Author for a representative sample 24 hours after MI76,77.

Segmentation method comparison
To create an evaluation of used segmentation models DeepCell Mes-
mer ‘nuclear’ and ‘whole-cell’, Cellpose ‘cyto’ and our custom-trained 
Cellpose 2 model, we selected an additional 16 crops (500 × 500 pixels) 
spanning four representative regions per timepoint and indepen-
dently annotated the ground truth cells based on the CLAHE-adjusted 
nuclear and membrane markers using the napari toolkit33,34,42,63. The 
crops included a total of 1,208 ground truth annotations ranging from  

37 to 112 cells per crop, with total counts of cells per timepoint ranging 
from 253 to 357.

Segmentation evaluation was performed on a crop-level basis 
using an object-based approach as described in Greenwald et al.33. 
We constructed the cost matrix as 1 − Intersection over Union (IoU) 
for linear sum assignment. The cost matrix was padded to allow for 
unassigned cells with a penalty of 0.5. If an assigned ground truth and 
prediction pair had an IoU above 0.4, it was counted as a true-positive 
match. Ground truth cells without matches to prediction cells were 
labeled false negatives, and prediction cells without matches to ground 
truth cells were labeled false positives. Unmatched ground truth and 
prediction cells were used as nodes in a graph with edges between them 
if they had an IoU above 0.1 to account for tissue density. According to 
Greenwald et al., merges are defined as events where multiple ground 
truth cells are connected to one prediction cell; splits are defined as 
events where one ground truth cell is connected to multiple prediction 
cells; and catastrophes are defined as events where multiple ground 
truth cells are connected to multiple prediction cells. An example image 
(crop of sample_d1.r1 of the SeqIF dataset) is provided to highlight 
observed segmentation errors (Extended Data Fig. 2a).

Across the annotated 1,208 ground truth cells, DeepCell Mesmer 
‘nuclear’ had 353 true positives, 400 false positives, 855 false negatives, 
12 merges, nine splits and two catastrophes. DeepCell Mesmer ‘whole-
cell’ had 567 true positives, 515 false positives, 641 false negatives,  
49 merges, 31 splits and 38 catastrophes. Cellpose ‘cyto’ had 521 true 
positives, 194 false positives, 687 false negatives, 28 merges, three splits 
and five catastrophes, and our custom Cellpose model had 1,124 true 
positives, 124 false positives, 84 false negatives, four merges, six splits 
and two catastrophes (Supplementary Fig. 3b). IoU and Dice scores were 
measured for each true-positive pair, and the mean value was calculated 
per image crop. Precision, recall and F1 score were also calculated on 
a per-crop basis and highlighted our custom model outperforming  
the other methods on this specific dataset (Extended Data Fig. 2c).

Additionally, we provide the segmented percentage of the tissue in 
SeqIF data calculated as the percentage of recovered tissue not within 
‘Background’ or ‘Lumen’ annotations. We also provide the percentage 
of assigned transcripts in the Molecular Cartography data. Both metrics 
highlight that our custom model recovers the most relevant tissue 
information (Extended Data Fig. 2d). Taken together, using our custom 
Cellpose models (for SeqIF and Molecular Cartography), we were able 
to recover more tissue area than we could with existing models without 
sacrificing accuracy on this specific dataset.

Laser microdissection coupled to ultrasensitive proteomics
To collect cells with a Leica Laser Microdissection 7 (LMD7) micro-
scope, three reference points are required to triangulate the shape 
coordinates into laser cutting coordinates. These reference points 
were etched using the LMD7 on the membrane of the Leica Frame 
slides (order no. 11600294) before the tissues were placed on them. 
These etchings were easily recognizable features to which we could go 
back and designate them as reference points. Five-micrometer-thick 
tissue sections from fresh-frozen heart tissue were prepared similarly 
to the SeqIF samples and were placed onto Leica Frame slides with 
reference points. Slides were stained using DAPI, WGA and CD31 (as 
described in the immunofluorescence subsection) and imaged using 
a Zeiss Axioscan 7. Stitched images of whole hearts were imported and 
annotated in QuPath for downstream laser capture microdissection. 
Endocardial regions to be collected by the LMD7 were annotated using 
QuPath’s brush tool with a brush diameter of approximately 20 µm, 
centered around endocardial cells with 10 µm to each side as buffer for 
the laser cutting. For control hearts, only one endocardial group was 
annotated, whereas, for hearts, 1-day post-infarct endocardial cells 
in the infarct region and endocardial cells in the remote region were 
labeled separately. QuPath annotations were then exported as GeoJSON 
files, which were further processed using the Qupath_to_LMD scripts 
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(https://github.com/CosciaLab/Qupath_to_LMD). The script assigns 
annotation classes to wells of the 384-well plate. It uses the py-lmd 
package from Madler et al. (https://github.com/MannLabs/py-lmd) to 
transfer GeoJSON polygons into LMD readable .xml files.

Laser capture microdissection
We used the Leica LMD7 system and Leica Laser Microdissection version 
8.3.0.08259 software to collect tissue contours. Tissue was cut with 
a ×63 objective (HC PL FLUOTAR L ×63/0.70 CORR XT) in brightfield 
mode. Laser settings were as follows: power 60; aperture 1; speed 
25; middle pulse count 2; final pulse 5; head current 39–41%; pulse 
frequency 2,028; and offset 105. Contours were cut and sorted into a 
low-binding 384-well plate (Eppendorf, 0030129547) configured over 
the ‘universal holder’ function.

Sample preparation for liquid chromatography–mass 
spectrometry analysis
To collect tissue pieces stuck on the sides of the 384 wells, we washed 
them down with 30 µl of acetonitrile, briefly vortexed and vacuum 
dried (15 minutes at 60 °C). We added 2 µl of Lysis Buffer (0.1% DDM, 
5 mM TCEP, 20 mM CAA resuspended in 100 mM TEAB (pH 8.5)) to each 
well, closed the plate with a PCR ComfortLid (Hamilton) and heated 
at 95 °C for 60 minutes. We added 1 µl of LysC (2 ng µl−1 in water) and 
incubated for at least 2 hours at 37 °C. Subsequently, 1 µl of trypsin 
was added (1 ng µl−1 in water), and the samples were incubated over-
night at 37 °C. The next day, the samples were vacuum dried before 
peptide cleanup. Peptide cleanup took place with Evotips (Evosep) 
following the manufacturer’s recommendations. In brief, the Evotips 
(EV2013, Evotip Pure) were washed with Buffer B (99.9% acetonitrile, 
0.1% formic acid) and then Buffer A (99.9% water, 0.1% formic acid) 
and then activated with isopropanol. Digested tissue samples were 
resuspended in Buffer A, loaded into the tips, washed with Buffer A 
once and then eluted with Buffer B into a 96-well plate (Thermo Fisher 
Scientific, AB1300) and vacuum dried. Samples were stored at −20 °C 
until liquid chromatography–mass spectrometry (LC–MS) analysis. 
For LC–MS analysis, 4.2 µl of MS loading buffer (3% acetonitrile, 0.1% 
trifluoroacetic acid in water) was added, from which 4.0 µl was finally 
injected into the mass spectrometer.

LC–MS analysis
LC–MS analysis was performed with an EASYnLC-1200 system (Thermo 
Fisher Scientific) connected to a trapped ion mobility spectrometry 
quadruple time-of-flight mass spectrometer (timsTOF SCP; Bruker 
Daltonik) with a nano-electrospray ion source (CaptiveSpray; Bruker 
Daltonik). Peptides were loaded on a 20-cm home-packed high-perfor-
mance liquid chromatography column (75-µm inner diameter packed 
with 1.9-µm ReproSil-Pur C18-AQ silica beads; Dr. Maisch). Peptides 
were separated using a linear gradient of 21 minutes and analyzed in 
dia-PASEF mode.

Proteomics data analysis
We used DIA-NN (1.8.2) for dia-PASEF raw file analysis, and the gener-
ated libraries were used for mouse proteins (UniProt mouse released 
in 2021) and known contaminants78. Deep-learning-based spectra, 
retention times and ion mobility predictions were enabled for the 
appropriate mass range of 300–1,200 m/z. N-terminal M excision and 
cysteine carbamidomethylation were enabled as fixed modifications.  
A maximum of two miscleavages were allowed, and the precursor 
charge was set to 2–4. DIA-NN was operated in the default mode with 
minor adjustments. In brief, MS1 and MS2 accuracies were set to 15.0; 
scan windows were set to 0 (assignment by DIA-NN); and isotopo-
logues were enabled, as were matched-between-runs, heuristic protein 
inference and no shared spectra. Proteins were inferred from genes; 
neural network classifiers were set to single-pass mode; and quan-
tification strategy was set as ‘Robust LC (high precision)’. Cross-run 

normalization was set to ‘RT-dependent’, library generation as ‘smart 
profiling’ and speed and RAM usage as ‘optimal results’. Protein 
lists were filtered for missing values by group, requiring at least two 
observed values in the control group or three observed values in the 
MI remote or MI IZ group. We also filtered out known contaminants 
based on previously described contaminants libraries78. Differential 
protein expression analysis was performed on data normalized using 
variance stabilizing normalization using empirical Bayes statistics 
in limma79. Proteins with a false discovery rate lower than 0.05 were 
considered as significantly differentially expressed. Overlap in the 
proteins differentially expressed between conditions was visualized 
using UpSet plots with the ComplexUpset package80. Endocardial speci-
ficity of DEPs was compared by correlating log fold changes from DEP 
analysis with log fold changes from marker gene estimations (Seurat’s 
FindMarkers function) for endocardial cells from sham controls from 
the reprocessed Calcagno et al. 22 dataset (see the ‘Single-cell analysis 
of Molecular Cartography data’ subsection).

Analysis of human CITE–seq data
Processed CITE–seq data from Amrute et al.52 were received from the 
original authors as a processed Seurat object (version 4.0.0)52. Cell type 
annotations from the original authors were used to visualize cell types on 
the UMAP plot. Differential expression of vWF between donor and acute 
MI samples was performed by calculating pseudobulk expression per 
sample and performing DESeq analysis between pseudobulk expression 
of donor (n = 6) and acute MI (n = 4) samples. Normalized RNA expression 
was visualized per group using violin plots from the SCpubr package81.

Echocardiography
Echocardiographic analyses were performed in conscious mice using 
a Vevo 2100 ultrasound system (VisualSonics). Left ventricular end-
diastolic volume, end-systolic volume and ejection fraction were meas-
ured based on the left parasternal long-axis view and were acquired 
using VevoLab software (VisualSonics). Global longitudinal strain was 
quantified in the longitudinal axis by speckle tracking using VevoStrain 
software (VisualSonics). Investigators were blinded to the sample 
group allocation during the experiments and analyses.

Flow cytometry
Single-cell suspensions of infarcted hearts were obtained by mincing 
the tissue with fine scissors and digesting it with a solution containing 
450 U ml−1 Collagenase I, 125 U ml−1 Collagenase XI, 60 U ml−1 DNase I 
and 60 U ml−1 hyaluronidase (MilliporeSigma) for 1 hour at 37 °C while 
shaking. For flow cytometry of blood samples, erythrocytes were 
lysed in red blood cell lysis buffer (Miltenyi Biotec). The fluorescent 
antibodies are described in Supplementary Table 3. Flow cytometry 
was performed on a FACSVerse (BD Biosciences). Data were analyzed 
using FlowJo software. Mo/Mɸ were identified as CD45+, Lin−(CD19;C
D4;NK1.1;Ly6G;Ter119) and CD11b+.

Histology
Histopathological evaluation of left ventricular remodeling was per-
formed on day 14 after MI induction. Hearts were excised and rinsed 
in PBS. After transverse sectioning using a scalpel, hearts were then 
embedded in OCT compound and placed in 2-methylbutane (Honey-
well) on dry ice. Hearts were stored overnight at −80 °C and sectioned 
using a cryostat (9-μm thickness). Tissue sections were stained with 
a Masson’s Trichrome Stain Kit (MilliporeSigma) according to the 
manufacturer’s instructions. Scar thickness was averaged from five 
measurements in short axes in a blinded fashion.

Conventional immunofluorescence stainings
For conventional immunofluorescence staining, samples were sec-
tioned on a cryotome (8 μm), collected on adhesion slides (Epredia 
SuperFrost Ultra Plus GOLD; Thermo Fisher Scientific) and dried on a 
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37 °C hot plate for 15 minutes. After storage at −80 °C, sections were 
brought to room temperature and incubated in 4% formaldehyde at 
room temperature for 40 minutes. Sections were permeabilized for 
20 minutes, blocked with 5% BSA for 1 hour and stained overnight with 
primary antibodies for CD31, vWF, CCR2, CD68 or CD41 in 1% BSA stain-
ing buffer. On the following day, sections were washed and stained for 
1 hour with the corresponding secondary antibodies combined with 
the labeled antibody against WGA. After washing, sections were stained 
with 300 nM DAPI (Thermo Fisher Scientific, D1306) for 10 minutes, 
washed again and covered with a mounting medium. For simultane-
ous staining of CCR2 and vWF, sections were fixed, permeabilized and 
blocked as described above. After incubating primary antibodies for 
CD31 and CCR2 overnight, vWF antibody was labeled using a secondary 
antibody labeling kit (FlexAble CoraLite Plus 750 Antibody Labeling Kit 
for Rabbit IgG; Proteintech). Labeling was carried out in accordance 
with the manufacturer’s instructions. In brief, vWF primary antibody 
was incubated with FlexLinker and FlexBuffer for 5 minutes. Flex-
Quencher was added and incubated for five additional minutes. Then, 
1% BSA staining buffer was added, and tissue sections were incubated 
with the labeled primary antibody. On the next day, sections were 
washed and stained with WGA conjugated to Alexa Fluor 488 (Thermo 
Fisher Scientific, W11261) for 1 hour. After the WGA incubation time, 
sections were stained with 300 nM DAPI (Thermo Fisher Scientific, 
D1306) for a duration of 10 minutes, washed again and covered with 
a mounting medium. Images were captured using an Axio Observer 
(Zeiss) fluorescence microscope and analyzed using QuPath (0.4.3, 
Windows version). In brief, cell segmentation was performed by using 
the cell detection tool based on DAPI staining. Mean cell intensity 
was used to define cells positive for Ccr2 (threshold 450) and Cd68 
(threshold 400). An overview of antibodies used for conventional 
immunofluorescence stainings can be found in Supplementary Table 4.

Statistics and reproducibility
Mice were randomly assigned to different experimental groups. No 
exclusion of specific animals from the experiments was performed. All 
experiments were conducted on independent biological replicates: 
Molecular Cartography (two replicates per timepoint; technical repli-
cates were only done to replace some initial samples that failed quality 
control and test correlation of measurements across slides/technical 
replicates); SeqIF (three controls; two replicates at 4 hours, 24 hours 
and 2 days after MI); and DVP (3–4 replicates per region). Human pseu-
dobulk CITE–seq analyses included six healthy donors and four patients 
with acute MI from publicly available data. Functional blocking of vWF 
employed eight mice per experimental group. Sample size calculation 
was performed in G*Power 3.1 in accordance with the approved animal 
protocol and was based on our experience with similar experimental 
studies to achieve 80% power at a significance level of P < 0.05. Echocardi-
ographic and histological analyses were performed in a blinded fashion.

Quantitative data are presented as mean ± s.d. Spatial distance 
measurements between cell types were compared by type II ANOVA on 
a linear OLS model, followed by two-sided post hoc t-tests with Bonfer-
roni correction. Differential protein expression in endocardial regions 
was assessed with limma, employing variance stabilizing normaliza-
tion and empirical Bayes statistics, with a false discovery rate of less 
than 0.05 defining significance. Human pseudobulk differential gene 
expression was determined by DESeq2. For functional measurements, 
comparisons between two groups were performed using unpaired two-
tailed Student’s t-test. Differences between more than two groups were 
analyzed by one-way ANOVA followed by Tukey’s post hoc analysis or 
two-way ANOVA followed by Sidak’s multiple comparison. Unless stated 
otherwise, P < 0.05 was considered statistically significant.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All relevant images and data for Molecular Cartography and SeqIF 
described in this study are publicly available via Synapse (project 
SynID: syn51449054): https://www.synapse.org/Synapse:syn51449054.
The mass spectrometry proteomics data have been deposited to the 
ProteomeXchange Consortium via the PRIDE partner repository with 
the dataset identifier PXD066993.

A Minerva Story with a detailed and interactive exploration of a 
24-hour post-MI sample is available at https://schapirolabor.github.
io/mi_spatialomics_minerva_story_d1.

Code availability
All code to process data and produce the results presented in this 
paper is available on Github: https://github.com/SchapiroLabor/
mi_spatialomics.
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Extended Data Fig. 1 | Region of interest (ROI) selection and spot distribution 
of mouse heart sections from Molecular Cartography. a) Brightfield images 
of transverse sections of mouse hearts at different time points during acute 
MI (Control = prior to infarct). Black rectangles highlight regions selected 
for Molecular Cartography. b) Molecular Cartography RNA spots (100-plex) 
for corresponding regions highlighted in a). Regions with low spot density 

within the tissue at the 4 h, 2 d and 4 d post-MI timepoints demarcate infarct 
regions with cell death, apoptosis and RNA degradation. Note that images in b) 
show scatterplots of RNA spot centroid positions after spot calling by Resolve 
Bioscience and not the raw FISH signals. c) Exemplar regions of RNA expression 
maps of indicated markers over all 4 timepoints.
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Extended Data Fig. 2 | Comparison of segmentation methods for Molecular 
Cartography and SeqIF heart sections. a) Example evaluation on a single image 
of 4 segmentation models across 8 panels: ground truth (blue) and prediction 
(yellow) panels show all ground truth (GT) and predicted cells, respectively. True 
positives show GT regions in blue, prediction regions in yellow, and their overlaps 
in green. False negative panels show unmatched GT cells, and false positive 
panels show unmatched predicted cells. Merges, splits, and catastrophe panels 
show GT cells (blue), predictions (yellow), and their overlaps (green). b) Heatmap 

showing counts of true positives, false positives, false negatives, merges, splits, 
and catastrophes across the 4 segmentation models evaluated on independently 
annotated GT from 16 image crops (4 per time point) in the SeqIF dataset (total: 
1208 cells). c) Segmentation evaluation metrics based on the GT annotations 
calculated on means of image-specific metrics, with error bars showing the 
standard deviation across images. d) Percentage of transcripts assigned to cells 
(Molecular Cartography) and percentage of segmented tissue area (SeqIF). Data 
show mean ± s.d.
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Extended Data Fig. 3 | Spatial cell type distribution and composition 
changes during acute MI as quantified by Molecular Cartography. a) Spatial 
distribution of cell-types in Molecular Cartography samples at four time 
points each with two biological replicates. b) Cell-type composition across 
acute myocardial infarction as quantified by Molecular Cartography. Barplots 

show mean percentage, points represent individual replicate measurements. 
c) Dotplot showing marker expression for identified immune cell subtypes. 
Immune subtype names are followed by their distinguishing marker with 
an underscore. d) Spatial distribution of these immune cell subtypes in two 
biological replicates for 4 h and 2 days.
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Extended Data Fig. 4 | SeqIF pixel clusters and cell phenotypes across acute MI 
time series. a) Pixel phenotype map for mouse heart images produced with SeqIF 
during a time course of acute myocardial infarction. Pixels were clustered using 
self-organizing maps leveraging Pixie and colored according to their assigned 
pixel cluster. A total of 9 different pixel clusters were classified. b) Heatmap of 
quantified marker expression in the corresponding pixel phenotype clusters. 
Colors for pixel clusters correspond to visualization in a. c) Quantification of 
pixel phenotypes across acute MI reveals strong reduction in Tnnt2+ pixels, 
increase in Ankrd1+ pixels and an increase in pixel clusters for myeloid cells 
(CD45+, Mpo+, Ccr2+, Trem2+, CD68+) during the first four days post MI. Colors 

correspond to pixel phenotypes visualization in a. Bars represent mean values 
from two biological replicates and points represent individual measurements. 
d) Zoom-ins for endocardial infarct zone regions from SeqIF images with 
corresponding cell typing highlighted. Top row shows SeqIF images with 
stainings for DNA (Hoechst = cyan), Cd31 (orange), Ccr2 (green) and Mpo (pink) 
at 3 different time points (4 h, 24 h and 48 h). Bottom row shows corresponding 
cell segmentations and cell types with endothelial cells (orange), Ccr2+ 
monocytes / macrophages (green) and neutrophils (pink). All other cell types are 
marked in grey for visualisation purposes.

http://www.nature.com/natcardiovascres


Nature Cardiovascular Research

Article https://doi.org/10.1038/s44161-025-00717-y

Extended Data Fig. 5 | Quantification of immune cell infiltration based on 
conventional IF imaging. a) Schematic highlighting different regions for 
quantification of immune cell infiltration. Absolute (b) and relative (c) numbers 
of CCR2 + /CD68+ Mo/Mɸ in different regions of the heart as depicted in a, 
using conventional immunofluorescence staining for CCR2, CD68, CD31, 

WGA and DAPI. Bars show mean abundance and points represent individual 
measurements. P values were determined by 2-way ANOVA followed by  
Tukey’s multiple-comparison test. Only significant comparisons between 
timepoints within each region are displayed. *P < 0.05 vs. pre, #P < 0.05 vs. 4 h, 
§P < 0.05 vs. 24 h.
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Extended Data Fig. 6 | SeqIF staining of infiltrating Mo/Mɸ in the endocardial 
layer after MI and quantification of Mo/Mɸ and CD31+ cells of the vasculature 
from SeqIF data using a binning strategy. a–c) Representative SeqIF images 
showing selected markers including CD31 (yellow), CCR2 (magenta), CD68 
(green) and DAPI (blue) with attachment (asterisk) and transmigration (arrow) 
of CCR2 + CD68+ monocytes/macrophages. d) The endocardial infarct zone in 
SeqIF images was split into bins from lumen towards the infarct core to quantify 

cells across the bins over time. Cyan: DAPI, yellow: Cd31, magenta: Ccr2, cyan 
square: endocardial cells, yellow circle: other endothelial cells, magenta triangle: 
Ccr2+ Mo/Mɸ. e) Relative cell abundance in mm2 across different endocardial 
infarct zone bins from SeqIF shows an increase of Ccr2+ Mo/Mɸ at the 
endocardial layer around 24 h, while abundance Cd31+ cells of the vasculature 
remains constant over time.
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Extended Data Fig. 7 | Immunofluorescent staining of CCR2+ Mo/Mɸ and 
endocardial vWF after MI and ischemia/reperfusion injury. a, b) Quantification 
of vWF in different regions 24 h after MI based on immunofluorescence in female 
and male mice. c) Immunofluorescence stainings of CCR2 and vWF in the infarct 

zone 24 h after ischemia/reperfusion injury. d) Quantification of endocardial 
vWF after ischemia/reperfusion injury. e) Quantification of infiltrating Mo/
Mɸ at the endocardial region in both control hearts and hearts after ischemia/
reperfusion injury.
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