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Abstract 

Monitoring T cell clonality in human tissues provides important insights into adaptive immune 

response mechanisms in cancer, infectious diseases, and autoimmunity. However, retrieving VDJ 

sequence information from single-cell and spatial transcriptomics workflows with 3’-barcoding of 

cDNA remains resource-intensive or requires specialized sequencing equipment. Here, we 

introduce circVDJ-seq for simplified and cost-efficient TCR profiling from 3’-directed workflows 

such as single-nucleus RNA sequencing, RNA+ATAC multi-omics, and spatial transcriptomics. 

Application of circVDJ-seq to freshly resected neuroblastomas, and post-mortem lymph nodes 

affected by pneumonia or COVID-19 reveals distinct immune microenvironments and T cell 

clonality patterns, highlighting broad utility across diverse clinical contexts. 
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Background 

Antigen-specific T cells are key mediators of the adaptive immune response and play a central 

role in autoimmune disorders, cancer, and infectious disease. T cell antigen specificity and clonal 

identity are determined by the T cell receptor (TCR), which is composed of either an α/β or a γ/δ 

heterodimer, with α/β being the most common form of TCR found on CD4+ helper and CD8+ 

cytotoxic T cells. The highly diverse repertoire of reactive T cells is generated by somatic 

recombination of the variable (V), diversity (D), and joining (J) TCR gene segments, which together 

define the sequence and antigen binding specificity of the Complementarity-Determining Region 

3 (CDR3) that directly contacts the antigen presented by the Major Histocompatibility Complex 

(MHC) [1]. In humans, the TCRA locus includes approximately 50 functional Vα and 61 Jα gene 

segments, while the TCRB locus contains 52 Vβ, 2 Dβ, and 13 Jβ gene segments. During 

recombination, the CDR3 sequence is further diversified by random nucleotide insertions or 

deletions at the junctions between gene segments, leading to an estimated diversity of 1015 to 1020 

possible TCR α/β combinations [2,3].  

Sequencing based TCR profiling methods can determine individual T-cell repertoires at single-cell 

resolution and enable the monitoring of T cell clonotype dynamics in various disease settings, and 

advances in single-cell multi-omics analysis have enabled a more comprehensive understanding 

of T cell biology. Particularly, paired TCR sequencing with mRNA expression within the same cell 

has established a direct correlation between TCR repertoire and cellular phenotypes, illuminating 

T cell development and function [4–6]. Commonly used approaches for single-cell TCR profiling 

employ 5’-barcoded scRNA-seq strategies, as 3’-directed scRNA-seq approaches fail to recover 

the VDJ information located in the first 500 nucleotides of TCR transcripts [5]. At the same time, 

advanced multi-omics approaches such as paired RNA and ATAC sequencing, or spatial 

transcriptomics workflows such as Visium (10X Genomics) or Slide-Seq [7], are based on 3’-

barcoding of transcripts and therefore lose VDJ information during fragmentation-based library 

preparation. Nevertheless, information on clonotypic transcriptional regulation and lymphocyte 

clonality within human tissues remains highly valuable as it provides important insights into 

adaptive immune response mechanisms and enables the identification and characterization of 

antigen-specific T cell clones, which can inform the development of targeted therapeutics [8].  

Several recent studies have introduced modified workflows to recover VDJ sequence information 

from 3’-barcoded single-cell and spatial transcriptomics workflows [8–12]. However, these 

methods are resource-intensive as they rely on the amplification of TCRα and TCRβ sequences 

by multiplexed PCR with hundreds of primers that target all possible V segments, sometimes 
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combined with prior hybridization capture of TCRα and TCRβ cDNA molecules, and often require 

specialized equipment for long-read sequencing. Here, we introduce circVDJ-seq, a simplified 

workflow for paired full-length TCR sequencing from 3’-barcoded cDNA that massively reduces 

the number of required gene-specific primers and obviates the need for specialized sequencing 

equipment. We show that circVDJ-seq efficiently recovers T cell clonotypes from 3’-barcoded 

cDNA libraries and is compatible with the RNA+ATAC Multiome and Visium assays (10X 

Genomics). The identified TCR sequences and clonotype frequencies are highly concordant with 

results obtained from the commonly used 5’-directed Immuneprofiling v2 workflow (5’IPv2, 10X 

Genomics). We demonstrate that circVDJ-seq can be used to spatially resolve T cell clonotypes 

even in challenging tissue samples such as autopsy-derived lymph nodes from non-COVID-19 

pneumonia and COVID-19 patients. We finally reveal contrasting tumor immune 

microenvironments in two freshly resected high- and low-risk neuroblastoma patient samples (HR-

NB / LR-NB), with exclusion of a suppressive immune environment from the tumor compartment 

in HR-NB, and prominent myeloid infiltration in LR-NB, highlighting the broad applicability of 

circVDJ-seq in diverse clinical settings. 

Results 

circVDJ-seq simplifies TCR profiling from 3’-barcoded cDNA libraries 

Here we present circVDJ-seq, a simple and cost-efficient workflow for TCR profiling from 3’-

barcoded single-cell cDNA libraries that is independent of large oligonucleotide panels for PCR or 

hybridization capture, and does not require prior knowledge of all possible V gene sequences, or 

specialized sequencing equipment. cDNA is first tagged with homologous overhangs to facilitate 

circularization via Gibson assembly [18] and generate a cDNA library in which the VDJ region is 

juxtaposed to the unique molecular identifier (UMI) and cell barcode at the 3’ end of cDNA 

molecules (Fig. 1A). A VDJ library is then amplified via nested PCR using primers against the 

TCRa and TCRb constant and 3'UTR regions (Fig. 1A, B; Supplementary Table 1). Subsequent 

library preparation steps, including fragmentation, end repair, A-tailing, adapter ligation, and Index 

PCR, follow the 5’IPv2/3 TCR library preparation workflow and can be performed with the 

commercial assay kit and adjusted index primers (Fig. 1C; Supplementary Table 1).   

To validate the approach, we created triplicate circVDJ-seq libraries from archived cDNA that had 

previously been generated with the 3’GEX v3.1 assay (10X Genomics) from PBMCs of a healthy 

donor (Fig. 1B, C). The circVDJ read structure mirrors the outputs obtained from the 5’IPv2/3 

assay. We were therefore able to readily process circVDJ-seq data with the VDJ CellRanger 

pipeline after replacing the cell barcode (CBC) whitelist with barcodes from the 3’GEX v3.1 assay. 
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The resulting output data was further processed with Dandelion for improved VDJ contig 

annotation [17]. On average, 93% of circVDJ sequence reads contained a valid CBC, and 83% of 

reads mapped to a VDJ gene (Supplementary Table 2). 73% and 84% of cells contained a TCRa 

or TCRb contig, respectively, yielding an average of 57% of cells with paired clonotype 

information. CBCs, CDR3 sequences, and CBC+CDR3 combinations strongly overlapped 

between circVDJ replicates (Fig. 1D). While circVDJ-seq data can readily be processed with other 

tools, combining CellRanger and Dandelion resulted in better reproducibility of technical replicates 

than processing the data with CellRanger alone, MiXCR [19], or TRUST4 [20] (Supplementary 
Fig. 1). Importantly, clonotypes determined by circVDJ replicates were readily recovered in 

relevant T cell clusters when projecting the 3’ gene expression data onto a PBMC reference [21] 

(Fig. 1E), and clonotype frequencies were highly consistent across technical replicates (Fig. 1F). 

circVDJ-seq reliably detects TCR clonotypes from single-cells and nuclei in multi-
omics assays 

Linking TCR sequence and gene expression states with information about accessible chromatin 

regions in the same cells could provide crucial insights into the epigenetic regulation of T cell 

development and function. We therefore processed PBMCs from the same donor with the 

ATAC+RNA Multiome workflow (MO) to test to what extent clonotype information could be 

recovered from the isolated cell nuclei required for that assay. MO circVDJ-seq sequence data 

were processed with CellRanger updated for the MO CBC whitelist, followed by Dandelion [17]. 

Reads in the MO-derived libraries contained about 85% valid CBCs, about 74% could be mapped 

to a VDJ gene, (Supplementary Table 2), and resulting CBC+CDR3 combinations showed very 

high overlap in triplicate circVDJ-seq libraries (Supplementary Fig. 2). To further benchmark the 

results obtained from 3’GEX v3.1 or the MO assay against an established 5’-directed workflow for 

single-cell TCR profiling, we next used the 5’IPv2 assay to generate a reference dataset using 

PBMCs from the same donor. Upon direct comparison, 5’IPv2 and circVDJ-seq from 3’GEX 

efficiently recovered T cell clonotype information, with circVDJ-seq nearly matching overall 

clonotype recovery of the 5’IPv2 kit (87% vs 97%) (Fig. 2A). At the same time, the number of T 

cells with assigned clonotypes was reduced to 36% in the MO assay where we also obtained 

fewer cells with paired clonotype information due to a lower recovery of TCRa contigs, most likely 

caused by reduced transcript abundance in single nuclei compared to whole cells. 

Earlier studies of T cell receptor repertoires have shown that the same TCRb chain can be paired 

with different TCRa chains in the same individual [22,23], and that two TCRa chains can be co-

expressed in the same cell [24,25]. In our own data, we found only rare instances of such 
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promiscuous pairing (below 5%; Supplementary Fig. 3). For fair comparison of clonotype 

recovery between different assays, we therefore decided to impute missing TCRa or TCRb chains 

from the most frequent pairing observed in our data. Although distinct populations of cells from 

the same donor were processed in each experiment, 4% of all clonotypes identified by 5’IPv2 were 

also found by circVDJ-seq from 3’-directed scRNA-seq after merging technical replicates, and 

1.5% were found by circVDJ-seq from the MO assay (Fig. 2B). However, these recurring 

clonotypes represented 34% and 26% of cells, as 19 and 15 of the top 20 most abundant clones 

detected in the 5’IPv2 workflow were also recovered by circVDJ-seq from 3’GEX or MO cDNA, 

respectively. Consequently, the relative abundance of individual clones was highly correlated 

between circVDJ and 5’IPv2 (R=0.93, and R=0.78, respectively; Fig. 2C, D; Supplementary Fig. 
4), and the associated gene expression data reproducibly identified expanded clones as CD8 

effector memory T cells. Interestingly, clonotype detection by circVDJ-seq showed similar 

efficiency in two unrelated PBMC samples that underwent a mild PFA fixation prior to MO 

processing as used in DOGMA-seq [26], highlighting the potential for parallel high-throughput TCR 

profiling alongside four separate genomic modalities at the single-cell level (Supplementary Fig. 
5).  

Slight variations in individual clonotype abundances observed between MO circVDJ-seq and 

5’IPv2 measurements from the same donor could be caused to varying degrees by fluctuations 

during multiple sub-sampling of cells, differences in the source material (whole cells vs nuclei), or 

by inaccuracy of the circVDJ-seq workflow itself. To exclude the latter possibility, we next validated 

the results from MO circVDJ-seq using an alternative approach. To this end, we directly subjected 

MO cDNA to long read sequencing using MAS-ISO-seq without prior enrichment or amplification 

of VDJ sequences [27]. The overall number of detected clonotypes was reduced in MAS-ISO-seq 

compared to circVDJ-seq, which was expected since circVDJ-seq is a targeted approach and 

PacBio sequencing has limited sequencing depth (Fig. 2E). Importantly, however, clonotype 

abundances were highly correlated (R=0.84, p<2.2e-16) between both methods (Fig. 2F, 
Supplementary Fig. 4, Supplementary Fig. 6). Together, these data indicate that circVDJ-seq 

can faithfully recover TCR sequence information from 3’-barcoded cDNA libraries generated from 

whole cells, or from workflows that use single nuclei as starting material, such as the MO assay. 

Spatial circVDJ-seq detects T cell clonal expansion in autopsy-derived tissue  

We next explored the utility of circVDJ-seq for spatial T cell clonotype mapping in autopsy-derived 

tissue samples. We recently identified a CCL21 to CCR7 signaling axis linked to the accumulation 

of exhausted T cells in ectopic lymphoid structures during prolonged lung immunopathology in 
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COVID-19 by applying Visium gene expression profiling to lung and lymph node samples from 

deceased patients [13]. We generated triplicate circVDJ-seq libraries from Visium cDNA of a 

chronic COVID-19 post mortem lung sample from the same cohort that showed prominent immune 

cell infiltration and fibrotic areas with exacerbated collagen expression. We processed circVDJ-

seq sequence reads with CellRanger VDJ after exchanging the CBC whitelist with Visium spot 

barcodes. Interestingly, although overall mapping statistics appeared similar to data from single-

cells or nuclei (Supplementary Table 2), CellRanger VDJ did not report any spots with a 

successfully reconstructed TCR chain. This was potentially caused by the lower number of spot 

barcodes compared to single-cell barcodes, which might interfere with effective UMI thresholding. 

However, further processing of the raw CellRanger output with Dandelion [17] efficiently 

reconstructed TCRa and TCRb chains together with their spatial addresses (Fig. 3A, B). 

The identified T cell clonotypes were highly concordant between technical replicates (Fig. 3C), 

and the proportion of spots with detected TCR clones per cluster correlated with TCR UMI counts 

in the corresponding Visium GEX data (Fig. 3D). This analysis revealed the highest T cell 

abundance in plasma cell and alveolar spots, and in close proximity to stroma cluster 7 and cluster 

8 spots (Fig. 3D, E), as calculated by relative co-occurrence probability between spots with TCR 

and spots of other clusters within a certain radius [28]. circVDJ-seq further revealed substantial 

expansion of a single clonotype with TCRb CDR3 amino acid sequence CASSHENQPQHF (Fig. 
3F). We previously observed T cell activation markers in COVID-19 lung draining lymph nodes 

(dLNs) with no signs of active viral infection, suggesting that T cell activation persists in dLNs after 

the infection has been resolved [13]. We therefore expanded our circVDJ-seq analysis to archived 

Visium cDNA from an acute, chronic, and prolonged COVID-19, and a non-COVID-19 pneumonia 

dLN from the same cohort [13], to determine the respective extent of clonal T cell expansion (Fig. 
4A, B). Cluster-wise clonotype detection again strongly correlated with TCR gene expression 

UMIs in all four samples (Fig. 4C), and identified TCR clones were most abundant in the T cell 

zone surrounding B cell follicles (Fig. 4B, C). At the same time, we observed very low levels of 

clonal expansion in COVID-19 LNs (Fig. 4D). In contrast, the non-COVID-19 control sample 

showed very pronounced clonal T cell expansion (Fig. 4D), potentially caused by non-COVID-19 

pneumonia and a possible squamous cell carcinoma lymph node metastasis of this donor, as 

suggested by concomitant keratin expression. Together, these data indicated that circVDJ-seq 

can efficiently retrieve contrasting clonotype dynamics even from challenging samples such as 

autopsy derived tissue. 
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Spatial circVDJ-seq reveals differential T-Cell infiltration in high- and low-risk 
neuroblastoma 

To further explore its clinical utility, we next applied circVDJ-seq to freshly resected neuroblastoma 

samples. Neuroblastomas are neural crest cell-derived pediatric tumors and represent the third 

most common type of cancer in children. NB cases can be categorized into high-, middle, and low 

risk disease based on patient age, histology, and genetic alterations like DNA ploidy and N-myc 

amplification [29]. Stage IVs neuroblastomas constitute a special group of low-risk tumors that are 

disseminated but often spontaneously regress. While patients with low-risk disease have a very 

good prognosis, the 5-year survival rate of high-risk patients remains at ~50%. To test if circVDJ-

seq can reveal differences in the immune tumor microenvironment between distinct NB risk 

groups, we first generated Visium libraries from a stage IV high-risk (HR) and a stage IVs low-risk 

(LR) neuroblastoma, both without MYCN amplification.  

Joint analysis of spatial gene expression revealed four tumor cell clusters and five stroma cell 

clusters with differential enrichment in the LR- and HR-NB sample (Fig. 5A-C). LR-NB tumor 

clusters 0, 1 and 3 showed high expression of the known low-risk markers PRPH and NRCAM 

[30,31] and several genes associated with favorable prognosis were additionally highly expressed 

in LR-NB cluster 3, including CCNL2, WSB1, PCBP4, and HAND2-AS1 [32–37]. In contrast, the 

predominant HR-NB tumor cluster 2 showed downregulation of neuronal differentiation markers, 

low levels of PLXNA4 and high expression of sympathetic neuropeptide NPY and NEAT1, which 

have all been linked to poor prognosis [38–41]. 

Besides differences in tumor cell states, both samples also displayed substantial differences in 

TME composition. LR-NB showed higher abundance of cluster 4 with high expression of CD74, 

APOE and APOC1, reflecting immune cell infiltration [42,43]. At the same time, immune cluster 4 

spots in HR-NB showed higher expression of CD163, TGFB, CSF1R and VEGFB, indicating the 

presence of immunosuppressive tumor-associated M2 macrophages (Fig. 5D). Stromal cluster 5 

was found in both LR- and HR-NB and contained markers of tumor associated fibroblasts (CAFs) 

SPARC and IGFBP7  [44] [45–47], but with higher expression of the cancer-associated fibroblast-

secreted extracellular matrix (ECM) glycoprotein IGFBP7 in HR-NB (Fig. 5D). Stromal clusters 6 

and 8 were strongly enriched in the HR-NB sample. Myeloid makers and higher levels of 

mitochondrial genes in cluster 6 might point towards metabolic stress of intratumoral myeloid cells 

[48], while cluster 8 showed signs of stress response and inflammation in a reactive stroma and 

high levels of MT2A indicative of CAFs linked to disease progression and poor prognosis [49,50]. 

Taken together, this analysis revealed substantial differences in tumor cell state and 
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microenvironment, with a less aggressive cancer state and enhanced immune infiltration in LR-

NB, and signs of immunosuppression, inflammatory stress and CAFs in the HR-NB patient 

sample.  

We next generated duplicate circVDJ-seq libraries from each sample and processed the 

sequenced reads with CellRanger VDJ and Dandelion. This analysis revealed vastly different 

levels of T cell clonotypes in the HR- and LR-NB samples with 116 and 16 identified T cell clones, 

respectively (Fig. 5A; F). The number of spots that contain T cell clones in HR-NB strongly 

correlated with TCRab UMI counts in individual gene expression clusters (Fig. 5E), showing the 

highest enrichment in blood vessels and immune cluster 4. circVDJ-seq revealed substantial 

differences in cell type composition of immune cluster 4 between the LR-NB and HR-NB patient 

sample, with strongly elevated T cell counts and clonal amplification in HR-NB compared to low T 

cell counts in LR-NB (Fig. 5E, F). In the HR-NB sample, cluster 4 spots mostly co-occurred with 

blood vessels, other immune cluster 4 spots, and stromal spots, but were mostly excluded from 

the vicinity of the predominant HR-NB tumor cluster 2 (Fig. 5G, top left panel). The same 

exclusion from the HR-NB tumor area was also observed when the analysis was centered on all 

spots that include a T cell clone (5G, top right panel). Conversely, in the LR-NB sample immune 

cluster 4 spots were not excluded from the LR-enriched tumor clusters 0 and 1, but appeared 

more distant from LR-NB tumor cluster 3. However, centering the analysis on the few spots that 

contain a T cell clone showed no spatial exclusion from the tumor area in general. Taken together, 

these analyses indicated substantial differences in the immune microenvironments of the HR- and 

LR-NB sample, with a more pronounced myeloid immune infiltration in LR-NB, and a higher 

abundance of amplifying T cells in HR-NB, which remained largely excluded from the tumor area 

and were accompanied by immunosuppressive M2 macrophages and signs of a stressed reactive 

stroma.  

Discussion 

TCR profiling provides essential insights into adaptive immunity, informing diagnosis, prognosis, 

and therapeutic approaches in cancer, infection, and autoimmune diseases. Here, we introduced 

circVDJ-seq, a streamlined and cost-efficient method for comprehensive TCR clonotype analysis 

from widely used 3'-barcoded transcriptomics assays. Unlike existing methods requiring complex 

primer sets or costly sequencing technologies, circVDJ-seq simplifies clonotype retrieval through 

cDNA circularization and amplification of conserved TCR constant regions. This reduces reagent 

and sequencing costs, but more importantly also eliminates inherent biases of the multiplexed 

PCR reaction that may lead to uneven amplification of different TCR clones [51]. In addition, 
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circVDJ-seq can be applied to species with inaccurate or incomplete genome annotations of the 

TCR variable genes. 

We show that circVDJ-seq accurately recovers TCR sequence information encoded in the cDNA 

libraries that serve as input material, evidenced by highly correlating results from technical 

circVDJ-seq replicates, by parallel long-read sequencing of the original cDNA template, and by 5’-

directed TCR profiling of PBMCs from the same donor. While circVDJ-seq recovers clonotypes 

efficiently, sensitivity depends heavily on the quality of the initial cDNA libraries, emphasizing the 

importance of optimal sample preparation protocols. Besides timely acquisition and processing of 

biological samples, the underlying cDNA amplification method needs to amplify a full-length cDNA 

molecule, for instance via a template switch mechanism, with workflows that use random 

hexamers for second strand priming leading to shortened cDNA molecules that lack complete VDJ 

information.  

While a 5’-directed strategy will provide the highest sensitivity for paired clonotype identification 

due to fewer library preparation steps, circVDJ-seq can efficiently reconstruct the clonotype 

composition of archived cDNA generated with 3’-directed scRNA-seq protocols, or from inherently 

3’-directed assays such as the ATAC+RNA MO workflow. Our results from MO circVDJ-seq also 

show that TCR clonotype information can be retrieved from single nuclei. This enables the 

identification of the most abundant TCR clones, albeit with lower proportion of a chains and a 

reduced overall number of recovered clonotypes owing to the lower number of captured mRNA 

molecules in nuclei compared to whole cells.  Nevertheless, single nucleus RNAseq has been the 

method of choice for a large range of biological samples that are collected via snap freezing, e.g. 

during surgery, with circVDJ-seq enabling the retrospective analysis of clonal T cell amplification 

in such samples.  

Similarly, circVDJ-seq can be combined with any spatial transcriptomics method that is based on 

polyA-capture of mRNAs and template switching, such as Visium, Slide-seq [52,53] or Stereo-seq 

[54]. Using the Visium workflow for initial cDNA library generation we demonstrated that circVDJ-

seq can provide important insights into T cell biology. Our spatial circVDJ-seq analysis identified 

distinct immune landscapes in neuroblastoma subtypes, with notable exclusion of T cells from 

tumor compartments in high-risk disease, suggesting the presence of immunosuppressive 

microenvironments previously documented in aggressive pediatric cancers. This observation is 

also consistent with recent spatial transcriptomics studies on high-risk neuroblastoma that have 

shown spatial compartmentalization with malignant tumor cells often spatially segregated from 

immune cells [48].  
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We furthermore observed enhanced clonal amplification in lung draining lymph nodes from 

cancer-associated pneumonia compared to prolonged COVID-19, illustrating the utility of circVDJ-

seq as a versatile tool for TCR profiling in various tissue contexts including post-mortem autopsy 

material, which was especially encouraging. Here, the integrity of the starting material is of 

particular importance, since degradation of mRNA molecules will make TCR information 

inaccessible. Timely tissue processing and the testing of RNA integrity are therefore advisable in 

this context. The examples shown here are based on standard Visium with 50µm spot diameter 

and corresponding to multiple cells per spot. However, newer workflows such as STOMICS or 

Visium HD 3’ have reached true single-cell resolution combined with enhanced mRNA capture 

efficiency, and circVDJ-seq can be readily applied to those workflows.  

Conclusions 

circVDJ-seq is a simple and robust assay for TCR profiling from 3’barcoded cDNA libraries. It is 

broadly applicable to single-cell multi omics workflows as well as spatial transcriptomics and does 

not require large pools of PCR primers, capture oligos, or specialized long-read sequencing 

equipment, enabling easier access to single-cell and spatial TCR repertoire profiling. We envision 

that circVDJ-seq will facilitate widespread and cost-effective TCR profiling across diverse single-

cell and spatial transcriptomics platforms and clinical contexts. 

Methods 

Patient recruitment and sample collection 

The PBMCs, lung and lung draining lymph node (dLN) samples included in this study were 

collected in the Department of Neuropathology of Charité - Universitätsmedizin Berlin as part of 

the COVID-19 autopsy Biobank. Donor identities were encoded at the hospital before sharing for 

sample processing or data analysis. All COVID-19 donors are part of the previously published 

cohort in [13]. All COVID-19 donors tested positive for COVID-19 in oropharyngeal swabs at the 

time of hospital admission. The Neuroblastoma samples were collected during surgical resections 

at the University Hospital Cologne. All relevant characteristics and clinical information of the 

donors are presented in Supplementary Table 2.  

Generation of 3’GEX single-cell RNA-seq libraries from human PBMCs 

Single cell capturing and library construction were performed with the Chromium Next GEM 

Single-cell 3ʹ Reagent Kit v3.1 (10X Genomics) according to the manufacturer’s instructions. 

Briefly, a droplet emulsion targeting 10,000 cells was generated in a microfluidic Next GEM Chip 
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G, with each droplet containing a single cell and 10X chemistry for cell lysis, 3’-barcoding, and 

reverse transcription of released mRNA. The purified cDNA was then amplified using PCR. 1/4th 

of the cDNA library was subjected to standard library preparation and sequencing on a NovaSeq 

6000 instrument (Illumina, USA). 

Generation of 5’GEX single-cell RNA-seq libraries from human PBMCs 

Single cell capturing and library construction were performed with the Chromium Next GEM 

Single-cell 5' Kit v2 (10X Genomics) according to the manufacturer’s instructions. In short, a 

droplet emulsion targeting 10,000 cells was generated in a microfluidic Next GEM Chip K, with 

each droplet containing a single cell and 10X chemistry for cell lysis, 5’-barcoding and reverse 

transcription of released mRNA. The purified cDNA was then amplified using PCR. 1/4th of the 

cDNA library was subjected to GEX and TCR library preparation, respectively, followed by 

sequencing on a NovaSeq 6000 instrument (Illumina, USA). 

Generation of single-cell Multiome ATAC+RNA libraries from human PBMCs 

Single nuclei were isolated from PBMCs as described in the demonstrated protocol CG000365 

Rev C (Nuclei Isolation for Single-cell Multiome ATAC + Gene Expression Sequencing, 10X 

Genomics). Isolated nuclei were then processed with the Chromium Single-cell Multiome ATAC + 

Gene Expression v1 assay (10X Genomics) according to the manufacturer’s instructions. In short, 

isolated nuclei were transposed in bulk solution, followed by partitioning into a droplet emulsion 

using a microfluidic chip, with each droplet containing a single cell and 10X chemistry for nuclear 

lysis, 3’-barcoding, and reverse transcription of released mRNA and indexing of transposed DNA. 

Both ATAC and gene expression (GEX) libraries were then generated from the same pool of pre-

amplified transposed DNA/cDNA and subsequently sequenced on a NovaSeq 6000 instrument 

(Illumina, USA). 

Fixed whole-cell 10× Genomics Multiome experiments were performed as previously described 

for DOGMA-seq [14]. Briefly, cells were fixed in 0.1 % formaldehyde for 5 min at room temperature, 

quenched with 0.125M glycine, and permeabilized for 3 min on ice in lysis buffer (10 mM Tris-HCl 

pH 7.4, 10 mM NaCl, 3 mM MgCl₂, 0.1 % NP-40, 1 % BSA, 1 mM DTT, 1 U µL⁻¹ RNase inhibitor). 

Cells were then washed three times in 1 mL of wash buffer (same composition as lysis buffer but 

without NP-40). After centrifugation for 5 min at 500 × g, the supernatant was removed, and the 

cells were resuspended in 1× Diluted Nuclei Buffer (10× Genomics). Permeabilized cells were 

processed using the Chromium Next GEM Single-cell Multiome ATAC + Gene Expression 

workflow (10× Genomics, CG000338-Rev E) with the following modification. After SPRI cleanup 
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of the pre-amplification PCR product, beads were eluted in 100 µL EB buffer instead of 140 µL. 

From this eluate, 25 µL were used for ATAC-seq library construction, and 35 µL were used for 

cDNA amplification. 

Spatial transcriptomics 

Visualization of gene expression in lung tissue was performed using 10× Visium spatial gene 

expression kit (10× Genomics) following the manufacturer’s protocol. Briefly, control and COVID-

19 lung samples from donors categorized based on disease durations were cut into 10 μm 

sections using an MH560 cryotome (ThermoFisher, Waltham, Massachusetts, USA), and 

mounted on 10X Visium slides, which were pre-cooled to −20 °C. The sections were fixed in pre-

chilled methanol for 30 min, stained with CD45-AF647, CD31-AF594 and DAPI for 30 min and 

imaged using an LSM 880 confocal microscope (Zeiss). The sections were then permeabilized for 

10 min and the captured mRNA was reverse transcribed and spatially 3’-barcoded followed by 

cDNA library amplification. Short-read sequencing libraries were constructed from 1/4th of the 

cDNA using the 10x Genomics Visium Spatial Gene Expression 3’ Library Construction V1 Kit. 

Libraries were sequenced on a NovaSeq 6000 instrument (Illumina, USA). Frames around the 

capture area on the Visium slide were aligned manually and spots covering the tissue were 

manually selected based on the immunofluorescence staining, using Loupe Browser 5.1.0 

software (10× Genomics). Sequencing data was mapped to GRCh38-2020-A reference 

transcriptome using the Space Ranger software (version 1.3.0, 10× genomics) to derive a feature 

spot-barcode expression matrix. 

Generation of cirVDJseq libraries from 3’-barcoded cDNA 

Homologous ends for Gibson assembly (TCRGOT_1 and TCRGOT_12; Supplementary Table 
S1) were added to 10-15ng of 3’-barcoded cDNA through PCR using the KAPA HiFi HotStart 

ReadyMix PCR Kit with the following temperature cycle: 95°C for 3 min, five cycles of 98°C for 20 

s, 65°C for 30 s, 72°C for 2 min, and final extension at 72°C for 5 min. Amplified cDNA was purified 

using 0.8X AMPure XP beads and eluted in 20 μL EB. Circularization was carried out at 50°C for 

1 h with NEBuilder® HiFi DNA Assembly Master Mix in a 200 μL reaction (1x CutSmart Buffer) 

followed by 0.9X AMPure XP bead clean up and elution in 20 μL EB. Remaining linear DNA was 

removed by incubation with 6U Lambda exonuclease at 37°C for 30 min, followed by inactivation 

at 75°C for 10 min. Circularized cDNA was purified using 0.8X AMPure XP beads and eluted in 

20µl EB. Next, nested PCR was performed with primers targeting the 3’ UTR and constant regions 

of TCR α and β chains (Supplementary Table S1). PCR conditions for the first amplification (12-

15 cycles) were: 95°C for 3 min, 98°C for 20 s, 62°C for 30 s, and 72°C for 1 min, followed by a 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 18, 2025. ; https://doi.org/10.1101/2025.09.16.675546doi: bioRxiv preprint 

https://doi.org/10.1101/2025.09.16.675546
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

final extension at 72°C for 1 min. Amplified products were purified using 0.8X AMPure XP beads. 

A second amplification (10 cycles) used the same conditions, followed by purification and 

concentration with 0.9X AMPure XP beads. Successful VDJ amplification was assessed using the 

Agilent 4200 TapeStation High Sensitivity DNA assay and quantified by Qubit dsDNA HS assay. 

2-3ng of amplified VDJ cDNA was used to generate final circVDJ-seq libraries using the library 

construction kit from 10X Genomics (PN1000190). Briefly, VDJ cDNA was subjected to enzymatic 

fragmentation, end-repair, and A-tailing at 32°C for 2 minutes followed by heat inactivation at 65°C 

for 30 minutes. Subsequently, adapter ligation was carried out by incubating the sample with 

ligation buffer, adapter oligos, and DNA ligase at 20°C for 15 minutes. The ligated products were 

purified using a 0.8X SPRIselect bead cleanup. Indexed amplification was performed using 

indexing primers shown in Supplementary Table 1, with cycling conditions of 98°C for 45 

seconds; 8 cycles of 98°C for 20 seconds, 54°C for 30 seconds, 72°C for 20 seconds; followed by 

a final extension at 72°C for 1 minute. Post-PCR products were cleaned with 0.9X SPRIselect 

beads and eluted in elution buffer. Final libraries were assessed using the Agilent 4200 

TapeStation High Sensitivity DNA assay and quantified by Qubit dsDNA HS assay. In addition, 

libraries were quantified using qPCR and sequenced with a NextSeq 550 System Mid-Output Kit 

with read configuration 90–28–10-10 using custom sequencing primers indicated in 

Supplementary Table 1.  

Primer Design for Multiplex PCR 

Primers targeting the 3’ UTR and constant regions of TCR α and β chains were designed to 

facilitate the detection of rearranged TCR genes post-cDNA circularization. Sequences for human 

TRAC, TRBC1, and TRBC2 genes were obtained from the IMGT/GENE-DB database. Primer3 

was used for primer selection. 

Single-cell and spatial transcriptomics data analysis 

Due to the involvement of multiple collaborating groups, single-cell, Multiome or Visium gene 

expression and/or chromatin accessibility data were processed with different versions of 

CellRanger or SpaceRanger against the GRCh38 reference genome, as summarized in the 

following table: 

material sample(s) / method program (version) command used 
PBMC 5’IP v2  CellRanger v6.1.2 CellRanger multi 

 3’ CellRanger v6.1.1 CellRanger multi 
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 MO CellRanger-arc 

v2.0.0 

CellRanger-arc 

count 

 MO + PFA CellRanger-arc 

v2.0.2 

CellRanger-arc 

count 

neuroblastoma HR + LR SpaceRanger v1.3.0 SpaceRanger 

count 

lung tissue chronic COVID-19 SpaceRanger v1.3.1 SpaceRanger 

count 

lymph node control/acute/chronic/prolonged SpaceRanger v1.3.1 SpaceRanger 

count 

 

PBMC gene expression data was analyzed in R (v4.3.2) using Seurat (v4.4.0). We used all cells 

with less than 10% mitochondrial RNA and with at least 250 and at most 8000 genes. We used 

sctransform (v0.3.5) and the MapQuery workflow to transfer cell type annotations from a PBMC 

reference [15]. We removed cells with a layer 1 cell type prediction score below 0.75, predicted 

monocytes, and doublets predicted by DoubletFinder [16].  

Visium data for neuroblastoma, lung tissue, and lymph node samples were loaded into R, 

normalized with sctransform, and subjected to PCA, neighbor graph construction, clustering and 

UMAP reduction. Neuroblastoma datasets were merged before PCA.  

circVDJ-seq data analysis 

Technical replicates of PBMC data generated using different assays were processed individually 

but also jointly after pooling reads from replicates for better comparison of assays or processing 

tools.  

CellRanger processing 

We modified CellRanger v6.0.0 to allow for cell barcodes from other assays than 5’IP by 

exchanging the file CellRanger-6.0.0/lib/python/CellRanger/barcodes/737K-august-2016.txt for 

corresponding files in the same directory, namely 3M-february-2018.txt (single-nuc or 3’ assay), 

737K-arc-v1.txt (multi-ome assay) or visium-v1.txt (Visium V1). We further switched fastq files for 

read mates 1 and 2 and then ran CellRanger vdj using the refdata-CellRanger-vdj-GRCh38-alts-

ensembl-5.0.0 reference provided by 10X. 
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MiXCR processing 

We used MiXCR v4.1.2 with the following command line  

mixcr -Xmx64g analyze 10x-vdj-tcr --species hsa /path/to/read_2.fastq.gz /path/to/read_1.fastq.gz 

output --tag-pattern "^(CELL:N{16})(UMI:N{12})\^(R2:*)" --threads 8 -M 

refineTagsAndSort.whitelists.CELL="file:3M-february-2018.txt" for the 3’ assay and the 

corresponding barcode whitelist files for the other assays, and 10nt UMIs for 5’IPv2. 

TRUST processing 

We used TRUST4 v1.1.5 with the following command line: 

TRUST4/run-trust4 -f /path/to/hg38_bcrtcr.fa --ref /path/to/human_IMGT+C.fa -u 

/path/to/read_2.fastq.gz --barcode /path/to/read_1.fastq.gz --barcodeRange 0 15 + --

barcodeWhitelist 3M-february-2018.txt --UMI /path/to/read_1.fastq.gz --umiRange 16 25 + --od 

output -t 8 –repseq 

For the MAS-ISO-seq data, we used the tagged refined sorted and de-duplicated bam file from 

the extracted mRNA sequence as read mate 2, and cell barcode + UMI as read mate 1, and used 

TRUST4 as follows: 

TRUST4/run-trust4 -f /path/to/hg38_bcrtcr.fa --ref /path/to/human_IMGT+C.fa -1 

/path/to/read1.fastq.gz -2 /path/to/read2.fastq.gz --barcode /path/to/read1.fastq.gz --UMI 

/path/to/read1.fastq.gz --readFormat bc:0:15,um:16:27 -o output -t 8 

Cell barcodes returned by TRUST for MAS-ISO-seq data were reverse-complemented. 

Dandelion processing 

We used Dandelion v0.3.7 [17] and followed the re-annotation vignette, i.e. we used 

ddl.pp.format_fastas(...) and then ddl.pp.reannotate_genes(.., loci="tr", reassign_dj=True, 

org='human', extended=True, flavour='strict', min_j_match=7, min_d_match=9,  

v_evalue=0.0001, d_evalue=0.001,  j_evalue=0.0001, dust='no', db='imgt') 

CircVDJ-seq data post-processing and filtering 

We implemented an additional filtering strategy to identify and remove spurious contigs with 

identical cell barcode and CDR3 sequences that originated from different samples sequenced on 

the same flowcell and likely resulted from index hopping, as demultiplexing of the first set of 

libraries had to performed in single-index mode due to failure of the initial custom index 2 

sequencing primer. For this, we assigned a clone as primary (defined via cell barcode and junction 
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aa sequence) if it either contained more than 1% of the total reads (for replicates derived from the 

same cDNA sequenced on the same flowcell), or if it originated from the sample with the highest 

read count for that clone on that flowcell. We meanwhile updated the index 2 primer design and 

validated sequencing of circVDJ-seq libraries in dual index mode, so that filtering for index hopping 

can be omitted in future analyses.  

To further account for spurious signals likely created during PCR amplification, we extracted UMI 

sequences for all reads assigned to a clone by CellRanger, grouped UMIs within Hamming 

distance 1, and counted the number of perfectly matching reads (using the CIGAR string) as well 

as the fraction of reads aligning to the 3’ end of the contig. We then assigned revised UMI and 

read counts to a clone by counting only UMIs containing at least one perfectly matching read but 

with less than half of reads aligning to the 3’ end. 

Data analysis and statistics 

Filtered dandelion output was combined with gene expression data by matching cell barcodes, 

keeping only productive and primary contigs, and filtering out secondary α or β chains for single-

cell (but not Visium) data.  

For imputation of missing α or β chains, we collected the most frequently observed combination 

across all our PBMC data generated using different assays and replaced a missing chain with the 

partner from that combination. 

For the co-occurrence analysis, we re-created the co-occurrence function from squidpy in R. 

Briefly, we created a distance matrix from the tissue coordinates of all spots and then assessed 

the co-occurrence probability as the ratio of the probability to observe a spot of a certain type 

within a radius around spots of a given index type by the probability of observing spots of a certain 

type overall. This calculation was repeated multiple times for random subsets of 50% of the 

respective index spots to obtain error bars from standard deviation. 

Abbreviations 

ATAC: Assay for Transposase-Accessible Chromatin 

BSA: Bovine Serum Albumin 

CAF: Cancer-Associated Fibroblast 

CBC: Cell Barcode 

cDNA: Complementary DNA 
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CDR3: Complementarity-Determining Region 3 

circVDJ-seq: Circularized VDJ sequencing 

COVID-19: Coronavirus Disease 2019 

DTT: Dithiothreitol 

dLN: draining Lymph Node 

EB: Elution Buffer 

ECM: Extracellular Matrix 

GEX: Gene Expression 

HD: High Definition (in context of spatial transcriptomics) 

HR-NB: High-Risk Neuroblastoma 

IMGT: International Immunogenetics Information System 

5’IP v2/3: Immune Profiling Version 2/3 

LR-NB: Low-Risk Neuroblastoma 

MAS-ISO-seq: Multiplexed Amplification of Specific Isoforms Sequencing 

MHC: Major Histocompatibility Complex 

MO: Multiome (combined RNA and ATAC sequencing) 

PBMC: Peripheral Blood Mononuclear Cell 

PCA: Principal Component Analysis 

PCR: Polymerase Chain Reaction 

PFA: Paraformaldehyde 

qPCR: Quantitative PCR 

RNA: Ribonucleic Acid 

RT-PCR: Reverse-Transcription PCR 

scRNA-seq: Single-cell RNA Sequencing 
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SPRI: Solid-Phase Reversible Immobilization 

STOMICS: Spatial Transcriptomics Omics 

TCR: T Cell Receptor 

TRAC: T Cell Receptor Alpha Constant Region 

TRBC: T Cell Receptor Beta Constant Region 

UMI: Unique Molecular Identifier 

UTR: Untranslated Region 

VDJ: Variable (V), Diversity (D), Joining (J) 

UMAP: Uniform Manifold Approximation and Projection 
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Figures 

 

Fig. 1 circVDJ-seq enables TCR profiling with 3’-directed single-cell RNAseq 

A) circVDJ-seq workflow: both ends of the cDNA library are appended by short homologous 

sequences to enable circularization via Gibson assembly and reposition 3‘-cell barcodes next to 

the 5‘end of cDNA molecules. This is followed by TCR-specific cDNA amplification, fragmentation, 
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and short-read library amplification. B) Amplified TCR cDNA library from human PBMCs. Initial 

cDNA was generated with the 3’GEX v3.1 assay (10X Genomics). C) TCR short-read sequencing 

library generated from (B). D) overlap of identified CDR3 sequences, cell barcodes (CBCs), and 

CDR3+CBC combinations in three technical circVDJ-seq replicates derived from the same cDNA 

library. E) UMAP plot showing gene expression data from human PBMCs with identified TCR 

clones highlighted as black dots. F) TCR clonotype frequencies, error bars from the s.e.m. across 

three circVDJ-seq replicates. 

 

Fig. 2 Robust TCR clonotype identification across single-cell multi-omics workflows 

A) Fraction of T cells with assigned clonotypes in 5’IPv2, 3’circVDJ-seq and MO circVDJ-seq. 

Error bars (for 3’ and MO assays) from s.e.m. across 3 technical replicates. B) Venn diagram 

shows overlap between the clonotypes recovered by all three methods. Sizes of overlapping 

clones are based on the frequencies observed with 5’IPv2. C) Scatter plot shows the frequencies 

of individual T cell clones detected with 3’circVDJ-seq or 5’IPv2 in PBMCs from the same donor. 

Fill and border color indicate the cell types assigned to each clone by the respective matched 

gene expression library, and crosses mark clones that are assigned to differing cell types in both 

assays. D) Scatter plot shows clonotype frequencies detected with MO circVDJ-seq and 5’IPv2 in 

PBMCs from the same donor as in C). E) Number of T cell clones detected by MO circVDJ-seq 

and MAS-ISO long-read sequencing of the same MO cDNA. F) Scatter plot shows T cell clonotype 

frequencies detected by MO circVDJ-seq and MAS-ISO-seq of the same MO cDNA. 
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Fig. 3 spatial circVDJ-seq reveals clonal T cell expansion in autopsy derived COVID-19 lung 
tissue 

A) Gene expression clusters and TCR clones identified by Visium and circVDJ-seq in chronic 

COVID-19 lung (chronic case 5). B) marker genes for clusters shown in A. C) Venn diagram shows 

overlap between the CBC and CDR3 combinations detected in technical circVDJ-seq replicates. 

D) Correlation between Visium TCR gene expression UMI counts and the fraction of spots with 

circVDJ-seq TCR clone found in the same clusters. Error bars indicate s.e.m. across technical 

triplicates. E) Relative co-occurrence probabilities of spots with TCR clonotypes with spots from 

other clusters within a certain distance. Error bars indicate std. deviation across random 

subsamples of index spots. F) Reproducible detection of identified TCR clonotypes, error bars 

correspond to three circVDJ-seq replicates.  Error bars indicate s.e.m. across technical triplicates. 
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Fig. 4 spatial circVDJ-seq shows distinct clonal T cell expansion in lung draining lymph 
nodes 

A) Visium gene expression clustering and identified TCR clones in autopsy-derived lymph nodes 

from non-COVID-19 pneumonia and squamous cell carcinoma (control case 2). B) gene 

expression marker genes for clusters shown in A. C) Correlation between TCR gene expression 

UMI counts and percentage of spots with identified TCR clones for individual gene expression 

clusters. D) TCR clonotype frequencies for clones identified in >2 spots. 
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Fig. 5 spatial circVDJ-seq reveals distinct T cell dynamics in HR and LR Neuroblastoma 

A) Gene expression clusters (top) and TCR clones (bottom) identified by Visium and circVDJ-seq 

of high risk (HR) and low risk (LR) neuroblastoma. B) Marker genes for clusters shown in A. C) 

Cluster composition of HR-NB and LR-NB sample for the clusters in A. D) Expression of CD163, 

CSF1R, TGFB1 and VEGFB in cluster 4, and SPARC and IGFBP7 in cluster 5 in HR and LR 

neuroblastoma. E) Correlation between Visium TCR gene expression UMI counts and the fraction 

of spots with a circVDJ-seq TCR clone in individual gene expression clusters. Error bars indicate 

s.e.m. across technical duplicates. F) Frequencies of spatially expanded clonotypes in the HR and 

LR neuroblastoma sample. Error bars indicate s.e.m. across technical duplicates. G) Relative co-

occurrence probabilities of spots from cluster 4 (left panel) and of spots with TCR clonotypes (right 

panel) with spots from other clusters within a certain distance in HR and LR neuroblastoma. Error 

bars indicate std. deviation across random subsamples of index spots. 
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Supplementary Fig. 1 

A) Venn diagrams of the overlap of CBC+CDR3 combinations between technical replicates for 

different VDJ sequencing data processing pipelines. B) Venn diagram of overlap between 

CBC+CDR3 combinations obtained on pooled replicates for different processing methods. 

 

Supplementary Fig. 2 

Venn Diagram of the overlap of CBC+CDR3 combinations between circVDJ-seq replicates of 

ATAC+RNA MO data. 
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Supplementary Fig. 3 

Frequency of TCRα or TCRβ chains that are detected in more than one pairing in 5’IP v2 or 

circVDJ-seq data from 3’ or MO cDNA. Error bars from s.e.m. across technical replicates. 

 

Supplementary Fig. 4 

Clone sizes for the top 10 TCRα+β clones (missing chains imputed) detected in 5’IP v2, circVDJ-

seq from 3’ or MO cDNA, or MAS-ISO-seq data from MO cDNA, respectively. Error bars from 

s.e.m. across technical replicates. 
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Supplementary Fig. 5 

Fraction of T cells with assigned clonotypes in 5’IPv2, 3’v3.1 circVDJ-seq and MO circVDJ-seq as 

in Fig. 2A) together with two additional MO datasets using mild PFA fixation. Error bars (for 3’ and 

MO assays) from s.e.m. across 3 technical replicates. 

 

Supplementary Fig. 6 

Venn diagram as in Fig. 2B shows overlap between the clonotypes recovered by 5’ 5’IPv2 as well 

as circVDJ-seq and MAS-ISO-seq of the same MO cDNA. Sizes of overlapping clones are based 

on the frequencies observed with 5’IPv2. 
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