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1.  INTRODUCTION

Functional Magnetic Resonance Imaging (fMRI) in 
rodents is pivotal to unraveling the mechanisms underly-
ing regional- and network-level Blood Oxygen Level-
Dependent (BOLD) signals (Duong et  al., 2000; Hyder 
et  al., 2001; Keilholz et  al., 2004; Kida et  al., 2000; 
Logothetis, 2008; Peeters et al., 2001), phenotyping ani-
mal models of disorders (Coppola et  al., 2022; Fang 
et al., 2023; Gozzi & Zerbi, 2023), and testing pharmaco-
logical compounds (Jonckers et al., 2013; Xi et al., 2004), 
among many applications. Rodent fMRI offers comple-
mentary advantages relative to human fMRI, including 
the ability to control environmental exposure, study spe-
cific genetic influences (Leong et  al., 2019; Reinwald 
et  al., 2023), and evaluate invasive neuromodulatory 
effects (Ciobanu et  al., 2015; Shih, Yash, et  al., 2014). 
Because of the existence of analogous functional net-
works between rodent and human brains and the neces-
sity to address critical gaps between mainstream 
technologies used in rodent and human brain research 
(Xu et al., 2022), the past decade has witnessed a rapid 
emergence of rodent fMRI studies (Huang et  al., 2022; 
Mandino et al., 2019). Nonetheless, this growing commu-
nity has employed a variety of physiological management 
procedures during imaging and implemented a wide 
range of data acquisition and processing protocols to 

meet different research needs and hardware specifica-
tions. These protocol variations affect the quality, reliabil-
ity, and comparability of the outcomes, impairing an 
unbiased evaluation across laboratories.

Comparing rodent fMRI across different research sites 
poses significant challenges (Carp, 2012). The variability 
in experimental parameters during animal preparation, 
data acquisition, and data processing hinders the interop-
erability of the methods (Desrosiers-Gregoire et al., 2024; 
Grandjean et al., 2023). Centers use different restraining 
protocols, such as awake or anesthetized imaging, anes-
thetics, physiological control (e.g., free breathing or 
mechanical ventilation), diverse (multisensory) equipment 
and paradigms for stimulus-evoked imaging, and a wide 
range of field strengths and acquisition parameters/pro-
tocols (Mandino et al., 2019). Previously, we have aggre-
gated large dataset collections to compare and to 
highlight the outcomes of using different experimental 
parameters. Initially, we scrutinized mouse and rat task-
free paradigms (Grandjean et  al., 2020, 2023). We 
revealed greater than expected variability in the out-
comes among the datasets. We identified a rat task-free 
protocol that is, on average, 60% more sensitive to 
detecting biologically plausible networks compared to 
other protocols. Historically, sensory-evoked rat fMRI 
applications predated task-free protocols (Duong et al., 
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ABSTRACT

Functional Magnetic Resonance Imaging (fMRI) in rodents is pivotal for understanding the mechanisms underlying 
Blood Oxygen Level-Dependent (BOLD) signals and phenotyping animal models of disorders, among other applica-
tions. Despite its growing use, comparing rodent fMRI results across different research sites remains challenging due 
to variations in experimental protocols. Here, we aggregated and analyzed 22 sensory-evoked rat fMRI datasets from 
12 imaging centers, totaling scans from 220 rats, to get a snapshot of the current acquisitions in the field. This retro-
spective analysis highlights common practices and parameters to inform future cross-laboratory standardization 
efforts. We applied a standardized preprocessing pipeline and evaluated the impact of different hemodynamic 
response function models on group- and individual-level activity patterns. Our analysis revealed inter-dataset variabil-
ity attributed to differences in experimental design, anesthesia protocols, and imaging parameters. We identified 
robust activation clusters in all (22/22) datasets. The comparison between stock human models implemented in soft-
ware and rat-specific models showed significant variations in the resulting statistical maps. Our findings emphasize 
the necessity for standardized protocols and collaborative efforts to improve the reproducibility and reliability of 
rodent fMRI studies. We provide open access to all datasets and analysis code to foster transparency and further 
research in the field.
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2000; Hyder et al., 2001; Keilholz et al., 2004; Kida et al., 
2000; S.-P. Lee et  al., 2002; Liu et  al., 2004; Mandino 
et al., 2019; Peeters et al., 2001; Silva et al., 1999; Silva & 
Koretsky, 2002). The method has grown from its early ori-
gin and is now run in several laboratories. Each uses dif-
ferent equipment and protocols to stimulate rats and 
evoke neural activity in the corresponding sensory sys-
tems (e.g., visual or somatosensory cortex). This raises 
the question of how comparable the results across 
diverse laboratories are.

In this preregistered study, we sought to capture a 
snapshot of the current acquisitions by the research 
community. This is an essential step toward the identifi-
cation of plausible parameters associated with enhanced 
detection of the evoked activity to guide cross-
laboratories standardized acquisitions. Retrospective 
analyses, though inherently variable, play a critical role in 
guiding such efforts, especially given the diversity in cur-
rent practices. We also sought to determine how amena-
ble the methods were to processing using a unified 
pipeline based on state-of-the-art tools: RABIES 
(Desrosiers-Grégoire et  al., 2024) open-source prepro-
cessing pipeline for rodent fMRI and the Python-based 
toolbox Nilearn (Abraham et al., 2014) for brain response 
modeling, and how consistent the results are across dif-
ferent sites and experimental protocols. Specifically, we 
investigated activity patterns at the group and individual 
level, and we compared the implementation of different 
hemodynamic response function models. Our endeavor 
extends beyond data analysis; we are committed to fos-
tering collaboration and dialogue within the community. 
With an emphasis on transparency and open science, we 
have provided unrestricted access to datasets and code.

2.  METHODS

2.1.  Pre-registration

This study was preregistered (https://doi​.org​/10​.17605​
/OSF​.IO​/8VY9R). Due to technical limitations, we devi-
ated from the preregistration by not implementing NOR-
DIC correction.

2.2.  Data collection

We asked members of the animal MRI community to 
share datasets through mentions at conferences, social 
media, and personal invitations. To obtain one or more 
datasets representative of the acquisitions’ procedures 
of the source laboratory, we requested datasets including 
10 pairs of anatomical and functional scans each, with-
out restrictions on strain, sex, age, weight, anesthesia, 
acquisition system, or imaging sequence. In total, we 

gathered 22 datasets representative from 12 imaging 
centers. We excluded nine scans due to corrupted or 
poor raw data.

2.3.  Preprocessing

We converted individual datasets to Brain Imaging Data 
Structure (BIDS) using BrkRaw (S.-H. Lee et al., 2020), a 
python module to access raw data acquired from Bruker 
Biospin preclinical MRI scanner, and custom scripts. We 
ensured that the voxel size and the orientation were 
specified correctly in the image headers. To account for 
the T1 effects for acquisitions in the absence of dummy 
scans, we removed the first; 5 volumes in datasets 03, 
04, and 05, 1 volume in dataset 14, and 2 volumes in 
dataset 15, following the recommendations of the origi-
nating laboratories. Further, we flipped the x-axis of 15 
individual scans for 6 different datasets with alternating 
stimulations on the left and right paw, to ensure the activ-
ity clusters were located on a consistent side within data-
sets. To ease image registration, we manually cropped 
the field of view of 17 individual scans. Subsequently, we 
preprocessed all scans through RABIES, an open-source 
preprocessing pipeline for rodent fMRI (version: 0.4.8) 
(Desrosiers-Grégoire et  al., 2024). The pre-processed 
steps included motion correction, rigid functional-
anatomical registration, non-linear anatomical registra-
tion to the SIGMA rat template (Barrière et al., 2019), and 
a common space resampling to 0.3  ×  0.3  ×  0.3  mm3, 
omitting smoothing. No bandpass filter or spatial smooth-
ing was carried out at this stage. To address misregistra-
tion instances, we incrementally added autoBox, N4 
inhomogeneity correction, and rigid functional-anatomical 
image alignment options as implemented within RABIES. 
We carried out rigorous visual quality control checks on 
the registrations for each scan. Exclusion criteria included 
raw data with significant artifacts leading to misregistra-
tion during preprocessing steps.

2.4.  Data analysis

We performed individual- and group-level analyzes in 
Nilearn (version: 0.10.0) (Abraham et  al., 2014), using 
motion parameters as confounds and spatial smoothing 
with a 0.45 mm2 full width at half maximum smoothing 
kernel. Registered functional scan outputs from RABIES 
(Desrosiers-Grégoire et  al., 2024) were processed with 
Nilearn. We used the design provided by the originating 
laboratories to construct four models based on different 
hemodynamic response functions. Namely the two 
defaults: Glover and SPM without derivatives, a Box 
model based on the block design without convolution, 
and two custom rat functions based on previous studies: 

https://doi.org/10.17605/OSF.IO/8VY9R
https://doi.org/10.17605/OSF.IO/8VY9R
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2-Gammas and Peak-span. The 2-Gammas rat function 
aligns with the parameters of the general rat hemody-
namic response function, as outlined by Lambers et al. 
(2020). Similarly, the Peak-span rat function has been 
defined by a full width at half maximum of 2.18 and a time 
to peak of 1.92, as described by Silva et al. (2007). We 
used motion parameters and third-order polynomials as 
co-regressors to account for motion and drift artifacts. 
Group-level maps were generated using a one-sample 
t-test on the individual-level parameter estimate maps. 
Time series and parameter estimates were extracted 
using the SIGMA atlas. Individual-level and group-level 
maps are represented as z-statistical maps with a thresh-
old set to z-score  =  1.93 corresponding to p  <  0.05 
uncorrected. We opted to show uncorrected maps to 
reveal the full extent of the activation clusters and to 
avoid showing empty maps for low activation datasets. 
The maps are shown as color-coded overlays over the 
SIGMA template. We used the SIGMA rat template to dis-
play statistical maps. We used Nilearn NiftiLabelMasker 
function to extract signals from regions of interest (e.g., 
time series, residuals and z-scores). These regions were 
determined based on the stimulation location: the pri-
mary somatosensory cortex forelimb or hindlimb, primary 
somatosensory cortex barrel field for whisker stimula-
tions, and the superior colliculus for visual stimulations 
(Dinh et al., 2021; Gil et al., 2024). We averaged the resid-
uals and z-scores for the region of interest across sub-
jects within datasets, and we calculated the z-scores 
standard deviation.

3.  RESULTS

We aggregated 22 representative rat sensory-evoked 
fMRI datasets from 12 imaging centers. There were no 
restrictions on the strain, sex, age, weight, anesthesia, 
acquisition system, or imaging sequence. Participating 
laboratories were instructed to provide 10 functional 
scans with their corresponding anatomical scans and 
metadata per dataset. Laboratories could supply more 
than one dataset if stimuli or acquisition parameters dif-
fered. In total, we aggregated 220 scans. We observed 
notable variations in acquisition parameters between 
datasets, namely rat strain and handling, imaging meth-
odologies, and experimental designs (Fig. 1). There was a 
sex bias, with 58% males and 42% females. The anes-
thesia protocols for maintenance and magnetic field 
strength distributions aligned with the current trend in the 
field (Huang et al., 2022), predominantly using Isoflurane 
and/or Medetomidine, and 9.4 T or higher magnetic field 
strengths. The datasets consisted of sensory stimulation 
of the forepaw, hindpaw, whiskers, or the eyes. The most 
common type of stimulation was electrical stimulation of 

the forepaw, represented by 13/22 datasets collected. 
Overall, acquisition parameters were eminently heteroge-
neous. Findings should be interpreted within the context 
of the characteristics of the present population.

We evaluated the consistency of sensory-evoked activ-
ity across datasets through a comparative analysis. First, 
we applied the standardized preprocessing pipeline 
RABIES (Desrosiers-Grégoire et  al., 2024), including 
motion correction, resampling, and registration to the 
SIGMA rat brain template (Barrière et  al., 2019). We 
excluded 9/220 subjects due to missing or corrupted func-
tional images and 1/220 for exhibiting failed functional-to-
anatomical registration during quality checks after RABIES 
preprocessing. Following this, we constructed models 
based on the provided stimulation parameters in Nilearn 
(Abraham et  al., 2014). We convolved our models using 
either a rat hemodynamic response function proposed by 
Lambers et  al. (2020) (2-Gammas), a rat hemodynamic 
response function proposed by Silva et al. (2007) (Peak-
span), as well as the default human SPM and Glover 
response functions implemented within Nilearn. In addi-
tion, we examined a Box model based on the block design 
without convolution. We added six motion parameters and 
polynomials up to the 3rd degree regressors to the models 
to account for movement confounds and non-linear low-
frequency drifts.

We determined the regions of interest based on the 
stimulation location: the primary somatosensory cortex 
forelimb or hindlimb for forepaw or hindpaw stimulations, 
primary somatosensory cortex barrel field for whisker 
stimulations, and the superior colliculus for visual stimu-
lations (Dinh et al., 2021; Gil et al., 2024). We identified 
distinct activation clusters within designated regions of 
interest in all (22/22) group-level statistical maps when 
using the Peak-span rat hemodynamic response function 
(Fig. 2). We noted disparity in cluster intensity and spread. 
For instance, dataset 13 showed a substantial cluster of 
activity in the contralateral somatosensory regions with 
striatal deactivation. In contrast, dataset 06, sharing the 
same anesthesia, stimulation type, and location, dis-
played a moderate cluster of activity. To ensure result 
accuracy and plausibility, we worked with each collabo-
rator to refine the analysis and results. Dataset 22 showed 
negative activation in the superior colliculus due to the 
frequency of the visual stimulation (e.g. continuous light), 
which aligns with the findings of the source center (Gil 
et al., 2024). For datasets acquired with thermal stimula-
tion, namely 08 and 14, we observed diffuse activity pat-
terns consistent with activating the wider pain/saliency 
matrix (Hess et al., 2007; Wank et al., 2022). Dataset 11 
presents negative clusters due to the alignment between 
the rat model and the actual time series; we found a pos-
itive cluster when using the Box model (Fig. 4). We also 
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observed activity in the thalamic region for visual stimula-
tion only, while no clearly defined cluster was apparent 
with other stimulations. From this analysis, we conclude 
that we can identify activation clusters in all datasets. 
However, this is accompanied by substantial variability 
between datasets.

Analysis is traditionally carried out at the group level. 
Here, we propose that reliability at the individual level is 
equally important and can potentially reduce animal use 
(Grandjean et al., 2024). We investigated the consistency 

of the individual-evoked response within datasets. In 
datasets with clear group-level clusters, we found that 
most (but not all) of the individual maps showed robust 
activation patterns along with 1 or 2 outliers per dataset 
(e.g., scan with average ROI z-scorePeak-span of -0.12 in 
dataset 01, scan with Z-scorePeak-span = 0.67 in dataset 13, 
Figure 3). This seems consistent across stimulation meth-
ods, anesthesia, and field strengths. We concluded from 
that analysis that having robust individual-level activation 
is key to high-quality group-level maps.

Fig. 1.  Description of acquisition parameters per dataset (DS). We show the rat strain and sex attributes, maintenance 
anesthesia type, fMRI parameters such as magnetic field strength in tesla, functional sequence (SE-EPI: spin-echo echo 
planar imaging, GE-EPI: gradient-echo echo planar imaging), Repetition Time (TR) and Echo Time (TE) in seconds,  
along with stimulation location, type, and paradigm (in seconds).
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Fig. 3.  Individual-level maps, resulting from the analysis with Peak-span model, for datasets 01, 13 and 17. The spatial 
arrangement of maps is according to anesthesia, stimulation location, and dataset. The z-scores images are shown as an 
overlay on the SIGMA template with a threshold set to z-score > 1.93 (puncorrected < 0.05). The average z-score for the region 
of interest is provided below the image per scan.

Fig. 2.  Group-level analysis statistical (z-scores, one-sample t-test) maps for datasets processed with the Peak-span 
hemodynamic response function, accompanied by the modeled response (red) juxtaposed alongside the group-averaged 
time series from the region of interest (black). The z-scores images are shown as an overlay on the SIGMA template with a 
threshold set to z-score > 1.93 (puncorrected < 0.05). The y coordinate along the anterior-posterior axis is given per stimulation 
location relative to the SIGMA template. Spatial arrangement of maps according to anesthesia and stimulation location.
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A pivotal aspect of evoked fMRI mapping is the selec-
tion of hemodynamic response functions. To date, ad hoc 
solutions have been tested on datasets from single labo-
ratories (Khan et al., 2011; Lambers et al., 2020; Martindale 
et al., 2003; Silva et al., 2007). We addressed the impact 
of hemodynamic response function models by imple-
menting five models into the analysis. These models 
included the SPM and Glover default human models 
implemented in Nilearn, a Box model based on the block 
design, as well as two customized rat models derived 
from prior research from Silva et al. (Peak-span) and Lam-
bers et al. (2-Gammas). The models differed in temporal 
profiles, peak magnitudes, and rates of decline (Fig. 6A). 
Specifically, the rat models introduced a delay in the peak 
of activity (Fig.  6B, C), believed to better fit the BOLD 
response evoked by sensory stimulation in rats. As a 
result, we observe variations in statistical maps both at 
the group level (Fig. 4) and individual level when applying 
different models. The size, amplitude, and polarity of 
activity clusters changed noticeably when shifting 
between rat, human and Box models, in a dataset-

dependent manner. For instance, in the group-level map 
of dataset 17, the significant positive activity clusters in 
the primary visual cortex under the rat and Box models 
(ROI average zPeak-span  =  2.20  ±  0.98) became negative 
when using SPM human models (ROI average zSPM  = 
-1.38 ± 0.68, Fig. 4). Other datasets were less impacted 
by model selection (e.g., dataset 07, ROI average z2-Gammas 
= 3.75 ± 1.89, zPeak-span = 4.33 ± 1.91, zGlover = 4.70 ± 2.17, 
zSPM = 4.41 ± 2.03, zBox = 3.62 ± 1.54,). Better fitting mod-
els also varied independently of anesthesia or stimulation 
parameters and appeared instead to be dataset-specific. 
We found that the Box model provided overall a better fit, 
as indicated by higher z-score values, in 12/22 datasets, 
followed by the Peak-span model (8/22). The impact of 
models tended to become less marked with longer stimu-
lation paradigms, including equivalent to superior fits with 
human-derived models (e.g., dataset 07 with a 30  sec-
onds stimulation period). To show the impact of model 
selection on spatial localization, we aggregated maps 
from 12/13 forepaw datasets (excluding dataset 08 
acquired with thermal stimulation). We plotted the overlap 

Fig. 4.  Group-level analysis statistical (z-scores, one-sample t-test) maps for datasets processed under each 
hemodynamic response function, namely, 2-Gammas, Peak-span, Glover, SPM, and Box (from left to right in each row). 
Thresholds were set to z-score > 1.93 (puncorrected < 0.05). The y coordinates along the anterior-posterior axis are given per 
stimulation location relative to the SIGMA template. Spatial arrangement of maps according to anesthesia and stimulation 
location. The average z-score for the region of interest is provided below the image as the mean ± 1 standard deviation 
across the scans within the dataset. Bold indicates the highest absolute z-score across models.
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of group-level activation clusters as a function of models 
(Fig. 5). Expectedly, we found larger clusters denoting the 
percentage of datasets with above-threshold activation 
when processed with the Box design and Peak-span 
models. This underlies salient differences brought up by 
hemodynamic response functions and the need for care-
ful model selection.

Next, we examined more closely how the different 
models fitted the time series. One striking observation 
from the time series analysis is the presence of an early 
onset peak in some datasets (datasets 01, 06, 11, 13, 
Fig. 1). This peak was found across anesthesia conditions 
(isoflurane for 01, medetomidine for the rest), suggesting 
this may not be due to different neurovascular effects 

Fig. 6.  Depiction of the hemodynamic response function models using the stimulation parameters from dataset 01 (A). 
Namely, the two rat models 2-Gammas and Peak-span, and the two human models Glover and SPM, along with the Box 
model. Subplots (B-D) show the fit of each model (column) with the time series and the residuals averaged across the 10 
animals from dataset 01, 02, and 10 (rows). Shaded area represents the stimulation time.

Fig. 5.  Cluster overlap across 12 datasets with forepaw stimulation where activation was z-score > 1.93 
(puncorrected < 0.05). Maps are shown for each hemodynamic response function, namely, 2-Gammas, Peak-span, Glover, 
SPM, and Box design. The y coordinates along the anterior-posterior axis are given relative to the SIGMA template. Warm 
colors indicate activation voxels in 12/12 datasets (100% overlap).
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associated with either isoflurane or medetomidine (Fukuda 
et al., 2013). We examine the model fits in 3 representative 
datasets: 01, 02, and 10, acquired under isoflurane, isoflu-
rane + medetomidine, and alpha-chloralose, respectively 
(Fig.  6). Dataset 01 presented a noticeable early onset 
peak, which was not accounted for by any of the models. 
Among the models, only the non-convolved Box model 
accounted for the initial fast rise but failed to model the 
latter phase of the response. Dataset 02 had a response 
that was best explained by the rat-derived hemodynamic 
response functions. Finally, dataset 10 was poorly 
explained by the rat 2-Gammas model but followed more 
closely by the remaining models, including acceptable fits 
by the human-derived models. This close examination of 
the time series further underlies the need for dataset-
specific hemodynamic response function selection. To our 
surprise, the non-convolved Box model appeared a valid 
heuristic in some instances. We also found that none of the 
models investigated accounted properly for datasets pre-
senting an early onset rise. Such special cases may need 
further tailored models for accurate mapping.

4.  DISCUSSION

To advance imaging protocols, we first need to under-
stand where we currently stand. We sought to capture a 
snapshot of the current acquisitions in our community. 
There is much to learn from a retrospective cross-
examination of datasets from multiple centers. Here, we 
gathered 22 representative datasets, showcasing the 
diversity in acquisition parameters across centers and 
datasets, including rat characteristics, animal handling, 
imaging methodologies, and experimental designs. The 
first salient observation is that the newly developed pre-
processing software, RABIES (Desrosiers-Grégoire et al., 
2024), could preprocess the vast majority of the data 
(210/211). This was achieved despite large variations 
between datasets, including a partial field of view cover-
age of the brain (e.g., datasets 16 and 17), or inhomoge-
neous signal distribution. Using the same preprocessing 
software across studies helps the comparability and 
reproducibility of the results, and also reduces the need 
to prepare custom routines per laboratory. The fact that 
we could preprocess data with large qualitative differ-
ences, larger than for task-free applications (Grandjean 
et  al., 2023), further demonstrates the potential of this 
software. The embedded quality control modules within 
RABIES also help ensure that datasets processed at dif-
ferent sites undergo comparable scrutiny. Finally, in addi-
tion to preprocessing, we implemented two rat 
hemodynamic response functions within Nilearn. This will 
help the community seamlessly use these implementa-
tions for their future needs.

We applied a standard processing pipeline, which 
resulted in 22/22 datasets revealing suprathreshold 
group clusters of activity in the expected regions. This 
was achieved in a community effort. We carefully reviewed 
our input parameters and preprocessing steps per data-
set with the corresponding data owners. We found that 
the cluster extents, sign, and amplitude varied between 
datasets and between HRF models. We found that, most 
often, the non-convolved Box model yielded better out-
comes, followed by the Peak-span model estimated by 
Silva et al. (2007). This was not, however, generalizable 
across all datasets, including datasets with longer stimu-
lation periods where the model selection had a smaller 
impact on the outcome. Beyond this, we could not iden-
tify protocol parameters that would explain the outcome 
differences. This is due, in part, to the wide range of 
methods used, regarding both stimulation sites and pro-
tocols, but also imaging parameters and equipment. For 
this reason, we cannot infer the exact causes nor suggest 
‘consensus’ protocols. We can instead point towards 
protocols with better outcomes, as indicated by stronger 
activation patterns as the starting point toward the design 
of enhanced protocols to be tested across laboratories. 
We acknowledge the many parameters that contribute to 
the enhanced signal, such as anesthesia and physiologi-
cal maintenance during experimentation (Bol et al., 1997; 
Sirmpilatze et al., 2019), but also the selection of stimula-
tion parameters such as the frequency (Gil et al., 2024). 
Our results suggest that the Peak-span rat model is a 
good heuristic for the analysis of fMRI sensory evoked 
activity on rodents, especially in the context of electrical 
stimulation of the forepaw.

Consistency is the key to every scientific endeavor. In 
this study, we observe that datasets that had consistent 
activation patterns at the individual level were the ones 
with more robust activation clusters at the group level. 
Still, among the more robust datasets, activation was not 
systematically achieved in all individual scans. We need 
to better understand the sources creating discrepancies 
between and within scans. Since individual scans of a 
dataset are acquired with the same protocols and equip-
ment, we suggest that the variation lies mainly in the 
physiological parameters (Cerri et  al., 2024; Le et  al., 
2024; Pawela et  al., 2009; Schroeter et  al., 2014; 
Sirmpilatze et  al., 2019; Weber et  al., 2006; Wei et  al., 
2023). For instance, the superposition of the sponta-
neous hemodynamic fluctuation and the evoked response 
can affect our ability to detect signal changes (Saka et al., 
2012). This could generate inter-individual variations, 
including within datasets showcasing evident clusters of 
activity at the group level. Anesthesia, its impact on phys-
iology, and our ability to apply it consistently remains the 
most likely culprit. Anesthesia protocol comparisons 
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have systematically indicated marked differences in the 
hemodynamic response amplitude and duration (Le 
et al., 2024; Schlegel et al., 2015; Wei et al., 2023; You 
et  al., 2021). Finally, within trial habituations may also 
impact the response amplitude in a sensory modality-
specific way and can impact consistency. It is, thus, 
credible that our ability to control physiological parame-
ters would yield superior outcomes at the individual level 
that would be reflected in group-level analysis. For this 
purpose, multimodal approaches, such as joint electro-
physiological or calcium recordings, can make a differ-
ence in understanding the source of variability in our 
data. To make a difference here, these methods should 
also focus on the individual sources of variation. In the 
meantime, we encourage the implementation and report-
ing of data quality control, not only related to imaging 
parameters, to help us collectively improve our ability to 
detect evoked responses in rodents.

The rat hemodynamic response function exhibits 
faster temporal kinetics compared to the conventional 
human hemodynamic response function (Chao et  al., 
2022; de Zwart et  al., 2005; Silva et  al., 2007). Given 
these distinctions, using tailored rat hemodynamic 
response functions for fMRI analysis in rats appears to be 
a sound heuristic-based decision. Here, we implemented 
the two rat models, Peak-span (Silva et  al., 2007) and 
2-Gammas (Lambers et  al., 2020), along with a Box 
model and two human models to allow comparative anal-
ysis. However, it is essential to recognize the limitations 
of the rat models. The Peak-span function model, derived 
from α-chloralose-anesthetized rats, lacks evidence 
under different stimulation types or anesthesia condi-
tions. The 2-Gammas function presumes a linear BOLD 
response, despite demonstrations that the response 
depends on stimulation time and frequency (Gil et  al., 
2024; Lambers et al., 2020), as well as anesthesia type 
(Steiner et  al., 2021). Moreover, both functions were 
derived from somatosensory cortex regions and may be 
unsuitable for modeling subcortical regions due to hemo-
dynamic deviations from cortical regions (Lambers et al., 
2020; Pawela et al., 2008). Here we find that the assump-
tions on the model should be more nuanced and do not 
generalize across datasets.

Interestingly, we found a fast initial peak that was not 
modeled in any of the HRF functions tested. This fast 
peak was present in datasets acquired with various anes-
thesia. The fast nature of the response points toward 
either neuronal or local vascular components rather than 
slow modulators such as glial cells that have also been 
shown to fall off model assumptions (Schulz et al., 2012). 
There is substantial evidence within studies that both 
stimulation frequency and anesthesia duration impact 
this fast response peak (Gil et al., 2024; Kim et al., 2010; 

Lai et  al., 2015; Masamoto et  al., 2006; Sanganahalli 
et al., 2008; Shih, Huang, et al., 2014; Sirmpilatze et al., 
2019). This underlines the importance of examining data-
sets from multiple laboratory and stimulation protocols to 
make sense of this phenomena.

5.  CONCLUSION

We aimed to bring awareness among the research com-
munity on the differences and variability between studies 
and laboratories. A promising starting point to lower the 
heterogeneity is to build standardized experimental pro-
tocols based on successful practices. For now, this het-
erogeneity underscored the challenge of identifying 
consistent patterns and limited the generalizability of our 
findings. For this purpose, we promote collaboration and 
information sharing among researchers and encourage 
re-analysis of the datasets with innovative methods. 
Researchers should prioritize transparency by including 
detailed quality assessment measures when reporting 
results. We also recommend providing open access to 
the data, to allow scrutiny by peers, facilitate a deeper 
understanding of the findings, and encourage construc-
tive feedback. The ultimate goal is to record robust and 
reproducible evoked responses in the rodent brain to 
accelerate our understanding of the BOLD phenomena, 
and its downstream mechanisms, but also how this can 
be used to inform on brain disorders.
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