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Abstract 

Background: Most cancers exhibit somatic copy number alterations (SCNAs)—gains and losses of variable regions of DNA. SCNAs 
play a key role in cancer adaptation through modulation of gene expression, deletion of tumor suppressor genes, or amplification 

of oncogenes. Systematic analysis of SCNAs is now a routine task in both the clinic and research and can help identify novel cancer 
genes, improve our understanding of cancer gene regulation, and enable us to accurately reconstruct cancer phylogenies. However, 
to conduct such analyses, SCNA profiles have to be integrated between samples, patients, and cohorts—often a nontrivial task, for 
which dedicated toolkits are lacking. 

Results: To fill this gap, we developed CNSistent, a Python package for imputation, filtering, consistent segmentation, feature ex- 
traction, and visualization of cancer copy number profiles from heterogeneous datasets. We demonstrate the utility of CNSistent 
by applying it to the following publicly available cohorts: The Cancer Genome Atlas, Pan-Cancer Analysis of Whole Genomes, and 

TRAcking Cancer Evolution through therapy (Rx). We compare the effect of sample preprocessing and different segmentation and 

aggregation strategies on cancer type and subtype classification tasks using various classification models. We also evaluate how well 
a classifier trained on one cohort generalizes to another. Lastly, we introduce 2 segment-based peak and outlier scores to investigate 
relationships between segments, between samples, and between cancer types. Using these scores, we investigate non–small cell lung 
cancer samples, highlighting that SOX2 amplification is the dominant copy number alteration in lung squamous cell carcinoma and 

the main distinction to lung adenocarcinoma. 

Conclusions: CNSistent is a general-purpose toolkit for integrated processing of SCNA profiles across many patients and cohorts. It 
is available at https://bitbucket.org/schwarzlab/cnsistent . The Research Resource Identifier for CNSistent is SCR_027025. 
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Introduction
Somatic copy number alterations (SCNAs)—gains and losses of 
long regions of DNA—are found across almost all cancer types 
and are one of the key defining features separating cancer cells 
from normal cells [ 1 ]. It has been demonstrated that quantify- 
ing SCNAs has predictive value in the clinic for both progression- 
free and overall survival [ 2 , 3 ] and that they can serve as sen- 
sitive biomarkers for cancer classification and subtyping [ 4 ]. We 
and others have shown that many cancers demonstrate ongo- 
ing chromosomal instability and continuously accumulate SCNAs 
throughout their evolution [ 5 ], and SCNAs are excellent markers 
for inferring cancer evolution [ 6 , 7 ]. Recently, copy number signa- 
tures have linked SCNAs to their underlying molecular mecha- 
nisms, further strengthening their prognostic value [ 8 , 9 ]. 

SCNA profiles are commonly derived from a variety of exper- 
imental techniques, including single-nucleotide polymorphism 

(SNP) arrays, whole-exome and whole-genome sequencing [ 10 ],
and recently also increasingly from single-cell sequencing [ 11 ].
One major advantage of SCNAs over other genomic data types,
including somatic single-nucleotide variants, is ease of handling.
Due to their aggregate nature, SCNA profiles of individual patients 
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Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), whic
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an be published without concern for privacy and the resulting
ccess restrictions, leading to a growing set of publicly available
nd easily accessible samples from large cohorts such as The Can-
er Genome Atlas (TCGA), the International Cancer Genome Con- 
ortium (ICGC) [ 12 ], and the TRAcking Cancer Evolution through
herapy (Rx) (TRACERx) [ 13 ] lung and renal cancer cohorts. 

Unfortunately, copy number profiles, typically defined as lists 
f segments with given start and end positions and copy num-
er states, are not directly comparable across samples, patients,
r cohorts. For example, for phylogenetic reconstructions within 

 patient, profiles have to undergo minimum consistent segmen- 
ation where breakpoints are shared between samples to enable 
volutionary comparisons [ 6 , 7 ]. For machine learning classifiers,
rofiles are often aggregated in fixed-width bins or on the gene

evel. Additionally, different experimental techniques and differ- 
nt copy number calling algorithms can lead to specific biases,
issing data, and varying resolutions, further complicating the 
atter. 
To foster reproducible research and avoid reimplementation of 

ommon tasks, a tool that enables integration and joint segmen- 
ation and thereby caters to the specific demands of copy number
e. This is an Open Access article distributed under the terms of the Creative
h permits unrestricted reuse, distribution, and reproduction in any
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5  
rofiles would be desirable. To our knowledge, the only available
ool that does not require access to the raw sequencing data is the
eb-based application CNApp [ 14 ], which, due to its web-based
ature, is not easily integratable into data science workflows and
as not available at its hosted site at the time of this writing. 
To fill this gap, we here present CNSistent, a Python package

or preprocessing, consistent segmentation, integration, statisti-
al analysis, and visualization of SCNA profiles coming from het-
rogeneous data sources. We demonstrate the utility of CNSis-
ent by integrating available copy number profiles from the TCGA,
an-Cancer Analysis of Whole Genomes (PCAWG), and TRACERx
ohorts. We evaluate various segmentation strategies, comparing
he performance of deep learning–based multiclass cancer clas-
ification tasks and the classification of non–small cell lung car-
inomas (NSCLC), and demonstrate the use of CNSistent for en-
bling phylogenetic inference from copy number profiles using
he minimum consistent segmentation algorithm. 

ethods
NSistent (RRID:SCR_027025) processes SCNA profiles using a
ultistep approach. Input data take the form of copy number

egment tables with either allele-specific or total copy numbers
Fig. 1 A). The processing is identical for both allele-specific and
otal copy numbers, but some of the statistics are limited in the
ase of copy numbers, as detailed below. Optionally, exclusion re-
ions can be provided to the pipeline to remove locations in the
enome where we expect lower quality of information. CNSistent
rst calculates the proportions of the missing genome, which we
ere refer to as CN-coverage , and then utilizes imputation strate-
ies to fill in missing data (Fig. 1 B). CNSistent then calculates in-
ormation about breakpoints in each sample. Using the imputed
ata here has the advantage that spurious breaks are not created
etween nonconsecutive regions purely by missing data. Once the
ata are imputed, we remove the exclusion regions and calcu-

ate statistics relating to aberrant copy number values. In the final
tep, CNSistent offers various strategies for creating a consistent
egmentation across samples (Fig. 1 D), which are subsequently
ggregated to create a final set of complete SCNA profiles with
hared segment boundaries for all samples. The pipeline is fully
odular, and the steps can be skipped or executed in a different

rder. Note that we use the term segmentation to refer to a consis-
ent segmentation between samples (i.e., a set of positions inside
ach chromosome that split the chromosome into segments). 

For its calculations, CNSistent can work with any reference
enome; hg19 and hg38 reference assemblies are provided as a
efault. If the sex of the donors is not provided, CNSistent will de-
ermine the sex for each sample based on the presence of the Y
hromosome. 

mputation of missing values
CNA profiles from different cohorts often vary in the extent to
hich they span the genome. This can be due to a variety of rea-

ons, including different underlying technologies (whole-exome
equencing [WES] vs. whole-genome sequencing [WGS]), differ-
nt segmentation strategies, or different exclusion of regions sur-
ounding the centromeres and telomeres. To retain as much in-
ormation as possible, CNSistent offers an imputation step capa-
le of filling the gaps in SCNA profiles using an extension method

Fig. 1 C). 
The extension imputation method executes the following 5

teps: (i) Segments are pruned such that they are fully contained
ithin the coordinates and named chromosomes of the reference
enome. (ii) CNSistent extends the first and last segment of each
hromosome to the chromosome boundaries. (iii) Each gap be-
ween 2 segments is split into 2 halves (rounded down), and each
alf is then assigned the copy number (CN) of its neighboring seg-
ent. (iv) If any chromosomes are fully missing from the sample,

hey are set to 0. (v) The neighboring segments that have the same
N are merged. 

Alternatively, 2 additional imputation options are available:
iploid and null . The diploid method changes the steps (ii–iv) in
uch a way that all newly created segments are set to diploid; for
xample, if a sample is male and major/minor CN columns are
sed, CNSistent will create a segment on the whole chromosome
 with major and minor CN of 1 and 0, respectively. The null op-

ion will analogously fill all the newly created segments with 0. 

eature extraction
NSistent can calculate a set of statistical features. As CNSistent

s sex chromosome aware, the length of the linear genome de-
ends on the sex of the sample. Each feature is therefore calcu-

ated 3 times: for autosomes, for sex chromosomes, and for the
hole genome: 

CN-coverage: Calculates the proportion of the whole genome
where any CN value is assigned (as opposed to missing val-
ues). In case of allele-specific CNs, both monoallelic CN-
coverage (either allele has a CN value assigned) and biallelic
CN-coverage (both alleles must have a CN value assigned)
are calculated. 

Genome not diploid (GnD): Defines the proportion of the
genome where an allele does not have the CN that a diploid
cell of the same sex would have. In case of having only total
CN, this is a lower-bound approximation. 

Loss of heterozygosity (LoH): Calculates the proportion of seg-
ments with CN = 0 on either allele (hemizygous) or on both
alleles (nullizygous). The segment is only considered LoH if
and only if its CN value is 0 and its normal value is not zero
(e.g., chromosome Y for female samples). 

Allelic imbalance (AI): The proportion where 1 allele has a
strictly higher CN than the other. 

Breakpoints: The number of breakpoints per chromosome for
each allele. If a 2-column format is used, the total number
of breakpoints is also calculated to account for cases where
both alleles have a breakpoint in the same location (mean-
ing that the total number of breakpoints is less than the
sum of the alleles). 

Breakpoint step: The mean difference between the CNs of con-
secutive segments. Note that it is preferable to impute the
segments first to avoid inducing spurious gaps. 

onsistent segmentation
ne major goal of CNSistent is to obtain segments that are con-
istent between sample sets and from which features can then be
erived in a unified manner. This requires the same set of break-
oints to be present in every sample. Segmentation consists of the
ollowing 4 steps: (i) define regions of interest (e.g., whole chro-

osomes, coding genes, etc.), (ii) remove exclusion regions (e.g.,
elomeric or centromeric regions), (iii) share existing breakpoints
etween samples and merge them based on a distance threshold,
nd/or (iv) subdivide the segments into fixed-width bins. Each of
he 4 steps is optional. 

The segments for step (i) can be provided as a BED file, or 1 of
 predefined options can be used: whole chromosomes (default
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Figure 1: Illustrative example of processing of 2 SCNA profiles (s1, s2) for 2 alleles (CN1, CN2) on human chromosome 19. (A) The input data (gray 
tables) consist of noncontiguous major and minor copy number segments for each sample. From this, the proportion of the genome that is missing is 
calculated for each sample. For comparison, the CN-coverage is calculated both with and without considering the gap regions. Note that as there are 
no minor CNs for s2, the homozygous CN-coverage is 0. (B) During imputation, 2 new breakpoints are introduced at 13 Mb and 26.5 Mb, while the 
breakpoints on the boundaries of missing segments are no longer present. From the imputed data, CNSistent calculates the CN breakpoint-related 
statistical features. (C) Ploidy and allelic imbalance–related statistical features that are derived from the imputed data and removal of the gap regions. 
(D) Small regions are not used in region exclusion, retaining only the gap between 20 and 30 Mb, which splits the chromosome into 2 arms, which are
then further split into ∼5-Mb bins. The same-size strategy is used, meaning that the bins in the left segment are slightly smaller (4.9 Mb), while the
ones on the right are slightly bigger (5.27 Mb). Each profile is then converted into a vector of CN values for downstream analysis. Note that as there
was a breakpoint at 13 Mb, the resulting value is a weighted mean of the previous values (i.e., 1.72).
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option), chromosome arms, cytobands, COSMIC consensus can- 
cer gene set [ 15 ], or the Ensembl coding genes set [ 16 ]. From these 
segments, exclusion regions can be optionally removed (Fig. 1 D).
As a default option, the regions of low mappability, as defined by 
the UCSC [ 17 ] genome browser, are provided. During the exclusion 

process, if the regions are small or close to each other, fragmenta- 
tion can occur. This can be avoided by segment filtering—the user 
specifies a filter of size f, where any exclusion region smaller than 

f is removed; likewise, if after the exclusion regions are removed 

from segmentation, any newly created segments smaller than f 
are also removed. 

The breakpoints are then merged using a greedy algorithm on 

a predefined region (usually a whole chromosome). Starting from 

the leftmost breakpoint, all breakpoints within the merge distance 
m are accumulated, and a new breakpoint is created at their aver- 
age. This is then repeated from the leftmost not yet merged break- 
point, until the end of the region is reached. A detailed example 
is shown in Supplementary Fig. S1 . 

Lastly, the resulting segments can be subdivided into smaller 
bins based on user-defined split size s (Fig. 1 E). Three subdivision 

strategies are provided: (a) From the start of the segment, break- 
points are inserted every s bases. Here, the last bin is likely to be of 
a different size. If it is smaller than s/ 2 , it is merged with the pre- 
vious segment. (b) This is similar to (a), where instead of creating 
the padding only at the end, the padding is split in half and added 
u  
o both ends. Likewise, if the first and last bins are smaller than
/ 2 , they are merged with their neighboring segments. (c) The bins
re scaled so that they are all the same length, slightly different
rom s . Consider a segment that has c bins, including the padding.
f the padding is smaller or equal to s/ 2 , split the segment into
 − 1 equally sized bins, otherwise into c bins. 

ggregation of copy numbers
fter joint segmentation, the copy numbers from the original seg-
ents are aggregated to create CNs for the new segments. First,

he old segments are split at the breakpoints given by the new seg-
entation. Second, the resulting refined segments are aggregated 

etween the breakpoints given by the segmentation, using 1 of
 possible aggregation strategies: the Min and Max strategies will
ssign the minimum or maximum CN to the whole segment—the 
in strategy is particularly relevant when considering genes, since 

ncomplete segments are unlikely to yield functional gene copies.
he Mean strategy will take a mean of CNs across bins weighted by
heir lengths, preserving the overall CN per sample. Lastly, merg- 
ng can be skipped altogether, which can be used if we want to
elect only a subsection of each profile (e.g., only q-arms). 

ample filtering
he features obtained in the feature extraction step can be
sed to filter undesirable samples. For base quality metrics, like

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf104#supplementary-data
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N-coverage, a simple z -score outlier detection method is pro-
ided, meaning that for a feature f over a set of samples S , z =

f (S ) − μ( f (S ) ) 
σ ( f ( S ) ) is calculated, and samples greater than 3 standard de-

iations from the mean ( | z | ≥ 3 ) are removed. The value 3 is a typ-
cal threshold for the method, but it can be adjusted by the user. 

In certain cases, a qualitative separation of data is preferable
e.g., to remove samples with negligible SCNA activity). CNSistent
ffers an automated solution for finding such thresholds using a
nee-detection algorithm. A knee point is where the maximum
ngle occurs between the line connecting the first point and the
ast point of the plot. To find the knee-points for a feature f in a
et of samples S , a tuple of monotonically increasing feature val-
es T = (min ( f (S ) , · · · , max ( f (S ) ) , ∀ i ε1 , | T | − 1 : ti ≤ ti +1 and a
umulative distribution of values smaller than each threshold
 = (| f (S ) ≤ t | ){t εT } is created. Second, T is normalized such that
 t εT : t′ = t−t1 

tn −t1 
, and analogously for Y ′ . The knee-point is then the

i , 1 ≤ i ≤ n with the maximum angle between the vector from
rigin to the normalized threshold, (ti 

′ , yi 
′ ) , and the vector from

he threshold to the endpoint, (1 − ti 
′ , 1 − yi 

′ ) . If the angle is nega-
ive (clockwise rotation), we call it a knee ; otherwise (counterclock-
ise rotation), we call it an elbow . A visualization of the method is
rovided in Supplementary Fig. S2 . 

utlier detection
NSistent can detect outlier samples based on the normalized
anhattan distance (NMD) between pairs of samples. To calculate
MD, we normalize each sample by dividing the value of each bin
y its sum. This normalization allows us to ignore the effects of
hole-genome doubling (WGD), since the normalized values are

he same before and after WGD. Formally, having 2 aggregated
amples S = (s1 , · · · , sn ) and R = (r1 , · · · , rn ) , the NMD (S, R ) =
 n 
j=1 | si 

�(S ) − ri 
�(R ) | . To compare a sample S to a cluster of sam-

les C = (S1 , · · · , Sm 

) , we calculate the outlier score OS (S, C ) =
∑ m 

jε1 NMD (Si ,Sj ) 
| C| . To compare between 2 cancer types C 1 , C 2 and a

ample Sε C1 , we extend the outlier score as OS (S, C1 , C2 ) =
S (S, C2 ) − OS (S, C1 ) . 

eak detection
o find regions of interest in the samples, CNSistent provides the
eak score (PS), which shows how much each bin differs from its
eighbors. With an aggregated sample S = (s1 , · · · , sn ) , we set the
oundary values s0 = s1 , sn +1 = sn and calculate ∀ i ε(1 , · · · , n ) :
S (S, i ) = (si − si −1 ) − (si +1 − si ) . This score will be positive for
egments higher than their neighbors and negative for those lower
nd close to zero for segments with monotonous behavior. We
herefore use the PS to detect the highest and lowest values, which
how the locations of most abrupt change in CN accumulation.
ote that for meaningful calculation, this requires that the seg-
ents are connected to each other and about the same size. 

dentifying discriminatory features
o identify features that most differ between groups of samples,
e use the Mann–Whitney U test using the mannwhitneyu func-

ion in SciPy v1.15.0. All P values are corrected for multiple tests
sing the multipletests function with Benjamin–Hochberg cor-
ection in statsmodels v0.14.0. 

achine learning
o evaluate how different filtering and segmentation strategies
ffect the downstream analysis, we used 2 cancer type classifica-
ion tasks: classifying between 6 types with the most samples, as
ntroduced in Attique et al. [ 18 ], and the NSCLC classification, as
ntroduced in Qiu et al. [ 19 ]. In this task, each binned sample, as
llustrated in Fig. 1 , represents 1 feature vector. The output prob-
bility is that a sample belongs to each cancer class under con-
ideration. We then compare 4 different classification methods:
andom forest (RF), elastic net (ENet), deep neural network (DNN),
nd convolutional neural network (CNN). 

For each of these models, we apply 5-fold cross-validation, that
s, we split each dataset into 5 groups and always withhold one
hile training on the other 4. The validation accuracy for each
odel is then the mean of the test scores of the 5 different splits

 20 ]. 
As the number of patients per cancer type varies, the classes

re imbalanced. To avoid a possible bias due to an overrepresen-
ation of 1 class, a stratified split is used, meaning that the ratio of
he individual cancer classes is preserved across the 5 subsets. Ad-
itionally, some samples are obtained through multiregion sam-
ling. While the samples from different regions show different
rofiles, there is a risk of being able to guess the class based on
he similarity to the original profile. This is prevented by sample
rouping, where each group (in this case, patient) can only be part
f 1 subset. The splitting is done using the StratifiedGroupK-
old object from scikit-learn v1.4.1, which was also used for ENet
nd RF classifiers. 

For ENet, we used the SGDClassifier with log loss and the
lasticnet penalty. For RF, we used RandomForestClassifier

ith default parameters. For deep learning, we used CNN and
NN3 neural network architectures, as described in Attique et al.

 18 ], as well as our own extended CNN, which we called CNN + . In
ummary, the CNN uses 2 convolutional layers (kernel = 5) and
elU activation, followed by maxpool , batch normalization, and
ropout after each, followed by a flattening and the output layer
ith softmax . The DNN3 uses 3 hidden layers with sizes 600, 300,
nd 150, with batch normalization, dropout, and RelU , except for
he output layer, which uses softmax . The following was not de-
lared in Attique et al. [ 18 ] and therefore has been set to default
yTorch values: maxpool kernel size of 2 and dropout probability
f 0.5. Our CNN + model builds on the CNN, but an additional fully
onnected layer is added after the flattening layer, with a size half
n between the flattening and output layer. The CNN + also uses 2
eparate input channels, 1 for each allele. The full architecture of
NN + is given in Supplementary Fig. S3 . 

Optimization was done using the PyTorch library v2.2.1 [ 21 ], ac-
elerated using CUDA v12.1. Optimization was conducted using
he Adam optimizer with a learning rate of 0.001, weight decay
f 0.01, and batch size of 64. The error is evaluated using cross-
ntropy loss. The training was limited to 1,000 epochs. The train-
ng process was accelerated by an early stopping strategy, where
he minimum loss is recorded. If, after 10 epochs, the training loss
xceeds the existing global minimum, the training stops. To ac-
ommodate for the 2 alleles, we concatenated the major and the
inor CNs into a single vector. 

esults
e illustrate the use of CNSistent on a cancer type classification

ask using 15,072 publicly available SCNA profiles from TCGA [ 9 ]
 n = 10,674), PCAWG [ 12 ] ( n = 2,778), and the TRACERx cohort of
on–small cell lung cancer [ 13 ] ( n = 1,620). 

Where the TCGA and PCAWG datasets overlap (829 samples),
e gave preference to the PCAWG callset. The PCAWG dataset
lacklists 195 low-quality samples, which were removed before
urther processing. The TRACERx dataset consists of 2 parts, pri-

ary tumor samples ( n = 1,428) and primary with metastatic

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf104#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf104#supplementary-data
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Figure 2: Processing of the PCAWG, TRACERx, and TCGA datasets. (A) Histograms of heterozygous CN-coverage before and after gap region filtering. 
Note that the PCAWG and TCGA datasets have almost full CN-coverage after filtering. In contrast, while TRACERx shows a major shift, there are still 
substantial portions missing. (B) Cumulative distribution of samples by heterozygous CN-coverage, with the threshold for filtering given by the z -score. 
The position of the threshold is much higher for the combined dataset compared to the individual ones. (C) Distribution of the missing values in the 
TRACERx dataset along the linear genome (X and Y are not present in the data). Data are mostly missing in regions close to the centromeres and 
telomeres, particularly for chromosomes 1 and 9. (D) Cumulative distribution of GnD for a subset of samples below 1%. TRACERx is not shown as none 
of the samples has hemizygosity below this value. Note the clear slope change around 0.1%, also detected by our knee-point algorithm. (E) Cumulative 
distribution of breakpoint counts for a subset of samples with less than or equal to 25 breakpoints. The curve is almost linear for all datasets, 
demonstrating that there is no clear cutoff value in this region. (F) The result of breakpoint reduction using 11 log-distributed merge distances 
between 1 Kb and 1 Mb. Note that the relationship is proportional—doubling the distance leads to halving the number of resulting segments, as shown 
by the hyperbolic curve. 
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samples ( n = 694). We used the primary sample set in the 502 
samples on which they overlap. This yielded a total set of 14,174 
SCNA profiles that were subjected to CNSistent for preprocess- 
ing and integration. A summary of sample counts is provided in 

Supplementary Table S1 . 

CNSistent segmentation of 14,174 copy number
profiles
We started by imputing any missing data and calculated the sam- 
ple features (see Supplementary Fig. S4 for complete results).
Since SCNA profiles for sex chromosomes were not available in 

the TRACERx cohort, all sex chromosomes were removed from 

further analysis. Before region exclusion, the SCNA profiles cov- 
red on average 98.47%, 96.39%, and 91.18% for PCAWG, TCGA,
nd TRACERx, respectively (Fig. 2 A). When using the UCSC gap re-
ions for exclusion, the CN-coverage rose to 99.62%, 99.89%, and
7.38%. The gap regions of hg19 on autosomes sum to 19.65 Mb,
hich is 6.82% of the total genome. For TCGA and PCAWG, virtu-
lly all the missing segments fell into these gap regions. In TRAC-
Rx, there are regions missing also outside these gap regions, but
ostly on their boundaries (Fig. 2 C). This was likely due to the

equencing method: PCAWG data have been sourced using WGS,
hereas TCGA combines multiple data sources. 
Next, samples with low CN-coverage were removed using the 

 -score–based outlier detection (Methods). Thresholds were cal- 
ulated for each of the datasets separately as well as using the

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf104#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf104#supplementary-data
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Figure 3: Evaluation of multiclass prediction task. (A) Averaged SCNA profiles of the 6 cancer classes considered for classification. (B) Validation 
accuracy of the different models tested across increasing granularity of segmentation. DNN and RF quickly reach maximum accuracy and degrade 
with an increasing number of segments, while the CNN and CNN + architectures increase until ∼1,000 segments, and ENet even increases 
monotonously. Results of training on gene-based CNs for each model are displayed using crosses (the number of genes then gives the number of 
segments). (C) Comparison of training on filtered and unfiltered data. We see that both the train and test accuracy improve after filtering. Additionally, 
we see that the training accuracy increases almost monotonously, while the validation degrades after ∼1,000 segments, likely pointing to overfitting 
on smaller segments. (D) Results of classification across 2 to 27 classes on 2-Mb segments. We see nearly linear degradation of both training and 
testing accuracy, but even for 27 classes, the accuracy is still over 70%. (E) The NSCLC classification task using 2-Mb segments. On the diagonal, the 
models are scored using 5-fold cross-validation on each individual dataset. The remaining values show results of training on 1 full dataset (row) and 
validating on another full dataset (column). We can see that in particular, training on bigger sets of TCGA and TRACERx yields better results on 
PCAWG than training on self. 
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ombined dataset of all samples (Fig. 2 B). For the individual sam-
les, there was only a small set of outliers: 3, 16, and 19 for the
hresholds of 97.82% for PCAWG, 99.83% for TCGA, and 93.51%
or TRACERx, respectively. However, when the combined dataset
as used, 352 samples were below the detected threshold of
6.62%, stemming from the fact that the CN-coverage distribution
f TRACERx significantly differs from the other two. In this case,
ltering each set separately leads to significantly lower removal
ate. Additionally, 1 sample in the PCAWG dataset, SP107557, had
N-coverage of only 57.67% and presumably should have been
lacklisted in the original dataset. 

We also removed samples with few or no copy number alter-
tions. Other authors have used the number of breakpoints [ 9 ]
s evidence for SCNAs, but we did not observe a clear knee-point
n the data (Fig. 2 E), and any threshold would therefore be arbi-
rary. Instead, we used the knee-point detection algorithm on the
nD statistic for samples below 1% GnD to determine the follow-

ng cutoffs (Fig. 2 D): 0.06% for TCGA (745 samples removed) and
.2% for PCAWG (211 samples removed). For TRACERx, all samples
ere retained. The filtering process then leads to the final filtered

ample set of 12,901 samples (see Supplementary Fig. S5 for full
ample distribution). 

We next evaluated the effects of breakpoint merging. Without
ny merging, the whole filtered dataset has 826,910 unique break-
oints (i.e., 1 breakpoint per 3.7 Kb on average). We explored dif-
erent merge distances from 1 Kb to 1 Mb, leading to reductions
etween 24.39% and 99.65% (Fig. 2 F), and selected 1-Mb, 500-Kb,
nd 250-Kb distances, leading to 2,797, 5,569, and 10,797 autoso-
al segments, respectively. To compute all combinations of seg-
entation strategy and datasets efficiently, we made use of CN-

istent’s internal parallelization strategy. Runtime decreased in
 near-linear fashion with the number of compute cores avail-
ble ( Supplementary Fig. S6 ). All segmentation configurations are
isted in Supplementary Table S2 . 

valuating segmentation strategies on a cancer
lassification task
e next set out to explore the effects of different segmentation

trategies on the cancer classification task (see Methods). We pro-
essed the data using the following segmentation strategies: (i)
xed-size segments of 20 Mb, 10 Mb, 5 Mb, 3 Mb, 2 Mb, 1 Mb, 500
b, 250 Kb, and 100 Kb; (ii) whole chromosomes and chromosome
rms; (iii) gene-level CN values based on the ENSEMBL and COS-
IC gene sets; and (iv) breakpoint merging using distance thresh-

lds of 1 Mb, 500 Kb, and 250 Kb. The segment sizes roughly cover
he ranges used by other authors for feature discovery [ 9 ]. 

To our knowledge, the best result to date on the cancer classi-
cation task has been reported on the classification of the top 6
ancer types in the dataset in Attique et al. [ 18 ], with up to 92%
est accuracy on the best model. Using our combined dataset, the
election of the top 6 classes resulted in a set of 5,172 samples
ith the following class labels: lung adenocarcinoma (LUAD, n =
,314), breast invasive carcinoma (BRCA, n = 1,157), lung squa-
ous cell carcinoma (LUSC, n = 996), ovarian cancer (OV, n = 618),

rostate adenocarcinoma (PRAD, n = 563), and kidney renal cell

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf104#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf104#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf104#supplementary-data
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carcinoma (KIRC, n = 513), with their mean profiles displayed in 

Fig. 3 A. 
We only considered segments on autosomes as the sex of the 

patient acts as a confounder, particularly for BRCA, OV, and PRAD.
To evaluate any possible confounding effect of age, we compared 

the number of breakpoints to the age of the patients across the 
cohort ( n = 12,009) and found it to have only a minor effect ( r = 

0.11, Supplementary Fig. S7 ). Similarly, age alone was a poor pre- 
dictor of cancer type, achieving a mean test accuracy on a class- 
balanced one-versus-all linear classifier of 59.03% and a valida- 
tion accuracy for the multiclass linear classifier of 31.78%. 

We compared the DNN3 and CNN architectures of Attique et 
al. [ 18 ], RF, ENet, and our extension of the CNN architecture—
CNN + (Fig. 3 B) —across decreasing segment sizes. On whole chro- 
mosomes, the highest performing models reached a validation ac- 
curacy of ∼80%, and considering the arms separately, validation 

accuracy reached almost ∼86% on the DNN architecture. Increas- 
ing the resolution improved accuracy of the 2 convolutional mod- 
els, which peaked in the region of around 1,000 segments. The best 
validation (mean 5-fold) accuracy of 90.60% was achieved with the 
CNN + at 1-Mb segments, with full the confusion matrix given in 

Supplementary Fig. S8 . We used the 1-Mb segments for the sub- 
sequent tasks, but sizes from 5 Mb to 250 Kb all had validation 

accuracy above 90%, and we would therefore consider all of them 

to be suitable for any further analyses. 
The RF and DNN models, however, peaked around 200 seg- 

ments, and increasing the resolution further decreased the valida- 
tion performance, likely due to overfitting. The only architecture 
that improved monotonously was ENet, where the penalty regu- 
larization seemed to prevent overfitting, but from 20 Mb onward,
it always underperformed compared to the CNN + . Comparing the 
full segmentation with the COSMIC and ENSEMBL gene sets, we 
saw that taking only the CNs for genes performs equivalently to 
creating a segmentation with a similar number of features. Break- 
point merging performed comparably to bins of the same size; for 
example, a 500-Kb merge window showed an accuracy of 90.09%,
while 500-Kb segments showed an accuracy of 90.0%. Similarly,
considering different aggregation strategies for COSMIC and EN- 
SEMBL has not affected the results significantly. For COSMIC, the 
results were as follows: Min: 90.94% Mean: 90.25%, Max: 90.05%.
For ENSEMBL: Min: 87.44%, Mean: 89.92%, Max: 89.54%. Validation 

on a hold-out set or cross-validation has not been conducted by 
the authors, so we only performed our comparisons on the test ac- 
curacies. The best test accuracy (maximum 5-fold) was 92.42% on 

1-Mb segments with the CNN + mode, slightly above the best test
accuracy of Attique et al. [ 18 ] (92%). All the deep learning models
trained within 100 seconds on a desktop GPU. Full training times
are shown in Supplementary Fig. S9 . Full training and test results
are given in the Supplementary Table S3 .

To evaluate the results of filtering, we compared the results 
on filtered (5,161 samples) and unfiltered (5,257 samples) on the 
CNN + model (Fig. 3 C). We saw that both training and testing ac- 
curacy was consistently better in the filtered dataset. The average 
test score improvement was 1.28%. Additionally, we were inter- 
ested in how the CNN + performs for different numbers of classes.
We limited ourselves to classes with at least 100 samples; this 
yielded 27 classes ( Supplementary Fig. S5 ). In Fig. 3 D, it can be 
seen that the accuracy is quite high for all the cases and decreases 
in almost a linear fashion. In the easiest binary classification task,
we saw 94.6% validation accuracy, while the 27-class task reached 

72.69%. 
To demonstrate the potential of integration using CNSistent 

across different datasets, we used the NSCLC classification task,
raining the models on one dataset and validating on another
Fig. 3 E). We see that the accuracies of models trained on a differ-
nt dataset match or sometimes even outperform models trained 

nd validated on the same dataset, with up to 91.46% accuracy
or the TRACERx model applied to PCAWG. We also see that com-
ared to self-training, the models trained on bigger sets (TRAC-
Rx, TCGA) outperform self-training on the small PCAWG model.
ikewise, training on TRACERx slightly outperforms self-training 
n TCGA. The 5-fold cross-validation accuracy on the combined 

ataset was 92.73%, considerably improving on the previous re- 
ult of 84% in Qui et al. [ 19 ]. When training the models individ-
ally, we obtain only 91.21% mean validation accuracy, showing 
hat combining the datasets leads to a 1.52% improvement. 

dentifying commonly altered regions and
utliers
astly, we demonstrate our segment-derived metrics on the 
UAD-LUSC sample set. First, we investigated how the identifi- 
ation of recurrently altered genomic regions is influenced by 
he segmentation strategies using our simple peak detection al- 
orithm (Methods). We found that the regions with the high-
st and lowest peak scores differ between segmentation sizes 
Fig. 4 A), with chr3 being detected mostly in big segments due to a
ide slope on the q-arm, while chr8 is mostly detected in middle

izes due to focal amplification at the end of the p-arm, and on
hr11, there is very narrow peak that becomes most prominent in
maller segmentations. 

Next, we investigated all CN profiles for outliers (Methods). The
ighest NMD between LUAD and LUSC samples is on chromo-
ome 3, where we can see that LUSC has a distinctive, wide peak
n chr 3q (Fig. 4 B), while LUAD is mostly neutral. This pattern is
xtremely well correlated across cohorts. We then calculated the 
utlier score between LUAD and LUSC and used the knee-point
etection to find an outlier threshold ( Supplementary Fig. S10 ),
nding 3 LUAD samples with a LUSC-like pattern (amplification 

f SOX2) and 54 LUSC samples with a neutral LUAD-like pattern
Fig. 4 C). We also observed that most of these samples (58.75%)
ame from the TCGA dataset, while the TRACERx dataset had the
east outliers (15.79%). 

To systematically determine which genes differ significantly 
n their CNs between LUAD and LUSC, we conducted a Mann–

hitney U test with Benjamini–Hochberg correction on the mean 

Ns of the COSMIC genes. Out of 722 genes, 599 had an adjusted
 value below 0.05. The top 5 genes with the most significant
hanges in copy number were all on the q-arm of chr3 (Fig. 4 D).
ll these had an adjusted P value below 10−169 , with SOX2 [ 22 ] be-

ng the most significant at p ≈ 10−187 . The SOX2 gene also had the
ighest mean CN of 7.56. 

Lastly, to validate CNSistent segments outside of the tool, we
sed the 1-Mb segments for phylogeny reconstruction. For this, we
sed MEDICC2 [ 6 ] and applied it to the first patient in the TRAC-
Rx dataset with 3 regions. A CNSistent-produced bar plot of the
ajor and minor CNs and a MEDICC phylogenetic tree are shown

n Fig. 4 E. 

iscussion
e have introduced CNSistent, a new Python-based library for 

rocessing and exploratory data analysis of SCNA profiles and ap-
lied it to the PCAWG, TCGA, and TRACERx datasets. The main
oal of CNSistent is to provide the user with tools for easy data
rocessing, so that SCNA profiles can be jointly used for down-

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf104#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf104#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf104#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf104#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf104#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf104#supplementary-data
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A
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E

B

Figure 4: Analyses of LUAD/LUSC CN profiles. Except for the phylogenetic tree, all plots are produced using CNSistent segment plotting functions. (A) 
The mean CN profiles of the LUSC samples across different segmentations. For each segmentation, the segments with the 3 highest positive (peaks) 
and highest negative (valleys) peak scores are shown. (B) The 2-Mb CN profiles between different cohorts for both LUSC and LUAD, showing strongly 
correlated patterns of selection between the cohorts of the same cancer type. (C) Mean CN profile for LUAD and LUSC with the positions of the top 5 
genes with the most significant changes in copy number. (D) Mean CN profiles of both LUAD and LUSC compared to the outlier samples (samples with 
high NMD in their own type and low NMD in the other type). (E) Example of CN heatmap for major and minor CN values in 3 regions of a single tumor 
together with inferred phylogeny. 
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tream analysis. There are tools available that call CNs from
arious sequencing data and provide related visualizations in
ython—for example, CNVKit [ 23 ] or Segmentum [ 24 ], with many
ore outside Python, with comparison studies done (e.g., by Ma-

ood et al . [ 25 ]). On the analysis side, there are many well-known
ools for detecting regions of interest, particularly GISTIC [ 26 ] and
ISCUT [ 27 ], which take SCNA profiles and combine them, but this

s done internally by the tool and not accessible or controllable
y the user. To the best of our knowledge, the only tool for in-
egrative analysis of SCNA profiles is the web-based CNApp [ 14 ],
hich shares some of the functionality with CNSistent, particu-

arly resegmentation and calculation of profile statistics. However,
NApp is designed for analysis within a web dashboard, while CN-
istent serves as a tool for the integration of data before applica-
ion of downstream tools. We did not fully compare the tooling to
NApp as the hosting was not available at the time of writing. 
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Using the filtered and combined datasets, we compared sev- 
eral segmentation methods in providing features for a cancer- 
type classification task. We observed that the relationship be- 
tween segmentation size and model accuracy is highly model de- 
pendent: the RF model quickly started to overfit, while the ENet 
model improved near-linearly with the number of segments. In 

our best-performing model, segmentations within the region of 5 
Mb to 500 Kb performed quite equivalently and also matched the 
results obtained when classifying based on the hand-picked list of 
COSMIC [ 15 ] cancer genes. We adapted the CNN and DNN3 mod- 
els originally introduced in Attique et al. [ 18 ] and showed superior 
performance. The comparison is, however, limited, since the orig- 
inal model parameters, source code, and source dataset were not 
available at the time of writing this article. All models and the in- 
put dataset used in this study are available online (see Data Avail- 
ability section). The main purpose of the classification task in this 
work was to evaluate different segmentation sizes. We therefore 
assume that better-performing models could still be developed by 
fine-tuning for a particular segmentation or cancer type. 

To investigate whether the results are consistent between co- 
horts, we compared classification between NSCLC cancers in all 3 
datasets and saw that the per-sample accuracy improved by com- 
bining these 3 studies when compared to classification of each of 
them separately. We saw that models trained on one dataset can 

be successfully applied to classify another, sometimes even out- 
performing the source dataset, demonstrating that the classifier 
generalizes well. We also saw that our model trained on the joint 
dataset had a better accuracy than the average of the individual 
models trained on the individual dataset. On the joint dataset, our 
model also considerably outperformed the previous result of Qiu 

et al. [ 19 ]. We therefore conclude that it is worthwhile to aim to 
integrate datasets from heterogeneous sources. 

To show the utility of sample integration in analysis, we investi- 
gated the NSCLC samples using statistical methods. We identified 

chromosome 3 as the region of interest, particularly in the con- 
text of LUSC, with a wide peak in the location of the SOX2 gene, a 
well-known actor in LUSC [ 28 ]. Using gene-based segments, we 
conducted a statistical test to find the most differently altered 

genes between LUSC and LUAD, which are likewise all located 

on chromosome 3. Additionally, we used the NMD score to de- 
tect outlier samples, with our detected outliers showing the se- 
lection pattern of the other cancer, possibly hinting at either mis- 
labeling or co-occurrence of both cancers in the outlier samples 
[ 29 ]. Arguably, these results primarily demonstrate the applica- 
bility of our method and warrant further detailed investigations.
Future work might also focus on developing methods for within- 
sample comparison of segments, as well as between-sample and 

between-type distance calculations. 

Availability of Source Code and
Requirements

� Project name: CNSistent
� Project homepage: https://bitbucket.org/schwarzlab/ 

cnsistent
� Operating system(s): Platform independent
� Programming language: Python
� Other requirements: Python 3.8 or higher
� License: MIT
� RRID: SCR_027025

� Bio.tools ID: cnsistent
DOME Annotations have been deposited in the DOME-ML reg- 
stry [ 30 ]. A Snapshot of the CNSistent Bitbucket is available in
oftware Heritage [ 31 ]. 

dditional Files
upplementary Fig. S1. An example of the breakpoint clustering 
ethod. 

upplementary Fig. S2. An example of the knee-point detection 

ethod. 
upplementary Fig. S3. A schema of the CNN + architecture. 
upplementary Fig. S4. Cumulative plots of calculated features 
er dataset. 
upplementary Fig. S5. Bar plot of the number of samples per
ancer type. 
upplementary Fig. S6. Runtime of the individual CNSistent com- 
ands across various numbers of cores. 

upplementary Fig. S7. Relationship between the number of 
reakpoints and the age of patients. 
upplementary Fig. S8. A confusion matrix in the classification 

f 6 cancer types. 
upplementary Fig. S9. Training time across model types and seg-
ent counts. 

upplementary Fig. S10. Cumulative plot of samples based on 

heir outlier score. 
upplementary Table S1. Sample count per source. 
upplementary Table S2. Segmentation configurations used. 
upplementary Table S3. Results of training of the individual
odels across segmentation types. 

bbreviations
I: allelic imbalance; BRCA: breast invasive carcinoma; CN: copy 
umber; CNN: convolutional neural network; DNN: deep neu- 
al network; ENet: elastic Net; GnD: genome not diploid; ICGC:
nternational Cancer Genome Consortium; KIRC: kidney renal 
ell carcinoma; LoH: loss of heterozygosity; LUAD: lung ade- 
ocarcinoma; LUSC: lung squamous cell carcinoma; NMD: nor- 
alized Manhattan distance; NSCLC: non–small cell lung car- 

inoma; OV: ovarian cancer; PCAWG: Pan-Cancer Analysis of 
hole Genomes; PRAD: prostate adenocarcinoma; PS: peak score; 

F: random forest; SCNA: somatic copy-number alteration; SNP: 
ingle-nucleotide polymorphism; TCGA: The Cancer Genome At- 
as; TRACERx: TRAcking Cancer Evolution through therapy (Rx); 

ES: whole-exome sequencing; WGD: whole-genome doubling; 
GS: whole-genome sequencing. 
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