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Aims Heart failure with preserved ejection fraction (HFpEF) has become the predominant form of heart failure and a leading
cause of global cardiovascular morbidity and mortality. Due to its heterogeneous nature, HFpEF presents substantial
challenges in diagnosis and management. Given the limited treatment options and lifestyle-associated comorbidities,
early identification is crucial for establishing effective preventive strategies. Here, we introduce and validate a machine
learning-based multi-omics approach that integrates clinical and molecular data to detect and characterize HFpEF.
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Methods
and results

A supervised classifier was trained on a stratified subset of UK Biobank participants (n= 401 917) to identify phe-
notypic profiles associated with subsequent symptom-defined HFpEF during longitudinal follow-up. Model perfor-
mance was validated in a non-overlapping hold-out subset from all 22 UK Biobank assessment centres (n= 100 446;
6726 HFpEF cases; 7394 with multi-omics data). The classifier demonstrated robust discriminatory performance,
with a receiver operating characteristic area under the curve (ROC AUC) of 0.931 (95% confidence interval [CI]
0.930–0.931), a sensitivity of 0.857 (95% CI 0.855–0.860) and a specificity of 0.847 (95% CI 0.846–0.847). It identified
individuals who subsequently developed HFpEF an average of 6.3± 3.9 years before symptom onset in asymptomatic
individuals. Similarity network fusion (SNF) identified distinct subgroups, including a high-risk cluster characterized
by elevated mortality and dysregulated inflammatory pathways, which was distinguishable with high accuracy (ROC
AUC 0.988; 95% CI 0.985–0.990).
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Conclusions We identified HFpEF phenotypes at an early stage, often several years before the onset of clinical symptoms, when
the disease trajectory may still be amenable to modification. The molecular characterization provides novel insights
into the underlying disease complexity and enables more refined risk stratification.
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Graphical Abstract

Deep phenotyping of of heart failure with preserved ejection fraction (HFpEF) through multi-omics integration. AI, artificial intelligence.
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Keywords AI, artificial intelligence • Explainable artificial intelligence • Heart Failure Stage A: At Risk for Heart

Failure • Heart Failure Stage B: Pre-Heart Failure • HFpEF, Heart failure with preserved ejection
fraction • Machine learning • Multi-omics • Pre-symptomatic heart failure

Introduction
Although heart failure with preserved ejection fraction (HFpEF)
constitutes more than half of all heart failure cases, it remains
underrecognized, posing challenges in diagnosis, risk stratifi-
cation and therapeutic management.1,2 HFpEF is a complex
multifactorial syndrome, characterized by myocardial stiffness,
impaired diastolic filling despite preserved left ventricular ejec-
tion fraction, along with vascular dysfunction and metabolic
inflammation contributing to its heterogeneous clinical presen-
tation and outcomes.3,4 The condition is frequently associated
with comorbidities such as obesity, hypertension and diabetes,
further complicating the clinical picture and increasing the risk
of an adverse disease course.5 Despite extensive research and
evolving therapeutic approaches,6–8 effective treatments for
HFpEF remain limited, highlighting the importance of early
detection, preventive strategies, and individualized diagnostic and
therapeutic strategies to address this unmet need in cardiovascular
health.7–9 ..
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Recent advances in data-driven methods offer promising
solutions for HFpEF detection, including score-based screening
tools10–13 and approaches incorporating molecular biomark-
ers.14–16 In this study, we aimed to utilize integrative multimodal
data to enhance the early detection of HFpEF and improve risk
stratification. Supervised machine learning classifiers were trained
to identify individuals at risk of developing symptomatic HFpEF, and
the models were validated in an independent multicentre cohort.
Furthermore, unsupervised clustering techniques stratified HFpEF
patients into distinct phenotype subgroups based on multi-omics
data. We applied explainable artificial intelligence (XAI) methods,
combined with deconfounding techniques17 and pathway analysis,
to elucidate the molecular heterogeneity of HFpEF.

Methods
Study participants
The UK Biobank is a cohort study comprising 502 366 individuals aged
40 to 69 years at enrolment. Biomedical data were collected, including

© 2025 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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proteomic and metabolomic profiles, routine clinical laboratory mea-
surements, physical assessments, genetic information, questionnaires
and environmental variables, with longitudinal follow-up through elec-
tronic health records (EHRs). Baseline assessments were conducted
at 22 centres across Scotland, England and Wales between 2006 and
2010.18–20 All information, including the UK Biobank Pharma Pro-
teomics Project (UKB-PPP), was accessed on 16 November 2023. All
participants provided written informed consent, and the study was
approved by the North West Multi-Centre Research Ethics Committee
(REC reference 11/NW/0382).

The identification of patients with HFpEF followed a multi-stage pro-
cess, in which no single criterion alone was sufficient for classification
(Figure 1A and online supplementary Table Appendix S1). The primary
inclusion criterion was the presence of at least one clinical symptom of
heart failure as defined by the literature3,21 or an associated diagnostic
code (online supplementary Methods). When direct diagnostic codes
were unavailable, further classification was either conceptually aligned
with guideline-based criteria,3 incorporating imaging data from car-
diac magnetic resonance (CMR) imaging (available for 38 141–39 610
participants, depending on the parameter) and N-terminal pro-B-type
natriuretic peptide (NT-proBNP) levels (available for 51 578 partici-
pants), or, for participants without available imaging data, an elevated
pre-test risk combined with available clinical criteria.11,22,23 Participants
with a quality-controlled left ventricular ejection fraction >49% and
NT-proBNP levels above the 90th percentile, defined using all partici-
pants with available measurements as a reference, were assigned to the
HFpEF group, reflecting the elevated natriuretic peptide criteria recom-
mended by the European Society of Cardiology (ESC) guidelines for
heart failure.3 If imaging data were not available, the pre-test risk was
calculated using the validated H2FPEF score.11,22 Subsequently, symp-
tomatic participants with a very high pre-test risk (above 90%) were
directly assigned to the HFpEF group.22 Additionally, if the pre-test risk
exceeded 70%, participants who later became symptomatic were clas-
sified as HFpEF only if subsequent confirmatory criteria were also met,
including an NT-proBNP level above the 90th percentile and/or heart
failure diagnostic coding, provided there was no conflicting evidence
indicating heart failure with mildly reduced ejection fraction (HFmrEF)
or reduced ejection fraction (HFrEF) from diagnostic codes or cardiac
imaging data.11,22,23

Individuals who did not meet these criteria were considered less
likely to have HFpEF. A control cohort was selected from this group,
comprising healthy non-heart failure (non-HF), HFrEF, diabetic and
obese controls. To minimize regional biases, both the training cohort
and a pre-specified multicentre validation cohort were derived from
the UK Biobank using an 80/20 stratified split, with no overlap between
subsets. The study adhered to the Transparent Reporting of a Multivari-
able Prediction Model for Individual Prognosis or Diagnosis (TRIPOD)
statement.24

Data modalities
Phenomics data included 13 physiological measurements, such as body
mass index (BMI), weight, waist circumference, blood pressure, and
pulse rate. Sex and age were excluded from the unsupervised clustering
algorithm to determine if the resulting subgroups would exhibit distinct
distributions of these characteristics. However, these two variables
were included in subsequent risk factor identification to assess their
effects.

Metabolomics data were derived for 483 980 UK Biobank
participants, including 251 metabolite biomarkers profiled from
plasma samples using a nuclear magnetic resonance (NMR)-based ..
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.. metabolomic biomarker profiling platform. The dataset encom-
passed lipoprotein lipids, fatty acids, amino acids, ketone bodies and
metabolites involved in glycolysis.

Laboratory data comprised assays from blood samples, totaling 55
features. Proteomic profiling was conducted on a randomized subset
of 54 306 UK Biobank participants using Olink Proximity Extension
assays. The dataset included the expressions of 2923 proteins across
cardiometabolic, inflammation, neurology and oncology panels.18 Pro-
tein expressions were provided in the normalized protein expression
(NPX) format.

Genetic information included aggregated polygenic risk scores
(PRSs), leucocyte telomere length and single-nucleotide polymor-
phisms (SNPs). Thirty-six standard PRSs for disease and quantita-
tive traits were included, derived from external genome-wide asso-
ciation study (GWAS) data.25 Relative leucocyte telomere length,
adjusted for technical parameters, was also included.26 From the
phenotype–genotype reference map,27 28 out of 5879 SNPs were
selected for their predictive power in classifying HFpEF versus non-HF
controls (online supplementary Methods).

Variables related to medication intake, disease diagnoses and symp-
toms were also included. These variables were identified using ICD-10
encodings, phecodes28 (online supplementary Table S2) and encodings
based on the Observational Medical Outcomes Partnership (OMOP)
Common Data Model (CDM) (online supplementary Tables S3 and S1).
Only EHR data logged prior to recruitment were considered as model
input. Additionally, responses to touchscreen questionnaires at recruit-
ment, such as sociodemographic, lifestyle, environment and psychoso-
cial factors, were added. Multiple questionnaire items were condensed
into single variables to reduce the number of features.

Machine learning approaches
The unsupervised similarity network fusion (SNF) algorithm was
employed to cluster multi-omics data from the HFpEF cohort, com-
bining metabolomics, clinical laboratory measurements, proteomics
and phenomics (Figure 1C). SNF demonstrated superior performance
compared with concatenated or single-modality analyses29 (online sup-
plementary Methods). Associated code and scripts for the SNF analysis
can be found in the following GitHub repository: https://github.com
/charite-icm/snf.

Supervised CatBoost (v1.2.3)30 was employed in Python as the
case-control classifier, using nested two-level 10-fold cross-validation
(Figure 1B). Each fold was stratified to preserve the same percentage
of disease cases across all folds. CatBoost’s ability to handle missing
data allowed the inclusion of samples with incomplete features. Shapley
Additive exPlanations (SHAP) values were calculated using the Python
package shap (v0.44.0). SHAP quantifies the contribution of each
feature to individual predictions. SHAP values were also calculated for
the CatBoost classifiers trained to predict clusters identified by SNF
against control groups, which included HFpEF patients not assigned to
the cluster and non-HFpEF individuals (online supplementary Methods).

Statistical analyses and control
of confounding
To evaluate the discriminatory performance, accuracy and calibration
of the supervised machine learning models, receiver operating char-
acteristic areas under the curve (ROC AUCs), classification accuracy
and Brier scores were employed. No imputation was performed for
missing variables. Continuous data are expressed as mean± standard

© 2025 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.

https://github.com/charite-icm/snf
https://github.com/charite-icm/snf
https://github.com/charite-icm/snf


4 J. Versnjak et al.

Figure 1 Patient selection and study design. (A) Flowchart illustrating the selection of heart failure with preserved ejection fraction (HFpEF)
patients (n= 33 480) and control subjects based on clinical criteria. (B) Schematic representation of the supervised modeling pipeline, including a
balanced 80/20 split of data into training and validation cohorts. (C) Overview of the unsupervised modeling approaches employed. EF, ejection
fraction; HFmrEF, heart failure with mildly reduced ejection fraction; HFrEF, heart failure with reduced ejection fraction; LV, left ventricular;
NPX, normalized protein expression. *If N-terminal pro-B-type natriuretic peptide (NT-proBNP) level was available.

© 2025 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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deviation (SD) unless stated otherwise, while categorical data are
presented as frequencies and percentages. Unadjusted p-values are
reported in the baseline tables for descriptive purposes only, with-
out correction for multiple testing. Data distribution was evaluated
using the Shapiro–Wilk and Shapiro–Francia tests. Differences in
continuous variables between groups were analysed using either the
main effects test from a linear regression or the Mann–Whitney U
test. Categorical variables were compared using Pearson’s 𝜒2 test or
Fisher’s exact test, as appropriate. ROC AUCs were compared against
references (HFpEF-ABA score and NT-proBNP) using DeLong’s
method. All statistical analyses were conducted using Python (v3.11)
and Stata (v18.0 MP).

To identify omics features associated with control and disease
groups without being affected by confounding factors, the R pack-
age metadeconfoundR (v0.3.0) was employed. Initially, non-parametric
tests were applied to detect naïve associations between omics features
and covariates (e.g. medications, diseases) in cross-sectional datasets
using the Mann–Whitney U test for binary features and Spearman’s
test for continuous features. Results were adjusted for multiple testing
using the Benjamini–Hochberg method, and standardized effect sizes
(Cliff’s delta, Spearman’s ρ) were calculated. Significant omics features
underwent post-hoc nested linear model comparisons, with likelihood
ratio tests (LRT) assessing covariate effects. Features were considered
deconfounded if disease status provided additional predictive power
beyond each covariate (LRT<0.05); otherwise, they were classified as
confounded.17,31 The analysis included 3241 omics features derived
from laboratory data, phenomics (including age and sex), metabolomics
and proteomics data. These features were tested against 134 potential
confounders, such as medication and vitamin intake, diagnoses, symp-
toms and responses from online questionnaires.

Gene set enrichment analysis
Single-sample gene set enrichment analysis (ssGSEA, ssGSEA2.0)
was used to assess changes in pathway activity. The input for
ssGSEA consisted of effect sizes derived from the confounding
analysis for HFpEF and its subclusters compared to non-HF con-
trols. Gene sets were sourced from gene ontology biological
pathways (c5.go.bp.v2023.2.Hs.symbols.gmt) and curated path-
ways (c2.cgp.v2023.2.Hs.symbols.gmt) from the molecular signature
database (MSigDB). A pathway was considered cluster-specific if it met
a false discovery rate (FDR) cut-off of 0.05, had an enrichment score
of at least 1 SD from the pathway mean and exhibited the maximum
or minimum value for that cluster. Redundant pathways showing more
than 50% overlap of enriched genes with a higher-scoring pathway
were removed.

Results
Study population
Multi-stage selection (Figure 1A) resulted in 33 480 HFpEF cases
and 468 886 non-HFpEF individuals, including 256 895 non-HF con-
trols, 10 247 diabetic controls and 38 772 obese controls. Addi-
tionally, 486 individuals with HFrEF and available imaging data were
identified (Table 1 and online supplementary Table S5). Median
observational follow-up time was 13.95 years (interquartile range
13.20–14.67), with a maximum of 16.94 years. Total person-time
amounted to 6 829 239 person-years, with 44 499 deaths recorded
across the full cohort. For the age group studied, the estimated ..
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.. HFpEF prevalence closely matched earlier reported findings.1 The
pre-specified multicentre cohort served as a holdout set for
out-of-sample evaluation. The dataset was split 80/20 into a training
(n= 401 917) and an independent validation cohort (n= 100 446),
stratified to ensure balanced distributions of key clinical character-
istics. Three cases lacking clearly defined stratification criteria were
excluded from the analysis. This yielded 26 754 HFpEF patients
in the training and 6726 patients in the validation cohort. Dis-
tributions of diabetes, obesity, sex, age, HFrEF and HFpEF were
comparable across cohorts (Table 2).

Model evaluation
Supervised machine learning classifiers were trained and optimized
through hyperparameter tuning on a cohort of 26 754 HFpEF cases
and 375 163 non-HFpEF controls. Ten-fold nested cross-validation
was performed to assess classifier performance, with metrics
including ROC AUC, sensitivity and specificity (Figure 2A). Classi-
fiers included in the evaluation incorporated genomic information,
questionnaires, medical history, laboratory measurements, phe-
nomics, metabolomics and proteomics, all collected at or before
the recruitment assessment. Data availability varied across modal-
ities, resulting in differing sample sizes for each modality configu-
ration. Participants without NT-proBNP measurements were not
included in multi-omics analyses but were used for single modality
analyses where NT-proBNP was not required.

The best-performing model configuration included labora-
tory data, phenomics, metabolomics and proteomics (LAB +
PHE+MET + PRO), encompassing 29 461 training cases and 3241

omics features (Figure 2A and online supplementary Table S6),
yielding a ROC AUC of 0.921 (95% confidence interval [CI]
0.915–0.926), a sensitivity of 0.833 (95% CI 0.814–0.852) and a
specificity of 0.851 (95% CI 0.848–0.855). Subsequent p-values
were derived from Mann–Whitney U tests comparing each
model to this full multi-omics model. The second-highest sen-
sitivity of 0.816 (95% CI 0.809–0.823, p= 0.241) was observed
with phenomics (PHE), whereas the second-highest specificity
of 0.836 (95% CI 0.833–0.840, p= 0.0002) was achieved with
the model trained on proteomics data (PRO). Furthermore,
classifiers trained on medical history (HxQ), phenomics (PHE)
and proteomics (PRO) exceeded a ROC AUC of 0.8, with ROC
AUCs of 0.831 (95% CI 0.828–0.834, p= 0.00018), 0.862 (95%
CI 0.860–0.865, p= 0.0002) and 0.899 (95% CI 0.895–0.903,
p= 0.0002), respectively.

Additionally, a reduced multi-omics model was developed using
only 125 of the 3241 omics features selected through recursive
feature elimination (RFE). No differences in performance over the
full multi-omics model were observed with this reduced model, as
reflected in a ROC AUC of 0.923 (95% CI 0.920–0.927, p= 0.384),
sensitivity of 0.839 (95% CI 0.827–0.850, p= 0.520) and specificity
of 0.853 (95% CI 0.849–0.857, p= 0.909).

Multicentre validation and feature
importance analysis
All tuned models underwent out-of-sample validation in the
pre-specified cohort, comprising data from multiple centres. The

© 2025 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Table 1 Baseline characteristics of the heart failure with preserved ejection fraction (HFpEF) cohort and control
groups

Non-HF controls
(n= 256 895)

Obese controls
(n= 38 772)

Diabetic controls
(n= 10 247)

HFpEF
(n= 33 480)

p-value

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Age at recruitment (years) 54.949 (8.022) 50.861 (5.893) 57.802 (7.468) 63.278 (5.166) <0.001

Female sex 147 518 (57.4) 21 570 (55.6) 4155 (40.5) 13 161 (39.3) <0.001

Female before menopause 48 989 (19.1) 9768 (25.2) 823 (8.0) 652 (1.9) <0.001

Waist circumference (cm) 84.469 (10.207) 102.611 (10.216) 91.394 (9.511) 101.778 (14.133) <0.001

Body mass index (kg/m2) 25.110 (2.708) 33.509 (3.529) 26.532 (2.426) 31.240 (5.539) <0.001

Pulse rate (bpm) 68.256 (10.507) 71.985 (10.893) 72.196 (11.762) 69.661 (13.173) <0.001

Mortality (all-cause) 11 548 (4.5) 1305 (3.4) 1166 (11.4) 9371 (28.0) <0.001

Systolic blood pressure (mmHg) 134.951 (18.157) 137.589 (16.366) 140.626 (18.102) 144.650 (19.420) <0.001

Diastolic blood pressure (mmHg) 80.896 (9.867) 86.387 (9.493) 82.236 (9.939) 83.098 (10.712) <0.001

Pulse pressure (mmHg) 54.055 (12.745) 51.202 (11.342) 58.390 (13.769) 61.550 (15.580) <0.001

Sleep apnoea 487 (0.2) 224 (0.6) 75 (0.7) 568 (1.7) <0.001

Chronic ischaemic heart disease 1883 (0.7) 189 (0.5) 384 (3.7) 5074 (15.2) <0.001

Non-rheumatic mitral valve disease 139 (0.1) 7 (0.0) 8 (0.1) 547 (1.6) <0.001

Non-rheumatic aortic valve disease 108 (0.0) 15 (0.0) 10 (0.1) 489 (1.5) <0.001

Cardiomyopathy 28 (0.0) 9 (0.0) 2 (0.0) 355 (1.1) <0.001

Varicose veins of lower extremities 4618 (1.8) 666 (1.7) 165 (1.6) 840 (2.5) <0.001

Hypotension 343 (0.1) 41 (0.1) 33 (0.3) 353 (1.1) <0.001

Angina pectoris/coronary artery
disease

1561 (0.6) 185 (0.5) 288 (2.8) 3843 (11.5) <0.001

Endocrine, nutritional and metabolic
diseases

6579 (2.6) 1590 (4.1) 2412 (23.5) 8116 (24.2) <0.001

Mental and behavioural disorders 3516 (1.4) 810 (2.1) 362 (3.5) 1461 (4.4) <0.001

Diseases of the nervous system 7745 (3.0) 1767 (4.6) 644 (6.3) 3322 (9.9) <0.001

Diseases of the eye and adnexa 8308 (3.2) 990 (2.6) 761 (7.4) 2848 (8.5) <0.001

Diseases of the respiratory system 12 292 (4.8) 2486 (6.4) 866 (8.5) 5221 (15.6) <0.001

Diseases of the digestive system 43 157 (16.8) 7279 (18.8) 2779 (27.1) 11 466 (34.2) <0.001

Diseases of the skin and
subcutaneous tissue

11 278 (4.4) 2041 (5.3) 680 (6.6) 3179 (9.5) <0.001

Diseases of the musculoskeletal
system and connective tissue

26 477 (10.3) 4865 (12.5) 1720 (16.8) 8800 (26.3) <0.001

Diseases of the genitourinary system 35 332 (13.8) 6051 (15.6) 1686 (16.5) 6842 (20.4) <0.001

Pregnancy, childbirth and the
puerperium

12 029 (4.7) 1974 (5.1) 158 (1.5) 64 (0.2) <0.001

Aortic aneurysm 60 (0.0) 3 (0.0) 6 (0.1) 189 (0.6) <0.001

Phlebitis and thrombophlebitis 1268 (0.5) 271 (0.7) 80 (0.8) 948 (2.8) <0.001

Type 2 diabetes 0 (0.0) 0 (0.0) 2628 (25.6) 3820 (11.4) <0.001

Myocardial infarction 883 (0.3) 72 (0.2) 158 (1.5) 2555 (7.6) <0.001

Chronic kidney disease 940 (0.4) 103 (0.3) 117 (1.1) 2055 (6.1) <0.001

Hypertensive renal disease 73 (0.0) 7 (0.0) 21 (0.2) 305 (0.9) <0.001

Endocarditis 370 (0.1) 42 (0.1) 14 (0.1) 294 (0.9) <0.001

Essential (primary) hypertension 6349 (2.5) 1102 (2.8) 1216 (11.9) 10 217 (30.5) <0.001

Atrial fibrillation and flutter 0 (0.0) 0 (0.0) 0 (0.0) 5962 (17.8) <0.001

Cerebrovascular event/stroke 1053 (0.4) 149 (0.4) 127 (1.2) 1371 (4.1) <0.001

Embolism and thrombosis 2436 (0.9) 448 (1.2) 154 (1.5) 1691 (5.0) <0.001

Pulmonary embolism 504 (0.2) 111 (0.3) 30 (0.3) 466 (1.4) <0.001

Pulmonary arterial hypertension 22 (0.0) 4 (0.0) 2 (0.0) 123 (0.4) <0.001

Neoplasms 33 946 (13.2) 4750 (12.3) 1591 (15.5) 6640 (19.8) <0.001

Congenital malformations of the
circulatory system

221 (0.1) 31 (0.1) 9 (0.1) 189 (0.6) <0.001

Seizure/epilepsy 1565 (0.6) 276 (0.7) 107 (1.0) 556 (1.7) <0.001

Swollen ankle region 0 (0.0) 0 (0.0) 0 (0.0) 1212 (3.6) <0.001

Impaired exercise tolerance 0 (0.0) 0 (0.0) 0 (0.0) 1448 (4.3) <0.001

Joint swelling 2 (0.0) 0 (0.0) 0 (0.0) 4 (0.0) <0.001
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Table 1 (Continued)

Non-HF controls
(n= 256 895)

Obese controls
(n= 38 772)

Diabetic controls
(n= 10 247)

HFpEF
(n= 33 480)

p-value

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tachycardia 146 (0.1) 28 (0.1) 18 (0.2) 134 (0.4) <0.001

Bradycardia 183 (0.1) 23 (0.1) 15 (0.1) 331 (1.0) <0.001

Palpitations 515 (0.2) 92 (0.2) 36 (0.4) 585 (1.7) <0.001

Cough 351 (0.1) 73 (0.2) 24 (0.2) 241 (0.7) <0.001

Symptoms and signs involving the
digestive system and abdomen

14 892 (5.8) 2587 (6.7) 895 (8.7) 3695 (11.0) <0.001

Symptoms and signs involving the skin
and subcutaneous tissue

1418 (0.6) 292 (0.8) 107 (1.0) 516 (1.5) <0.001

Symptoms and signs involving the
urinary system

6912 (2.7) 929 (2.4) 468 (4.6) 2414 (7.2) <0.001

Symptoms and signs involving cognition,
perception, emotional state and
behaviour

964 (0.4) 184 (0.5) 85 (0.8) 631 (1.9) <0.001

Symptoms and signs involving speech
and voice

406 (0.2) 70 (0.2) 35 (0.3) 233 (0.7) <0.001

Dyspnoea 0 (0.0) 0 (0.0) 0 (0.0) 3537 (10.6) <0.001

General, local, unspecified oedema 0 (0.0) 0 (0.0) 0 (0.0) 163 (0.5) <0.001

Nocturia 0 (0.0) 0 (0.0) 0 (0.0) 459 (1.4) <0.001

Post-viral fatigue 794 (0.3) 84 (0.2) 25 (0.2) 130 (0.4) <0.001

Syncope 0 (0.0) 0 (0.0) 0 (0.0) 1574 (4.7) <0.001

Fatigue (excl. post-viral) 18 (0.0) 5 (0.0) 2 (0.0) 2510 (7.5) <0.001

Cholesterol-lowering medication 20 230 (7.9) 2865 (7.4) 4428 (42.5) 15 511 (46.3) <0.001

Mineralocorticoid receptor antagonist 52 (0.0) 6 (0.0) 4 (0.0) 367 (1.1) <0.001

Levothyroxine 2732 (1.1) 452 (1.2) 151 (1.5) 1364 (4.1) <0.001

Metformin 64 (0.0) 29 (0.1) 575 (5.6) 1696 (5.1) <0.001

Warfarin 308 (0.1) 66 (0.2) 12 (0.1) 1916 (5.7) <0.001

Sulfonylurea 27 (0.0) 4 (0.0) 324 (3.2) 931 (2.8) <0.001

Iron therapy 4985 (1.9) 659 (1.7) 185 (1.8) 1448 (4.3) <0.001

Beta-blocker 10 441 (4.1) 1111 (2.9) 832 (8.1) 12 954 (38.7) <0.001

ACE inhibitor 11 607 (4.5) 1688 (4.4) 2005 (19.6) 13 237 (39.5) <0.001

Angiotensin receptor blocker 3753 (1.5) 504 (1.3) 612 (6.0) 5292 (15.8) <0.001

Loop diuretic 0 (0.0) 0 (0.0) 0 (0.0) 3846 (11.5) <0.001

Calcium channel blocker 8825 (3.4) 876 (2.3) 926 (9.0) 10 150 (30.3) <0.001

Aspirin 19 790 (7.7) 2781 (7.2) 2841 (27.7) 14 238 (42.5) <0.001

Thiazide diuretic 6479 (2.5) 533 (1.4) 573 (5.6) 8988 (26.8) <0.001

Continuous variables are presented as mean (standard deviation), while binary variables are shown as n (%). Between-group differences in continuous variables were analysed
using either linear regression main effects testing or the Kruskal–Wallis rank test. Categorical variables were compared using Pearson’s 𝜒2 test or Fisher’s exact test, as
appropriate.
ACE, angiotensin-converting enzyme; HF, heart failure; HFpEF, heart failure with preserved ejection fraction.

best-performing classifier configuration (LAB + PHE+MET +
PRO) was selected for subsequent model validation and analysis
of the importance of multi-omics features. After excluding samples
with more than 5% missing values, the final validation dataset, con-
taining all of these omics, comprised 444 HFpEF patients and 6950
controls. Ten classifiers with different weight initializations were
trained on the training cohort, achieving a ROC AUC of 0.931 (95%
CI 0.930–0.931), a sensitivity of 0.857 (95% CI 0.855–0.860) and a
specificity of 0.847 (95% CI 0.846–0.847) on the validation cohort.
The full and reduced (RFE) multi-omics models yielded compara-
ble Brier scores of 0.110 (95% CI 0.109–0.112) and 0.108 (95%
CI 0.106–0.111; p= 0.186), as well as classification accuracies
of 0.850 (95% CI 0.847–0.854) and 0.852 (95% CI 0.848–0.856; ..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
.. p= 0.623), with consistent performance across additional evalua-

tion metrics (Figure 2B, online supplementary Figure Appendix S1

and Table S7).
At the time of recruitment and multi-omics data acquisition,

77.9% of individuals who subsequently developed HFpEF were
asymptomatic. The classifier identified these asymptomatic patients
as being at risk an average of 6.3 years (SD± 3.9) before symptom
onset (ROC AUC 0.929; 95% CI 0.916–0.942) (Figure 2C). When
applied to our multi-stage selected patient cohort as an exter-
nal, population-based benchmark, the HFpEF-ABA model yielded
a ROC-AUC of 0.835, comparable to the published reference
model.12 The multi-omics classifier exhibited improved perfor-
mance relative to the HFpEF-ABA model (p< 0.001; Figure 2D).
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Table 2 Baseline characteristics of the training and validation cohorts

Multicentre training
cohort (n= 401 917)

Multicentre validation
cohort (n= 100 446)

Total
(n= 502 363)

p-value

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Assessment centre
Stockport (pilot) 3016 (0.8) 775 (0.8) 3791 (0.8) 0.481

Manchester 11 138 (2.8) 2799 (2.8) 13 937 (2.8)
Oxford 11 225 (2.8) 2829 (2.8) 14 054 (2.8)
Cardiff 14 293 (3.6) 3582 (3.6) 17 875 (3.6)
Glasgow 14 985 (3.7) 3659 (3.6) 18 644 (3.7)
Edinburgh 13 828 (3.4) 3365 (3.4) 17 193 (3.4)
Stoke 15 536 (3.9) 3890 (3.9) 19 426 (3.9)
Reading 23 627 (5.9) 5772 (5.7) 29 399 (5.9)
Bury 22 629 (5.6) 5681 (5.7) 28 310 (5.6)
Newcastle 29 712 (7.4) 7283 (7.3) 36 995 (7.4)
Leeds 35 196 (8.8) 8988 (8.9) 44 184 (8.8)
Bristol 34 337 (8.5) 8663 (8.6) 43 000 (8.6)
Barts 10 088 (2.5) 2485 (2.5) 12 573 (2.5)
Nottingham 27 113 (6.7) 6757 (6.7) 33 870 (6.7)
Sheffield 24 181 (6.0) 6200 (6.2) 30 381 (6.0)
Liverpool 26 188 (6.5) 6610 (6.6) 32 798 (6.5)
Middlesborough 17 029 (4.2) 4254 (4.2) 21 283 (4.2)
Hounslow 23 153 (5.8) 5713 (5.7) 28 866 (5.7)
Croydon 21 972 (5.5) 5391 (5.4) 27 363 (5.4)
Birmingham 20 333 (5.1) 5159 (5.1) 25 492 (5.1)
Swansea 1825 (0.5) 455 (0.5) 2280 (0.5)
Wrexham 513 (0.1) 136 (0.1) 649 (0.1)

Age at recruitment (years) 56.530 (8.095) 56.531 (8.094) 56.530 (8.095) 0.958
Female sex 218 651 (54.4) 54 646 (54.4) 273 297 (54.4) 0.994
Female before menopause 61 477 (15.3) 15 287 (15.2) 76 764 (15.3) 0.545
Waist circumference (cm) 90.323 (13.493) 90.267 (13.458) 90.312 (13.486) 0.239
Standing height (cm) 168.445 (9.277) 168.440 (9.287) 168.444 (9.279) 0.882
Seated height (cm) 136.967 (7.174) 136.934 (7.195) 136.960 (7.178) 0.204
Body mass index (kg/m2) 27.436 (4.804) 27.421 (4.799) 27.433 (4.803) 0.386
Mortality (all-cause) 35 779 (8.9) 8720 (8.7) 44 499 (8.9) 0.028
Pulse rate (bpm) 69.428 (11.260) 69.401 (11.278) 69.423 (11.264) 0.486
Systolic blood pressure (mmHg) 137.862 (18.659) 137.904 (18.631) 137.870 (18.653) 0.517
Diastolic blood pressure (mmHg) 82.261 (10.150) 82.239 (10.133) 82.257 (10.147) 0.536
Non-HF controls 205 402 (51.1) 51 493 (51.3) 256 895 (51.1) 0.368
Diabetic controls 8224 (2.0) 2023 (2.0) 10 247 (2.0) 0.519
Obese controls 31 116 (7.7) 7656 (7.6) 38 772 (7.7) 0.203
HFpEF 26 754 (6.7) 6726 (6.7) 33 480 (6.7) 0.655
Sleep apnoea 1968 (0.5) 511 (0.5) 2479 (0.5) 0.440
Chronic ischaemic heart disease 12 631 (3.1) 3181 (3.2) 15 812 (3.1) 0.695
Non-rheumatic mitral valve disease 853 (0.2) 212 (0.2) 1065 (0.2) 0.942
Non-rheumatic aortic valve disease 853 (0.2) 195 (0.2) 1048 (0.2) 0.261

Cardiomyopathy 502 (0.1) 115 (0.1) 617 (0.1) 0.399
Varicose veins of lower extremities 7784 (1.9) 2009 (2.0) 9793 (1.9) 0.194
Hypotension 1170 (0.3) 317 (0.3) 1487 (0.3) 0.201

Angina pectoris/coronary artery disease 9827 (2.4) 2475 (2.5) 12 302 (2.4) 0.728
Endocrine, nutritional and metabolic diseases 30 250 (7.5) 7517 (7.5) 37 767 (7.5) 0.645
Mental and behavioural disorders 9253 (2.3) 2336 (2.3) 11 589 (2.3) 0.658
Diseases of the nervous system 19 856 (4.9) 4899 (4.9) 24 755 (4.9) 0.409
Diseases of the eye and adnexa 17 621 (4.4) 4355 (4.3) 21 976 (4.4) 0.501

Diseases of the respiratory system 29 796 (7.4) 7396 (7.4) 37 192 (7.4) 0.586
Diseases of the digestive system 87 128 (21.7) 21 848 (21.8) 108 976 (21.7) 0.616
Diseases of the skin and subcutaneous tissue 22 757 (5.7) 5618 (5.6) 28 375 (5.6) 0.396
Diseases of the musculoskeletal system and

connective tissue
57 836 (14.4) 14 404 (14.3) 72 240 (14.4) 0.686

Diseases of the genitourinary system 63 864 (15.9) 16 038 (16.0) 79 902 (15.9) 0.551

Pregnancy, childbirth and the puerperium 14 102 (3.5) 3592 (3.6) 17 694 (3.5) 0.300
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Table 2 (Continued)

Multicentre training
cohort (n= 401 917)

Multicentre validation
cohort (n= 100 446)

Total
(n= 502 363)

p-value

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Congenital malformations, deformations and
chromosomal abnormalities

2899 (0.7) 744 (0.7) 3643 (0.7) 0.517

Phlebitis and thrombophlebitis 4227 (1.1) 1075 (1.1) 5302 (1.1) 0.607
Type 2 diabetes 12 215 (3.0) 3080 (3.1) 15 295 (3.0) 0.654
Myocardial infarction 6251 (1.6) 1561 (1.6) 7812 (1.6) 0.978
Chronic kidney disease 5932 (1.5) 1545 (1.5) 7477 (1.5) 0.145
Hypertensive renal disease 635 (0.2) 160 (0.2) 795 (0.2) 0.926
Endocarditis 1106 (0.3) 286 (0.3) 1392 (0.3) 0.607
Essential (primary) hypertension 32 349 (8.0) 8053 (8.0) 40 402 (8.0) 0.743
Atrial fibrillation and flutter 7062 (1.8) 1779 (1.8) 8841 (1.8) 0.762
Cerebrovascular event/stroke 4362 (1.1) 1079 (1.1) 5441 (1.1) 0.761

Embolism and thrombosis 7788 (1.9) 1911 (1.9) 9699 (1.9) 0.468
Pulmonary embolism 1808 (0.4) 407 (0.4) 2215 (0.4) 0.056
Pulmonary arterial hypertension 186 (0.0) 49 (0.0) 235 (0.0) 0.743
Neoplasms 60 109 (15.0) 15 115 (15.0) 75 224 (15.0) 0.463
Congenital malformations of the circulatory system 608 (0.2) 153 (0.2) 761 (0.2) 0.939
Seizure/epilepsy 3934 (1.0) 989 (1.0) 4923 (1.0) 0.867
Swollen ankle region 3451 (0.9) 828 (0.8) 4279 (0.9) 0.290
Impaired exercise tolerance 7167 (1.8) 1850 (1.8) 9017 (1.8) 0.211

Joint swelling 8 (0.0) 2 (0.0) 10 (0.0) 1.000
Tachycardia 493 (0.1) 130 (0.1) 623 (0.1) 0.586
Bradycardia 876 (0.2) 222 (0.2) 1098 (0.2) 0.853
Palpitations 1851 (0.5) 427 (0.4) 2278 (0.5) 0.135
Cough 1107 (0.3) 287 (0.3) 1394 (0.3) 0.579
Symptoms and signs involving the digestive system

and abdomen
30 731 (7.6) 7567 (7.5) 38 298 (7.6) 0.229

Symptoms and signs involving the skin and
subcutaneous tissue

3381 (0.8) 845 (0.8) 4226 (0.8) 0.999

Symptoms and signs involving the urinary system 14 855 (3.7) 3759 (3.7) 18 614 (3.7) 0.487
Symptoms and signs involving cognition, perception,

emotional state and behaviour
3068 (0.8) 745 (0.7) 3813 (0.8) 0.479

Symptoms and signs involving speech and voice 1167 (0.3) 264 (0.3) 1431 (0.3) 0.143
Dyspnoea 12 379 (3.1) 3051 (3.0) 15 430 (3.1) 0.485
General, local, unspecified oedema 389 (0.1) 98 (0.1) 487 (0.1) 0.943
Nocturia 1791 (0.4) 454 (0.5) 2245 (0.4) 0.787
Post-viral fatigue 1516 (0.4) 352 (0.4) 1868 (0.4) 0.213
Syncope 7625 (1.9) 1893 (1.9) 9518 (1.9) 0.794
Fatigue (excl. post-viral) 16 714 (4.2) 4246 (4.2) 20 960 (4.2) 0.331

Cholesterol-lowering medication 69 424 (17.3) 17 434 (17.4) 86 858 (17.3) 0.529
Mineralocorticoid receptor antagonist 680 (0.2) 171 (0.2) 851 (0.2) 0.942
Levothyroxine 8960 (2.2) 2243 (2.2) 11 203 (2.2) 0.943
Metformin 4853 (1.2) 1216 (1.2) 6069 (1.2) 0.935
Warfarin 2993 (0.7) 744 (0.7) 3737 (0.7) 0.895
Sulfonylurea 2551 (0.6) 618 (0.6) 3169 (0.6) 0.486
Iron therapy 12 385 (3.1) 3178 (3.2) 15 563 (3.1) 0.178
Beta-blocker 44 837 (11.2) 11 334 (11.3) 56 171 (11.2) 0.250
ACE inhibitor 50 973 (12.7) 12 713 (12.7) 63 686 (12.7) 0.825
Angiotensin receptor blocker 18 557 (4.6) 4769 (4.7) 23 326 (4.6) 0.078
Loop diuretic 7801 (1.9) 1882 (1.9) 9683 (1.9) 0.165
Calcium channel blocker 37 802 (9.4) 9529 (9.5) 47 331 (9.4) 0.430
Aspirin 62 062 (15.4) 15 595 (15.5) 77 657 (15.5) 0.509
Thiazide diuretic 34 837 (8.7) 8674 (8.6) 43 511 (8.7) 0.745

Continuous variables are presented as mean (standard deviation), while binary variables are shown as n (%). Between-group differences in continuous variables were analysed
using either linear regression main effects testing or the Kruskal–Wallis rank test. Categorical variables were compared using Pearson’s 𝜒2 test or Fisher’s exact test, as
appropriate.
ACE, angiotensin-converting enzyme; HF, heart failure; HFpEF, heart failure with preserved ejection fraction.
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Figure 2 Performance metrics for machine learning classification. (A) Evaluation of the CatBoost classifiers using nested two-level 10-fold
cross-validation on the training cohort. The left subfigure depicts the mean receiver operating characteristic (ROC) curve, with the shaded
area representing the 95% confidence interval. The bar plots on the right show the mean values for the ROC area under the curve (AUC),
sensitivity and specificity, with error bars indicating the 95% confidence interval. Each cross-validation experiment included varying numbers
of cases (n) and features (feat) for different modality combinations, encoded by colour. (B) Performance evaluation of the classifiers on the
validation cohort. The same validation cohort (n= 7394) was used for all modalities. (C) Boxplot illustrating the time of onset of heart failure
symptoms in asymptomatic patients. (D) Comparison of the ROC AUC for three models tested on the validation cohort: (1) multi-omics
CatBoost classifier (LAB + PHE + MET + PRO); (2) HFpEF-ABA reference model using only age, body mass index and atrial fibrillation as
features; and (3) a simple model only using N-terminal pro-B-type natriuretic peptide (NT-proBNP) level with various thresholds to predict
HFpEF.
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The 30 omics features with the highest mean absolute SHAP
values were identified. The following features were ranked in
the top 30 for both the full multi-omics (online supplementary
Figure S2A) and RFE (online supplementary Figure S2B) models,
highlighting their importance for model accuracy but not necessar-
ily their pathophysiological relevance, as certain features could be
recursively eliminated without significantly impacting model perfor-
mance. Notably, greater age (>60 years), higher BMI (>30 kg/m2)
and elevated levels of NT-proBNP, NPPB, GDF15, REN, FABP3,
CLSTN2, NPL and monocytes, along with lower levels of F10,
FGFBP1, LRRN1, CCER2 and ADGRG2, remained as predictive
indicators across both models. A separate SHAP analysis was
conducted for the classifier trained solely on modifiable features
(online supplementary Figure S3).

Subgroup identification
To stratify a highly heterogeneous HFpEF cohort (n= 33 480)
and identify more homogeneous subgroups, unsupervised SNF
was applied, incorporating data from proteomics, phenomics,
metabolomics and laboratory measurements. Only patients with
data across all four data modalities were included, reducing the
final sample size to 1646. Six distinct phenotype subgroups, each
characterized by unique omics profiles, were identified through the
analysis. Cluster 2 emerged as a high-risk group with a mortality
rate of 65.2% and a mean BMI of 34.9 kg/m2. Significant differences
in basic demographic and health indicators among the clusters are
summarized in online supplementary Tables S8 and S9.

Clusters 3 and 5 were predominantly male (98.1% and
95.6%, respectively), with Cluster 5 having a lower average
BMI (28.6 kg/m2) than Cluster 3 (34.3 kg/m2). Clusters 4 and
6 were primarily female (94.8% and 92.3%, respectively), with
Cluster 6 showing the lowest average BMI (24.6 kg/m2) and the
lowest mortality rate (14.7%) among all clusters, whereas Cluster
4 had a mean BMI of 34.3 kg/m2. Age at recruitment showed little
variation between clusters, ranging from an average of 62.3 years
(Cluster 3) to 64.8 years (Cluster 5).

Similarity network fusions enable quantification of the percent-
age of cases within each cluster that exhibit the highest simi-
larity within specific omics modalities. This distribution is illus-
trated by upset plots (online supplementary Figure S4), where
phenomics emerged as the predominant modality in Clusters 3
(39.7%), 4 (40.2%), 5 (29.2%) and 6 (53.7%). Cluster 1 exhib-
ited the highest similarity within proteomics (47.1%). Notably,
Cluster 2 was unique in demonstrating balanced similarity across
all four omics dimensions, with contributions from phenomics
(19.7%), proteomics (22.3%), laboratory measurements (20.2%)
and metabolomics (19.9%). Kaplan–Meier survival curves for all
sub-clusters, diabetic controls and obese controls are shown in
online supplementary Figure S5 and the Graphical Abstract. Diabetic
and obese controls had better survival estimates over a 15-year
follow-up period compared to all HFpEF clusters.

Subgroup characterization
To assess the distinctness of the six identified clusters within the
broader UK Biobank population, the performance of two additional ..
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.. supervised CatBoost classifiers was evaluated using the five-fold
nested cross-validation to predict cluster membership relative to
the entire population. The summary of the performance metrics is
presented in online supplementary Table S9.

The classifier trained on both omics and non-omics features
demonstrated superior ROC AUC across all clusters compared
to the model trained exclusively on non-omics features. The ROC
AUC for the multi-omics classifier ranged from 0.825 to 0.988, with
sensitivity between 0.688 and 0.882, and specificity from 0.773 to
0.971. Notably, Cluster 2, which had the highest mortality rate,
exhibited the best classifier performance (ROC AUC 0.988, 95%
CI 0.985–0.990; specificity 0.971, 95% CI 0.965–0.977; sensitivity
0.882, 95% CI 0.788–0.941). The clinical non-omics and omics
features with the highest mean SHAP values are detailed in online
supplementary Table S9.

The distinct molecular phenotype of Cluster 2, as identi-
fied by the highest mean SHAP values, was characterized by
the up-regulation of TNFRSF10B, TNFRSF1A, GDF15, EFNA4,
ANGPT2, FABP4 and ITGBL1, alongside the down-regulation of
UMOD. Notably, questionnaires and patient history (non-omics
features) alone were sufficient to predict Cluster 2 cases, yielding a
ROC AUC of 0.962 (95% CI 0.957–0.966), sensitivity of 0.855 (95%
CI 0.823–0.892) and specificity of 0.926 (95% CI 0.920–0.931).
This cluster was further associated with inactivity, higher BMI and
comorbidities, including type 2 diabetes and chronic kidney disease.

Confounder-aware association analysis
The deconfounding analysis identified omics features significantly
associated with various disease and control groups, independent
of covariate effects, including medications, medical history and
lifestyle factors derived from online questionnaires. This analysis
encompassed the HFpEF population and its clusters, as well as
groups with HFrEF, diabetes and obesity. The results were visu-
alized in a heatmap (Figure 3).

By comparing the HFpEF cohort to non-HF controls, 2109 out
of 3241 omics features, including laboratory measurements, phe-
nomics, metabolomics and proteomics, were found to be associ-
ated with HFpEF, with an FDR <0.1. These features, which differ-
entiated the diseased from non-HF controls, were subsequently
tested for confounding effects of other covariates. Of these, 1577
omics features were confidently deconfounded (their association
could be attributed solely to disease status), 32 were ambiguously
deconfounded (both the covariate and disease strongly correlated
with the omics features) and 500 were confounded (the associa-
tion between the disease and the omics features was confounded
by at least one covariate).

Figure 3 presents the 25 omics features with the highest
and lowest effect sizes (Cliff’s delta) in the HFpEF population,
accounting for potential confounding factors. The majority of
both up-regulated and down-regulated features were proteomic
markers. Among the up-regulated proteins, the most prominent
included ADM, GDF15, NTproBNP, EDA2R, YAP1, TNFRSF10B,
FABP3, RNASE1, FSTL3, PALM2, IGFBP4, NT5C1A, RBFOX3,
NPPB, RNASE6, VSIG4, NPC2, COLEC12, COL6A3, SHISA5,
LAIR1 and SCARB2. The down-regulated proteins predominantly

© 2025 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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the top multi-omics associations (proteomics: yellow, phenomics: magenta, metabolomics: cyan, laboratory measurements: black) for various
disease and control groups, including cases with at least 95% of multi-omics features available. The groups analysed are: Cluster 1 (n95/nall:
211/268), Cluster 2 (170/204), Cluster 3 (252/309), Cluster 4 (282/346), Cluster 5 (302/363) and Cluster 6 (131/156), heart failure with
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heatmap shows the top 25 features with the highest and lowest effect sizes for the HFpEF cohort. Statistical significance is indicated as follows:
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consisted of PON3, APOM, BCAN, UMOD, MENT, CA14, ENPP6,
ADGRG2, FGFBP1, EGFR and KIT. Cluster 2 exhibited the high-
est up-regulation of most top proteins across all groups, except for
NT-proBNP and NPPB, which were most up-regulated in Cluster 6.
In contrast, the down-regulated proteins showed more variability;
only APOM, UMOD and EGFR were markedly decreased in Clus-
ter 2. In terms of phenomics features, all clusters, except Cluster
6, demonstrated higher BMI compared to non-HF controls. More-
over, only the obese control group was significantly younger than
the non-HF control group.

All top metabolomic features were down-regulated across the
majority of groups, except for Cluster 6. In Cluster 1, the
observed reduction in total cholesterol levels was confounded by
the use of cholesterol-lowering and blood pressure medications.
These medications, along with aspirin, were also confounding fac-
tors influencing linoleic acid levels in this cluster. In Cluster 5,
cholesterol-lowering therapies further contributed as confounders
for the ratios of linoleic acid to total fatty acids, cholesterol to total
lipids in medium very-low-density lipoprotein (VLDL) and choles-
terol to total lipids in very large high-density lipoprotein (HDL).
In contrast, HDL cholesterol levels and the ratios of cholesterol
to total lipids in medium VLDL and very large HDL were selec-
tively elevated in Cluster 6, a group predominantly composed of
female subjects. Across all clusters, the majority of laboratory mea-
surements demonstrated a consistent trend of down-regulation,
except for cystatin C, which was elevated in HFpEF patients, par-
ticularly in Cluster 2. Additionally, online supplementary Figure S6
underscores the key omics features characterizing each cluster, as
identified from the most important features listed in online supple-
mentary Table S9. These features were derived from a supervised
cluster classifier trained to distinguish cases within each cluster
from those not assigned to the cluster.

Pathway analysis
To further elucidate biological differences both between the HFpEF
clusters and at the cohort level, ssGSEA was performed using
the calculated effect sizes of proteomics data in disease groups
compared to non-HF controls. Cluster-specific pathways were
identified using an FDR cut-off of 0.05 and an enrichment score
corresponding to the maximum or minimum value within each
cluster. Figure 4 presents the five highest- and lowest-scoring
cluster-specific pathways.

In the entire HFpEF cohort, there was an up-regulation of
immune-related pathways. Cluster 1 exhibited up-regulation in the
cell cycle and apoptosis pathways, along with a depletion of extra-
cellular matrix (ECM) proteins. Cluster 2 showed down-regulation
of drug metabolic processes and ion transport channels, cou-
pled with increased cellular immune responses. Cluster 3 path-
ways were predominantly related to metabolic dysregulation and
involved proteins associated with bone formation. Cluster 4
demonstrated a broad increase in immune and inflammatory path-
ways without a specific focus on cellular immune responses. Clus-
ter 5 featured pathways associated with muscle function and devel-
opment. Cluster 6 displayed significant alterations in biological ..
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.. adhesion pathways, an increase in ECM proteins, metabolic dys-
regulation and a reduced oxidative stress response.

Discussion
Our multi-omics machine learning classifier demonstrated high
accuracy in identifying HFpEF-related phenotypes during predomi-
nantly asymptomatic stages, thereby underscoring its potential for
early and reliable disease detection. Multicentre validation con-
firmed the model’s reproducibility and performance consistency.
Additionally, SNF clustering revealed a distinct subgroup character-
ized by high mortality (65.2%), associated with comorbidities such
as obesity, type 2 diabetes and chronic kidney disease. The molec-
ular phenotype of this high-risk group indicates dysregulation of
inflammatory signaling pathways, consistent with current concepts
of metabolic inflammation in HFpEF.32

Implications for heart failure
with preserved ejection fraction
screening strategies
A recent evaluation of the HFpEF-ABA score for screening HFpEF
in patients with dyspnoea demonstrated good discrimination (ROC
AUC 0.840 for the reference model).12 Applying the HFpEF-ABA
reference model to the UK Biobank cohort yielded similar per-
formance (ROC AUC 0.835), confirming the reliability of our
labeling and patient selection algorithm as a basis for classifier
training. While the HFpEF-ABA model provides a basic screen-
ing tool for symptomatic patients with dyspnoea, our multi-omics
classifier identified patients at risk of HFpEF pre-clinically—on
average, 6.3 years before symptom onset—in a large, predomi-
nantly asymptomatic, multicentre cohort (ROC AUC 0.931; 95%
CI 0.930–0.931).

Despite the high diagnostic performance of multi-omics
approaches, cost-effective methods, such as phenomics and
questionnaire-based assessments, remain indispensable for
large-scale screening and initial evaluations. In our study, a
questionnaire-based classifier performed comparably to estab-
lished scoring models when using similar input features (ROC AUC
0.829; 95% CI 0.829–0.829). In clinical practice, these approaches
could complement each other within a staged detection strategy,
enabling broader population-level screening in resource-limited
settings, followed by targeted multi-omics analyses for patients at
increased risk, with embedded individual SHAP explanations. Of
note, a fully analytically validated multi-protein serum assay has
recently become available for clinical research in multiple sclerosis
and has been developed to facilitate future implementation in
clinical decision-making.33

Confounder-aware disease associations
and subgroup-specific profiles
To enhance interpretability and further ensure the robustness of
our findings, we employed XAI alongside a rigorous deconfounding
approach17 to account for potential biasing factors. Using nested

© 2025 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Figure 4 Disease group-specific pathway activity from single-sample gene set enrichment analysis (ssGSEA). Heatmaps displaying normalized
enrichment scores (NES) for the top five upregulated (A) and downregulated (B) pathways across clusters 1–6 with the furthest right block
representing the most significant pathways within the entire heart failure with preserved ejection fraction (HFpEF) group. The input for
ssGSEA consisted of effect sizes from the confounding analysis of proteomic measurements, where each group was compared to healthy
controls. Pathways were considered cluster-specific if they had an enrichment score of at least one standard deviation from the mean and
exhibited the maximum (A) or minimum (B) value for that pathway within the cluster. The heatmaps highlight significant changes in pathway
activity across disease groups, using gene ontology biological pathways and curated pathways from the molecular signature database (MSigDB).
*Group-specific FDR <0.05.
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post-hoc model comparison tests, the confounder-aware associa-
tion analysis provided a framework to distinguish genuine disease
associations from confounding-driven effects, thereby highlighting
how anthropometrics, comorbidities, environmental exposures,
medication use and lifestyle factors can introduce bias or modulate
omics-based disease associations. Lipidomic profiles across clusters
were shaped by medication-related confounding and sex-specific
modulation, whereas many other omics features remained robust
after adjustment for confounding factors.

It is known from transcriptomic analyses of invasive endomy-
ocardial biopsies that HFpEF comprises distinct molecular sub-
groups associated with specific clinical features and outcomes and
is frequently accompanied by comorbidities, particularly metabolic
disorders such as obesity and diabetes.34 When these comorbidi-
ties co-exist with HFpEF, patients exhibit higher mortality and
significantly worse survival outcomes over the 15-year follow-up
compared to those with obesity or diabetes alone (online supple-
mentary Figure S5). This suggests that HFpEF introduces distinct
pathophysiological mechanisms that exacerbate prognosis, com-
pounding the impact of common comorbidities like obesity and
diabetes.

The molecular changes found were dominated by markers of sys-
temic inflammation, haemodynamic stress, renal impairment, and
endothelial dysfunction, mirroring the immunometabolic crosstalk
recently summarized by the ESC Heart Failure Association.35

Although cluster analysis depends on selected cohorts and fea-
ture sets, offering relative rather than absolute classification, iden-
tifying patients belonging to the high-risk subgroup (Cluster 2)
may facilitate recognition of individuals prone to adverse out-
comes. In this cluster, elevated pro-inflammatory markers, particu-
larly TNFRSF1A, a mediator of tumour necrosis factor-α-driven
vascular inflammation, suggest a role for chronic inflammatory
stress. Similarly, growth differentiation factor-15 has emerged as
a prognostic biomarker in heart failure, associated with oxida-
tive stress, inflammation, and adverse outcomes.36 Its elevation
across all clusters supports the central role of inflammation. The
increased expression of apoptosis-inducing receptors TNFRSF10A
(DR4) and TNFRSF10B (DR5) indicates activation of cell death
pathways, potentially reflecting endothelial cell injury. This aligns
with the non-ischaemic, microvascular dysfunction that character-
izes HFpEF.

Furthermore, up-regulation of angiogenesis-related factors,
including ANGPT2 and EFNA4, points to vascular remodel-
ing. ANGPT2 destabilizes endothelial integrity and promotes
inflammation-induced vascular leakage, while EFNA4 is involved in
endothelial adhesion and vessel pruning. Their dysregulation may
contribute to the abnormal capillary density and perfusion deficits
characteristic of HFpEF. Furthermore, the higher levels of ADM, a
vasoactive peptide linked to haemodynamic stress together with
reduced UMOD, a marker indicative of renal tubular impairment,
support a cardio-renal continuum. Finally, increased levels of YAP1,
a transcriptional co-activator in the Hippo signaling pathway, sug-
gest altered mechanotransduction and endothelial cell behaviour,
potentially modulating fibrosis, apoptosis, and angiogenesis in
response to mechanical and metabolic stress. These biomarkers
represent potential targets for preventive strategies. ..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

.. Signaling pathway activity
While more in-depth investigations are needed to fully elucidate
the pathophysiological impact of the different molecular factors,
the ssGSEA analysis of pathway activity provides valuable initial
insights and supports the generation of future research hypotheses.
The up-regulation of inflammatory pathways in the entire HFpEF
cohort reinforces the concept of ‘metabolic inflammation’ as a key
component in HFpEF pathophysiology.32 However, markedly exag-
gerated immune responses in Clusters 2 and 4, with pronounced
up-regulation of cellular immune pathways in Cluster 2 and immune
effector processes and innate inflammatory responses in Cluster 4,
strongly indicate differences in underlying mechanisms, and corre-
late with notable clinical comorbidity burdens (online supplemen-
tary Table S8 and Figure S7). Additionally, the down-regulation of
drug metabolic processes in Cluster 2 may be associated with com-
promised liver function, potentially affecting medication clearance.
The increased expression of biological adhesion and ECM proteins
across all subgroups, most pronounced in Cluster 6, may point
towards a common role for fibrosis and tissue remodeling. Collec-
tively, these findings highlight the heterogeneity of HFpEF, alongside
the need for proactive management of comorbidities.

Limitations
The absence of a specific diagnostic label for HFpEF within
the UK Biobank constitutes an acknowledged limitation. To
address this, we applied established clinical guideline criteria
and literature-supported evidence for case identification. Our
approach aimed to mirror the diagnostic processes used in clinical
practice, reflecting the inherent challenges of identifying HFpEF in
routine clinical settings, where scoring systems can support diagno-
sis and typically align with confirmed disease classification.11,23 The
robustness of this patient selection algorithm is further supported
by its comparable performance when applying the HFpEF-ABA
reference model12 to our cohort selection and alignment with
previously reported HFpEF prevalence in a comparable age range.1

Due to the absence of absolute NT-proBNP concentrations,
our selection approach using the 90th percentile differs from
guideline-based absolute cut-offs but remains conceptually aligned,
as similarly reported by a previous population-based study,37 in
which 3–8% of men and 15–20% of women aged 40–59 years
exceeded the guideline-recommended NT-proBNP threshold of
125 pg/ml. Furthermore, the temporal limitation of single time
point clustering precludes assessing whether pre-HFpEF patients
consistently cluster into stable groups or diverge into distinct
trajectories as clinical symptoms develop over time. Furthermore,
despite the application of rigorous deconfounding methods, the
potential influence of unmeasured confounders cannot be entirely
excluded.

Additionally, the study’s reliance on a predominantly European
cohort limits the generalizability of the findings to more diverse
global populations.38 Moreover, the reduction in sample size due
to the requirement of having all data modalities available posed
a challenge for model training, particularly for models containing
proteomics data (n< 30 000) compared to those using modalities

© 2025 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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available for all patients (n> 300 000). To allow fair comparison
between models, in addition to validation using the entire validation
cohort (n=100 446), we performed model comparisons on the
subset of patients in the validation cohort where all modalities were
available (n= 7394).

While the Olink blood proteomics panels, which utilize prox-
imity extension assay technology, provide a robust approach to
protein quantification, the relative nature of NPX units limits
direct comparison of absolute protein levels across studies.
Implementation strategies can include the development of custom
panels for absolute quantification of specific proteins to further
support clinical translation.33 Alternatively, selected targets or
reduced models can be reformatted for use with immunoassay
platforms that allow absolute quantification, such as enzyme-linked
immunosorbent assays.

Conclusions
A multi-omics-based machine learning framework enables early
identification of HFpEF during pre-clinical stages, when timely
interventions may still modify disease progression. This approach
also facilitates the molecular characterization of at-risk individuals,
thereby enhancing risk stratification and supporting targeted treat-
ment strategies. Comprehensive molecular profiling and pathway-
level analyses revealed distinct inflammatory signaling patterns,
along with evidence of fibrosis and tissue remodeling, partially elu-
cidating the heterogeneity inherent to HFpEF. These findings sup-
port the conceptualization of HFpEF as a metabolic-inflammatory
disorder and underscore the translational potential of large-scale
multi-omics studies for pre-clinical disease detection and mecha-
nistic insights into complex cardiovascular phenotypes.

Supplementary Information
Additional supporting information may be found online in the
Supporting Information section at the end of the article.
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