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Rifaximin, a gut-targeted antibiotic, improves cognitive function and reduces the risk of hepatic 
encephalopathy (HE), yet its effects on the gut-brain axis remain unknown. This study explores how 
rifaximin influences gut microbiota functions and its association with cognitive function and molecular 
alterations in rats with liver injury. Liver injury was induced by chronic administration of carbon 
tetrachloride (CCl4), and rifaximin was administered daily. Fecal samples were collected after eight 
weeks of CCl4 administration, and taxonomic and functional changes in the gut microbiome were 
analyzed. Rifaximin altered microbiota diversity and composition, increasing α diversity in liver-injured 
rats but reducing diversity in healthy rats. It influenced microbiota interactions with neurotransmission 
alterations, where Dorea, Lachnospiraceae A2, and possibly Erysipelotricaceae might be important 
contributors. Functionally, butyric acid levels negatively correlated with gene orthologues associated 
with GABA, tryptophan, and glutamate degradation pathways. In healthy rats, fecal short-chain 
fatty acid (SCFA) levels were positively correlated with each other, a pattern absent in other groups. 
Rifaximin significantly influenced gut microbiota and promoted bacterial groups linked to improved 
cognition and neurotransmission in liver disease. Our findings underscored the direct relationship 
between a healthy microbiome and the maintenance of balanced SCFA concentrations.
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In recent years, research has highlighted that neurological impairment associated with liver disease is profoundly 
influenced by the gut microbiome1. Hepatic encephalopathy (HE) exemplifies how the gut-liver-brain axis 
plays a pivotal role in linking gut health with brain function in liver disease. HE is a complex neuropsychiatric 
syndrome that affects patients with liver cirrhosis and can range from mild symptoms to life-threatening coma 
and death. HE affects a significant proportion of cirrhotic patients, posing major health, social and economic 
challenges. Patients without evident HE symptoms may present minimal HE (MHE). These less-evident 
symptoms can be revealed using psychometric tests. Cirrhotic patients with MHE show high incidence of mild 
cognitive impairment, attention deficits and psychomotor slowing and this can progress to clinical HE2.
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Chronic administration of the hepatotoxin carbon tetrachloride (CCl4) is a usual model of progressive liver 
injury in rats3–6. Previous studies using this model reported motor incoordination and cognitive impairment 
reproducing symptoms of MHE patients, already in a stage of mild liver injury, similar to that of patients with 
steatotic liver disease (SLD), including patients with no alcoholic fatty liver disease or steatohepatitis. These 
neurological impairments in CCl4-induced mild liver injury were associated with peripheral inflammation, 
promoting immune cells infiltration in the cerebellum and hippocampus, leading to neuroinflammation and 
altered neurotransmission in these cerebral areas5,6.

Treatment with rifaximin, a non-systemic antibiotic that primarily targets the gut, is effective in restoring 
cognitive function in cirrhotic patients with MHE and reduces the risk of recurrent HE. This was associated 
with a shift in peripheral inflammation7,8, suggesting HE symptoms may lie downstream of gut microbiome 
alterations in cirrhosis. Rifaximin treatment in CCl4 treated rats reduced peripheral inflammation and 
neuroinflammation, improving motor and cognitive function5,6. These aforementioned studies demonstrated 
that rifaximin treatment reduced extracellular GABA levels in the cerebellum by modulating membrane 
expression of GABA transporters, which mediated improving of motor coordination in rats with mild liver 
damage induced by CCl4 administration. These effects of rifaximin are mediated mainly by reduction of the 
increased chemokines in peripheral blood, and in brain, which reduced immune cell infiltration and subsequent 
neuroinflammation, including TNFα proinflammatory cytokine increase in the cerebellum5. In the same way, 
the administration of rifaximin also reduced hippocampal neuroinflammation, which normalized membrane 
expression of the glutamate NMDA receptor subunits. This, in turn, contributed to improvement of cognition, 
specifically spatial learning and memory (novel object location memory and learning in the radial maze)6. The 
precise mechanisms underlying these beneficial effects of rifaximin on inflammation and brain function in 
rats with mild liver damage remain to be elucidated, but modulation of the gut microbiome may be involved. 
This modulation may occur through metabolic interactions9 or by promoting a gut microenvironment with 
cytoprotective properties10. Nevertheless, the effect of rifaximin on the human microbiome is a major goal of 
ongoing research, but until present, results are still contradictory. Some studies on human samples have shown 
that this antibiotic minimally affects the composition of the microbiota of HE patients11,12, while other work13 
found a significant decrease in the α-diversity of the fecal microbiome, as well as in oral microbiota, but without 
finding significant changes in composition (β-diversity).

The role of the gut microbiome can be studied using different approaches, either by analyzing microbial 
taxonomy or by examining the metabolic capacity and activity of the microbes. The taxonomic composition 
provides valuable information on the microbiome status, as certain groups are often associated with health or 
disease status. Microbiota taxonomic groups are associated with several groups of microbiota-derived metabolites 
that are responsible for most microbiota effects on host physiology. Metabolites like short-chain fatty acids 
(SCFA) have a key role mediating the microbiota-host interaction. SCFA are produced as major fermentation 
products of certain bacterial groups from dietary fiber in the gut. The production of SCFA is a highly relevant 
functional aspect of the microbiome, as they are considered key factors in gut-brain axis communication14,15. 
Yet, few studies have investigated the role of SCFA as potential mediators for microbiome-focused interventions 
that influence cognitive functioning16.

The selective effect of rifaximin on the gut microbiome is essential to understand the intricate relationship 
between the gut microbiome and liver disease, which is required to develop new approaches for the treatment 
of MHE. In this work, the effect of rifaximin on the gut microbiome was evaluated in the rat model of CCl4-
induced liver injury to determine specific changes in the composition of the gut microbial populations and their 
functionality. In addition, potential relationships were identified between SCFA and disease-related metabolic 
pathways.

Results
Rifaximin is the primary factor influencing microbial diversity in the rodent MHE model
To study the changes induced by rifaximin on the gut microbiota, fecal samples of four experimental rat groups 
(n = 8 per group) were collected at a single timepoint. These experimental groups were two control groups, with 
and without rifaximin, and two groups with induced liver injury, with and without rifaximin treatment. Gut 
microbiota diversity, evenness, and richness were estimated as alpha α-diversity parameters for the microbial 
communities of the experimental groups (Fig. 1, Supplementary Fig. 1). Statistical comparisons between the 
groups were performed to assess differences, accounting for batch-related effects using linear mixed models. 
No significant differences in diversity (Shannon index) were found between the groups (Fig. 1A) (Likelihood 
Ratio Test -LRT-,  Χ2 = 1.31, p = 0.73). However, significant differences in richness when applying Chao1 α-index 
(Fig. 1B) and in evenness when applying Fisher’s α-index (Fig. 1C) between groups were observed (LRT, Fisher: 
Χ2 = 26.964, p < 0.001; Chao1: Χ2 = 37.343, p < 0.001). Interestingly, a reduction in diversity was observed after 
rifaximin treatment in healthy rats, whereas in rats with mild liver injury rifaximin moderately increased in both 
α-diversity indices.

Then, Principal Coordinates Analysis (PCoA) ordination of Bray-Curtis distance matrices was used for the 
visualization of the microbial community structure (β-diversity) (Fig. 1D). A clear separation, mainly explained 
by PCoA1, was observed under treatment with rifaximin, indicating that antibiotic treatment is the main factor 
affecting microbiota diversity in this model (PERMANOVA, R2 = 0.27840, p < 0.001). There were also significant 
differences between healthy rats and rats with liver injury (PERMANOVA, R2 = 0.10037, p < 0.001), indicating 
that the microbiome was compositionally different in these groups. The reliability of our results was ensured by 
verifying that there were no statistical differences due to homogeneity of variance between the groups (ANOVA, 
F value = 0.4711, p > 0.05).
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Fig. 1.  Impact of rifaximin treatment on gut microbiome diversity in healthy and mild liver-injured rats. 
Box plots illustrating α-diversity indexes Shannon diversity (A), Chaotropic 1 index (B), and Fisher index 
(C) in bacterial microbiomes of fecal samples from healthy rats (Control), healthy rats treated with rifaximin 
(Control + rif), rats with induced liver injury (CCl4), rats with induced liver injury treated with rifaximin 
(CCl4 + rif) (n = 8 per group). Adjusted p-values of likelihood ratio test of nested models: <0.001 = ***, < 0.01 
= **, < 0.05 = *. Principal Coordinates Analysis (PCoA) of Bray-Curtis distances (D). Distances were used to 
compare the taxonomic and functional diversity of gut microbiomes between populations. The axis labels show 
the proportion of variance explained by each principal coordinate axis. PERMANOVA for the group variable 
significance and R2 for antibiotic and CCl4 treatment variables are indicated on the top area of the plot.
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Rifaximin treatment induced more taxonomical changes in to rats with liver injury (CCl4) 
compared to healthy rats
The number of bacterial amplicon sequence variants (ASVs) positively or negatively associated with rifaximin 
treatment differed between healthy rats and rats with liver injury. The associations described in this section 
refer specifically to statistically significant (p-value < 0.01) associations between rifaximin treatment and the 
direction of change in microbial compositional abundance of each ASV, assessed using metadeconfoundR for 
each group independently. In healthy rats, 12 ASVs showed associations with rifaximin treatment, whereas 68 
ASVs were associated with the antibiotic treatment in rats with mild liver injury. In healthy rats, rifaximin was 
associated with reduction of ASVs belonging to the families Lachnospiraceae, Ruminococcaceae, Eggerthellaceae, 
Christensenellaceae, Enterobacteriaceae, one ASV from group Clostridia UCG-014 and other from Bacilli group 
RF39. Only one positive association was found in healthy rats between rifaximin and an ASV belonging to the 
family Ruminococcaceae. In rats with liver injury, the antibiotic treatment had positive and negative associations 
with 68 ASVs, showing a more complex effect on the changes of bacterial groups (Fig. 2, Supplementary Fig. 2, 
Supplementary Files 2 and 3). As indicated above in healthy rats, almost all taxonomical associations with 
rifaximin observed were negative, indicating a decrease in microbial abundance in response to the antibiotic, 
which is also supported by the results in α-diversity.

Rifaximin is the primary confounding factor when assessing taxonomic changes correlated 
with Neurobiological and metabolic measures
Immunohistochemistry data, receptors and cytokines expression in the hippocampus and learning and memory 
tests data were obtained from rats used in our previously published work5,6 and additional method information 
is described in the Supplementary methods file. Metadata can be found in the Supplementary file 1.

Significant correlations between microbial genera abundance and metadata variables were identified, while 
also assessing which of these associations were due to a potential confounding effect (Fig. 3, Supplementary Fig. 3). 
Rifaximin treatment had the strongest effect on microbiota composition and abundance. This strong effect of 
rifaximin on bacterial genera had a projection on the association of microbial genera with other variables. Using 
the metadeconfoundR tool for this analysis allowed us to find associations that could be influenced by potential 
confounders. It is important to statistically determine when the association between two variables, for example 
the bacterial genus A and membrane receptor X or learning index, is confounded by a third factor (e.g., rifaximin), 
because this shows that rifaximin has a strong influence on the bacterial genus A. In this case it is important to 
show the selective effect of this antibiotic and it explains the possible mechanism by which rifaximin indirectly is 
affecting the expression of brain receptors and cognitive faculties (Supplementary Table 4). For instance, in the 
presence of rifaximin, Erysipelotrichaceae positive association to cognition (learning index assessed in the radial 

Fig. 2.  Venn Diagram displaying ASVs associated with rifaximin treatment by group. This figure displays 
the significant relationships between ASVs and rifaximin treatment in healthy rats and rats with mild liver 
injury (CCl4), tested separately (n = 8 per group). The colors represent if the correlation between the ASV and 
rifaximin was positive (red) or negative (blue).
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maze test) is confounded by its (positive) association to receptor NR2A, underscoring the known connection of 
the expression of NR2A with cognition, and which may relate Erysipelotricaceae with improved cognition in the 
presence of rifaximin (Supplementary Table 4). Erysipelotricaceae is a family of intestinal commensal anaerobic 
bacteria belonging to the Firmicutes phylum. This would also explain the positive non-confounded associations 
between other bacterial genera, such as Lachnospiraceae A2 and Dorea, with cognition in the presence of 
rifaximin (Fig. 3). Dorea as well as other Firmicutes bacteria in the Lachnospiraceae family are gut bacteria highly 
involved in the production of SCFA. It must be underlined that significant association does not necessarily relate 
to causality. Finally, the associations between acetic acid and various genera are confounded by other SCFA.

The levels of 16 cytokines in the hippocampus were measured to assess neuroinflammatory signaling; 
however, only CCL20 levels showed a significant association with the genus Lachnospiraceae NK4A136 group 
(Fig.  3). Significant associations between genera and membrane protein expression profiles were observed 
(Fig. 3). Looking at the general association patterns of bacterial genera, it is evident that the column showing the 

Fig. 3.  Heatmap showing the significant association between bacterial genera and variables. Significant 
relationships between ASVs agglomerated by genus and metadata variables, on the y and x-axis respectively. 
The color scale on the heatmap represents the magnitude of the effect size, and the color scale on the y-axis 
represents the Families each taxon belongs to. The significance of each association is represented by black 
asterisks based on the FDR-adjusted p-values of the initial tests (FDR-values: < 0.001 = ***, < 0.01 = **, < 0.1 = 
*). Associations that are significant but confounded are represented by gray circles instead. SCFA, short chain 
fatty acids; Cog, cognition; Cyt, cytokines, Treat, treatment.
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antibiotic pattern has the highest effect sizes and is very similar to the cognition column and to the expression 
patterns of NR2A and NR2B membrane receptor subunits, while the TNFα membrane receptor, TNFR1, showed 
a complementary or opposite association pattern. Other neurotransmitters also showed the pattern observed 
for TNFR1, such as the NMDA receptor subunit NR1 and the GABA transporter GAT1, opposite to the pattern 
observed with antibiotic treatment.

Predicted functional metabolic modules in the microbiota showed strong correlations with 
fecal Butyric acid concentration
To identify key predicted metabolic functions, significant correlations between metabolic modules identified 
by PICRUSt2 (KOs) and metadata variables were tested and classified under confounder correction with 
metadeconfoundR (see “Materials and methods” section for additional information). No metabolic changes could 
be associated with CCl4 treatment (FDR value > = 0.1). Only 2 significant modules were associated with antibiotic 
treatment: arabinoxylan degradation and methanol conversion (Supplementary Fig. 4). Not surprisingly, butyric 
acid was associated with the functional modules related to butyrate synthesis (including pyruvate formate lyase, 
acetyl-CoA to crotonyl-CoA), glycerol and saccharide utilization, and amino acid catabolism (arginine, cysteine 
and threonine) (Fig. 4A). Negative associations were found between butyric acid and several interesting gut 
metabolic modules (GMM) related to amino acid degradation (glutamate, glutamine, tryptophan, aspartate, 
methionine, alanine) and neurotransmitter or neuroactive-related modules such as indole biosynthesis, GABA 
degradation, mucin and starch degradation. Although not statistically significant, the associations observed 
between GMM and butyric acid were conserved with other SCFA (Fig. 4A).

The different groups of rats did not differ significantly in levels of each respective SCFA (Fig. 4B). In healthy 
rats without rifaximin intervention fecal levels of different SCFA within each sample remained significantly 
correlated even under overall variation, suggesting their relative levels are in homeostasis. In contrast, under 
liver injury and under rifaximin treatment, this correlation is lost as proportions between the different SCFA 
within each sample become dysregulated (Fig. 4C). The thus disrupted correlation pattern induced by rifaximin 
was similar in both healthy rats and rats with liver injury. This suggests that synthesis of the main SCFA is 
balanced in the gut microbiome under healthy conditions.

Discussion
The use of the non-systemic antibiotic rifaximin, effectively reduces the risk of recurrent HE and restores 
cognitive performance in cirrhotic patients and in rats with induced-mild liver injury6–8,11. Our group previously 
found that administration of rifaximin prevents the infiltration of peripheral immune cells into the brain and 
the subsequent enhancement of neuroinflammation, changes in neurotransmission, and cognitive and motor 
impairment5,6. However, the mechanisms behind the rifaximin effect are largely unknown. To evaluate how this 
antibiotic primarily targets the gut, a selective pressure on the gut microbiota under liver disease, we used a rat 
model with induced liver injury and rifaximin treatment.

Antibiotic treatment is expected to affect microbial survival, resulting in a remarkable reduction in the 
α-diversity of the human gut microbiota17,18. Specifically, rifaximin inhibits bacterial RNA synthesis, and 
primarily targets clostridia and other enteropathogenic bacteria in murine models19–22. In this work, rifaximin 
treatment reduced α-diversity and 11 ASVs of SCFA producing bacteria in healthy rats, while in rats with induced 
liver injury, rifaximin induced complex changes affecting 68 ASVs belonging to the families Bacteroidaceae, 
Ruminococcaceae and Lachnospiraceae, and a significant reduction of Clostridiaceae, as previously described19–21. 
However, inflammation may play an additive role to rifaximin, leading to the inhibition of strong competitors, 
resulting in the growth of bacterial families that had a beneficial effect on the disease, but further studies are 
needed to understand the effects of rifaximin on the microbiome diversity.

To gain knowledge on which mechanisms might link the effect of gut microbiota on the cognition 
improvement mediated by rifaximin, we also explored taxa associations with neurobiological and metabolic 
measures. Looking at the general association patterns of the bacterial genera described here, it is evident that 
the column showing the antibiotic association pattern has high effect sizes and is very similar to the learning 
index and NR2A columns, while it is complementary or opposite to the association pattern of other variables, 
such as the membrane TNFα receptor, TNFR1. Membrane expression of glutamate receptor subunits and 
glutamate and GABA transporters, in particular the NMDA receptor subunit NR1 and the GABA transporter 
GAT1, showed a pattern similar to that of TNFR1, which was opposite to that found for the NR2A and NR2B 
receptor subunits. Thus, rifaximin treatment was the main confounding factor that strongly favoured certain 
bacterial groups and consequently the positive association between bacterial genera (e.g. Lachnospiraceae A2, 
Erysipelotrichaceae and Dorea) and neurotransmitter receptors and cognition. These parameters show a similar 
pattern of correlation with bacterial genera to that of the learning index, which may explain how rifaximin 
positively affects cognition, as NR2 subunits in the hippocampus are known to modulate spatial learning23. In 
fact, the family Erysipelotricaceae was found positively associated with cognitive function and Lachnospiraceae is 
the main predictor of fluid intelligence24 possibly because they metabolize glutamate and are efficient producers 
of SCFA.

SCFA are microbiota-derived metabolites influencing host physiology, especially in the gut-brain axis14,15,25. 
We analyzed fecal concentrations of butyrate, propionate, acetate, caproic and valerate. Interestingly, the 
concentrations of most of the SCFA analyzed were highly correlated in healthy rats, suggesting that the balance 
between the studied SCFA may be more important than their individual concentrations, which are discrepant 
between previous studies exploring liver disease and other conditions, such as Parkinson and obesity26–30. 
Despite the large volume of research devoted to the relationship between SCFA and intestinal health, the concept 
of an “SCFA balance” offers a novel perspective. This means that SCFA synthesis by the native gut microbiome 
maintains a balance associated with health, and liver disease and antibiotic intervention showed an altered SCFA 
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balance. We hypothesize that maintaining a global balance of SCFA, which is managed by the gut microbiome, 
is an effective way to monitor intestinal health. Disruptions to this balance, such as those caused by liver disease 
or antibiotic intervention, contribute to intestinal dysbiosis and related health issues.

This work also aimed to investigate the changes on the gut microbiota functionality to infer the interaction 
with host metabolic functions. GMM represent cellular processes and are obtained using data from bacterial 

Fig. 4.  Relevance of SCFA metabolism. (A) Heatmap displaying the relationships between GMM (Gut 
Metabolic Modules) and short-chain fatty acids (SCFA), on the y and x-axis respectively. The color scale 
represents the magnitude of the effect size. The significance of each association is represented by black asterisks 
based on the FDR-adjusted p-values of the initial tests (FDR-values: < 0.001 = ***, < 0.01 = **, < 0.1 = *). AA, 
acetic acid; BA, butyric acid; CA, caproic acid, PA, propionic acid; VA, valeric acid. (B) Comparative analysis 
of SCFA between different groups (n = 8 per group). No asterisk is marked because of no statistical differences. 
(C) Correlation plots illustrating the relationship between SCFA in all the groups. Non-significant coefficients 
are depicted in blank, while significant correlations are shown by dots whose size and color depend on the 
correlation size.
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genome databases to prepare relational inferences to assess differential metabolic potential of bacteria. A 
negative correlation was found between butyrate levels and modules related to degradation of neuroactive related 
compounds, such as glutamine, tryptophan, alanine or glycine, and including two main neurotransmitters, 
GABA and glutamate. Impaired glutamate and GABA neurotransmission has been widely reported in rats with 
MHE, including rats with CCl4-induced liver injury5,6,31. Hyperammonemic rats with MHE also show an altered 
glycinergic system in the cerebellum. These results suggest that microbiota alterations, and especially bacterial 
production of SCFA in rats with liver injury and HE, can have a role in the induction of the described alterations 
of these neurotransmitter systems. Some reports described bacterial groups that modulate glutamate or GABA 
metabolism and associated these effects to neurological pathologies as Alzheimer disease or major depression32,33. 
Although GABA modulation by microbiota has been related to the GABA regulation of anxiety and depression, 
we suggest here that since GABA is also involved in cognitive function, these GABA modulating species must 
also affect cognitive function. However, the relevance of these pathways in terms of neurotransmitter availability 
needs to be confirmed in the context of liver disease and neurological impairment in general.

In conclusion, our study showed a different effect of rifaximin in healthy rats than in rats with induced liver 
injury, suggesting a possible combined effect of inflammation and rifaximin, inhibiting strong competitors and 
thus promoting the growth of bacterial families with a beneficial effect on the disease. Rifaximin appears to affect 
the interactions of the microbiota with alterations in neurotransmission, where Dorea, Lachnospiraceae A2 and 
possibly Erysipelotricaceae would play a significant role. Changes in SCFA production by the microbiota in rats 
with liver injury may contribute to the alterations in neurotransmitter systems, including glutamate and GABA. 
Finally, we suggest a new concept, the “SCFA balance”, which represents a fundamental and unexplored aspect 
of gut microbiota research, critical for understanding gut microbiota dynamics in healthy and disease states. 
Our results contribute to a deeper understanding of the effects of rifaximin on the functional and taxonomic 
composition of the microbiome in liver injury.

Materials and methods
Experimental design
Male Wistar rats (Charles River) weighing 150–180 g were intraperitoneally injected 3 times/week with 1 mL/kg 
body weight of CCl4 to induce liver injury. CCl4 was prepared 1:10 (v: v) in corn oil as in4–6. Control rats were 
intraperitoneally injected with corn oil. Rifaximin (Sigma, St. Louis, MO, USA) was dissolved in 100% ethanol 
and administered orally (20 mg/kg body weight). Two weeks after first CCl4 injection started daily rifaximin 
treatment and it was maintained until sacrifice after eight weeks of CCl4 administration. Control rats were orally 
treated with the same volume of 100% ethanol (Fig. 5A). Fecal samples were obtained at eight weeks, when rats 
weighed approximately 350 g. Four groups (n = 8 per group) were established: (1) control rats (2) control rats 
with rifaximin treatment, (3) rats with induced liver injury and (4) rats with induced liver injury treated with 
rifaximin. The experiment was run in two batches: T7 with 20 rats and T5 with 12 rats (Fig. 5B).

The experiments were approved by the Comité Ético de Experimentación Animal (CEEA) of Centro de 
Investigación Príncipe Felipe and the Conselleria de Agricultura de la Generalitat Valenciana (Valencian 
Government, Spain) and they were performed in accordance with the Directive of the European Commission 
(2010/63/EU) for the care and handling of experimental animals. All experiments were performed according 
the ARRIBE guideline.

DNA extraction
Fecal samples were collected, flash-frozen in liquid nitrogen, and stored at -80  °C until analysis. Samples 
were resuspended in 100 µL PBS and homogenized by 30  s at low-ultrasound intensity bath in a sonicator 
VCI-50 (Raypa, Barcelona, Spain). DNA was extracted using the MagNA Pure LC DNA Isolation Kit III for 
Bacteria and Fungi (Roche Diagnostics) with a MagNA Pure LC 2.0 Instrument (Roche Diagnostics, Risch-
Rotkreuz, Switzerland). The manufacturer’s instructions were followed, with an additional enzymatic lysis as 
in34. DNA was resuspended in 100 µL elution buffer and frozen at -20 °C until analysis. DNA concentration was 
quantified by fluorimetry, using the Quant-iT™ PicoGreen® dsDNA Assay Kit in a Qubit™ 3 Fluorometer (both 
ThermoScientific).

16S rRNA gene bacterial profiling
An Illumina amplicon library was obtained according to the 16  S rRNA gene Metagenomic Sequencing 
Library Preparation Illumina protocol (Part #15044223 Rev. A). This targeted the 16 S rRNA gene V3 and V4 
hypervariable regions, resulting in an amplicon of 460  bp. Amplicons were sequenced using the 2 × 300  bp 
paired-ends protocol on a MiSeq Sequencer (Illumina, San Diego, California, US), following the manufacturer’s 
instructions. Quality assessment and pre-processing of the sequences were performed following the DADA2 
(v1.18.0)35 pipeline in R (v4.0.3) to infer amplicon sequence variants (ASVs) from the SILVA database (v138.1) 
with the following adjustments: primer sequences were trimmed from all reads. Forward and reverse reads were 
truncated to 290 and 265 bases, respectively. Fragments between 397 and 424 bp were selected (after trimming), 
based on the expected size of the 16  S amplicon. All other parameters were set to default. Taxonomic ASV 
abundance and sample data were compiled into a single object for further analysis using the phyloseq package 
(v1.38.0). The scripts used for the analysis can be found at ​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​l​o​l​a​p​s​g​p​/​R​a​t​s​_​H​E​_​C​C​l​4​m​o​d​e​l​.​g​i​
t​​​​​. All statistical analyses were conducted using R (v4.1.2).

Low-prevalence ASVs that were not present in at least 50% of the samples in any of the groups were removed, 
with each group consisting of eight rats. The resulting requirement is that selected ASVs must have four non-
zero values in at least one group (Supplementary Tables 1, 2 and 3). Finally, the data were compositionally 
transformed (relative abundances).
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Alpha- and beta-diversity
Alpha-diversity indices (Shannon, Chao1, and Fisher) were calculated using raw sample counts since all 
samples reached saturation when performing rarefaction curve analysis. To assess whether there were statistical 
differences between the different groups and to further take into account batch-related effects, a linear mixed-
effects modeling approach was adopted. Two models were compared: the first included only the batch effect, 
(Diversity index ~ (1|Batch)), while the second model incorporated both the batch effect and group information 
(Diversity index ~ Group + (1|Batch)). This comparison aimed to determine whether the group variable 
significantly contributed to the model’s fit. The data was further subdivided into groups and analyzed for specific 
group comparisons. To address the problem of multiple comparisons and to control for false discovery rates, the 
p-values of the results obtained were calculated using the p.adjust function and adjusted with the Benjamini-
Hochberg (BH) method.

Filtered and compositionally transformed taxa were classified as dominant by a cutoff higher than 0.1 
regarding relative abundance. All plots were obtained using ggplot2 package (v3.4.2). The filtered data were 
transformed using logarithmic conversion and ARSyN function36 from the MultiBaC37 package in R (v4.1.2)38 
to remove the batch effect for β-diversity analysis. The parameters were set as default. ARSyN functions as a 
Batch Effect Correction Algorithm (BECA). It uses an analysis of variance (ANOVA) decomposition to the data 
matrix for estimating the batch effect and, subsequently, a Principal Component Analysis (PCA) is applied to 
each submatrix to estimate the systematic batch-induced variation, which is then removed from the original 
data. For the visualization of β-diversity, the vegdist function of the vegan package (v2.6.4) was used to compute 
Bray-Curtis distances, to which Principal Coordinates Analysis (PCoA) ordination was then applied and used 
for plotting. PERMANOVA was performed for multivariant comparisons using adonis function of the vegan 
package (v2.6.4), specifically, tests were performed by marginal effects, 999 permutations were defined, and 
stratification by batch was applied. Diversity analyses were carried out to find out the main causes of modifying 
the composition of the microbiome.

Fig. 5.  Diagram of experimental procedures. Fecal and blood samples were collected at the end of week 8. 
Treatment with rifaximin was only started after 2 weeks of CCl4 treatment (A). Schematic representation of 
the groups including the different working batches. Each group includes a total of eight rats, five from batch T7 
and three from batch T5. (B). Created using BioRender.
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Predicted functional annotation
PICRUSt2 algorithm (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 2) 
(https://github.com/picrust/picrust2)39 was used to predict the functional potential based on the taxonomic 
information. Briefly, PICRUSt2 maps the ASVs into a phylogenetic tree based on 20,000 available bacterial 
whole genomes and then estimates the abundance of predicted metagenomes, KEGG Orthologs (KO)40,41 
and pathways. KO counts were binned to GMM, which are sets of alternative KO combinations representing a 
cellular process. This was done using omixer-rpmR, which is an R interface to Omixer-RPM a tool that selects 
modules that pass a defined coverage cutoff (set by default) and chooses the combination of KOs that maximizes 
the abundance of the module42. For better coverage of the tryptophan (trp) metabolism, the following modules 
were manually added to the Omixer-rpmR bundled databases based on KEGG modules and by Kaur et al.43 for 
pathway prediction criteria: kynurenine biosynthesis I (K00453, K00463, K01432, K14263, K07130, K00486, 
K01556, K00452, K03392, K10217, K23234); melatonin biosynthesis I (K00502, K01593, K00669, K00543); 
quinolinic acid biosynthesis I (K00453, K00463, K01432, K14263, K07130, K00486, K01556, K00452, K00767, 
K00969, K06210, K01916, K01950); indole biosynthesis (K01667); indole propionic acid from trp (K13607); 
tryptamine propionic acid from trp (K01593).

Differential abundance analysis
The R package MetadeconfoundR44 version 0.2.8 was used to distinguish changes related to the disease or the 
treatment, specifically, for differential abundance analysis and covariate deconfounding on each metagenomics 
feature (taxa and functional modules). MetadeconfoundR uses mixed-effects linear models to infer significant 
associations between microbiome features and the variables in the metadata (FDR < 0.1). All significant 
associations were corrected for any potential confounding variables (third variable related to a given microbiome 
feature). The batch variable was included as a random variable. Comparisons were performed at ASV level and 
genus level, involving two main groups: rats treated with rifaximin versus rats not receiving antibiotic treatment. 
In addition, data were segregated for specific group comparisons, contrasting the effect of antibiotic treatment 
in healthy and liver-damaged rats separately. To assess and visualize the correlations within metadata variables, 
ggpairs and ggcorr functions were employed (package GGally v2.1.2) and ggplot function from package ggplot2 
package (v3.4.2).

Analysis of SCFA in feces
The concentration of SCFA in feces was measured by LC-MS with an EXION (Shimatzu) HPLC system coupled 
to a mass spectrometry detection system consisting of a QTRAP 4500 triple quadrupole (AB Sciex, Ontario, 
Canada) equipped with electrospray ionization (ESI) ion source, controlled by the Analyst software, version 
1.6.3. The sample preparation proceeded as follows: around 100 µg of feces of each rat were homogenized in 2 
mL of LC-MS grade water (1:20 p/v) for three minutes in a Polytron-Aggregate PT 1200 E (Kinematica, Luzern, 
Switzerland) and centrifuged at 10000g for 10 min at 4 °C. Sample derivatization and extraction method was 
modified from45 as follows: 30 µL of supernatant were derivatized with 10 µL of 1 M O-benzylhydroxylamine 
(O-BHA) (SIGMA) and 10 µL of 1 M N-(3-Dimethylaminopropyl)-N-ethylcarbodiimide-HCl (EDC) (SIGMA) 
prepared in freshly prepared pyridine buffer (270 µL of 12.1 M HCl + 430 µL of pyridine in H2O to 5 mL, pH 
5), in a fume hood. This derivatization mixture was agitated at 300 rpm for 10 min. Thereafter 450 µL of 50% 
methanol in water were added to dilute samples 1:10. Samples were vortexed and 300 µL of dichloromethane 
were added to 100 µL of derivatized sample for extraction by agitation at 300 rpm for 30 min. Then, 100 µL 
of the organic phase was separated and evaporated at room temperature in a fume hood. The samples were 
reconstituted with 85 µL of 0.1% formic acid in H2O and 40 µL and injected in the HPLC under the following 
conditions: a Kinetex C18 100*4.6 mm 2.6 column from Phenomenex, at 40º C, was used. The mobile phase 
consisted of a two-phase gradient: 0.1% formic acid in water (A) and 0.1% formic acid in acetonitrile (B), as 
follows: 5–20% B 0–1 min, 20–50% B 1–5.5 min, 60% B 5.5–5.7 min, 80% B 6 min, 80% B 6.5 min, 5% B 6.6 min, 
5% B 12 min, with a flow rate of 0.4 mL/min. The conditions of the mass spectrometer were: positive ionization 
mode, entrance potential 10, curtain gas 30, declustering potential 60 V, collision energy 15 eV, GAS1 40 and 
GAS2 50, 500 °C and 4500 V in multiple reaction monitoring (MRM) mode with the following transitions for the 
quantification of the different SCFA: acetic acid 166.1 m/z > 91 m/z; propionic acid 180.1 m/z > 91 m/z; butyric 
acid and isobutyric acid 194.1 m/z > 91 m/z; valeric acid 208 m/z > 91 m/z and caproic acid 222 m/z > 91 m/z. A 
SCFA mixture standard curve, from 1 to 2500 ng/mL (10 to 25000 ng/mL of caproic acid), was prepared in H2O 
and derivatized and extracted as the samples to calculate SCFA concentrations.

Data availability
The scripts used for the analysis can be found at https://github.com/lolapsgp/Rats_HE_CCl4model.git. The ​s​
e​q​u​e​n​c​i​n​g data that support the findings of this study are available as a SRA at NCBI with submission code 
SUB14548047: https://www.​ncbi.nlm.nih​.gov/bioproj​ect/PRJNA11​25883. All other data are included in the 
study in the Supplementary Data section as Supplementary Files.
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