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Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu

Berlin, and Berlin Institute of Health), Berlin, Germany
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Abstract

We applied deep normative modeling to structural MRI data from two large cohorts (Ger-
man National Cohort, N ≈ 29,000 and UK Biobank, N ≈ 25,000) to characterize individual-
level brain deviations along symptom dimensions of depression, anxiety, and alcohol use. Each
brain was embedded into a 256-dimensional latent space, allowing us to quantify both the
magnitude and direction of deviation from a normative reference trained on the non/low-
symptomatic subpopulation. Deviation magnitude increased with symptom severity, and di-
rectional patterns separated mood-anxiety and alcohol-use tendencies. These deviation axes
generalized across cohorts and supported individual-level classification of symptomatic group
membership, especially at higher symptom levels. Combining deviations with polygenic risk
scores improved classification performance, particularly for depressive and anxiety measures, in-
dicating complementary contributions of imaging and genetics. Our findings demonstrate that
structural brain deviations reflect meaningful, continuous variation in affective and behavioral
symptoms.

Contact: emanuel.schwarz@zi-mannheim.de

∗Corresponding author
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Introduction

Major depressive disorder (MDD) and generalized anxiety disorder (GAD) are some of the most
prevalent psychiatric diseases worldwide (MDD 8% and GAD 3% 1-year prevalence), significantly
impacting individuals and society and thus making them a major contributor to the global burden
of disease [1, 2, 3].

MDD is an affective disorder that is marked by impacts on multiple psychological domains,
including mood (e.g., persistent feelings of hopelessness), motivation (e.g., chronic loss of energy),
general interest in life (e.g., anhedonia), and cognition (e.g., impaired concentration) [4]. It of-
ten manifests in somatic symptoms such as sleep disturbances (e.g., insomnia), changes in body
weight (e.g., unintentional weight loss), and altered psychomotor activity (e.g., agitation). MDD is
associated with suicidal ideation, and about 2–8% of inpatients with the disorder die by suicide [5].

GAD is an anxiety disorder (ANX) characterized by excessive and persistent anxiety and worry
lasting more than six months, typically concerning more than one of everyday domains such as
health, work, or finances [6]. These worries are difficult to control and are accompanied by symptoms
affecting psychomotor activity (e.g., restlessness), motivation (e.g., easy fatigability), cognition (e.g.,
difficulty concentrating), and sleep (e.g., disrupted sleep), as well as increased muscle tension and
heightened irritability. Both MDD and ANX show moderate heritability (twin-based estimates of
30–40% [7, 8]), and large-scale GWAS have identified hundreds of common variants of small effect
[9, 8]. These findings enable the construction of polygenic risk scores (PRS), which can be applied
to independent cohorts to capture a fraction of genetic liability, although their predictive utility in
psychiatric disorders remains modest [10].

While MDD and GAD are currently defined as distinct disease entities, they share many com-
monalities. First, there is substantial overlap in typically affected domains (e.g., cognition and
sleep). Second, the comorbidity between MDD and GAD is estimated to be as high as 26% for
individuals with a principal diagnosis of GAD also receiving a secondary diagnosis of MDD [11].
Third, common psychopharmacological treatments overlap considerably, with selective serotonin
reuptake inhibitors (SSRIs) being first-line treatments for both disorders. Furthermore, the sub-
stantial genetic overlap—estimated at a correlation of 1.0 in females and 0.74 in males [12]—together
with evidence for similarities in typical patterns of neural function and structure [13, 14], supports
the hypothesis of shared biological underpinnings between the two disorders. Those commonalities
complicate their disentanglement and have led to discussions about whether ANX and MDD share
the same neurobiological mechanisms [13].

Both disorders exhibit substantial heterogeneity at the individual level, including variation in
symptom manifestation, age of onset, and number of episodes [15, 16]. This heterogeneity is cap-
tured by the common classification of the diseases, the Diagnostic and Statistical Manual of Mental
Disorders, 5th edition (DSM-5) [17]. While diagnostic systems like the DSM-5 use categorical
criteria based on thresholds, the underlying vulnerability model and symptom distribution in the
population are continuous [18]. Apart from general disease criteria and differential diagnostic exclu-
sion criteria, for MDD, the DSM-5 lists nine symptoms/affected domains (reflected in the PHQ-9
questionnaire items), of which at least five need to be present/affected. Two individuals diagnosed
with MDD may share only a single symptom or affected domain. For GAD, a diagnosis requires
the presence of at least three out of six possible symptoms, which similarly permits considerable
variation in symptom profiles across individuals. Furthermore, the severity of each symptom can
differ markedly between symptomatic subjects, adding another layer of variability [19, 20].

This clinical heterogeneity is mirrored on the biological level, particularly in attempts to pre-
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dict MDD using brain imaging. A recent benchmark study using the ENIGMA MDD dataset
(N = 5,365) demonstrated that predicting MDD from structural magnetic resonance imaging
(sMRI) data on brain region level remains highly challenging [21]. Machine learning models achieved
approximately 63% balanced accuracy under ideal conditions contrasting MDD patients to healthy
controls (HCs), which dropped to near chance levels (52%) after harmonization for site effects.
Stratification by clinical variables (e.g., age of onset, antidepressant use) did not improve classifica-
tion. These findings underscore that current structural brain features lack a sufficiently consistent
signal for reliable individual-level prediction of MDD in a classification setting, at least using the
methodology employed in this study.

Implicitly, such conventional supervised learning approaches rely on the assumption that indi-
viduals sharing the same diagnosis (e.g., MDD or GAD) exhibit underlying biological similarity
and that diagnostically distinct groups are meaningfully separable. These methods also fail to fully
exploit the disproportionate availability of imaging data from healthy individuals in large popula-
tion cohorts, compared to the more limited data available for symptomatic subjects with specific
diagnoses.

Normative modeling has gained attraction [22, 23, 24], as it models individual-level characteris-
tics in relation to a reference model, typically inferred using data of a healthy population [22]. This
allows quantifying an individual’s deviation from the learned notion of normality and may thus aid
in deciphering biological and clinical heterogeneity. Normative modeling has been successfully ap-
plied to a plethora of psychiatric disorders, including autism spectrum disorder [25], schizophrenia
[26], and dementia [27, 28]. In MDD, normative models of the brain-functional connectome have
pointed to distinct neurophysiological subtypes and revealed substantial inter-subject variability in
functional connectivity deviations [29, 30]. Brain-structural deviations found in MDD via normative
modeling have further been found to improve diagnostic classification, predict treatment response,
and occur in early- and late-onset cases [31, 32].

Many earlier normative models have relied on univariate or region-based measures, modeled
independently, often reducing deviations to scalar scores per brain region [22]. Such approaches
may be less suited to capturing subtle, distributed, or nonlinear patterns of brain variation that are
thought to play a role in psychiatric disorders. Modern AI methods have shifted brain MRI analysis
from hand-crafted features to end-to-end models that operate on minimally processed whole-image
volumes [33]. This enables the extraction of distributed, disease-relevant patterns directly from raw
spatial data. At the same time, population-scale sMRI datasets like the German National Cohort
(NAKO, N ≈ 30 000) [34] and the UK Biobank (UKB, N ≈ 50 000) [35] became available. Our
framework addresses the described research gaps by encoding whole-brain voxel-wise data into a
nonlinear latent space and modeling deviations as both magnitude and direction within this embed-
ding. This allows detection of transdiagnostic dimensions and fine-grained individual heterogeneity
beyond the reach of conventional normative models. Seizing this opportunity, we implemented a
novel normative modeling framework that leverages deep learning-based feature extraction from
whole-brain sMRI. The NAKO cohort served as the discovery dataset, while the UKB was used for
external validation. We pursued four main aims: (i) to develop a deep normative model based on
sMRI data to characterize brain variation in individuals with symptoms related to MDD and GAD;
(ii) to quantify the magnitude of individual deviations from healthy normative variation among par-
ticipants with MDD- and GAD-related symptoms; (iii) to assess the directionality and specificity
of these deviations by comparing them to those observed in individuals with alcohol use disorder
(AUD)-related symptoms, included as a positive control group given its well-documented structural
brain alterations [36, 37]; and (iv) to evaluate the predictive utility of individual deviations and
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their associations with genetic risk.
For our main analysis, we operationalized MDD, GAD, and AUD using questionnaire-based sum

scores—PHQ-9 [38], GAD-7 [20], and AUDIT-C [39]. We selected these three scores to ensure the
availability of ordinal severity measures for each condition and because they are available in both
the NAKO and UKB cohorts. To further substantiate our findings, we conducted additional anal-
yses using alternative operationalizations, including self-reported physician diagnoses and lifetime
diagnoses obtained from hospital records and clinical interviews.

Our approach provides a novel, data-driven framework for dissecting the heterogeneity of com-
plex mental health conditions, specifically MDD and GAD, and supports the development of more
personalized diagnostic and therapeutic strategies tailored to these highly overlapping and hetero-
geneous disorders.

Figure 1: The overall workflow. We began by training a deep normative model on healthy controls
(HCs) from the NAKO cohort (German National Cohort) to learn a low-dimensional representation
of normative brain variation. This model defined a normative distribution in the learned embed-
ding space, against which we contrasted symptomatic group data, including symptoms of major
depressive disorder (MDD), anxiety (ANX), and alcohol use disorder (AUD), in two main analyses.
The shift analysis quantified whether symptomatic subjects’ deviations exceeded the natural het-
erogeneity of the HC population. The directional analysis characterized how symptomatic subjects
deviated from the normative manifold by visualizing the directionality of case emergence relative
to HC variability. Finally, we performed external validation on the UKB cohort and further tested
whether case-specific deviations were associated with genetic risk for the corresponding phenotype.
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Results

Sample Characteristics

We used two large-scale, population-based cohorts: the NAKO [40, 41], a nationwide German ini-
tiative providing extensive health and imaging data with a particular emphasis on the causes and
early stages of common chronic diseases, and the UKB [35], a UK-based resource offering com-
prehensive health, genetic, and imaging information. After filtering out participants with missing
questionnaire data on the PHQ-9, GAD-7, or AUDIT-C, as well as those with neurodegenerative
diseases, we retained 29,357 sMRI samples from NAKO and 24,838 from UKB for our analyses (see
Supplementary Tables 1–6 for details).

Participants were stratified into symptom severity classes based on established cutoff scores
on self-report questionnaires, reflecting current symptom burden of MDD, GAD, and AUD rather
than formal diagnosis. For depressive symptoms (PHQ-9), scores of 0–4 indicated none to minimal
symptoms, 5–9 mild, 10–14 moderate, 15–19 moderately severe, and 20–27 severe symptoms [38].
For anxiety symptoms (GAD-7), scores of 0–4 were considered minimal, 5–9 mild, 10–14 moderate,
and 15–21 severe [20]. Alcohol-related risk (AUDIT-C) was categorized as low (0–4), increasing
(5–7), higher risk (8–10), and possible dependence (11-12) [39]. Due to pragmatic sample size
considerations, we further split individuals with scores above 7 into separate groups: 8, 9, and
≥ 10. This approach allowed us to retain some resolution in symptom severity while ensuring
sufficiently large group sizes for statistical power.

HCs were defined using harmonized thresholds across the three instruments in both cohorts.
Specifically, individuals scoring below 5 on both PHQ-9 and GAD-7, and below 8 on AUDIT-C,
were included. Additional exclusion criteria for HCs were applied to remove participants with
indicators of psychiatric conditions: in NAKO, this included lifetime diagnoses assessed via the
MINI interview [42] and self-reported diagnoses related to MDD, ANX, or panic disorder (PD); in
UKB, exclusions were based on matching the respective ICD-10 codes from hospital records as well
as self-reported diagnoses.

The final group distributions and demographics used in subsequent analyses are summarized in
Table 1 (NAKO) and Table 2 (UKB).

7

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 28, 2025. ; https://doi.org/10.1101/2025.09.26.25336528doi: medRxiv preprint 

https://doi.org/10.1101/2025.09.26.25336528
http://creativecommons.org/licenses/by-nc-nd/4.0/


Group Criterion Count Age µ(±σ) Females (%)

HC – 15 941 48 (±12) 39

AUDIT-C (8) AUDIT-C sum = 8 633 49 (±13) 15
AUDIT-C (9) AUDIT-C sum = 9 249 49 (±13) 10
AUDIT-C ≥ 10 AUDIT-C sum ≥ 10 111 51 (±13) 11

MDD (mild) PHQ-9 sum ∈ [5, 9] 6 829 51 (±11) 53
MDD (moderate) PHQ-9 sum ∈ [10, 14] 1 464 46 (±12) 56
MDD (moderately severe) PHQ-9 sum ∈ [15, 19] 423 45 (±12) 55
MDD (severe) PHQ-9 sum ≥ 20 181 47 (±12) 55
MDD (MINI) MINI Diagnosis MDD 4752 59 (±11) 54
MDD (Diagnosis) Doctor’s Diagnosis 3 636 50 (±11) 60

GAD (mild) GAD-7 sum ∈ [5, 9] 5 566 47 (±12) 54
GAD (moderate) GAD-7 sum ∈ [10, 14] 1 058 46 (±12) 56
GAD (severe) GAD-7 sum ≥ 15 320 46 (±12) 59
ANX/PD (Diagnosis) Doctor’s Diagnosis 1 716 49 (±12) 59

Table 1: Diagnosis counts and demographics in the NAKO cohort (German National Co-
hort). Abbreviations: HC, healthy controls; AUDIT-C, Alcohol Use Disorders Identification
Test–Consumption; PHQ-9, Patient Health Questionnaire-9; MDD, major depressive disorder;
MINI, MINI International Neuropsychiatric Interview; GAD-7, Generalized Anxiety Disorder-7;
GAD, generalized anxiety disorder; ANX/PD, anxiety or panic disorder.
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Group Criterion Count Age µ(±σ) Females (%)

HC – 13 582 65 (±7) 53

AUDIT-C (8) AUDIT-C sum = 8 845 63 (±7) 32
AUDIT-C (9) AUDIT-C sum = 9 611 62 (±7) 25
AUDIT-C ≥ 10 AUDIT-C sum ≥ 10 631 63 (±7) 22
AUD ICD-10 192 64 (±8) 25

MDD (mild) PHQ-9 sum ∈ [5, 9] 3 357 61 (±7) 63
MDD (moderate) PHQ-9 sum ∈ [10, 14] 770 61 (±8) 62
MDD (moderately severe) PHQ-9 sum ∈ [15, 19] 267 60 (±7) 66
MDD (severe) PHQ-9 sum ≥ 20 132 58 (±6) 70
MDD (Diagnosis) ICD-10 754 62 (±8) 65
MDD (Diagnosis) Doctor’s Diagnosis 3 918 63 (±7) 66

GAD (mild) GAD-7 sum ∈ [5, 9] 2 927 61 (±8) 66
GAD (moderate) GAD-7 sum ∈ [10, 14] 559 61 (±8) 65
GAD (severe) GAD-7 sum ∈ [15, 21] 276 59 (±7) 67
GAD ICD-10 19 63 (±7) 66
ANX (Diagnosis) ICD-10 654 63 (±7) 65
ANX (Diagnosis) Doctor’s Diagnosis 2 646 63 (±7) 63

Table 2: Diagnosis counts and demographics in the UKB cohort (UK Biobank). Abbreviations: HC,
healthy controls; AUDIT-C, Alcohol Use Disorders Identification Test–Consumption; AUD, alcohol
use disorder; PHQ-9, Patient Health Questionnaire-9; MDD, major depressive disorder; GAD-7,
Generalized Anxiety Disorder-7; GAD, generalized anxiety disorder; ANX, anxiety disorder; ICD-
10, International Classification of Diseases, 10th Revision.
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Shift Analysis

Our deep normative model was constructed on sMRI data of the 15, 941 NAKO HCs. Specifically, we
used whole-brain voxelwise T1-weighted MRI grey matter maps, spatially normalized to a common
template and downsampled to an 80×80×80 voxel grid. Our model compressed each image into
a 256-dimensional latent embedding. In this space, we quantify the deviations for symptomatic
groups from the HC centroid.

Figure 2A depicts the distribution of deviations observed in severely symptomatic PHQ-9,
GAD-7, and AUDIT-C groups compared to an independent holdout group of 1,594 NAKO HCs (10
%), illustrating how symptomatic groups diverge from normative variation. Figure 2B shows that
the magnitude of deviation is associated with the likelihood of belonging to at least moderately
symptomatic groups. We quantified the proportion of each group whose deviations exceeded the
range observed among HCs (Figure 3A, henceforth referred to as “shift”). At the symptomatic
group level, participants with higher symptom severity levels for MDD and GAD (encoded on a
scale from 1 [mild] to 4 [severe]) exhibited significantly larger shifts. Spearman rank correlations
on the group level between symptom severity and shift revealed strong positive associations when
jointly analyzing the PHQ-9 and GAD-7 groups (ρ = 0.92, p = 0.006), i.e., levels 1 to 4 for PHQ-9
and 2 to 4 for GAD-7 and their corresponding shift values.

The group with the highest shift was alcohol-related, with a shift of over 20% in the top AUDIT-
C (≥ 10) group (Figure 3 A). As depicted in more detail in the Supplementary Figure 3, we
observed that recent, severe symptoms of depression and anxiety exhibited greater deviations com-
pared to lifetime diagnoses captured by the lifetime-related interviews, such as the MINI interview
and self-reported clinical diagnoses by a physician. Exact (corrected) p-values for all groups are
provided in Supplementary Tables 10 and 11. Finally, we present the results of the sex-stratified
analysis in Supplementary Figure 4, which demonstrate that the trends persist.
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Figure 2: A: Density estimates of deviations from the norm for three symptomatic groups. De-
viations are computed based on our deep normative pipeline. The dashed black line represents
the natural heterogeneity among independent healthy controls (HCs) set aside for evaluation, serv-
ing as the normative reference. The areas where symptomatic group distributions exceed the HC
distribution, particularly at higher deviation values, form the basis for computing the fraction of
symptomatic group deviation not captured by the natural variability in HCs (the shift). B: Rela-
tionship between deviation from the normative distribution and the OR of having Patient Health
Questionnaire-9 (PHQ-9) ≥ 10, Generalized Anxiety Disorder-7 (GAD-7) ≥ 10, and an Alcohol
Use Disorders Identification Test–Consumption (AUDIT-C) ≥ 10. Deviation scores were stratified
into 5 bins with edges defined on a base-10 logarithmic scale, spanning the minimum to maximum
observed patient distances. This ensured relatively finer resolution in the distribution tail where
case enrichment was expected. A strong increase in odds ratio (OR) with increasing deviation
illustrates that individuals further from the norm are substantially more likely to be symptomatic.
Error bars denote 95% confidence intervals obtained via 1000 bootstrap resamples. In the highest
deviation bin (215.26), there was 1 HC, 0 AUDIT-C samples, 6 PHQ-9 samples, 7 GAD-7 samples,
and 6 PHQ-9 + GAD-7 samples.
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Figure 3: Fraction of symptomatic group deviations unexplained by healthy control variability
(shift) for all symptomatic groups for NAKO cohort (German National Cohort) (A) and the
UKB cohort (UK Biobank) (B). To assess statistical significance, deviation scores were modeled
as the dependent variable in a linear regression with group membership as the main predictor,
adjusting for sex, age, age-squared, and sex–age interactions. Asterisks indicate the level of sta-
tistical significance after multiple testing correction using Benjamini-Hochberg correction [43]: *
pFDR < 0.05, ** pFDR < 0.01. Error bars indicate 95% confidence intervals obtained from 1000
bootstrap samples. Symptomatic groups are defined by AUDIT-C (Alcohol Use Disorders Iden-
tification Test–Consumption), PHQ-9 (Patient Health Questionnaire-9), and GAD-7 (Generalized
Anxiety Disorder-7) thresholds.
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Directional Analysis

We assessed directional similarity between L2-normalized 256-dimensional deviation vectors by
computing mean pairwise cosine similarity within and across mutually exclusive symptom severity
groups based on PHQ-9, GAD-7, and AUDIT-C scores. For each symptom severity stratum within
these scales, we first computed the median deviation vector, and the similarity analysis was per-
formed on these median vectors rather than on individual participant vectors. Cosine similarity was
chosen because it captures the alignment of deviation vectors in the embedding space independently
of their magnitude, thereby isolating directional differences. The resulting groupings were defined
without overlap, ensuring that similarities were evaluated in the absence of comorbid symptoms.
The combined mood-anxiety category (PHQ-9 and GAD-7 strata) showed higher within-group sim-
ilarity (mean = 0.316) than similarity with the AUD group (mean = 0.212), yielding a difference of
0.104 (one-sided permutation test (10,000 permutations) for within > cross similarity: p = 0.0063).
This indicates that mood and anxiety disorders share more similar deviation directions and are
more distinct from AUD in this deviation-vector space. In contrast, when comparing the mutually
exclusive PHQ-9 and GAD-7 strata, pooled within-class similarity (0.269) was lower than cross-
class similarity between the two strata (0.322; difference = −0.053, p = 0.748), suggesting that
depressive and anxiety symptom deviation vectors are intermixed rather than forming separable
subclusters.

To visualize the directional deviations, we use principal component analysis (PCA). We again
computed group representing median deviation vectors in the representation space learned by our
normative model, and assessed whether specific symptom profiles share common structural signa-
tures and how these relate to one another and the normative population (Figure 4A).
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Figure 4: Directional analyses
based on principal component
analysis PCA projection (two di-
mensions, 21% explained vari-
ance) of normative deviation vec-
tors across diagnostic groups in
the NAKO cohort (German Na-
tional Cohort) (A) and the UKB
cohort (UK Biobank) (B). Shaded
ellipses denote the ±1 SD con-
tour of the bootstrap (1,000 resam-
ples) distribution of the group-level
geometric median vectors. The
dark ellipse around the origin indi-
cates the median deviation among
healthy controls (HCs), serving
as a reference for interpreting
the deviations relative to norma-
tive variability. Numbers indicate
severity levels, defined by PHQ-
9 (Patient Health Questionnaire-9)
and GAD-7 (Generalized Anxiety
Disorder-7) scores, and the sum for
AUDIT-C (Alcohol Use Disorders
Identification Test–Consumption).
“MDD/GAD + ALC” denotes in-
dividuals with either acute MDD
or GAD symptoms and elevated al-
cohol use (AUDIT-C ≥ 10). For
PHQ-9, levels (1) to (4) correspond
to mild, moderate, moderately se-
vere, and severe symptoms, respec-
tively. For GAD-7, levels (2) to
(4) correspond to mild, moderate,
and severe symptoms. The scat-
tered area includes the ellipses of
GAD, PHQ, GAD+PHQ groups
(red), AUDIT-C groups (blue) and
comorbid groups (purple).
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To visualize potential heterogeneity within clinical phenotypes, we further subdivided partici-
pants based on comorbidity status. We kept the distinction between depressive and anxiety symp-
toms, differentiating between individuals with comorbid PHQ-9 and GAD-7 symptom elevation and
those with elevations on only one of the two scales. This allowed us to assess whether the result-
ing three groups (PHQ-9, GAD-7, and GAD-7 + PHQ-9) show deviations in similar or distinct
directions in the learned space.

An analogous stratification was introduced for alcohol-related symptoms. Participants with
elevated AUDIT-C scores were divided into those with comorbid depressive or anxiety symptoms
(i.e., also elevated PHQ-9 or GAD-7 scores) and those with elevated AUDIT-C scores only.

Two broad patterns emerge. First, AUDIT-C–defined groups (blue scattered ellipse) occupy a
direction largely distinct from the mood-anxiety symptom axes: their central deviation estimates
cluster away from HCs along a subspace different from that traced by PHQ-9 and GAD-7 groups
(red and green scattered ellipses). This separation is consistent with at least partially dissociable
structural alterations associated with high alcohol consumption versus depressive/anxiety symp-
toms. Within the alcohol domain, the AUDIT-C strata show a graded displacement of the group
vectors with higher thresholds ((8)→(9)→(≥10)), suggesting an exposure–response trend. Second,
lower symptom-burden PHQ-9 and GAD-7 groups ((1)/(2)) lie close to the HC origin, indicating
minimal group-level deviation in this projection, whereas higher symptom levels shift further from
the origin. Finally, participants meeting both high AUDIT-C and elevated PHQ-9/GAD-7 criteria
cluster in an intermediate region between the “alcohol” and “mood-anxiety” directions, consistent
with additive or mixed deviation patterns rather than a purely alcohol- or purely mood-anxiety-like
profile.

As detailed in the Supplementary Figure 5, we observed consistent deviation patterns for both
self-reported doctor diagnoses of MDD and GAD, as well as lifetime MDD diagnoses assessed via
the MINI interview, within the NAKO cohort.

Finally, we assessed whether the directional analysis in the 256-dimensional space was influenced
by sex. We compared the cosine similarity between the median deviation vectors of sex-stratified
groups and their corresponding joint-sex groups. For women, the mean cosine similarity was 0.682±
0.221, and for men it was 0.786±0.127. This reflects a modest difference, with men being, on average,
closer to the joint-sex solution. However, as shown in Supplementary Figure 6, this difference
disappears after filtering out small groups, suggesting that it likely arises from greater variability
in the central tendency estimates of smaller samples.

External Validation: UKB

To evaluate the generalizability of the deviation shifts and directional patterns observed in NAKO,
we applied the deep normative modeling model to sMRI data from the UKB. We refit the normative
reference distribution on a subset of independent 90% UKB HCs (N=12,223) for the shift analysis,
in order to mitigate cohort effects. Using the original NAKO HC reference to evaluate UKB
symptomatic groups led to systematically inflated deviation estimates (median 44.24 vs. 11.93 when
using the NAKO parameters), likely due to cohort effects. Consequently, within-cohort references
were required to ensure a valid comparison of the shift analysis results. Importantly, this adjustment
was confined to the shift analysis; all other components of the pipeline remained fully externally
validated.

Figure 3B shows that, although PHQ-9–related deviation shifts tend to be larger and AUDIT-
C–related shifts tend to be smaller in UKB than in NAKO, the overall pattern remains consistent:
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groups with increasing symptom severity exhibit progressively larger deviation shifts.
In the UKB 256-dimensional deviation space, mood-anxiety symptom groups (PHQ-9, GAD-7)

again showed higher within-group similarity (mean = 0.712) than similarity with the AUDIT-
C groups (mean = 0.623), a mean difference of 0.089 (p = 0.0413). Within the mood-anxiety
domain, the pooled within-class similarity for MDD and GAD (0.723) exceeded their cross-class
similarity (0.632) by 0.091, although—as in NAKO—this difference was not statistically significant
(p = 0.1786). The primary difference compared to NAKO is that cosine similarities are generally
higher in UKB, while the relative pattern of group differences remains consistent.

The projection of UKB participants into the directional PCA deviation space derived from
NAKO is presented in Figure 4B. Several relative patterns are consistent across the two cohorts.
In both, AUDIT-C groups (scattered, blue ellipse) cluster in distinct regions from the mood-anxiety
symptom groups. The scattered red and green ellipses indicating mood-anxiety symptomatology
(PHQ-9, GAD-7, and their combination) occupy largely the same space in UKB as in NAKO.
Participants with comorbid mood-anxiety and AUDIT-C symptom elevation again fall in an in-
termediate region between the “alcohol” and “mood-anxiety” areas. Within the mood-anxiety
domain, the GAD-7–only, PHQ-9–only, and combined groups continue to share large overlapping
areas, suggesting that even without identical symptom profiles, their deviation patterns remain
similar.

Notable differences are also evident. In UKB, all groups appear shifted relative to the healthy
control centroid. Moreover, AUDIT-C and low symptom severity groups ((1)/(2)) are generally
positioned farther from the HC centroid than in NAKO, suggesting stronger overall deviation in
the alcohol-related domain in the UKB sample.

In Supplementary Figure 3, we show that the directions are largely consistent with ICD-10 and
self-reported diagnoses for the respective disorders based on UK hospital records.

We further tested whether the prolonged time interval between MRI acquisition and question-
naire completion in the UKB (median absolute deviation: 742 days) compared to the NAKO (me-
dian absolute deviation: 15 days) influenced the results. For this analysis, we compared the lowest
20% and highest 20% of time differences with the overall median deviation vectors per group. Across
all groups, the mean pairwise cosine similarity was 0.80±0.16 for the lower 20% and 0.71±0.20 for
the upper 80%. As shown in Supplementary Figure 7, this difference can be attributed to unstable
central tendency estimates, as the gap between the two solutions diminishes when restricting the
analysis to larger group sizes.

Importance of Brain Regions

We examined correlations between the 256 normative deviation dimensions and three symptom
scores (PHQ-9, GAD-7, AUDIT-C) to identify which dimensions captured clinically relevant varia-
tion. Of the 256 dimensions, 14 were significantly (q-values < 0.05) associated with PHQ-9 scores
(5.4%), 4 with GAD-7 (1.6%), and 35 with AUDIT-C (13.7%).

To improve interpretability, we next regressed each symptom-associated deviation dimension
onto classical brain regions by associating them with 99 regional grey matter volume (GMV) esti-
mates (full list in Supplementary Table 17) from FreeSurfer [44]. The resulting associations were
standardized to facilitate comparability across regions and dimensions. For the raw associations
and more details, we refer to the Supplementary Figures 8-13.

Figure 5 depicts the spatial distribution of the strongest regional associations. Effects were pre-
dominantly localized to the cerebellum across all three symptom dimensions. AUDIT-C exhibited
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the most pronounced negative association with cerebellar grey matter, with additional negative
associations in the cuneus (Supplementary Figures 11 and 12).

For comparison, we also computed Spearman correlations directly between deconfounded
FreeSurfer GMV features and each symptom score. These direct associations diverged substan-
tially from those obtained via the embedding-based normative model (see Supplementary Figures
11 and 13).

Figure 5: Z-scored associations between brain normative deviations and symptom scores for (A)
GAD-7 (Generalized Anxiety Disorder-7), (B) PHQ-9 (Patient Health Questionnaire-9), and (C)
AUDIT-C (Alcohol Use Disorders Identification Test–Consumption). Higher values reflect stronger
regional associations with individual symptom expression. Associations are z-scored across all
symptom scores and brain regions to emphasize relative patterns.
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Genetic Associations

We set out to explore whether deviations were associated with polygenic risk for the respective
disorders in the UKB cohort. To this end, we computed polygenic risk scores (PRS) for problematic
alcohol use (PAU) [45], MDD [9], and ANX [46] using GWAS summary statistics that did not include
UKB participants (details in Supplementary Table 9).

We used ANX rather than GAD for two reasons: first, there exist GWAS with substantially
greater statistical power for ANX, with a far larger sample size than is available for GAD, leading
to more robust PRS estimation; second, although the GAD-7 is nominally a measure of generalized
anxiety, it has been shown to capture a broader range of anxiety symptoms beyond GAD [20],
making ANX an appropriate genomic proxy. For alcohol use, we selected PAU as it is derived
from a GWAS with over one million individuals, providing exceptionally high statistical power, and
because it is closely related to AUDIT-C.

We tested three complementary regression models to examine the interplay between genetic
risk, brain deviation, and symptoms. First, symptoms were predicted from PRS, deviation, and
their interaction. Second, deviation was predicted from PRS. Third, deviation was predicted jointly
from PRS and symptoms. All models were adjusted for demographic and genetic covariates (see
Methods).

Across all models, no significant interaction effects between PRS and brain deviations on symp-
tom severity were observed. In contrast, the main-effect models revealed significant associations
between the genetic risk for MDD and AUD and the deviation dimensions, but not for ANX
(pFDR < 0.05). For MDD, 193 dimensions were associated with PRS before adjusting for symp-
toms and 186 afterward; for AUD, 145 and 153 dimensions were significant, respectively. However,
these associations were highly scattered across dimensions, with no discernible spatial or functional
clustering, and effect sizes were generally small (Supplementary Tables 14-16).

Classification Performance

We evaluated classification performance using regularized logistic regression applied to the 256-
dimensional normative deviations obtained in the UKB cohort. To assess multimodal prediction,
we additionally considered the three PRSs from the genetic analyses as features.

To quantify the added value of each modality beyond demographic covariates, we included
age, age2, sex, and sex × age as baseline features in all models. This yielded four model types:
confounders only, PRS only (+ confounders), deviations only (+ confounders), and PRS + devi-
ations (+ confounders). All models were evaluated in a 10-fold stratified cross-validation binary
classification setting against UKB HCs.

Table 3 summarizes the results. Across all depression-related groups, combining normative
deviations with PRS consistently yielded the highest mean balanced accuracy (BACC) and area
under the curve (AUC). We observed a general increase in mean AUC and BACC with increasing
symptom severity, although the standard deviation of performance also increased. Notably, the
performance for moderate depressive symptoms (PHQ-9 (2)) was the same as with ICD-10 MDD
diagnoses (BACC: 65± 2%).

Anxiety-related groups showed similar patterns, although the benefits of incorporating PRS and
normative deviations were less consistent than those observed in MDD-related groups.

In alcohol-related groups, models incorporating normative deviations—or the combined ap-
proach—outperformed the PRS-only model, with performance increasing alongside severity.
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In all groups, the best-performing model included PRS and/or normative deviation features,
indicating that both contribute predictive value beyond demographic covariates alone, with mean
improvements in AUC of 5.6%, 7.2%, and 3.7% for ANX-, MDD-, and alcohol-related groups,
respectively.

To contextualize the predictive value of the deep normative model deviations, we repeated the
classification experiments using 99 standard deconfounded FreeSurfer-derived GMV features instead
of deviations. Across all groups, the BACC improved moderately by an average of 2± 3% and the
AUC by 1± 4% when using deviations. A detailed breakdown of the FreeSurfer baseline results is
provided in Supplementary Table 19, with further performance details presented in Supplementary
Tables 20 and 21.

Target Confounders only PRS only Deviations only PRS + Deviations
BACC (%) AUC (%) BACC (%) AUC (%) BACC (%) AUC (%) BACC (%) AUC (%)

GAD-7 (2) 58±2 61±2 59±1 64±1 58±2 61±2 60±1 64±1
GAD-7 (3) 58±6 62±5 63±3 68±3 61±2 64±3 63±3 67±3
GAD-7 (4) 59±9 62±12 65±8 69±11 65±8 65±6 63±5 68±7
ANX ICD-10 55±3 60±4 62±2 67±2 62±2 63±4 64±3 67±3
ANX (diag.) 56±2 58±2 58±2 62±3 57±2 60±2 59±2 63±2

PHQ-9 (1) 58±1 61±1 60±1 63±2 59±2 61±1 60±1 64±2
PHQ-9 (2) 61±2 65±2 64±2 68±3 63±2 67±2 65±2 70±2
PHQ-9 (3) 59±6 65±7 61±11 65±14 61±6 69±7 63±7 72±4
PHQ-9 (4) 63±11 65±26 72±7 68±15 70±7 74±7 77±8 80±7
MDD ICD-10 57±3 61±3 62±2 68±2 62±3 65±3 65±2 70±2
MDD (diag.) 58±1 61±1 60±1 64±2 59±1 62±1 61±1 65±1

AUDIT-C (8) 60±3 65±3 61±2 65±3 60±3 65±4 60±3 65±3
AUDIT-C (9) 63±3 68±4 65±4 69±4 64±4 69±3 65±4 70±4
AUDIT-C ≥ 10 63±3 68±3 64±3 69±4 66±3 72±3 66±3 73±3
AUD ICD-10 55±9 56±10 59±7 61±7 62±4 63±4 59±6 64±6

Table 3: Balanced accuracy (BACC; computed at a decision threshold of 0.5) and area under
the receiver operating characteristic curve (AUC) for all classifications. Values are mean ± stan-
dard deviation over 10-fold stratified cross-validation, sorted by target. PRS = polygenic risk
scores; Deviations = brain structural deviations defined by our normative model. Targets are
defined by symptom measures: GAD-7 (Generalized Anxiety Disorder-7), PHQ-9 (Patient Health
Questionnaire-9), AUDIT-C (Alcohol Use Disorders Identification Test–Consumption), and ICD-10
diagnosis from hospital records or self-reported physician-reported diagnoses (diag.). Bold values
indicate the best classifier for each target; in case of ties, the classifier with the smaller standard
deviation is preferred, and if ties remain, the one requiring fewer features is chosen (Occam’s razor).
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Discussion

Building a novel deep learning approach for normative modeling enabled us to examine the direc-
tional deviations of the brain structure of individuals with mental health-relevant symptoms from a
large-scale reference population. We observed that individuals with MDD and GAD showed direc-
tionally similar deviations that tended to increase with increasing symptom scores, and that were
largely specific against those observed with increasing alcohol abuse-related symptoms. These find-
ings could be validated across two independent large-scale cohorts and are consistent with the view
that the examined mental health conditions exert a severity-related, dimensional association with
brain structure, extending normal physiological variation and aligning with the broadly assumed
dimensional nature of mental health. A potential reason for the difference in AUDIT-C–related
shifts between NAKO and UKB is the variation in alcohol unit definitions across the cohorts (see
Supplementary Section 1.2.1). The brain-structural deviations were associated with polygenic risk
for the respective diagnostic constructs, further supporting their biological plausibility. We illus-
trated how such deviations can be used in multimodal individual-level classifiers that currently have
limited predictive power, but that could, in the future, inform personalized medicine applications.

The directional overlap of MDD and GAD deviations and specificity against AUD-related symp-
toms is consistent with the well-established clinical and biological overlap of MDD and GAD [47],
including their high genetic correlation [48, 49] and the considerably lower overlap of either disorder
with AUD. As some individuals with AUD show pronounced affective symptoms [50], we antici-
pated that such individuals would show an intermediate deviation profile. This was supported by
our data, supporting the relevance of the directional deviation analysis for capturing the trans-
diagnostic neurobiological structure, with possible implications for personalized psychiatry. The
observed separation between internalizing and externalizing symptom profiles also aligns well with
the dimensional structure proposed by the Hierarchical Taxonomy of Psychopathology (HiTOP)
[18], which groups MDD and GAD within the internalizing spectrum and AUD within the external-
izing domain, although it is important to note that some AUD-related alterations in brain structure
may arise from the direct neurotoxic effects of alcohol rather than from an externalizing liability.

In MDD-related groups, the highest classification performance was always but once achieved
when combining PRS with brain structural deviations, indicating the strongest complementary
effect in our analyses. For anxiety-related groups, the benefits of multimodal integration were less
consistent, suggesting weaker complementarity. More precise individual-level prediction appeared
possible only at higher levels of symptom severity, particularly for MDD. Nevertheless, the added
value of biological measures such as PRS and brain structural deviations remained moderate overall,
underscoring the difficulty of predicting psychiatric traits like MDD and anxiety with high accuracy.

Mapping deviations back to classical GMV volumetric features illustrated that AUDIT-C showed
the strongest associations with reduced cerebellar GMV. This aligns with prior evidence implicating
cerebellar dysfunction in chronic alcohol use [51, 52]. In contrast, associations for MDD and GAD-
related symptoms were notably weaker and more spatially diffuse (Supplementary Figures 11 and
12), consistent with prior observations of distributed neural correlates in MDD [53] and psychiatric
disorders in general [54]. These findings highlight the ability of the deep learning approach to detect
subtle, spatially unconstrained variation by leveraging high-dimensional embeddings, which may be
difficult to capture with traditional univariate approaches. Notably, region-level associations derived
from the model diverged markedly from direct Spearman correlations between deconfounded GMV
and symptom score. This divergence likely reflects the model’s capacity to extract non-linear,
multivariate effects beyond marginal volume–symptom associations. This capacity is particularly
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relevant for depressive and anxiety symptoms, where neural alterations may be inherently non-
localizable.

Our approach advances normative modeling in several methodological respects. First, by train-
ing self-supervised representations directly from MRI images, we avoided feature engineering and
preserved distributed structural variance. Second, the normative autoencoder provided a scalable
way to capture nonlinear, high-dimensional structure. Finally, by extending deviation analysis to
the multivariate embedding space, we were able to examine not only the magnitude of individ-
ual divergence but also the directional alignment of deviations across conditions, enabling formal
comparison of shared versus distinct neurobiological profiles. Taken together, this framework ex-
tends earlier Gaussian process–based or ROI-level normative models by supporting the detection of
subtle, spatially unconstrained, and potentially transdiagnostic neurobiological patterns consistent
with dimensional models of psychopathology.

From a personalized medicine perspective, our results support the utility of the developed deep
normative modeling for parsing the biological architecture of psychiatric phenotypes. By identifying
brain-structural effects that vary systematically with symptom severity, our normative modeling
approach offers a biologically grounded and data-driven framework that may support future psychi-
atric risk stratification. The absence of notable deviations in individuals with milder or subclinical
symptoms points to the challenges of applying conventional supervised classification approaches
successfully to population-based cohorts as compared to those with selected and often severely
affected cases that may amplify group differences and reduce heterogeneity [55, 56].

The study has several limitations. First, the UKB cohort includes individuals with a potentially
long interval between MRI acquisition and questionnaire completion, which may lead to inconsis-
tencies in associations between brain-structural deviations and clinical data. Although our analyses
indicate that the observed directional deviations were robust against this time gap, a residual un-
certainty remains. Second, the NAKO and UKB uses different MRI parameters, which may impact
the segmentation of whole brain gray matter volumes. However, as our deviation model was repli-
cated across the cohorts, it was likely stable against this source of variation. Third, both cohorts
suffer from selection biases towards an underrepresentation of severe mental health problems that
are likely amplified in the MRI subsamples [57, 58, 59]. Fourth, our normative modeling was lim-
ited to a single data modality, structural MRI, which likely does not capture the full complexity
of psychiatric disorders. Finally, the contrastive feature extractor used in our pipeline was trained
in a fully unsupervised manner and is thus optimized for general differentiability rather than for
highlighting symptom-relevant structural features. Consequently, there may be brain-structural dif-
ferences related to psychiatric symptoms that are not captured by our model. As our analyses are
observational in nature, they cannot establish causality; the observed brain–symptom associations
may reflect predisposing liability, illness-related consequences, or environmental influences.

In summary, our deep normative modeling framework reveals consistent deviation profiles across
depressive, anxiety, and alcohol-related symptoms, capturing both the magnitude and direction of
structural brain divergence from normative patterns. By leveraging high-dimensional embeddings
and multivariate deviation analysis, the approach moves beyond traditional feature-based models
to detect subtle, spatially unconstrained, and transdiagnostic neurobiological signatures. These
findings support the dimensional, transdiagnostic nature of neurobiological changes associated with
the investigated conditions and illustrate the potential of advanced normative deep learning as a
framework for future applications, including personalized medicine.
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Methods

Procedures were approved by Ethics Committee II of the University of Heidelberg Medical Faculty
Mannheim (protocol no. 2025-827).

Cohorts - NAKO

The NAKO is a population-based study designed to investigate the causes and early stages of
common chronic diseases [34]. The study enrolled 205,000 participants (aged 20–69 years) from
18 centers across Germany, of whom 30,861 underwent MRI at five centers with dedicated facili-
ties [60]. The baseline assessment, conducted between 2014 and 2019, comprised a comprehensive
list of examinations, standardized face-to-face medical interviews and touchscreen-based self-report
questionnaires, as well as biomaterial collection. The study was approved by the local ethics com-
mittees of all participating centers and conducted in accordance with the Declaration of Helsinki.
All participants provided written informed consent.

We performed an initial data filtering step by excluding samples with missing questionnaire data
(PHQ-9, GAD-7, or AUDIT-C), diagnostic data (MINI or self-reported diagnosis), or confounder
data (age, sex, or scan site). Participants with a history of stroke (N = 301) or Parkinson’s disease
(N = 23) were also excluded to reduce potential bias from neurodegenerative conditions. In total,
1,570 samples were excluded due to missing questionnaire or diagnostic data. After filtering, 15,914
HCs and 13,443 symptomatic participants remained.

Cohorts - UK Biobank (UKB)

The UKB is a population-based cohort comprising approximately 500,000 participants aged 40–69
years at recruitment across 22 study centers, with MRI data collected at four dedicated imaging
centers [35]. The UK Biobank obtained ethical approvals from the Northwest Multicenter Research
Ethics Committee, the Community Health Index Advisory Group, the Patient Information Advisory
Group, and the National Health Service National Research Ethics Service. All participants provided
written informed consent. Study procedures were conducted in accordance with the principles of the
Declaration of Helsinki. As part of the imaging sub-study, T1-weighted structural brain MRI data
are available for 49,279 individuals. A total of 2,589 individuals with neurodegenerative diseases,
identified via ICD-10 codes, were initially excluded (details in Supplementary Table 2). After
further excluding individuals with missing questionnaire data (PHQ-9, GAD-7, or AUDIT-C) and
missing confounder data (sex, age, or total intracranial volume (TiV)), 24,838 samples remained.
To evaluate the generalizability of our findings in the NAKO cohort, we used the UKB dataset as
a large, external validation cohort, ensuring that the patterns observed in NAKO are reproducible
across different populations and imaging protocols.

UK Biobank - Symptomatic Group and Healthy Control Definitions

Since PHQ-9 and GAD-7 scores were available, the same HC criteria were applied as in NAKO.
However, as analyzed in detail by Dutt et al. [61], the questionnaires were completed at a time
point independent of the scan date. This results in varying temporal deviations between the MRI
scan and the corresponding data collection for UKB, with a median absolute deviation of 742 days,
whereas for NAKO it is only 15 days. This is an inherent limitation of the UKB cohort, as it
may weaken the relationship between the MRI scans and the psychopathological data in the UKB
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cohort. For UKB, we additionally included ICD-10 diagnoses for MDD, GAD, ANX, and AUD as
well as self-reported diagnoses.

Measures

Magnetic Resonance Imaging

MRI is a non-invasive neuroimaging technique that provides high-resolution structural images of the
brain by exploiting the magnetic properties of hydrogen nuclei. In psychiatric research, structural
T1-weighted MRI is widely used to quantify grey matter anatomy and examine associations with
behavior and clinical outcomes [62].

MRI Protocol in NAKO

Structural T1-weighted images were acquired using 3D MPRAGE (TR = 2300ms, TE = 2.98ms,
TI = 900ms) on a 3T MRI scanner (Skyra, Siemens, Healthineers, Erlangen, Germany) with 1mm
isotropic spatial resolution [63]. We process T1-weighted 3T MRI scans using the Computational
Anatomy Toolbox (CAT12, v12.9) [64], which is a voxel-based morphometry tool. The steps here
include bias correction, affine registration to the MNI152NLin2009cAsym template space, tissue
probability map (TPM)-based segmentation, normalization, modulation, and spatial resampling to
extract modulated GMVs with a 1mm isotropic resolution. To enhance computational efficiency,
we downsample the images from a 113 × 137 × 113 to an 80 × 80 × 80 voxel grid using spline
interpolation. Finally, we standardize all non-zero voxel intensities to harmonize intensity distri-
butions. Gaussian smoothing was introduced during data augmentation in the contrastive learning
pipeline.

MRI Protocol in UKB

We use the processed T1-weighted GMV images of the assessment center two provided by the UK
Biobank. Structural T1-weighted images were acquired using 3D MPRAGE (TR = 2000ms, TE =
2.01 - 2.03ms, TI = 880ms) on a 3T scanner (Siemens, Siemens, Healthineers, Erlangen, Germany)
with 1mm isotropic spatial resolution [65]. The UKB dataset was preprocessed using FSL (v0.1.1)
FAST [66], which included bias correction and tissue segmentation. To ensure comparability with
the NAKO data, we registered the UKB images to the MNI152NLin2009cAsym template used in
the NAKO imaging pipeline, using FSL’s FLIRT tool. We then applied the same downsampling
and standardization procedures as used for the NAKO data. Since the UKB data was processed
using a different pipeline, this approach also enables us to evaluate the robustness of our findings
across differing imaging protocols.

Questionnaires

Self-report questionnaires are widely used in psychiatry and mental health research to quantify
symptom severity, to screen for disorders, and to monitor treatment response [67]. Their major
advantages include low cost, ease of administration, and validated scoring systems that enable
standardized measurement across large populations. However, they also have important limita-
tions: they rely on self-reports and thus are subject to recall and social desirability biases, may
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be influenced by cultural and linguistic factors, and might miss rare symptoms that are not in-
cluded in predefined diagnostic criteria. Despite these constraints, mental health questionnaires
remain essential tools in psychiatric research, epidemiology, and routine care. Below, we describe
the three instruments used in this study by giving a short description of the role of the specific
clinical questionnaires and their advantages and disadvantages.

Patient Health Questionnaire-9 (PHQ-9)

The PHQ was developed as part of the larger PRIME-MD project to provide brief, standardized
mental health assessments for use in primary care settings [68]. The PHQ-9 consists of nine items
that correspond directly to the diagnostic criteria for MDD as defined in the DSM-IV. Each item
assesses the frequency of symptoms over the previous two weeks using a four-point Likert scale
ranging from 0 (”not at all”) to 3 (”nearly every day”), yielding a total score between 0 and 27.
The PHQ-9 has demonstrated strong psychometric properties across diverse populations. Internal
consistency is high (Cronbach’s α typically > 0.85), and test–retest reliability is acceptable [69].
A commonly used cutoff of ≥ 10 has shown a sensitivity and specificity of approximately 88% for
detecting MDD in primary care samples [68]. In addition to screening, the PHQ-9 is widely used to
monitor symptom severity over time due to its brevity, ease of use, and direct mapping onto DSM
criteria [69].

Generalized Anxiety Disorder-7 (GAD-7)

The GAD-7 was developed as a brief self-report questionnaire to screen for GAD in primary care
settings [20]. It consists of seven items that reflect the core DSM-IV criteria for GAD, assessing
symptom frequency over the past two weeks on a 4-point Likert scale from 0 (”not at all”) to 3
(”nearly every day”). In NAKO the applied time frame of GAD-7 was 4 instead of 2 weeks. Total
scores range from 0 to 21, with higher scores indicating higher symptom severity. Beyond its original
use for detecting GAD, the GAD-7 has also demonstrated utility in capturing broader dimensions
of anxiety, including panic, social anxiety, and post-traumatic stress symptoms. Psychometric
evaluations have shown excellent internal consistency (Cronbach’s α = 0.92) and good test–retest
reliability (intraclass correlation = 0.83) [20, 70]. A cutoff score of ≥ 10 is commonly used to
identify cases with probable GAD, yielding a sensitivity of 89% and specificity of 82% in primary
care samples [20]. Its brevity, strong psychometric properties, and alignment with DSM criteria
have made the GAD-7 one of the most widely used anxiety screening tools in both clinical and
research contexts [71].

Alcohol Use Disorder Identification Test - Consumption (AUDIT-C)

The AUDIT-C is a 3-item screening instrument derived from the 10-item AUDIT, developed by
the World Health Organization (WHO) to detect hazardous drinking and potential AUD [39]. The
AUDIT-C includes items on drinking frequency, typical quantity, and frequency of binge drinking,
and is widely used in both clinical and population-based settings due to its brevity and strong
psychometric performance. Each item is scored on a 0–4 scale, yielding a total score from 0 to 12.
Psychometric evaluations have demonstrated very good internal consistency (Cronbach’s α up to
0.98) [72]. The screening thresholds that simultaneously maximize sensitivity and specificity are ≥
4 in men (sensitivity 0.86, specificity 0.89) and ≥3 in women (sensitivity 0.73, specificity 0.91) [73].

24

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 28, 2025. ; https://doi.org/10.1101/2025.09.26.25336528doi: medRxiv preprint 

https://doi.org/10.1101/2025.09.26.25336528
http://creativecommons.org/licenses/by-nc-nd/4.0/


Contrastive Feature Extraction, Deconfounding, and Normative Modeling

Deep normative modeling requires embedding brain MRI images into a suitable representational
space that captures variations in brain structure. To achieve this, we use momentum contrast
(MoCo) [74] for self-supervised feature extraction, reducing the dimensionality of GMV images to
256 dimensions.

MoCo implements contrastive learning by encouraging similar representations for augmented
versions of the same image (positive pairs) while pushing apart representations of other images
(negative pairs). It maintains a dynamic dictionary of encoded images (size 8 192) via a momentum
encoder, ensuring a rich and diverse set of negative pairs, which is crucial for effective contrastive
learning. By decoupling the number of negative pairs from batch size, MoCo remains scalable and
efficient. MoCo embeddings were deconfounded for age, age-squared, sex, site, and total intracra-
nial volume using linear residualization to reduce potential confounding effects (Supplementary
Figure 2). The deconfounded embeddings were input to the normative model, a fully connected
autoencoder trained exclusively on HC data. Deviations of holdout HCs and symptomatic subjects
were quantified using the reconstruction errors derived from the autoencoder trained exclusively
on HCs, under the assumption that symptomatic subjects—unseen during training—would exhibit
larger and more frequent reconstruction errors than HCs.

To account for residual confounding in the deviation vectors, we applied a second deconfounding
step by linearly residualizing the deviation vectors produced by our autoencoder, as the latter had
reintroduced confounding. This procedure was effective: before residualization, embeddings showed
significant associations with age (124 dimensions), age-squared (124), sex (190), and age × sex
(188), whereas after residualization, only a single weak association with sex remained (Spearman
rank correlation).

For more details on architectural decisions, we refer to the Supplementary Section 2.1 - 2.3.

Shift Analysis

To better understand how symptomatic groups deviate from normative variability, we performed a
shift analysis that quantifies the extent to which observed symptomatic deviations put out by the
normative autoencoder exceed the natural heterogeneity present among healthy controls. Rather
than relying on summary statistics such as means or medians, this approach compares the full
distribution of deviations, yielding a holistic, group-level measure of distributional shift relative to
HCs.

We then computed the Mahalanobis distance from the healthy reference distribution for each
subject, capturing how far their deviation vector lies from the normative range in high-dimensional
space. The Mahalanobis parameters (mean and covariance) were estimated using 90% of the HC
sample, and the resulting distances were computed for both symptomatic groups and the remaining
10% HC holdout set.

For each diagnostic group, we quantified the degree to which deviations exceeded normative
variability by calculating the exponentially weighted area where the symptomatic subject’s Maha-
lanobis distance distribution surpassed that of HCs. This weighting emphasizes larger distances,
which likely correspond to more clinically meaningful abnormalities. The resulting metric ranges
from 0 to 1 and reflects the proportion of the symptomatic group distribution that cannot be
explained by healthy variability alone. For mathematical details we refer to the Supplementary
Section 2.4.
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Stability Assessment and Significance Testing

For the shift analysis, we used a fixed 10% holdout split of HCs to estimate deviations between
symptomatic subjects and HCs in the training cohort. The remaining 90% of HCs were used to
estimate the parameters of the Mahalanobis distance (µ and Σ). This setup facilitates consis-
tent comparisons across symptomatic groups by preserving a stable reference set. While the HC
train/test split introduces a potential source of variability, the resulting deviation estimates proved
robust to resampling. Since the symptomatic group data remain fixed and untouched, any variation
can be attributed solely to the HC subset used for modeling. However, we refer to the Supplemen-
tary Section 2.5 for empirical validation, which shows that the Mahalanobis distance parameters
prove to be stable across different sets of HCs.

To assess the statistical significance of deviation differences between HCs and symptomatic
groups, we employed multiple linear regression models. For each symptomatic group, we predicted
individual Mahalanobis distances using binary group membership as a predictor, while adjusting for
age, age-squared, sex, and sex-age interactions. We chose this approach over permutation testing
of the group-level shift because it allows covariate adjustment and yields more stable inference;
permutation testing is less suited in this context due to its sensitivity to group size imbalance,
which violates the exchangeability assumption. Despite prior deconfounding of our embeddings,
we included these covariates to account for residual confounding. To address non-normal residuals,
we applied a robust standard error estimator [75]. For outlier-robust inference, significance testing
was based on the logarithm of the Mahalanobis distances rather than their raw magnitudes. We
assessed the significance of the deviation put out by our normative model as a predictor using type
III ANOVA on the fitted models, performed separately for each symptomatic group. We applied
BH correction [43] to control the false discovery rate (FDR) across the set of diagnostic tests. This
choice was due to the small number of tests, which makes methods estimating the proportion of
true null hypotheses unstable.

In contrast, when correlating the sum scores with all 256 deviation dimensions, the number
of tests was sufficiently large (3 × 256) to justify methods estimating the proportion of true
null hypotheses. To control for multiple hypothesis tests when correlating the deviation dimen-
sions directly with the questionnaire sum scores while maintaining statistical power, we used the
Storey–Tibshirani q-value procedure [76]. As the BH method controls the FDR by rejecting only
those null hypotheses that fall beneath a predefined threshold, the q-value procedure corrects the
positive FDR (pFDR), assuming an analogous role to the p-values. The pFDR is the expected
proportion of false positives among rejected hypotheses, conditioned on at least one rejection:

pFDR = E
(
V

R

∣∣∣∣R > 0

)
(1)

where V denotes the number of false positives and R the total number of rejections. By thresh-
olding the pFDR at 0.05, we ensured that the expected proportion of false discoveries among all
significant findings does not exceed 5%. The q-value represents the minimum pFDR at which a
given test would be deemed significant. We thus accepted all tests with q-values below the specified
threshold (e.g., 0.05). We used q-values rather than traditional corrections because they estimate
the proportion of true null hypotheses, allowing control of the expected FDR without the excessive
conservatism of methods like BH or Bonferroni when performing a large number of tests.

We report “q-values” when using the Storey–Tibshirani procedure and denote BH–adjusted
p-values as pFDR. Unless stated otherwise, we control the FDR at α = 0.05 for all tests.
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Directional Analysis

The previously described shift analysis compares distributions of a single deviation metric (the Ma-
halanobis distance). To achieve a more granular understanding of how the different diagnosis groups
differ from HCs, we further analyzed deviations in the 256-dimensional deviation space learned by
our model by omitting the Mahalanobis distance modeling step. Instead of summarizing deviations
using a single value, we used the full difference between each subject’s original and reconstructed
feature representations (the input to the Mahalanobis modeling) as a more granular notion of de-
viation. This method preserves the original geometry of the deviation vectors (256 dimensions),
allowing us to detect distinct patterns associated with different symptoms more precisely than the
previous analysis.

We quantified the similarity structure of the embeddings by computing the mean pairwise cosine
similarity within and between diagnostic groups. The embeddings were 256-dimensional deviation
vectors, obtained after deconfounding and L2-normalization, and were represented by each group’s
geometric median.

For each group or combination of groups, pairwise similarities were calculated as the dot product
between normalized embedding vectors. Within-group similarity was defined as the mean of all
unique pairwise similarities among subjects belonging to the same group (upper triangular of the
similarity matrix, excluding the diagonal). Cross-group similarity was defined as the mean of all
pairwise similarities between subjects in different groups.

To quantify directional differences between similarity distributions, we performed one-sided
permutation tests. For two similarity sets, A and B, representing within-group and cross-group
pairs respectively, we first computed the observed mean difference:

∆obs = mean(A)−mean(B).

Under the null hypothesis (H0) that the two sets are drawn from the same distribution, group labels
(“within” or “cross”) were permuted 10,000 times, preserving the number of observations in each set.
For each permutation, the mean difference ∆perm was recomputed, yielding a null distribution of
differences. The one-sided p-value was calculated as the proportion of permutations where ∆perm ≥
∆obs. Small p-values therefore indicate evidence that within-group similarity exceeds cross-group
similarity, consistent with greater internal homogeneity or separation from the comparison group.

This procedure was applied to (i) mood-anxiety groups (defined based on PHQ-9 and GAD-7
strata) versus AUD-related groups (defined based on AUDIT-C strata) to assess whether mood and
anxiety disorders were more internally similar than to AUD, and (ii) MDD-related versus GAD-
related to test whether within-diagnosis similarity exceeded cross-diagnosis similarity within the
mood-anxiety group.

To visualize the relative positioning of diagnostic groups in the normative embedding space, we
performed a multi-step procedure on the 256-dimensional deviation vectors.

After deconfounding, residual vectors were standardized to zero mean and unit variance across
dimensions. Principal component analysis (PCA) was then applied to project the standardized
deviations into two dimensions for visualization; the first two principal components explained 21%
of the variance.

For each diagnostic group, we estimated the group centroid in 2D space using the geometric
median, a robust estimator less sensitive to outliers than the arithmetic mean. To assess the stability
of centroid locations, we performed 1000 bootstrap resamples per group, each time recomputing the
geometric median [77]. From the covariance of the bootstrapped medians, we derived a 1-standard-
deviation (1-SD) ellipse characterizing the dispersion of the bootstrapped centroids. These ellipses

27

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 28, 2025. ; https://doi.org/10.1101/2025.09.26.25336528doi: medRxiv preprint 

https://doi.org/10.1101/2025.09.26.25336528
http://creativecommons.org/licenses/by-nc-nd/4.0/


were plotted in the 2D PCA space after centering on the HC centroid (origin), allowing qualitative
assessment of directional shifts between diagnostic groups.

This visualization complemented the quantitative cosine similarity analyses by illustrating the
relative displacements in embedding space and the degree of separation between groups. We used
PCA for dimensionality reduction because it preserves the global structure of the data; however,
the first two components explained only 21% of the variance, which limits the interpretability of
fine-scale patterns.

Explaining Normative Deviations

To gain insight into the neuroanatomical factors driving normative deviations, it is essential to
evaluate the contribution of original input features of the GMVs to the learned embeddings used
in normative modeling. To this end, we implemented a heuristic two-step procedure intended to
generate hypotheses about which brain regions may underlie observed deviations. We emphasize
that this approach is exploratory in nature and not intended to provide definitive causal inferences.

First, we quantified the relationship between regional GMV measures derived from FreeSurfer
and the latent embedding dimensions produced by our model. Second, we linked these embedding
dimensions to PHQ-9, GAD-7, and AUDIT-C scores and constructed regional relevance maps that
summarize these associations.

For the first step, we used elastic net regression [78] to predict each residualized MoCo embedding
dimension from a set of 99 residualized FreeSurfer GMV features. Residualization was performed
using linear regression with the same covariates applied to the embeddings—specifically, age, age
squared, sex, TiV, and recruitment center. Each deconfounded MoCo embedding dimension was
predicted from the deconfounded regional GMV features to identify, via the learned coefficients,
which brain regions were associated with which embedding dimensions. Elastic net was chosen for
its robustness to multicollinearity and its ability to induce sparsity, facilitating the identification
of a stable set of region–embedding associations. The resulting coefficient matrix indexed the
contribution of each brain region to each latent dimension.

For the second step, we identified embedding dimensions significantly correlated with the score,
using a q-value threshold of 0.05 (Storey’s method, π0 = 0.74). Each dimension has a set of
elastic net–derived coefficients linking it to brain regions. We weighted each region’s coefficient by
the corresponding dimension–symptom correlation, then summed across all relevant dimensions.
This yielded a single relevance score per region for each symptom domain, indicating how strongly
structural variability in that region is linked to symptom variation. The scores were standardized
for interpretability.

Genetic Association Analysis

To analyze the genetic influence on our brain structural deviations we compute PRSs for MDD
(PGCMDD2025 Adams et al. [9]), ANX (Kurki et al. [46] Release R12), and problematic alcohol use
(Zhou et al. [45]) in the UKB cohort using the default GenoPred (v2.2.11) pipeline [79]. GenoPred
is a standardized framework designed for reproducible PRS computation with extensive quality
control included. Within this pipeline, we applied SBayesR [80] for postprocessing the summary
statistics. We then correlated the resulting PRS values computed by GenoPred with brain deviation
scores and overlaid the correlation maps obtained in the previous step to estimate the proportion of
structural deviations potentially influenced by genetic risk for each phenotype. Associations were
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modeled using multiple linear regression, and multiple testing correction was performed using the
BH-correction.

All PRS-based association models included age (squared), sex, sex-age interaction, TiV, and the
first five genomic principal components as covariates to adjust for population structure and other
potential confounding effects.

Classification

To quantify the added value of each modality beyond demographic covariates, we included age
(mean-centered), age2, sex, and the interaction term sex × age as baseline features in all models.
This resulted in four model types: (i) confounders only, (ii) PRS only plus confounders, (iii) de-
viations only plus confounders, and (iv) PRS plus deviations plus confounders. Here, “PRS only”
refers to models including only polygenic risk score features in addition to the confounders, whereas
“deviations only” refers to models including only the 256-dimensional deviation features in addition
to the confounders. Classification was performed using logistic regression with elastic net regular-
ization, implemented in scikit-learn [81] (version 1.7.0). For each outer training fold, the l1-ratio
was tuned in an inner loop using a single stratified 80/20 split of the training data.

All features for all four models were standardized within each training fold to prevent data
leakage. Models were evaluated against HCs in a binary classification setting using stratified 10-
fold cross-validation to maintain case–control proportions across folds.
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Klett-Tammen, Alexander Kluttig, Oliver Kuß, Michael Leitzmann, Wolfgang Lieb, Claudia
Meinke-Franze, Karin B. Michels, Rafael Mikolajczyk, Ilais Moreno Velásquez, Nadia Obi, Cara
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Thoralf Niendorf, Tobias Pischon, Svenja Caspers, Katrin Amunts, Klaus Berger, Robin Bülow,
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