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SUMMARY 

Pet dogs are considered part of the family, and understanding their gut microbiomes can provide 

insights into both animal and household health. Most comprehensive studies, however, relied on 

short-read sequencing, resulting in fragmented MAGs that miss mobile elements, antimicrobial-

resistance genes, and ribosomal genes. Here, we applied deep long-read metagenomics 

(polished with short-reads) to fecal samples from 51 urban pet dogs in Shanghai, generating 

2,676 MAGs—representing 320 bacterial species—, of which ~72% achieved near-finished 

quality, often improving on the corresponding reference public genome. Comparisons with 

external datasets showed that our Shanghai-based MAG catalog is representative of pet dogs 

worldwide (median read mapping of >90%). Moreover, we recovered circular extrachromosomal 

elements, including those linked to antimicrobial resistance, which were also detected in external 

dog gut datasets. In conclusion, we provide a high-quality reference resource and demonstrate 

the power of deep long-read metagenomics to resolve microbial diversity in complex host-

associated microbiomes. 
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INTRODUCTION 

Pet dogs (Canis lupus familiaris) are commonly regarded as family members, living in close 

contact with their humans and often sharing not only physical spaces but also microbes1,2. 

Understanding dog microbiome provides insights not only directly linked to their health3, but also 

to household health4,5 and global health6, being key within One Health frameworks2.  

Studies on dog gut metagenomics are scarce and all comprehensive ones are based on short-

read sequencing7–12. Recently, a large-scale project significantly expanded the dog gut 

metagenomes available12. However, most short-read derived metagenome-assembled genomes 

(MAGs) are heavily fragmented and fail to assemble ribosomal genes. Although the Minimum 

Information about a Metagenome-Assembled Genome (MIMAG) criteria for high-quality include 

recovering these (and other elements)13, most short-read based studies consider only (estimated) 

completeness and contamination. We will follow previous literature14 and use the term near-

finished for MAGs that fulfill all MIMAG high-quality criteria. For instance, in the Unified Human 

Gastrointestinal Genome catalog, only 12% of the species-level representative metagenome-

assembled genomes (573 out of 4,644 MAGs) met these quality criteria15. Antibiotic resistance 

genes (ARGs), mobile genetic elements, and extrachromosomal elements are similarly often 

absent from short-read MAGs16–18. Long-read technologies can address these limitations19–23, but 

large cohorts with deeply sequenced samples using long reads are still scarce. For example, the 

dog gut microbiome using long-read metagenomics has been recently explored in three pilot 

studies, which included a single animal24–26.  

Finally, most large dog gut microbiome studies characterize animals living in colonies, usually 

from nutritional companies7,9,12 rather than pet dogs10,11. These cohorts comprise dogs with 

homogeneous characteristics, such as a limited number of breeds, individuals of similar ages, 

similar diets, and a shared environment. While these controlled conditions are ideal for certain 

types of studies (e.g., randomized controlled trials) as they reduce variability, they may not 

generalize to pet dogs living in households27. 

Here, we aim to expand the dog gut microbiome data by using deep metagenomics sequencing 

(minimum per sample: 20 Gbp of long reads + 20 Gbp of short reads) from a relatively large and 

well-characterized cohort of 51 pet dogs living in an urban environment (Shanghai, China). We 

make available ~1,600 Gbp of Nanopore data and ~1,000 Gbp of Illumina data, 2,676 canine 

MAGs, 185 circular extrachromosomal elements, non-redundant gene and smORFs catalogs, as 

well as associated functional and ARGs annotation. By using external public datasets and a new 
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cohort of pet dogs from Germany (also available), we demonstrate that the Shanghai MAG 

catalog captures global pet dog diversity. 

 

RESULTS 

Near-finished MAGs are recovered from deep long- and short-read 

sequencing of a Shanghai dog cohort 

We collected a fresh fecal sample from 51 Shanghai pet dogs, associated with extensive dog-

associated information (gathered through a questionnaire). Each fecal sample was deeply 

sequenced using a minimum of 20 Gbp of long-read (Oxford Nanopore Technologies) and 20 

Gbp of short-read (Illumina) DNA sequencing (Figure 1A, Supplementary Figure S1).  

The pet dogs were from the same urban environment (Shanghai, China) and had an urban indoor 

lifestyle. The cohort comprises animals of different ages, sizes, breeds, diets, and overall habits 

(Figure 1B and Supplementary Table S1). In addition to the sequenced dogs, we make available 

59 questionnaire responses from other Shanghai pet dog owners who did not donate a fecal 

sample (Supplementary Table S2). 

In the MAG generation pipeline, we used the long reads for metagenome assembly and the short 

reads for polishing, followed by a combination of binning strategies and a final dereplication step, 

leading to 2,676 MAGs (Figure 1C, Supplementary Figure S2). Each polishing step significantly 

increased the completeness and decreased the contamination of the canine MAGs (Wilcoxon 

FDR corrected p-value < 0.05). Polishing converted 177 medium-quality MAGs into high-quality 

ones, and 48 low-quality MAGs into medium-quality ones (Figure 1D, Supplementary Figure S3), 

with the greatest benefits observed for MAGs with lower sequencing depth (<40X). Therefore, 

polishing with short reads was still relevant, especially when working with metagenomes that often 

include low-abundant species.  
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Figure 1. Shanghai pet dog gut microbiome using long-read metagenomics. A) Project design 

overview: we collected information from 109 pet dogs in Shanghai and 51 fecal samples. The 

samples were processed and sequenced to obtain ≥20 Gbp of both long- and short-read data. B) 

Overview of the Shanghai dog-associated metadata. Complete information for all the dogs can be 
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found in Supplementary Table S1. C) MAG generation pipeline: long-read (LR) sequencing data 

were used for metagenome assembly with MetaFlye. The metagenome assembly was first polished 

with long reads using Medaka, and later with short reads (SR) using Polypolish, followed by Polca. 

The polished metagenome assembly was binned using SemiBin2 to obtain the Shanghai Dog MAG 

catalog (the binning strategy is detailed in the Methods and represented in Supplementary Figure 

S2). D) Short-reads (SR) for polishing increased the quality of the MAGs, especially for those with 

low coverage (<40X). E) The Shanghai dog MAG catalog captures the vast majority of the microbial 

diversity of other pet dog cohorts living in households (median read mapping of >90%). The 

mapping is lower for non-pet cohorts (colony, shelter, or free-roaming dogs). 

The final MAG collection consists of 2,676 MAGs from the Shanghai pet dogs, representing 320 

bacterial species (Figure 2A, Supplementary Table S3). The Shanghai dog MAG catalog contains 

~72% near-finished MAGs (n=1,928) (high-quality MAGs fulfilling all the MIMAG criteria: >90% 

completeness, <5% contamination, presence of ribosomal genes, and at least 18 tRNAs13). Of 

those, 34% were single-contig assemblies, whereas the remaining had a median of six contigs 

per genome assembly. Medium-quality MAGs represented ~27% of the MAGs in the catalog 

(n=732), and only ~1% (n=16) of the MAGs were high-quality MAGs (>90% completeness, <5% 

contamination) but did not fulfill some of the remaining MIMAG criteria. Apart from MAGs, we also 

identified 185 non-redundant circular extrachromosomal elements: 58 plasmids, 30 viruses, and 

97 uncategorized elements.  

Notably, 19 out of the 51 dogs in the Shanghai cohort came from 8 multi-dog households, each 

contributing at least two sampled dogs (Figure 1B). Within these households, dogs shared a 

higher proportion of bacterial strains and showed greater similarity in their extrachromosomal 

elements, as measured by presence-absence data using Jaccard similarity (Supplementary 

Figure S4). 

The Shanghai dog MAG catalog captures most microbial diversity found in 

pet dogs 

The Shanghai dog MAG catalog captures the microbial diversity of pet dogs living in households 

globally, as demonstrated by a median read mapping of >90% against metagenome datasets 

from different geographical origins (Germany, newly sequenced for this study; South Africa11; and 

USA10). Despite mapping rates being lower for non-pet dog cohorts, the median was >86% for 

dogs living in colonies7,9 and >75% for dogs living in shelters or the streets (as free-roaming 

dogs)11. Within the Shanghai cohort, 98.2% (median value) of the short-reads mapped to the MAG 
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collection, demonstrating that high- and medium-quality MAGs capture almost all of the diversity 

present in the samples (Figure 1E, Supplementary Table S4). 

 

Figure 2. The Shanghai pet dog MAG catalog contains 2,676 MAGs from 320 species. A) 

Stacked bar plots show the total number of MAGs per sample, stratified by quality. Almost all the 

high-quality MAGs (all but 16) fulfilled the MIMAG criteria. The catalog contains a total of 2,676 

MAGs, from which 320 species-level MAGs can be obtained (dereplicated at 95% ANI). B) 
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Distribution of phyla in the MAG catalog of Shanghai pet dogs. C) The most prevalent species in 

Shanghai pet dog gut microbiomes, defined as species-level genomes assembled in >30 different 

dogs (out of 51 total samples). Bubble size represents the median relative abundance of each 

bacterial species within the total microbiome composition, when present (i.e., zero values were 

excluded). Prevalence bars show the prevalence for each species. Quality bars show the MAG 

assembly quality distribution per bacterial species (as defined in A). The complete Shanghai Dog 

MAG catalog information is available in Supplementary Table S3. 

More than half of the Shanghai dog MAGs belonged to the Bacillota A phylum, followed by 

Bacteroidota, Bacillota, Fusobacteriota, Pseudomonadota, and Actinomycetota (Figure 2B, 

Supplementary Table S3 for the full MAG catalog, annotations with the Genome Taxonomy 

Database (GTDB) taxonomy r214). Dog gut microbiome studies agree on these phyla being the 

main ones inhabiting the gut of healthy dogs3,7. The most prevalent bacterial species on the 

Shanghai dog cohort belonged to the Lachnospiraceae family (Bacillota phylum, n=13), followed 

by the Bacteroidaceae family (Bacteroidota phylum, n=3) (Figure 2C). The most prevalent species 

in the Shanghai dog cohort–present in almost every dog–were four Lachnospiraceae species: 

Blautia hansenii, Enterocloster sp001517625, Faecalimonas umbilicata, and Ruminococcus B 

gnavus. Except for E. sp001517625, these three species were reported as the most prevalent 

(prevalence >0.83) on a large cohort of pet dogs living in households in the USA (n=286) as 

screened with full-length 16S rRNA gene28. When focusing on species that are prevalent and also 

abundant (>2% of total median abundance, when present), we detected Phocaeicola coprocola, 

and Phocaeicola sp900546645 (Bacteroidaceae family); Fusobacterium A sp900555845; 

Megamonas funiformis; and Faecalibacterium sp900540455 (Figure 2C).  

Species-level long-read MAGs capture novel species and improve 

representative genome assemblies  

Two-thirds of the species-level MAGs represented known bacterial species (~68%, n=218), as 

their genomes are found in the GTDB database (r214) (Figure 3A). We compared the species-

level high-quality MAG assemblies here to their specific high-quality representative genome in the 

public database (156 species with either GenBank or RefSeq assemblies) (Figure 3C and 

Supplementary Table S5). We found that the species-level long-read MAGs were significantly 

more contiguous, contained more full-length ribosomal genes and unique tRNA genes (all 

pairwise comparisons had a corrected p-value < 0.05, Supplementary Table S5). They usually 

fulfilled the MIMAG criteria, which was not true for most of the high-quality representative 

genomes in public databases. One challenge for short-read shotgun metagenomics is the 
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assembly of ribosomal genes, which are multi-copy and conserved within similar genomes, and 

consequently, they end up collapsed and unassembled16. 

Moreover, compared to reference assemblies, canine long-read MAGs usually had a larger 

mobilome fraction—genes annotated as COG category X: Mobilome (corrected p-value < 0.05, 

Supplementary Table S5), consistent with previous reports showing that short-read assemblies 

were largely ineffective for mobile genetic elements analysis17, whereas long-reads enabled the 

capture of mobile elements within their genomic context19,29. Overall, our long-read MAGs improve 

representative genome assemblies on databases, especially those from short-read based 

assemblies.  

One-third of the species-level MAGs represented bacterial species not present in the GTDB (r214) 

(~32%, n=102). The genera that contained the most novel species were CAG-269 with 10 

different new species-level MAGs, followed by Dysosmobacter, Collinsella, and Blautia A with 

four different new species-level MAGs each (Figure 3B, Supplementary Table S3). To further 

explore the novelty of the species and considering that 16S rRNA gene databases are more 

extensive than whole genomes, we aligned the full-length 16S rRNA genes of the high-quality 

MAGs against the 16S ribosomal RNA sequences database from NCBI using the blastn suite. 

The best hits corresponded to 16S rRNA genes from known species within the same genera, and 

in 11 cases, the identity of the best hit was >99% (Supplementary Table S6). In nine out of 11 

cases, we confirmed the inability of this marker gene to distinguish species within certain genera30. 

Several bacterial species lack representative genome assemblies in public databases but have 

phenotypic and 16S rRNA gene sequencing data. These include Sutterella stercoricanis and 

Gluceribacter canis, which were first isolated in dog feces31,32. A previous study showed that high-

quality long-read MAGs can link 16S rRNA gene-based community profiling studies to the 

functional potential of the genomes within the same environment20. Long-read MAGs enabled us 

to putatively link genome assemblies to previously phenotypically characterized species in dogs 

through 16S rRNA gene sequences. 
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Figure 3. Species-level canine MAGs characterization. A) Counts of species-level 

representative MAGs by phylum in the Shanghai Dog cohort. Stacked bars are colored according 

to the genome assembly novelty for that species: novel genome (light green); representative 

species genome assembly present in RefSeq (brown); or representative species genome assembly 

present in GenBank (yellow). B) Top four genera with a larger number of novel species-level MAGs 

in the Shanghai dog cohort. Pie charts represent the number of species-level genome assemblies 

within each genus. The size of the pie charts represents the total number of species per genus. C) 
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Considering only high-quality genome assemblies (>90% completeness and <5% contamination 

criteria), comparison of the representative species-level genome assemblies: canine long-read 

MAGs vs. public database representative (RefSeq or GenBank). Scatterplot distribution of the 

number of 16S rRNA genes: on the x-axis, we represented all the species, and on the y-axis, the 

number of rRNA genes. Boxplots represent the distribution of the number of unique tRNA genes, 

number of contigs, and number of mobilome hits, stratified by the origin of the corresponding 

publicly available representative genome assembly for each species. 

Long-read metagenomics uncovers ARG-carrying circular 

extrachromosomal elements in the canine gut 

We identified 253 unique antibiotic resistance genes (ARGs) in the Shanghai dog cohort (using 

RGI, see Methods). Tetracycline ARGs were the most common, representing ~32% of the total 

ARG counts (with 2,461 total hits, corresponding to 25 unique ARGs), followed by aminoglycoside 

and lincosamide ARGs, representing ~13% of the total ARG counts each (1,021 and 1,001 total 

hits, corresponding to 31 and 5 unique ARGs, respectively). This aligns with findings from a large-

scale resistome analysis including >3,000 dog samples, where tetracyclines, lincosamide, and 

aminoglycosides ARGs were the most abundant ARGs on dogs33. Additionally, these ARGs 

correspond to antimicrobial drug classes that are essential and commonly used in small animal 

medicine34.  

Interestingly, of the 253 unique ARGs, 43 were exclusively found in contigs that were not part of 

a MAG. Among ARGs, those located on extrachromosomal elements (ECEs) are particularly 

concerning due to their potential for horizontal gene transfer across bacterial species. This 

mobility facilitates rapid dissemination of antimicrobial resistance within microbial communities35. 

The use of long-read sequencing is not only crucial for contextualizing ARGs, but also effective 

at assembling circular ECEs that might harbour them19,21. In addition to the MAG catalog, we 

assembled 185 non-redundant circular ECEs: 58 plasmids, 30 viruses, and 97 uncategorized 

elements. Among those, four plasmids and six uncategorized elements harboured ARGs (Figure 

4, Supplementary Table S7).  

We identified two different, circular, and single-contig ECEs harboring the OXA-85 gene, which 

were present in more than 25% of the samples in our cohort, and had a prevalence of up to 45% 

in colony dogs (SHD1_EC.021) and up to 14% in other pet dog cohorts (SHD1_EC.006) (Figure 

4). The OXA-85 gene encodes a class D β-lactamase that confers narrow-spectrum resistance 

primarily to penicillin-class antibiotics36. We could not assign these two ECEs to a putative 
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bacterial host; therefore, they could be present in multiple species. Previously, OXA-85 had only 

been reported on the chromosome of Fusobacterium nucleatum36 and Fusobacterium 

necrophorum37, consistent with entries in the CARD database38, which additionally found it in 

Campylobacter ureolyticus. In fact, we also detected OXA-85 within the chromosomes of 

Fusobacterium B sp900541465 (n=3), Fusobacterium A sp900543175 (n=1), as well as 

Phascolarctobacterium A sp900552855 (n=3). This finding is concerning due to the 

extrachromosomal location of the OXA-85 gene, which could enable horizontal gene transfer; its 

potential association with unreported bacterial hosts; and its prevalence across diverse dog 

cohorts. All these suggest broader dissemination and host range than previously observed. 

 

Figure 4. Circular extra-chromosomal elements (ECEs) harboring antimicrobial resistance 

genes (ARGs) in the Shanghai Dog cohort. The heatmap represents the prevalence of each 

ECE in both our cohort and external dog cohorts (as confirmed by read mapping). For some ECEs, 

we predicted their putative bacterial host and identified their ARGs. The circular diagram represents 

the ORFs identified in EC.006 and their predicted COG functional category. 

 

We found one circular ECE harboring TEM-1, which was linked to E. coli as its putative host. 

TEM-1 is a plasmid-encoded beta-lactamase–found in many Gram-negative bacteria–that 

confers resistance to penicillins and first-generation cephalosporins39. Its prevalence across other 

dog cohorts reinforces concerns about the circulation of clinically relevant ARGs in non-clinical 

reservoirs. We also identified two different, circular, and single-contig ECEs carrying the ErmQ 

gene, one with Sarcina perfringens as its putative host (SHD1_EC.183) –consistent with the 

original ErmQ report40. The ErmQ gene encodes a ribosomal RNA methyltransferase that confers 
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resistance to macrolide, lincosamide, and streptogramin B antibiotics. Interestingly, a recent 

paper characterizing pet-derived S. perfringens in China found that 91% of them showed a high 

resistance rate to erythromycin associated with the presence of the ErmQ gene41. Finally, and 

coinciding with the most abundant and prevalent ARGs, lincosamide (lnuC) and tetracycline 

resistance genes (TetQ, TetA, TetB) were the ARGs detected in the remaining five ECEs (Figure 

4). 

Global analysis detected that dogs living in colonies present a different gut 

microbiome 

To contextualize our data and investigate factors that structure the dog gut microbiome, we 

integrated the Shanghai dog gut microbiome with a set of external dog samples (Berlin cohort, 

and publicly available canid cohorts until February 2023). The largest dog gut metagenome 

studies focused on colony dogs rather than pet dogs living in households7,9. Only three studies 

involved pet dogs: one examined dogs with recurrent diarrhea8, while the other two analyzed 

healthy pets from South Africa11 and the USA10. Using representative samples from these public 

datasets (Supplementary Table S8), we assessed the influence of the living environment 

(household, colony, or free roaming), age, size, and sex of the animal. Since these studies are 

short-read studies, for consistency, we used the short-read Illumina component of our data and 

performed taxonomic profiling on the combined dataset using a pipeline based on singleM42 (see 

Methods).  

The living environment was the variable structuring the microbial community taxonomic 

composition at the beta diversity level (PERMANOVA adjusted p-value = 1.67 x 10-3), with a 

clearly separated cluster for dogs living in colonies. Pet dogs overlapped and clustered in the 

ordination plot, even though they were from different geographies (China, USA, Germany, and 

South Africa) (Figure 5B). Analogously, alpha diversity (Shannon index) was significantly higher 

in colony dogs when compared to pet dogs (Mann-Whitney U corrected p-value = 4.90 x 10-3) and 

wild canids (Mann-Whitney U corrected p-value = 0.025; Figure 5A). Ancient coprolite samples 

presented the lowest alpha diversity values and clustered independently on the beta diversity plot, 

but considering that these samples all originate from the same study43, it was not possible to 

exclude a study effect (Supplementary Figure S5). 
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Figure 5. The living environment is the major determinant of dog gut microbiome 

composition. The colored legend applies to the whole figure. A) Boxplots representing alpha 

diversity (Shannon index). B) PCoA plot representing beta diversity (Bray-Curtis on log-transformed 

data). Green triangles indicate pet dogs in this study. C) Differentially abundant bacterial species 

in each dog group when compared to pet dogs (Maaslin2 and Kruskal-Wallis, see Methods). The 

x-axis shows the q-value of each species computed by Maaslin2. Circles are colored according to 
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the group to which the dogs belong. Grey circles represent significant differences in that species, 

for variables other than the living environment. Diversity analysis with all dog groups can be found 

in Supplementary Figure S5. D) Boxplots of total relative abundances (%) of selected differentially 

abundant bacterial species, considering the living environment. 

When looking at differential species abundance, six species were more abundant in colony dogs 

compared to pet dogs and other dog cohorts, including Bifidobacterium globosum and 

Limosilactobacillus reuteri (Figure 5C and 5D). Lactobacillus and Bifidobacterium species are 

commonly regarded as probiotics in dogs44, so this could represent a more common intake of 

probiotics in dogs living in colonies compared to other dog cohorts. Moreover, we identified 

Faecalimonas umbilicata as a pet-associated species, as it was significantly more abundant in 

pet dogs compared to all the other dog groups. Finally, we also detected two bacterial species 

more abundant in wild canids and one in free-roaming dogs (Figure 5C). 

Differential abundance analysis also detected bacterial species associated with: age of the animal 

(n=13), body condition (n=2), and size of the animal (n=2) (Supplementary Figure S6). However, 

no significant differences were found regarding sex. Differences related to dogs’ age were mostly 

significant when comparing senior to young animals, Dorea B phocaeensis, Slackia A piriformis, 

Eisenbergiella sp900539715, and Faecalibacterium sp900540455 being the most significant. 

Interestingly, Faecalibacterium and Slackia were among those genera more abundant in healthy 

dogs when compared to those having cancer45, and cancer is an age-related disease. We also 

found Butyricicoccus pullicaecorum to be more abundant in young dogs. Interestingly, this species 

has been assessed as a potential probiotic and has been shown to extend lifespan in a C. elegans 

model46. 

Generated resources description 

In this study, we generated several high-quality resources from pet dogs using long-read 

metagenomics, polished with short reads. We make these datasets available to be further 

explored and used:  

1. Comprehensive dog-associated information of Shanghai pet dogs: includes 

responses from 107 dog owners in Shanghai regarding their pets’ health, diet, and lifestyle 

(among others) collected through an extensive questionnaire (Supplementary Table S2). 

Considering the most relevant variables, we created a simplified table for the 51 

sequenced dogs included in the study (Supplementary Table S1). 
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2. Deeply sequenced samples (raw data): includes 52 fecal samples belonging to 51 dogs 

(1 biological replicate) with at least 20 Gbp of data for long-read and 20 Gbp of data for 

short-read. Long-read datasets have up to 65 Gbp of data per sample (available on ENA 

under Bioproject ID: PRJEB85799). 

3. Metagenome-assembled genomes (MAG) catalog: includes 2,676 MAGs that belong 

to 320 different bacterial species. 72% are near-finished MAGs, meaning they are >90% 

complete, <5% contaminated, harbor ribosomal genes, and at least 18 unique tRNAs. 665 

of the MAGs are single-contig. 32% of the species-level representatives are novel 

(Supplementary Table S3). In addition to the sequences (in FASTA format), we provide 

extracted rRNA genes (with the 16S rRNA linked to MicrobeAtlas to enable users to link 

to 16S amplicon-based studies47), and annotations using eggnog-mapper and RGI. 

4. Extrachromosomal elements (ECEs) catalog: includes 185 single-contig circular 

elements (non-redundant), as assembled by MetaFlye from our cohort. We identified 58 

plasmids, with sizes ranging from 4,333 bp to 154,111 bp (median length: 30,562 bp); 30 

viruses; and 97 uncategorized elements. Moreover, we predicted the putative bacterial 

host for 28% of them (n=52). 

5. Gene catalog: includes 1,470,802 non-redundant genes (95% nucleotide identity, 

representing species-level unigenes48). Of these, 98.7% are complete genes, and 73.5% 

are contained in MAGs or ECEs. 

6. Small ORFs catalog: includes 403,491 non-redundant smORFs, which produce 273,065 

clusters at 90% identity. 

7. External dog datasets: raw data for a newly sequenced short-read metagenomics pet 

dog cohort from Berlin (Bioproject ID: PRJNA881055), as well as standardized and 

manually curated metadata for dog gut metagenomics datasets in public databases up to 

February 20237–11,43,49–58 (Supplementary Table S9). We also created a metadata subset 

including a single representative sample per animal for longitudinal or repeated measures 

studies (Supplementary Table S8). 

We created a website (https://sh-dog-mags.big-data-biology.org/) to dynamically explore the 

MAG catalog, and all the derived resources can be downloaded on Zenodo: 

https://doi.org/10.5281/zenodo.16356977 
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DISCUSSION 

Here, we present the Shanghai dog gut microbiome resource, comprising samples from 51 pet 

dogs. This dataset includes extensive metadata –over 50 lifestyle, health, and dietary variables 

collected through owner questionnaires– and deep metagenomics sequencing. From this, we 

derived multiple resources, including a comprehensive pet dog MAG catalog with 2,676 MAGs 

from 320 different bacterial species. Our Shanghai dog MAG catalog captures most of the global 

microbial diversity of pet dogs as highly contiguous, near-finished MAGs, as shown by the high 

mapping rates to the catalog (>90% median) of external pet dog cohorts from different 

geographies (Germany, South Africa11, USA10). 

Previous short-read metagenomics studies on the dog gut have focused on functional and 

taxonomic profiling8–11 or building a gene catalog7, without assembling MAGs. Recently, a large-

scale study on companion animals retrieved 7,275 high-quality and 21,706 medium-quality MAGs 

from canine and feline samples using short-read metagenomics12. However, short-read 

metagenome assemblies typically fail to recover ribosomal RNA genes16. They also often miss 

other important features such as antimicrobial resistance genes (ARGs)18 and mobile genetic 

elements17. In this study, we present a high-quality canine MAG catalog built from long-read 

nanopore sequencing, polished by short reads. Most (~72%) of the MAGs are near-finished, with 

completeness >90%, contamination <5%, and include ribosomal RNA genes and tRNAs, thus 

fulfilling the full MIMAG criteria13. Moreover, we retrieved 185 non-redundant circular 

extrachromosomal elements; 1,470,802 non-redundant unigenes; and 403,491 non-redundant 

small open reading frames (smORFs). Our resource includes 320 species, and over 80% have a 

near-finished MAG as a representative genome. Many of our species-level representative MAGs 

improve existing reference genomes in the GTDB r214 database (including ones that were 

obtained from cultures, but assembled with short reads), offering higher contiguity, and including 

the ribosomal genes and tRNAs. Looking forward, we expect that many species in multiple 

habitats will have higher-quality genomes available in the next few years as long-read 

metagenomics becomes widely used. 

A previous study suggested that >40X coverage with Nanopore R10.4 chemistry can yield near-

finished MAGs from metagenomes14. Here, we observed further improvements in completeness 

and contamination values when incorporating short reads, suggesting additive benefits. While we 

cannot rule out differences from basecalling models—our data were basecalled using the high-

accuracy model versus the super-accuracy model used in that study—particularly considering 
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that complex microbiomes contain a plethora of low abundance genomes, it is evident that long-

read sequencing is key to generating near-finished MAGs, and, with current ONT chemistry, short 

read sequencing is still valuable. 

Within a One Health framework–which recognizes the interconnectedness of global human, 

animal, and environmental health–the close interaction between pets and humans, particularly in 

shared household environments, creates ideal conditions for the bidirectional transmission of 

bacteria and their associated ARGs59. Although we did not target the human gut microbiome, we 

observed that dogs living in the same household shared significantly more bacterial strains and 

extrachromosomal elements (ECEs) compared to dogs from different households, confirming the 

existence of intra-household transmission patterns. 

Notably, 10 of the assembled ECEs carried ARGs, which play a central role in horizontal gene 

transfer and the dissemination of resistance within shared environments35. Among these, we 

identified a putative E. coli plasmid carrying the TEM-1 gene, underscoring concerns about 

plasmid-mediated antibiotic resistance in a bacterial species that is commonly shared between 

humans and animals, and known for its ability to mediate gene exchange across mammalian 

hosts60,61. Additionally, the detection of the OXA-85 gene in two ECEs and across multiple 

anaerobic species (e.g., Fusobacterium, Phascolarctobacterium) suggests a mobilization event 

and an expanded host range for this ARG. Although these specific ARGs are not currently 

considered major clinical threats, their detection in mobile genetic elements within the pet dog gut 

microbiome highlights the value of metagenomics surveillance using long-reads to identify ARG 

reservoirs and monitor ARG flow across taxa and environments62. 

We observed that the mapping rate to our catalog for samples of dogs living in colonies was 

slightly lower than pets, which hinted at a difference in their microbiome structure. Previous 

studies showed that factors such as industrialization and feralization influence the gut microbiome 

composition and function in companion animals like dogs11 and cats63. However, in a study by 

Yargaladaa and collaborators, industrialization was confounded with geography, as each 

industrialization level corresponded to a distinct geographic region. In contrast, a large-scale 

consumer study including 192 US pet dogs (16S rRNA gene sequencing) did not detect effects 

of urbanization on the gut microbiome, though some geographic signatures were reported64. The 

largest companion animal microbiome study to date12 reported that housing facilities (research 

facilities vs. household vs. strays) significantly influenced the dog gut microbiome. Beta diversity 

analysis confirmed that pet dogs from different geographic regions (China, Germany, US10, and 

South Africa11) presented similar gut microbiome compositions, clustering together and 
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overlapping within the same region of the PCoA plot. In contrast, colony dogs from nutritional 

research facilities formed a distinct cohesive cluster despite their different geographic origins (US7 

and UK9). Taking all these observations together, we conclude that the living environment has a 

stronger influence than geography on the composition and structure of the canine gut microbiome. 

These living environment differences likely reflect differences in multiple factors such as diet, 

environmental exposure, human interaction, and veterinary care. Thus, while colonies have 

definite benefits for controlled studies, their microbiome differs from the general pet population, 

and results from colony studies should be complemented with studies in pets. 

In summary, our study significantly expands the existing resources on the dog gut microbiome by 

generating and sharing a comprehensive multi-terabyte dataset derived from deep long- and 

short-read metagenomic sequencing of a well-defined cohort of urban pet dogs. With over 2,600 

canine MAGs, hundreds of circular elements, and extensive gene and smORF catalogs, this 

dataset provides an unprecedented foundation for future research. Moreover, by validating our 

Shanghai-derived MAG catalog against both public data and an independent German cohort, we 

show that it captures a broad spectrum of global pet dog microbiome diversity, establishing it as 

a valuable reference for comparative and functional microbiome studies. 

STAR METHODS 

DATA AVAILABILITY 

Raw reads and MAG catalog for the Shanghai pet dog cohort were deposited at the European 

Nucleotide Archive under Bioproject ID PRJEB85799. Berlin pet dog raw data can be found under 

Bioproject ID PRJNA881055.  

MAG annotation files, ARGs prediction, ECEs catalog, gene catalog, and smORFs catalog can 

be found at Zenodo: https://doi.org/10.5281/zenodo.16356977. Finally, all original code is publicly 

available at GitHub: https://github.com/BigDataBiology/ShanghaiDogs 

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS 

In this study, we analyzed the fecal microbiome of pet dogs living in households in Shanghai. The 

Animal Welfare and Ethics Group (Department of Experimental Animal Science, Fudan University) 

approved this study under the approval reference 022JSISTBI-003. All the dog owners who 

donated a fecal sample provided informed consent to participate in the study. 
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METHOD DETAILS 

Dog-associated metadata collection 

We designed a comprehensive questionnaire that covers various aspects of dogs, including their 

basic information (breed, age, sex, weight) and other relevant variables related to lifestyle, habits, 

diet, health, and more. Some of the questions in our questionnaire were adapted from Lehtimäki 

et al., 201865. The questionnaire was entered into and administered through the wjx mini app on 

WeChat and shared across relevant WeChat groups. 107 dog owners answered the 

questionnaire, and 51 agreed to donate a fecal sample from their dogs (Supplementary Table S2). 

For the 51 dogs sampled, updates in the metadata, such as health status, were done on the 

sampling date and adapted for further analysis (Supplementary Table S1). We grouped the dogs 

into three age categories, as previously considered66: Young (< 2 years old), Adult (2-6 years old), 

and Senior (≥ 7 years old). Finally, we classified the dogs according to size, as previously 

described67: I) in five clusters, and II) in size categories: Small (< 10 Kg), Medium (≥ 10 to < 25 

Kg), and Large (≥ 25 Kg). The dog cohort was balanced by sex. 

Fecal sample collection 

The owners collected the fecal samples when walking their dogs per their regular habits, which 

were given to us 0h-24h after the dog’s deposition. Therefore, we have neither altered nor 

manipulated the animals in any way.  

Once we had the fresh dog fecal sample, we used a fresh pair of gloves to cut the feces with a 

plastic spatula and expose the inner part. We collected a spoon-sized sample from the inner part 

of the feces using a tube with a spoon. We did this process twice per sample, so we have a 

biological duplicate as a backup. Immediately after processing, the tubes were stored in dry ice 

and transported to a -80 °C freezer until further processing. 

DNA extraction and sequencing 

Fecal samples were processed and sequenced by Novogene (Beijing, China). The DNA was 

extracted using the CTAB method. Genomic DNA quality was verified by: 1% agarose gels to 

detect DNA degradation; Nanodrop OD 260/280 ratio to check the purity of DNA; and Qubit® 

DNA Assay Kit (in Qubit® 3.0 Fluorometer) to measure DNA concentration. 

For short-read Illumina sequencing library preparation, 0.2 μg of DNA per sample was used. The 

DNA was sonicated to an average fragment size of 350 bp. It was generated using NEB Next® 
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Ultra™ DNA Library Prep Kit for Illumina (NEB, USA) following the manufacturer’s 

recommendations, and index codes were added to each sample. Clustering of the index-coded 

samples was performed on a cBot Cluster Generation System using the Illumina PE Cluster Kit 

(Illumina, USA), following the manufacturer’s instructions. The final DNA libraries were sequenced 

on an Illumina NovaSeq 6000, generating 150 bp paired-end reads. 

For long-read Nanopore sequencing library preparation, 1-2 μg of DNA per sample was used. 

The DNA was size selected using magnetic beads, and the library was constructed following the 

Oxford Nanopore Technologies (ONT) 1D Genomic DNA by Ligation protocol (v14) with the 

Ligation Sequencing Kit SQK-LSK114 following the manufacturer’s recommendations. The final 

DNA libraries were sequenced on a PromethION P48 instrument using R10.4.1 flow cells. Raw 

signal data (fast5 files) were basecalled using Guppy v6.4.6 with the High-Accuracy (HAC) model. 

Selection of external dog gut metagenomes 

We selected all the available dog gut metagenomes until February 2023. We used the GMGC 

catalog48 to collect the initial entries and their associated metadata, and we added new studies 

by searching at PubMed and the SRA database. Dog-associated metadata was manually curated 

from each sample’s associated literature and Biosample or SRA-associated metadata. We 

additionally included a new shotgun metagenomic dataset of 15 pet dogs from Berlin (Germany). 

The collection of external dog metagenomes used in this study and their associated metadata 

can be found in the Supplementary Table S9. Whenever multiple samples from the same animal 

were available, we selected a single representative sample (Supplementary Table S8). For 

choosing the representative samples, we prioritized that the dogs were on a non-interventional 

‘baseline’ diet, the healthiest status (e.g., absence of clinical signs after treatment, in cases of 

chronic enteropathies), or the sample with the highest throughput. Samples that could not be 

linked to their metadata were excluded from the representative set of samples.  

In addition to publicly available cohorts, we included a newly sequenced cohort from Berlin with 

15 pet dogs from households in the context of a food allergy and tolerance study68. 

Reads pre-processing 

Before the read pre-processing step, we run MinIONQC69 on ONT raw reads to evaluate the 

quality of the sequencing runs, including the q-score, sequence length, and total throughput. 

Short and long reads were pre-processed by quality, length, and presence of host reads. For 

Illumina short reads, we used NGLess70, and raw reads were discarded if they presented a quality 
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score lower than 25, were less than 45 bp in length, or mapped to the dog genome. For Nanopore 

long reads, we used Chopper71, and raw reads were discarded if they had a quality score lower 

than 10, were less than 500 bp in length, or mapped to dog genomes. After Chopper, we ran 

Porechop_abi72 to remove any remaining adapters and discard reads with middle adapters. 

Metagenome assembly and binning 

Pre-processed long reads were used to perform metagenomics assembly with MetaFlye73. We 

performed two to three metagenome assemblies per sample, depending on the initial sequencing 

depth: all data, 20 Gb, and 10 Gb. Metagenomics assemblies using the whole sequencing data 

(all data) are the norm throughout the manuscript. Subset metagenomics assemblies were only 

used to obtain MAGs representing species that were missed with the ‘all data’ strategy 

(Supplementary Figure S2). The data subsets were generated with Rasusa74, indicating the 

desired sequencing depth. 

The MetaFlye metagenome assemblies were further polished using three consecutive polishing 

steps: Medaka, which used long reads for polishing; followed by Polypolish75, which used short 

reads for polishing; and a final round using Polca76, which also used short reads for polishing. 

After polishing, we binned the contigs using SemiBin277 with three different strategies for ‘all data’ 

assemblies: single-sample binning with short reads, single-sample binning with long reads, and 

multi-against-multi binning78. For the subset assemblies, we exclusively used single-sample 

binning with short reads. 

MAG catalog generation and characterization 

To characterize the generated metagenome bins, we used CheckM279 to evaluate contamination 

and completeness, followed by GTDB-tk80 with the GTDB r214 database to assign taxonomy to 

the genomic bins. We used DASTool81 to dereplicate the metagenome bins originating from the 

same initial read set (all data) with different binning strategies. Finally, we manually included 

metagenome bins from the subset assemblies if they represented a different taxonomy not 

captured with the ‘all data’ assembly.  

The final collection of MAGs includes only those metagenome bins meeting high- or medium-

quality standards based on the MIMAG criteria13 (Supplementary Table S3). According to these 

criteria, high-quality MAGs have >90% completeness, <5% contamination, and must contain 

ribosomal genes and at least 18 out of the 20 tRNAs. Medium-quality MAGs are defined by >50% 

completeness and <10% contamination. To distinguish between MAGs meeting the full MIMAG 

high-quality criteria and those meeting only completeness and contamination thresholds (>90% 
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completeness, <5% contamination), we refer to the former as near-finished MAGs and the latter 

as high-quality MAGs throughout this study. 

Apart from checking completeness and contamination, we used barrnap to identify the ribosomal 

genes, and for cases where the 5S rRNA genes were not predicted, we also used RNAmmer82. 

The extracted 16S rRNA genes were mapped to MicrobeAtlas OTUs47 using their online API. We 

predicted tRNAs using tRNAscan83. Finally, the species-level MAG representatives were obtained 

by running dRep84 at 95% ANI. 

Manual quality curation on the Shanghai Dog MAG catalog 

During the quality assessment of Allobaculum stercoricanis MAGs, we observed that high-quality 

ones were downgraded to medium-quality after polishing. This shift in quality classification 

coincided with a change in the default model chosen by CheckM2 during its evaluation (moving 

from a general to a specific model). Several of these MAGs were single-contig, circular genome 

assemblies –which typically indicate high completeness and low contamination– but still classified 

as medium-quality. To address this discrepancy, we manually re-evaluated the quality of A. 

stercoricanis MAGs using the general CheckM2 model throughout all the polishing steps. 

Four out of the total six Klebsiella pneumoniae MAGs identified in our cohort, derived from 

consecutive canine fecal samples (D023–D026), presented an identical ARGs pattern and 

exhibited extremely high ANI values. Samples D023–D026 are all from different households and 

different neighbourhoods of Shanghai; therefore, we suspected a cross-contamination event had 

happened during the sample processing. Dog D024 was on antibiotics, and its microbiome 

consisted of a K. pneumoniae MAG with 6,000X coverage and some other very low abundant 

bacteria potentially contaminating nearby samples. 

Bacterial strain and extrachromosomal elements sharing 

We compared the sharing patterns of bacterial strains and extrachromosomal elements in the 

Shanghai dog cohort, considering pairwise comparisons between dogs within the same 

households vs. between households. 

To analyze the sharing patterns of bacterial strains, we divided the number of shared bacterial 

strains (considering ‘same strain’ those MAGs with ANI > 99%) by the number of shared bacterial 

species (considering ‘same species’ as those MAGs with ANI > 95%). Two samples were only 

compared if they presented at least 10 shared bacterial species. 
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To analyze the sharing patterns of extrachromosomal elements, we used the ‘covered fraction’ 

table generated by CoverM85 –based on short-read mapping results to the MAG and 

extrachromosomal element catalogs. We converted this table into a presence-absence matrix by 

considering elements with >80% coverage as present. Considering the extrachromosomal 

elements present in at least 10% of the samples, we calculated sample similarity using Jaccard 

Similarity. 

To evaluate the statistical significance of shared bacterial strains or extrachromosomal elements 

between dogs from the same household vs. different households, we performed a Mann–Whitney 

U test. 

Gene catalog generation 

Open reading frames were predicted with Prodigal in metagenomics mode (-p meta)86. ORFs 

were then clustered at 100% nucleotide identity (with 100% coverage of the shorter sequence) 

by comparing shorter sequences to longer sequences. This catalog was then clustered at 95% 

nucleotide identity (with 90% coverage of the shorter sequence) using CD-HIT-EST (command 

line parameters, -c 0.95 -d 0 -g 1 -G 0 -aS 0.9)87. 

smORF catalog generation 

We ran GMSC-Mapper 0.1.088 on the polished metagenome assemblies and recovered the non-

redundant small ORFs (with 100% amino acid identity) by removing duplicated sequences. These 

smORFs were subsequently clustered at 90% identity using CD-HIT with parameters -c 0.9 -n 5 

-d 0.  

Functional annotation of MAGs 

Using polished metagenome assemblies, we predicted protein-coding genes using Prodigal 2.6.3 

with ‘-p meta’ option. Using as input the predicted proteins file, we run eggNOG mapper 2.1.12 

with the following options: ‘-m diamond --itype proteins’. 

Antimicrobial-resistant genes prediction 

We predicted the ARGs using two input file types: polished metagenome assemblies (contig-level 

fasta files) and the MAG catalog. We ran RGI v6.0.3 with the CARD database38. We filtered the 

output table by only keeping those ARGs predicted as ‘strict’ or ‘perfect’ and that presented at 

least 90% identity and 90% coverage to the hit on the database.  
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For the website (https://sh-dog-mags.big-data-biology.org/), we only included ‘clinically-relevant’ 

ARGs, which were obtained by filtering the output ARGs to include those also present in the 

ResFinder v4.0 database89 by using the database mappings from argNorm 1.090. 

Putative plasmid mining and identification 

For all samples, contigs identified by Flye as circular were extracted and RecurM v0.2.8 was run 

on them with the options ‘-c 2 –collapse_against_assembly’. Only circular clusters identified by 

RecurM were considered for further analysis. To label the generated circular clusters, GeNomad 

v1.1.091 was run with default parameters, and any contigs with at least 1 plasmid hallmark gene 

as defined by GeNomad were considered a plasmid. Putative plasmids were annotated with 

DRAM v1.5.092 with default settings to determine functional gene encoding. To identify putative 

viruses, VirSorter2 v2.2.493 was run with the options ‘--include_groups dsDNAphage, NCLDV, 

RNA, ssDNA, lavidaviridae --high-confidence-only’ and any viral sequence identified as ‘full’ in 

the final-viral-score.tsv file was labelled as virus. All other sequences were considered ‘non-

categorised’. Any contigs that were binned into a MAG were discarded.  

To identify putative hosts for plasmids, a co-abundance approach was used. MAG and putative 

plasmid abundance was calculated by mapping metagenomic reads using CoverM with the 

trimmed mean option. The trimmed mean of the relative abundances of both MAGs and putative 

plasmids was used as input into FlashWeave v0.19.294 using the sensitive, heterogeneous mode 

to construct a co-abundance table. Relationships between a MAG and a circular cluster with a 

FlashWeave correlation strength above 0.5 were kept as putative plasmid-host relationships.  

QUANTIFICATION AND STATISTICAL ANALYSIS 

MAG polishing evaluation 

As mentioned above, the final MAG collection was generated by binning the polished contigs, 

which were generated by metagenome assembly with MetaFlye, followed by three consecutive 

polishing steps (Medaka - long-read polishing, Polypolish - first round short-read polishing, and 

Polca - second round short-read polishing). To evaluate the effect of each polishing step, we 

generated “artificial” genomic bins containing the unpolished versions of the contig of the final 

MAG catalog for each one of the previous polishing steps (Flye, Medaka, Polypolish). 

We evaluated polishing effects by looking at completeness and contamination values obtained by 

CheckM2. To assess statistical differences in the MAGs completeness and contamination values, 

we used SciPy library implementation of the Friedman test, followed by the Wilcoxon test on 
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paired samples. Wilcoxon test on paired samples assessed significant differences between 

polishing steps (Flye - unpolished, Medaka - long-read polished, Polypolish - long-read + short-

read polished, and Polca - long-read + 2x short-read polished), we evaluated if completeness 

between the polishing steps was higher (alternative=’greater’) and if contamination was lower 

(alternative=’less’). The final results were considered significant if the q-score obtained after 

Benjamini-Hochberg FDR correction was <0.05. 

Taxonomic profiling and diversity analysis 

To perform read-level analysis, we used short-read sequencing data from canid studies in public 

databases (up to February 2023) together with our short-read data. We kept the SingleM OTU 

tables generated by the 13 universal marker genes that target Bacteria and Archaea. For each 

OTU table, we filtered out OTUs that did not have a total count across all samples of at least 10 

and that were not found in at least 2% of the samples. Moreover, we filtered out very low-abundant 

OTUs by removing any OTU with a mean relative abundance lower than 0.005%. Finally, we 

discarded samples that did not have at least 200 OTUs detected. 

For each OTU table, we computed alpha diversity using the Shannon index and beta diversity 

using Bray-Curtis dissimilarity metrics (on log-transformed data). We obtained the final alpha and 

beta diversity objects by computing the median values for the selected marker genes. To assess 

statistical significance, we used Kruskal-Wallis for alpha diversity and PERMANOVA for beta 

diversity. We evaluated the effect of living environment, age, size, and sex. For each variable, if 

a specific category was only represented by a single study, the associated samples were filtered 

out to avoid batch effects in the statistical analysis. 

Differential abundance analysis 

Using SingleM species-level taxonomic profiles, we conducted differential abundance analysis 

using MaAsLin295. For each metadata variable analyzed (living environment, age, size, and sex), 

unknown samples were discarded, and we adjusted for the other variables as relevant covariates. 

Features with a q-value < 0.1 were considered significant. Additionally, a Kruskal-Wallis test with 

Benjamini-Hochberg FDR correction (q < 0.05) was also conducted. Only taxa and functional 

features identified as significant by both methods and thresholds were considered robust 

associations and were further analyzed. 
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Comparison of canine long-read MAGs to representative genome assemblies 

Using high-quality species-level genome assemblies, we compared our species representatives' 

long-read MAGs to those from the public databases (GenBank or RefSeq). Firstly, we 

downloaded the reference genome for each species and ran CheckM2 on them to include only 

those species with >90% completeness and <5% contamination. We characterized them using 

the previously described workflow for counting tRNAs and identifying ribosomal genes. 

To annotate the Mobilome function (COG category “X”) for both reference and long-read canine 

MAGs, we used eggNOG COG IDs and manually linked them to the COG X category according 

to NCBI (https://www.ncbi.nlm.nih.gov/research/cog/cogcategory/X/). Wilcoxon test on paired 

samples assessed if the count of mobilome gene functions was higher (alternative = ’greater’) in 

long-read species-level MAG here compared with representative genomes in public datasets. The 

final results were considered significant if the q-score obtained after Benjamini-Hochberg FDR 

correction was <0.05. 

Extrachromosomal elements in canids 

We mapped the short reads from a total of 406 dog samples from our Shanghai cohort, Berlin 

cohort, and selected external canid cohorts7,9–11 to the species-level MAGs and non-redundant 

ECEs. Reads were first quality filtered (trimmed to min. base quality of 25 using the ‘substrim’ 

strategy, and min. post-trim read size of 45) and then mapped to the dog reference genome with 

bwa-mem96 through NGLess70, keeping only hits with at least 45bp coverage at 90% identity. 

Reads mapping to the dog genome were then discarded and the remaining reads mapped to our 

catalog using the same software and filtering parameters. Using CoverM85, we obtained the 

“covered fraction” table and considered an EC element present if it was covered at least 80%. 

Using the Chi-square test on the presence/absence table, we assessed differential prevalence 

patterns of ECEs across selected canid cohorts, considering several metadata variables: study, 

living environment, age, size, sex, and body condition. If the Chi-square test was significant, we 

ran a post-hoc Fisher’s Exact test for pairwise comparisons. As a final step, we performed multiple 

testing correction to all the combined results using the Benjamini-Hochberg FDR test.  

Pairwise comparisons that included an unknown or unclassified group were filtered out for further 

analysis. For each ECE, we considered only the most significant metadata category driving the 

difference (the lowest corrected p-value). If that was ‘Study’, the difference is considered technical 

rather than biological, and is not further discussed. 
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Key resources table 

REAGENT or 

RESOURCE 
SOURCE IDENTIFIER 

Critical commercial assays 

Flow Cell 

R10.4.1 and 

Ligation 

Sequencing Kit 

Oxford Nanopore 

Technologies 

R10.4.1 

SQK-LSK114 

NEBNext® 

Ultra™ DNA 

Library Prep Kit 

for Illumina 

New England 

Biolabs 
E7370L 

Deposited data 

Raw sequencing 

data 
This study Bioproject ID: PRJEB85799 

MAG catalog This study 
Bioproject ID: PRJEB85799 

https://sh-dog-mags.big-data-biology.org/ 

ECEs catalog This study https://doi.org/10.5281/zenodo.16356977 

Gene catalog This study https://doi.org/10.5281/zenodo.16356977 

smORFs catalog This study https://doi.org/10.5281/zenodo.16356977 

Functional 

annotations 
This study https://doi.org/10.5281/zenodo.16356977 

RGI annotations This study https://doi.org/10.5281/zenodo.16356977 

Software and algorithms 

All original code This study https://github.com/BigDataBiology/ShanghaiDogs 
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MinIONQC 1.4.1 
Lanfear et al., 

201969 
https://github.com/roblanf/minion_qc 

Chopper 0.5.0 
De Coster et al., 

202371 
https://github.com/wdecoster/chopper 

Porechop_abi 

0.5.1 

Bonenfant et al., 

202372 
https://github.com/bonsai-team/Porechop_ABI 

Rasusa 0.7.1 Hall et al., 202374 https://github.com/mbhall88/rasusa 

Ngless 1.5.0 
Coelho et al., 

201970 
https://github.com/ngless-toolkit/ngless 

Flye 2.9.2 
Kolmogorov et al., 

202073 
https://github.com/mikolmogorov/Flye 

SemiBin2 1.5.1 Pan et al., 202377 https://github.com/BigDataBiology/SemiBin 

Minimap2 2.26-

r1175 
Li, 201897 https://github.com/lh3/minimap2 

SAMtools 1.17 
Danecek et al., 

202198 
https://github.com/samtools/samtools 

BWA v0.7.19 Li, 201396 https://github.com/lh3/bwa 

Strobealign 

v0.15 

Shalin, 202299 

Pan et al., 202578 
https://github.com/ksahlin/strobealign 

MaAsLin2 1.16.0 
Mallick et al., 

202195 
https://github.com/biobakery/Maaslin2 

Medaka 1.8.1 
Oxford Nanopore 

Technologies 
https://github.com/nanoporetech/medaka 

Polypolish 0.5.0 Wick et al., 202275 https://github.com/rrwick/Polypolish 
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polca.py from 

Masurca 4.1.0 

Zimin et al., 

201776 
https://github.com/alekseyzimin/masurca 

DASTool 1.1.6 
Sieber et al., 

201881 
https://github.com/cmks/DAS_Tool 

dRep 3.5.0 Olm et al., 201784 https://github.com/MrOlm/drep 

GTDBtk 2.3.0 
Chaumeil et al., 

202080 
https://github.com/Ecogenomics/GTDBTk 

GTDB database 

r214 

Parks et al., 

2018100 
https://gtdb.ecogenomic.org/ 

CheckM2 1.0.1 
Chklovski et al., 

202379 
https://github.com/chklovski/CheckM2 

RGI 6.0.3 
Alcock et al., 

202338 
https://github.com/arpcard/rgi/ 

Prodigal 2.6.3 Hyatt et al., 201086 https://github.com/hyattpd/Prodigal 

Barrnap 0.9 Seemann, 2013 https://github.com/tseemann/barrnap 

RNAmmer v1.2 
Lagesen et al., 

200782 

https://services.healthtech.dtu.dk/services/RNAmmer-

1.2/ 

tRNAscan-SE 

2.0.12 

Chan et al., 

202183 
https://github.com/UCSC-LoweLab/tRNAscan-SE 

EggNOG 

mapper 2.1.12-

cbe169f 

Cantalapiedra et 

al., 2021101 

Huerta-Cepas et 

al., 2019102 

https://github.com/eggnogdb/eggnog-mapper 

CoverM v0.7.0 
Aroney S, et al., 

202585 
https://github.com/wwood/CoverM 

RecurM 0.2.8 - https://github.com/dn-ra/RecurM 
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SingleM 0.16.0 
Woodcroft et al., 

202542 
https://github.com/wwood/singlem 

CD-HIT v4.8.1 Fu et al., 201287 https://sites.google.com/view/cd-hit 

Other 

Public dog 

genome 
ENSEMBL GCA_000002285.4 

Public raw reads 

from canids 
ENA Supplementary Table S9 for Bioproject IDs 

 

Acknowledgements: The authors thank Alexandre Areias Castro (QUT) for assistance with 

sequence deposition, Chengkai Zhu (Fudan University) for support with logistics, Marion Draheim 

and Richard Lo-Man (Institut Pasteur Shanghai) for support with sample logistics, and the dog 

owners for their participation. Members of the Coelho group and the red herons group (QUT) are 

thanked for their feedback and suggestions throughout the project. 

Funding: National Natural Science Foundation of China (RFIS-I, 32250410281) (A.C.), the 

Australian Research Council (#FT230100724) (L.P.C.), the National Health and Medical 

Research Council of Australia (under the framework of JPI AMR, #2031902, SEARCHER) 

(L.P.C.), and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) as 

part of the clinical research unit (CRU339): Food allergy and tolerance (FOOD@) – 409525714 

(U.L.). 

Declaration of interests: A.Cu. is a partner at Nano1Health, SL, and has previously been invited 

by Oxford Nanopore Technologies (ONT) to participate in conferences. These activities did not 

influence the results or conclusions of this work. All other authors declare no competing interests. 

Author contributions: A.Cu. and L.P.C. designed the study. A.Cu. and F.G. collected the 

samples and the dog associated information. A.Cu., Y.D., A.Ch., S.P., X.-M.Z., and L.P.C. 

analyzed data. A.Cu., N.K., and L.P.C. visualized data. S.F., S.L., and U.L. provided the data from 

the Berlin dog cohort. A.Cu., X.-M.Z., and L.P.C. provided funding. L.P.C. supervised the project. 

A.Cu. wrote the first draft of the manuscript. All authors contributed to the revision of the 

manuscript prior to submission and approved the final version. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2025. ; https://doi.org/10.1101/2025.09.17.676595doi: bioRxiv preprint 

https://doi.org/10.1101/2025.09.17.676595
http://creativecommons.org/licenses/by/4.0/


31 
 

REFERENCES 

1. Song, S.J., Lauber, C., Costello, E.K., Lozupone, C.A., Humphrey, G., Berg-Lyons, D., Caporaso, J.G., 

Knights, D., Clemente, J.C., Nakielny, S., et al. (2013). Cohabiting family members share microbiota 

with one another and with their dogs. eLife 2, e00458. https://doi.org/10.7554/eLife.00458.  

2. Tomasulo, A., Simionati, B., and Facchin, S. (2024). Microbiome One Health model for a healthy 

ecosystem. Sci One Health 3, 100065. https://doi.org/10.1016/j.soh.2024.100065.  

3. Pilla, R., and Suchodolski, J.S. (2020). The Role of the Canine Gut Microbiome and Metabolome in 

Health and Gastrointestinal Disease. Front. Vet. Sci. 6. https://doi.org/10.3389/fvets.2019.00498.  

4. Tun, H.M., Konya, T., Takaro, T.K., Brook, J.R., Chari, R., Field, C.J., Guttman, D.S., Becker, A.B., 

Mandhane, P.J., Turvey, S.E., et al. (2017). Exposure to household furry pets influences the gut 

microbiota of infant at 3-4 months following various birth scenarios. Microbiome 5, 40. 

https://doi.org/10.1186/s40168-017-0254-x.  

5. Mäki, J.M., Kirjavainen, P.V., Täubel, M., Piippo-Savolainen, E., Backman, K., Hyvärinen, A., 

Tuoresmäki, P., Jayaprakash, B., Heinrich, J., Herberth, G., et al. (2021). Associations between dog 

keeping and indoor dust microbiota. Sci Rep 11, 5341. https://doi.org/10.1038/s41598-021-84790-w.  

6. Bryce, C.M. (2021). Dogs as Pets and Pests: Global Patterns of Canine Abundance, Activity, and 

Health. Integr. Comp. Biol. 61, 154–165. https://doi.org/10.1093/icb/icab046.  

7. Coelho, L.P., Kultima, J.R., Costea, P.I., Fournier, C., Pan, Y., Czarnecki-Maulden, G., Hayward, M.R., 

Forslund, S.K., Schmidt, T.S.B., Descombes, P., et al. (2018). Similarity of the dog and human gut 

microbiomes in gene content and response to diet. Microbiome 6, 72. https://doi.org/10.1186/s40168-

018-0450-3.  

8. Wang, S., Martins, R., Sullivan, M.C., Friedman, E.S., Misic, A.M., El-Fahmawi, A., De Martinis, E.C.P., 

O’Brien, K., Chen, Y., Bradley, C., et al. (2019). Diet-induced remission in chronic enteropathy is 

associated with altered microbial community structure and synthesis of secondary bile acids. 

Microbiome 7, 126. https://doi.org/10.1186/s40168-019-0740-4.  

9. Allaway, D., Haydock, R., Lonsdale, Z.N., Deusch, O.D., O’Flynn, C., and Hughes, K.R. (2020). Rapid 

Reconstitution of the Fecal Microbiome after Extended Diet-Induced Changes Indicates a Stable Gut 

Microbiome in Healthy Adult Dogs. Appl Environ Microbiol 86, e00562-20. 

https://doi.org/10.1128/AEM.00562-20.  

10. Tanprasertsuk, J., Shmalberg, J., Maughan, H., Tate, D.E., Perry, L.M., Jha, A.R., and Honaker, R.W. 

(2021). Heterogeneity of gut microbial responses in healthy household dogs transitioning from an 

extruded to a mildly cooked diet. PeerJ 9, e11648. https://doi.org/10.7717/peerj.11648.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2025. ; https://doi.org/10.1101/2025.09.17.676595doi: bioRxiv preprint 

https://doi.org/10.1101/2025.09.17.676595
http://creativecommons.org/licenses/by/4.0/


32 
 

11. Yarlagadda, K., Zachwieja, A.J., de Flamingh, A., Phungviwatnikul, T., Rivera-Colón, A.G., Roseman, 

C., Shackelford, L., Swanson, K.S., and Malhi, R.S. (2022). Geographically diverse canid sampling 

provides novel insights into pre-industrial microbiomes. Proc. R. Soc. B. 289, 20220052. 

https://doi.org/10.1098/rspb.2022.0052.  

12. Branck, T., Hu, Z., Nickols, W.A., Walsh, A.M., Bhosle, A., Short, M.I., Nearing, J.T., Asnicar, F., 

McIver, L.J., Maharjan, S., et al. (2024). Comprehensive profile of the companion animal gut 

microbiome integrating reference-based and reference-free methods. ISME J. 18, wrae201. 

https://doi.org/10.1093/ismejo/wrae201.  

13. Bowers, R.M., Kyrpides, N.C., Stepanauskas, R., Harmon-Smith, M., Doud, D., Reddy, T.B.K., Schulz, 

F., Jarett, J., Rivers, A.R., Eloe-Fadrosh, E.A., et al. (2017). Minimum information about a single 

amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. 

Nat. Biotechnol. 35, 725–731. https://doi.org/10.1038/nbt.3893.  

14. Sereika, M., Kirkegaard, R.H., Karst, S.M., Michaelsen, T.Y., Sørensen, E.A., Wollenberg, R.D., and 

Albertsen, M. (2022). Oxford Nanopore R10.4 long-read sequencing enables the generation of near-

finished bacterial genomes from pure cultures and metagenomes without short-read or reference 

polishing. Nat Methods 19, 823–826. https://doi.org/10.1038/s41592-022-01539-7.  

15. Almeida, A., Nayfach, S., Boland, M., Strozzi, F., Beracochea, M., Shi, Z.J., Pollard, K.S., Sakharova, 

E., Parks, D.H., Hugenholtz, P., et al. (2020). A unified catalog of 204,938 reference genomes from 

the human gut microbiome. Nat Biotechnol 39, 1–10. https://doi.org/10.1038/s41587-020-0603-3.  

16. Yuan, C., Lei, J., Cole, J., and Sun, Y. (2015). Reconstructing 16S rRNA genes in metagenomic data. 

Bioinformatics 31, i35-43. https://doi.org/10.1093/bioinformatics/btv231.  

17. Maguire, F., Jia, B., Gray, K.L., Lau, W.Y.V., Beiko, R.G., and Brinkman, F.S.L. (2020). Metagenome-

assembled genome binning methods with short reads disproportionately fail for plasmids and genomic 

Islands. Microb Genom 6, e000436. https://doi.org/10.1099/mgen.0.000436.  

18. Abramova, A., Karkman, A., and Bengtsson-Palme, J. (2024). Metagenomic assemblies tend to break 

around antibiotic resistance genes. BMC Genomics 25, 959. https://doi.org/10.1186/s12864-024-

10876-0.  

19. Bertrand, D., Shaw, J., Kalathiyappan, M., Ng, A.H.Q., Kumar, M.S., Li, C., Dvornicic, M., Soldo, J.P., 

Koh, J.Y., Tong, C., et al. (2019). Hybrid metagenomic assembly enables high-resolution analysis of 

resistance determinants and mobile elements in human microbiomes. Nat. Biotechnol. 37, 937–944. 

https://doi.org/10.1038/s41587-019-0191-2.  

20. Singleton, C.M., Petriglieri, F., Kristensen, J.M., Kirkegaard, R.H., Michaelsen, T.Y., Andersen, M.H., 

Kondrotaite, Z., Karst, S.M., Dueholm, M.S., Nielsen, P.H., et al. (2021). Connecting structure to 

function with the recovery of over 1000 high-quality metagenome-assembled genomes from activated 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2025. ; https://doi.org/10.1101/2025.09.17.676595doi: bioRxiv preprint 

https://doi.org/10.1101/2025.09.17.676595
http://creativecommons.org/licenses/by/4.0/


33 
 

sludge using long-read sequencing. Nat Commun 12, 2009. https://doi.org/10.1038/s41467-021-

22203-2.  

21. Suzuki, Y., Nishijima, S., Furuta, Y., Yoshimura, J., Suda, W., Oshima, K., Hattori, M., and Morishita, 

S. (2019). Long-read metagenomic exploration of extrachromosomal mobile genetic elements in the 

human gut. Microbiome 7, 119. https://doi.org/10.1186/s40168-019-0737-z.  

22. Arumugam, K., Bessarab, I., Haryono, M.A.S., Liu, X., Zuniga–Montanez, R.E., Roy, S., Qiu, G., 

Drautz–Moses, D.I., Law, Y.Y., Wuertz, S., et al. (2021). Recovery of complete genomes and non-

chromosomal replicons from activated sludge enrichment microbial communities with long read 

metagenome sequencing. npj Biofilms Microbiomes 7, 1–13. https://doi.org/10.1038/s41522-021-

00196-6.  

23. Stewart, R.D., Auffret, M.D., Warr, A., Walker, A.W., Roehe, R., and Watson, M. (2019). Compendium 

of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme 

discovery. Nat. Biotechnol. 37, 953–961. https://doi.org/10.1038/s41587-019-0202-3.  

24. Moss, E.L., Maghini, D.G., and Bhatt, A.S. (2020). Complete, closed bacterial genomes from 

microbiomes using nanopore sequencing. Nat. Biotechnol. 38, 701–707. 

https://doi.org/10.1038/s41587-020-0422-6.  

25. Cuscó, A., Pérez, D., Viñes, J., Fàbregas, N., and Francino, O. (2021). Long-read metagenomics 

retrieves complete single-contig bacterial genomes from canine feces. BMC Genomics 22, 330. 

https://doi.org/10.1186/s12864-021-07607-0.  

26. Cuscó, A., Pérez, D., Viñes, J., Fàbregas, N., and Francino, O. (2022). Novel canine high-quality 

metagenome-assembled genomes, prophages and host-associated plasmids provided by long-read 

metagenomics together with Hi-C proximity ligation. Microb Genom 8, 000802. 

https://doi.org/10.1099/mgen.0.000802.  

27. Jarett, J.K., Kingsbury, D.D., Dahlhausen, K.E., and Ganz, H.H. (2021). Best Practices for 

Microbiome Study Design in Companion Animal Research. Front. Vet. Sci. 8. 

https://doi.org/10.3389/fvets.2021.644836.  

28. Rojas, C.A., Park, B., Scarsella, E., Jospin, G., Entrolezo, Z., Jarett, J.K., Martin, A., and Ganz, H.H. 

(2024). Species-level characterization of the core microbiome in healthy dogs using full-length 16S 

rRNA gene sequencing. Front. Vet. Sci. 11. https://doi.org/10.3389/fvets.2024.1405470.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2025. ; https://doi.org/10.1101/2025.09.17.676595doi: bioRxiv preprint 

https://doi.org/10.1101/2025.09.17.676595
http://creativecommons.org/licenses/by/4.0/


34 
 

29. Maghini, D.G., Moss, E.L., Vance, S.E., and Bhatt, A.S. (2021). Improved high-molecular-weight 

DNA extraction, nanopore sequencing and metagenomic assembly from the human gut microbiome. 

Nat Protoc 16, 458–471. https://doi.org/10.1038/s41596-020-00424-x.  

30. Větrovský, T., and Baldrian, P. (2013). The Variability of the 16S rRNA Gene in Bacterial Genomes 

and Its Consequences for Bacterial Community Analyses. PLOS ONE 8, e57923. 

https://doi.org/10.1371/journal.pone.0057923.  

31. Greetham, H.L., Collins, M.D., Gibson, G.R., Giffard, C., Falsen, E., and Lawson, P.A. (2004). 

Sutterella stercoricanis sp. nov., isolated from canine faeces. Int J Syst Evol Microbiol 54, 1581–

1584. https://doi.org/10.1099/ijs.0.63098-0.  

32. Kawata, M., Tsukamoto, A., Isozaki, R., Nobukawa, S., Kawahara, N., Akutsu, S., Suzuki, M., and 

Asanuma, N. (2018). Glucerabacter canisensis gen. nov., sp. nov., isolated from dog feces and its 

effect on the hydrolysis of plant glucosylceramide in the intestine of dogs. Arch Microbiol 200, 505–

515. https://doi.org/10.1007/s00203-017-1463-1.  

33. Martiny, H.-M., Munk, P., Brinch, C., Aarestrup, F.M., Calle, M.L., and Petersen, T.N. (2024). 

Utilizing co-abundances of antimicrobial resistance genes to identify potential co-selection in the 

resistome. Microbiol Spectr 12, e04108-23. https://doi.org/10.1128/spectrum.04108-23.  

34. Steagall, P.V., Pelligand, L., Page, S., Granick, J.L., Allerton, F., Bęczkowski, P.M., Weese, J.S., 

Hrček, A.K., Queiroga, F., and Guardabassi, L. (2023). The 2023 World Small Animal Veterinary 

Association (WSAVA): List of essential medicines for cats and dogs. J Small Anim Pract 64, 731–

748. https://doi.org/10.1111/jsap.13673.  

35. Partridge, S.R., Kwong, S.M., Firth, N., and Jensen, S.O. (2018). Mobile Genetic Elements 

Associated with Antimicrobial Resistance. Clin Microbiol Rev 31, 10.1128/cmr.00088-17. 

https://doi.org/10.1128/cmr.00088-17.  

36. Voha, C., Docquier, J.-D., Rossolini, G.M., and Fosse, T. (2006). Genetic and Biochemical 

Characterization of FUS-1 (OXA-85), a Narrow-Spectrum Class D β-Lactamase from Fusobacterium 

nucleatum subsp. polymorphum. Antimicrob Agents Chemother 50, 2673–2679. 

https://doi.org/10.1128/aac.00058-06.  

37. Perry, M.D., Vranckx, K., Copsey-Mawer, S., Scotford, S., Anderson, B., Day, P., Watkins, J., 

Corden, S., Hughes, H., and Morris, T.E. (2023). First large-scale study of antimicrobial susceptibility 

data, and genetic resistance determinants, in Fusobacterium necrophorum highlighting the 

importance of continuing focused susceptibility trend surveillance. Anaerobe 80, 102717. 

https://doi.org/10.1016/j.anaerobe.2023.102717.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2025. ; https://doi.org/10.1101/2025.09.17.676595doi: bioRxiv preprint 

https://doi.org/10.1101/2025.09.17.676595
http://creativecommons.org/licenses/by/4.0/


35 
 

38. Alcock, B.P., Huynh, W., Chalil, R., Smith, K.W., Raphenya, A.R., Wlodarski, M.A., Edalatmand, A., 

Petkau, A., Syed, S.A., Tsang, K.K., et al. (2023). CARD 2023: expanded curation, support for 

machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. 

Nucleic Acids Res 51, D690–D699. https://doi.org/10.1093/nar/gkac920.  

39. Salverda, M.L.M., De Visser, J.A.G.M., and Barlow, M. (2010). Natural evolution of TEM-1 β-

lactamase: experimental reconstruction and clinical relevance. FEMS Microbiology Reviews 34, 

1015–1036. https://doi.org/10.1111/j.1574-6976.2010.00222.x.  

40. Berryman, D.I., Lyristis, M., and Rood, J.I. (1994). Cloning and sequence analysis of ermQ, the 

predominant macrolide-lincosamide-streptogramin B resistance gene in Clostridium perfringens. 

Antimicrob Agents Chemother 38, 1041–1046. https://doi.org/10.1128/aac.38.5.1041.  

41. Fang, M., Yuan, Y., Tian, X., Liu, Y., Wu, K., Zhu, Y., Zhang, L., Fox, E.M., Li, R., Bai, L., et al. 

(2025). Genomic and antimicrobial resistance profiles of Clostridium perfringens isolated from pets 

in China. Vet Microbiol 304, 110490. https://doi.org/10.1016/j.vetmic.2025.110490.  

42. Woodcroft, B.J., Aroney, S.T.N., Zhao, R., Cunningham, M., Mitchell, J.A.M., Nurdiansyah, R., 

Blackall, L., and Tyson, G.W. (2025). Comprehensive taxonomic identification of microbial species in 

metagenomic data using SingleM and Sandpiper. Nat Biotechnol, 1–6. 

https://doi.org/10.1038/s41587-025-02738-1.  

43. Witt, K.E., Yarlagadda, K., Allen, J.M., Bader, A.C., Simon, M.L., Kuehn, S.R., Swanson, K.S., 

Cross, T.-W.L., Hedman, K.M., Ambrose, S.H., et al. (2021). Integrative analysis of DNA, 

macroscopic remains and stable isotopes of dog coprolites to reconstruct community diet. Sci Rep 

11, 3113. https://doi.org/10.1038/s41598-021-82362-6.  

44. Jang, H.-J., Son, S., Kim, J.-A., Jung, M.Y., Choi, Y., Kim, D.-H., Lee, H.K., Shin, D., and Kim, Y. 

(2021). Characterization and Functional Test of Canine Probiotics. Front. Microbiol. 12. 

https://doi.org/10.3389/fmicb.2021.625562.  

45. Herstad, K.M.V., Moen, A.E.F., Gaby, J.C., Moe, L., and Skancke, E. (2018). Characterization of the 

fecal and mucosa-associated microbiota in dogs with colorectal epithelial tumors. PLOS ONE 13, 

e0198342. https://doi.org/10.1371/journal.pone.0198342.  

46. Kwon, G., Lee, J., Koh, J.-H., and Lim, Y.-H. (2018). Lifespan Extension of Caenorhabditis elegans 

by Butyricicoccus pullicaecorum and Megasphaera elsdenii with Probiotic Potential. Curr Microbiol 

75, 557–564. https://doi.org/10.1007/s00284-017-1416-6.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2025. ; https://doi.org/10.1101/2025.09.17.676595doi: bioRxiv preprint 

https://doi.org/10.1101/2025.09.17.676595
http://creativecommons.org/licenses/by/4.0/


36 
 

47. Rodrigues, J.F.M., Tackmann, J., Malfertheiner, L., Patsch, D., Perez-Molphe-Montoya, E., Näpflin, 

N., Gaio, D., Rot, G., Danaila, M., Peluso, M.E., et al. (2025). The MicrobeAtlas database: Global 

trends and insights into Earth’s microbial ecosystems. Preprint at bioRxiv, 

https://doi.org/10.1101/2025.07.18.665519 https://doi.org/10.1101/2025.07.18.665519.  

48. Coelho, L.P., Alves, R., del Río, Á.R., Myers, P.N., Cantalapiedra, C.P., Giner-Lamia, J., Schmidt, 

T.S., Mende, D.R., Orakov, A., Letunic, I., et al. (2022). Towards the biogeography of prokaryotic 

genes. Nature 601, 252–256. https://doi.org/10.1038/s41586-021-04233-4.  

49. Lyu, T., Liu, G., Zhang, H., Wang, L., Zhou, S., Dou, H., Pang, B., Sha, W., and Zhang, H. (2018). 

Changes in feeding habits promoted the differentiation of the composition and function of gut 

microbiotas between domestic dogs (Canis lupus familiaris) and gray wolves (Canis lupus). AMB 

Expr 8, 123. https://doi.org/10.1186/s13568-018-0652-x.  

50. Liu, Y., Liu, B., Liu, C., Hu, Y., Liu, C., Li, X., Li, X., Zhang, X., Irwin, D.M., Wu, Z., et al. (2021). 

Differences in the gut microbiomes of dogs and wolves: roles of antibiotics and starch. BMC Vet Res 

17, 112. https://doi.org/10.1186/s12917-021-02815-y.  

51. Rampelli, S., Turroni, S., Debandi, F., Alberdi, A., Schnorr, S.L., Hofman, C.A., Taddia, A., Helg, R., 

Biagi, E., Brigidi, P., et al. (2021). The gut microbiome buffers dietary adaptation in Bronze Age 

domesticated dogs. iScience 24. https://doi.org/10.1016/j.isci.2021.102816.  

52. Hagan, R.W., Hofman, C.A., Hübner, A., Reinhard, K., Schnorr, S., Lewis Jr, C.M., 

Sankaranarayanan, K., and Warinner, C.G. (2020). Comparison of extraction methods for recovering 

ancient microbial DNA from paleofeces. American Journal of Physical Anthropology 171, 275–284. 

https://doi.org/10.1002/ajpa.23978.  

53. Bai, H., Liu, T., Wang, S., Shen, L., and Wang, Z. (2023). Variations in gut microbiome and 

metabolites of dogs with acute diarrhea in poodles and Labrador retrievers. Arch Microbiol 205, 97. 

https://doi.org/10.1007/s00203-023-03439-6.  

54. Xu, H., Zhao, F., Hou, Q., Huang, W., Liu, Y., Zhang, H., and Sun, Z. (2019). Metagenomic analysis 

revealed beneficial effects of probiotics in improving the composition and function of the gut 

microbiota in dogs with diarrhoea. Food Funct. 10, 2618–2629. 

https://doi.org/10.1039/C9FO00087A.  

55. Chen, L., Sun, M., Xu, D., Gao, Z., Shi, Y., Wang, S., and Zhou, Y. (2022). Gut microbiome of 

captive wolves is more similar to domestic dogs than wild wolves indicated by metagenomics study. 

Front. Microbiol. 13. https://doi.org/10.3389/fmicb.2022.1027188.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2025. ; https://doi.org/10.1101/2025.09.17.676595doi: bioRxiv preprint 

https://doi.org/10.1101/2025.09.17.676595
http://creativecommons.org/licenses/by/4.0/


37 
 

56. Youngblut, N.D., Cuesta-Zuluaga, J. de la, Reischer, G.H., Dauser, S., Schuster, N., Walzer, C., 

Stalder, G., Farnleitner, A.H., and Ley, R.E. (2020). Large-Scale Metagenome Assembly Reveals 

Novel Animal-Associated Microbial Genomes, Biosynthetic Gene Clusters, and Other Genetic 

Diversity. mSystems 5, e01045-20. https://doi.org/10.1128/mSystems.01045-20.  

57. Alessandri, G., Milani, C., Mancabelli, L., Mangifesta, M., Lugli, G.A., Viappiani, A., Duranti, S., 

Turroni, F., Ossiprandi, M.C., van Sinderen, D., et al. (2019). Metagenomic dissection of the canine 

gut microbiota: insights into taxonomic, metabolic and nutritional features. Environ Microbiol 21, 

1331–1343. https://doi.org/10.1111/1462-2920.14540.  

58. Pehrsson, E.C., Tsukayama, P., Patel, S., Mejía-Bautista, M., Sosa-Soto, G., Navarrete, K.M., 

Calderon, M., Cabrera, L., Hoyos-Arango, W., Bertoli, M.T., et al. (2016). Interconnected 

microbiomes and resistomes in low-income human habitats. Nature 533, 212–216. 

https://doi.org/10.1038/nature17672.  

59. Guardabassi, L., Schwarz, S., and Lloyd, D.H. (2004). Pet animals as reservoirs of antimicrobial-

resistant bacteria: Review. Journal of Antimicrobial Chemotherapy 54, 321–332. 

https://doi.org/10.1093/jac/dkh332.  

60. Manges, A.R., Geum, H.M., Guo, A., Edens, T.J., Fibke, C.D., and Pitout, J.D.D. (2019). Global 

Extraintestinal Pathogenic Escherichia coli (ExPEC) Lineages. Clin Microbiol Rev 32, e00135-18. 

https://doi.org/10.1128/CMR.00135-18.  

61. Benavides, J.A., Salgado-Caxito, M., Opazo-Capurro, A., González Muñoz, P., Piñeiro, A., Otto 

Medina, M., Rivas, L., Munita, J., and Millán, J. (2021). ESBL-Producing Escherichia coli Carrying 

CTX-M Genes Circulating among Livestock, Dogs, and Wild Mammals in Small-Scale Farms of 

Central Chile. Antibiotics 10, 510. https://doi.org/10.3390/antibiotics10050510.  

62. Ko, K.K.K., Chng, K.R., and Nagarajan, N. (2022). Metagenomics-enabled microbial surveillance. 

Nat Microbiol 7, 486–496. https://doi.org/10.1038/s41564-022-01089-w.  

63. Aizpurua, O., Botnen, A.B., Eisenhofer, R., Odriozola, I., Santos-Bay, L., Bjørnsen, M.B., Gilbert, 

M.T.P., and Alberdi, A. (2025). Functional Insights Into the Effect of Feralisation on the Gut 

Microbiota of Cats Worldwide. Mol Ecol 34, e17695. https://doi.org/10.1111/mec.17695.  

64. Jha, A.R., Shmalberg, J., Tanprasertsuk, J., Perry, L., Massey, D., and Honaker, R.W. (2020). 

Characterization of gut microbiomes of household pets in the United States using a direct-to-

consumer approach. PLOS ONE 15, e0227289. https://doi.org/10.1371/journal.pone.0227289.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2025. ; https://doi.org/10.1101/2025.09.17.676595doi: bioRxiv preprint 

https://doi.org/10.1101/2025.09.17.676595
http://creativecommons.org/licenses/by/4.0/


38 
 

65. Lehtimäki, J., Sinkko, H., Hielm-Björkman, A., Salmela, E., Tiira, K., Laatikainen, T., Mäkeläinen, S., 

Kaukonen, M., Uusitalo, L., Hanski, I., et al. (2018). Skin microbiota and allergic symptoms associate 

with exposure to environmental microbes. PNAS 115, 4897–4902. 

https://doi.org/10.1073/pnas.1719785115.  

66. Harvey, N.D. (2021). How Old Is My Dog? Identification of Rational Age Groupings in Pet Dogs 

Based Upon Normative Age-Linked Processes. Front. Vet. Sci. 8. 

https://doi.org/10.3389/fvets.2021.643085.  

67. Salt, C., Morris, P.J., German, A.J., Wilson, D., Lund, E.M., Cole, T.J., and Butterwick, R.F. (2017). 

Growth standard charts for monitoring bodyweight in dogs of different sizes. PLOS ONE 12, 

e0182064. https://doi.org/10.1371/journal.pone.0182064.  

68. Worm, M., Alexiou, A., Höfer, V., Birkner, T., Jeanrenaud, A.C.S.N., Fauchère, F., Pazur, K., 

Steinert, C., Arnau-Soler, A., Banerjee, P., et al. (2022). An interdisciplinary approach to 

characterize peanut-allergic patients—First data from the FOOD@ consortium. Clin Transl Allergy 

12, e12197. https://doi.org/10.1002/clt2.12197.  

69. Lanfear, R., Schalamun, M., Kainer, D., Wang, W., and Schwessinger, B. (2019). MinIONQC: fast 

and simple quality control for MinION sequencing data. Bioinformatics 35, 523–525. 

https://doi.org/10.1093/bioinformatics/bty654.  

70. Coelho, L.P., Alves, R., Monteiro, P., Huerta-Cepas, J., Freitas, A.T., and Bork, P. (2019). NG-meta-

profiler: fast processing of metagenomes using NGLess, a domain-specific language. Microbiome 7, 

84. https://doi.org/10.1186/s40168-019-0684-8.  

71. De Coster, W., and Rademakers, R. (2023). NanoPack2: population-scale evaluation of long-read 

sequencing data. Bioinformatics 39, btad311. https://doi.org/10.1093/bioinformatics/btad311.  

72. Bonenfant, Q., Noé, L., and Touzet, H. (2023). Porechop_ABI: discovering unknown adapters in 

Oxford Nanopore Technology sequencing reads for downstream trimming. Bioinform Adv 3, 

vbac085. https://doi.org/10.1093/bioadv/vbac085.  

73. Kolmogorov, M., Bickhart, D.M., Behsaz, B., Gurevich, A., Rayko, M., Shin, S.B., Kuhn, K., Yuan, J., 

Polevikov, E., Smith, T.P.L., et al. (2020). metaFlye: scalable long-read metagenome assembly 

using repeat graphs. Nat Methods 17, 1103–1110. https://doi.org/10.1038/s41592-020-00971-x.  

74. Hall, M.B. (2022). Rasusa: Randomly subsample sequencing reads to a specified coverage. J Open 

Source Softw 7, 3941. https://doi.org/10.21105/joss.03941.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2025. ; https://doi.org/10.1101/2025.09.17.676595doi: bioRxiv preprint 

https://doi.org/10.1101/2025.09.17.676595
http://creativecommons.org/licenses/by/4.0/


39 
 

75. Wick, R.R., and Holt, K.E. (2022). Polypolish: Short-read polishing of long-read bacterial genome 

assemblies. PLoS Comput Biol 18, e1009802. https://doi.org/10.1371/journal.pcbi.1009802.  

76. Zimin, A.V., Puiu, D., Luo, M.-C., Zhu, T., Koren, S., Marçais, G., Yorke, J.A., Dvořák, J., and 

Salzberg, S.L. (2017). Hybrid assembly of the large and highly repetitive genome of Aegilops 

tauschii, a progenitor of bread wheat, with the MaSuRCA mega-reads algorithm. Genome Res. 27, 

787–792. https://doi.org/10.1101/gr.213405.116.  

77. Pan, S., Zhao, X.-M., and Coelho, L.P. (2023). SemiBin2: self-supervised contrastive learning leads 

to better MAGs for short- and long-read sequencing. Bioinformatics 39, i21–i29. 

https://doi.org/10.1093/bioinformatics/btad209.  

78. Pan, S., Tolstoganov, I., Sahlin, K., Martin, M., Zhao, X.-M., and Coelho, L.P. (2025). AEMB: 

efficient abundance estimation for metagenomic binning. Preprint at bioRxiv, 

https://doi.org/10.1101/2025.07.30.667338 https://doi.org/10.1101/2025.07.30.667338.  

79. Chklovski, A., Parks, D.H., Woodcroft, B.J., and Tyson, G.W. (2023). CheckM2: a rapid, scalable 

and accurate tool for assessing microbial genome quality using machine learning. Nat Methods 20, 

1203–1212. https://doi.org/10.1038/s41592-023-01940-w.  

80. Chaumeil, P.-A., Mussig, A.J., Hugenholtz, P., and Parks, D.H. (2020). GTDB-Tk: a toolkit to classify 

genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927. 

https://doi.org/10.1093/bioinformatics/btz848.  

81. Sieber, C.M.K., Probst, A.J., Sharrar, A., Thomas, B.C., Hess, M., Tringe, S.G., and Banfield, J.F. 

(2018). Recovery of genomes from metagenomes via a dereplication, aggregation and scoring 

strategy. Nat Microbiol 3, 836–843. https://doi.org/10.1038/s41564-018-0171-1.  

82. Lagesen, K., Hallin, P., Rødland, E.A., Stærfeldt, H.-H., Rognes, T., and Ussery, D.W. (2007). 

RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35, 3100–

3108. https://doi.org/10.1093/nar/gkm160.  

83. Chan, P.P., Lin, B.Y., Mak, A.J., and Lowe, T.M. (2021). tRNAscan-SE 2.0: improved detection and 

functional classification of transfer RNA genes. Nucleic Acids Research 49, 9077–9096. 

https://doi.org/10.1093/nar/gkab688.  

84. Olm, M.R., Brown, C.T., Brooks, B., and Banfield, J.F. (2017). dRep: a tool for fast and accurate 

genomic comparisons that enables improved genome recovery from metagenomes through de-

replication. ISME J 11, 2864–2868. https://doi.org/10.1038/ismej.2017.126.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2025. ; https://doi.org/10.1101/2025.09.17.676595doi: bioRxiv preprint 

https://doi.org/10.1101/2025.09.17.676595
http://creativecommons.org/licenses/by/4.0/


40 
 

85. Aroney, S.T.N., Newell, R.J.P., Nissen, J.N., Camargo, A.P., Tyson, G.W., and Woodcroft, B.J. 

(2025). CoverM: read alignment statistics for metagenomics. Bioinformatics 41, btaf147. 

https://doi.org/10.1093/bioinformatics/btaf147.  

86. Hyatt, D., Chen, G.-L., LoCascio, P.F., Land, M.L., Larimer, F.W., and Hauser, L.J. (2010). Prodigal: 

prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119. 

https://doi.org/10.1186/1471-2105-11-119.  

87. Fu, L., Niu, B., Zhu, Z., Wu, S., and Li, W. (2012). CD-HIT: accelerated for clustering the next-

generation sequencing data. Bioinformatics 28, 3150–3152. 

https://doi.org/10.1093/bioinformatics/bts565.  

88. Duan, Y., Santos-Júnior, C.D., Schmidt, T.S., Fullam, A., de Almeida, B.L.S., Zhu, C., Kuhn, M., 

Zhao, X.-M., Bork, P., and Coelho, L.P. (2024). A catalog of small proteins from the global 

microbiome. Nat Commun 15, 7563. https://doi.org/10.1038/s41467-024-51894-6.  

89. Florensa, A.F., Kaas, R.S., Clausen, P.T.L.C., Aytan-Aktug, D., and Aarestrup, F.M. (2022). 

ResFinder – an open online resource for identification of antimicrobial resistance genes in next-

generation sequencing data and prediction of phenotypes from genotypes. Microb Genom 8, 

000748. https://doi.org/10.1099/mgen.0.000748.  

90. Ugarcina Perovic, S., Ramji, V., Chong, H., Duan, Y., Maguire, F., and Coelho, L.P. (2025). 

argNorm: normalization of antibiotic resistance gene annotations to the Antibiotic Resistance 

Ontology (ARO). Bioinformatics 41, btaf173. https://doi.org/10.1093/bioinformatics/btaf173.  

91. Camargo, A.P., Roux, S., Schulz, F., Babinski, M., Xu, Y., Hu, B., Chain, P.S.G., Nayfach, S., and 

Kyrpides, N.C. (2024). Identification of mobile genetic elements with geNomad. Nat Biotechnol 42, 

1303–1312. https://doi.org/10.1038/s41587-023-01953-y.  

92. Shaffer, M., Borton, M.A., McGivern, B.B., Zayed, A.A., La Rosa, S.L., Solden, L.M., Liu, P., 

Narrowe, A.B., Rodríguez-Ramos, J., Bolduc, B., et al. (2020). DRAM for distilling microbial 

metabolism to automate the curation of microbiome function. Nucleic Acids Res 48, 8883–8900. 

https://doi.org/10.1093/nar/gkaa621.  

93. Guo, J., Bolduc, B., Zayed, A.A., Varsani, A., Dominguez-Huerta, G., Delmont, T.O., Pratama, A.A., 

Gazitúa, M.C., Vik, D., Sullivan, M.B., et al. (2021). VirSorter2: a multi-classifier, expert-guided 

approach to detect diverse DNA and RNA viruses. Microbiome 9, 37. 

https://doi.org/10.1186/s40168-020-00990-y.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2025. ; https://doi.org/10.1101/2025.09.17.676595doi: bioRxiv preprint 

https://doi.org/10.1101/2025.09.17.676595
http://creativecommons.org/licenses/by/4.0/


41 
 

94. Tackmann, J., Matias Rodrigues, J.F., and von Mering, C. (2019). Rapid Inference of Direct 

Interactions in Large-Scale Ecological Networks from Heterogeneous Microbial Sequencing Data. 

Cell Systems 9, 286-296.e8. https://doi.org/10.1016/j.cels.2019.08.002.  

95. Mallick, H., Rahnavard, A., McIver, L.J., Ma, S., Zhang, Y., Nguyen, L.H., Tickle, T.L., Weingart, G., 

Ren, B., Schwager, E.H., et al. (2021). Multivariable association discovery in population-scale meta-

omics studies. PLoS Comput Biol 17, e1009442. https://doi.org/10.1371/journal.pcbi.1009442.  

96. Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. 

Preprint at arXiv, https://doi.org/10.48550/arXiv.1303.3997 

https://doi.org/10.48550/arXiv.1303.3997.  

97. Li, H. (2018). Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–

3100. https://doi.org/10.1093/bioinformatics/bty191.  

98. Danecek, P., Bonfield, J.K., Liddle, J., Marshall, J., Ohan, V., Pollard, M.O., Whitwham, A., Keane, 

T., McCarthy, S.A., Davies, R.M., et al. (2021). Twelve years of SAMtools and BCFtools. 

GigaScience 10, giab008. https://doi.org/10.1093/gigascience/giab008.  

99. Sahlin, K. (2022). Strobealign: flexible seed size enables ultra-fast and accurate read alignment. 

Genome Biology 23, 260. https://doi.org/10.1186/s13059-022-02831-7.  

100. Parks, D.H., Chuvochina, M., Waite, D.W., Rinke, C., Skarshewski, A., Chaumeil, P.-A., and 

Hugenholtz, P. (2018). A standardized bacterial taxonomy based on genome phylogeny 

substantially revises the tree of life. Nat Biotechnol 36, 996–1004. https://doi.org/10.1038/nbt.4229.  

101. Cantalapiedra, C.P., Hernández-Plaza, A., Letunic, I., Bork, P., and Huerta-Cepas, J. (2021). 

eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the 

Metagenomic Scale. Molecular Biology and Evolution 38, 5825–5829. 

https://doi.org/10.1093/molbev/msab293.  

102. Huerta-Cepas, J., Szklarczyk, D., Heller, D., Hernández-Plaza, A., Forslund, S.K., Cook, H., 

Mende, D.R., Letunic, I., Rattei, T., Jensen, L.J., et al. (2019). eggNOG 5.0: a hierarchical, 

functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 

viruses. Nucleic Acids Research 47, D309–D314. https://doi.org/10.1093/nar/gky1085.  

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2025. ; https://doi.org/10.1101/2025.09.17.676595doi: bioRxiv preprint 

https://doi.org/10.1101/2025.09.17.676595
http://creativecommons.org/licenses/by/4.0/


42 
 

SUPPLEMENTARY MATERIAL 

Supplementary figures 

 

Supplementary Figure S1. Read-level summary statistics for ONT raw reads. 
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Supplementary Figure S2. MAG generation pipeline detailed. Depending on the initial 

throughput of ONT reads, we created one or two subsets of data (20 Gbp and 10 Gbp). We 

performed metagenome assemblies on all the datasets (2-3 metagenome assemblies per sample). 

Using ‘ONT all’ assemblies, we performed three different binning strategies: single-sample binning 

using long reads for abundance estimation, single-sample binning using short reads for abundance 

estimation, and multi-sample binning using short reads for abundance estimation. Using subset 

assemblies, we performed single-sample binning with short reads for abundance estimation. We 

used Dastool to keep the best MAGs for each species from each sample. After assigning taxonomy 

using GTDB-tk, if subset assemblies contained a medium- or high-quality MAG representing a 

species absent in the MAG catalog, we manually added it. 
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Supplementary Figure S3. Polishing strategy evaluation in MAGs. A) Each polishing step, and 

especially those using short reads (SR), increased the quality of the MAGs by increasing 

completeness and reducing contamination (estimated with CheckM2). The effect was more 

significant for MAGs with lower coverage (<40X). B) Unpolished to (most) polished MAG evolution 

for low-covered MAGs: we can observe a general increase in completeness values, which may 

lead to transforming medium-quality MAGs to high-quality MAGs.  
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Supplementary Figure S4. Strain and extrachromosomal elements sharing within the 

Shanghai Dog cohort. We performed pairwise comparisons (Mann–Whitney U test, one-sided 

test) between dogs within the same households vs. between households, and found significantly 

more shared strains (left) and EC elements (right) in dogs sharing households. 
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Supplementary Figure S5.  Living environment effect on the dog gut microbiome, including 

all Canid groups. Analogous to Fig. 5A-B, here, we also included free-roaming dogs, ancient canid 

samples, and unclassified canid samples. The colored legend applies to the whole figure. A) 

Boxplots representing alpha diversity (Shannon index). B) PCoA plot representing beta diversity 

(Bray-Curtis on log-transformed data). Green triangles indicate pet dogs in this study.  
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Supplementary Figure S6. Differential abundance analysis results by age, size, and body 

condition. A) Differentially abundant bacterial species associated with dog age (concordant 

results, Maaslin2 and Kruskal-Wallis). In the y-axis, the significant taxa, and in the x-axis, their 
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associated q-value in Maaslin2. We used senior dogs as the reference group in Maaslin2, so circles 

are colored according to the group that differs from them, and they are scaled in concordance with 

the absolute coefficient value. Grey circles represent significant differences found in that species 

when comparing groups in another variable, rather than age (age being the most significant 

variable). Triangles within the circles indicate if the coefficient is negative (inverted triangle, less 

abundant species) or positive (more abundant). B) Boxplots of total relative abundances (%) of 

selected differentially abundant bacterial species, considering age (young, adult, and senior); body 

condition (lean, overweight/obese); and size (small, medium, large). 

Supplementary tables 

Supplementary Table S1. Dog-associated information for the Shanghai cohort (n=51). A summarized 

version of the most relevant questionnaire results, with appropriate metadata categories considering the 

questionnaire output (with the latest information regarding animal health status). 

Supplementary Table S2. Shanghai Dog owner questionnaire results (n=107). From questionnaire to 

final sample collection, several days to weeks might have passed, so questionnaire results regarding health 

status might slightly differ from the final metadata (Supplementary Table S1). 

Supplementary Table S3. Shanghai Dog Metagenome-assembled genomes catalog metadata. 

Includes taxonomic classification, quality information, and other descriptive characteristics of the MAGs. 

Supplementary Table S4. Read mapping values of Canid datasets to Shanghai Dog catalogs. Values 

include mapping to the whole MAG catalog (‘aligned’), to the representative species MAGs (‘aligned_sp’), 

and to the catalog and extrachromosomal elements (‘aligned_EC’). It also includes read mapping summary 

statistics by study, and by living environment. 

Supplementary Table S5. Comparison of representative species-level genome assemblies: 

Shanghai Dogs vs. reference. For each bacterial species, we compared the representative genome 

assembly from Shanghai Dog cohort to that found in a public database (RefSeq or GenBank). Only species 

that had a high-quality genome assembly (>90% completeness and <5% contamination) were included. 

Comparison included the counts of: contigs, ribosomal genes, and mobilome COG hits (COG category X), 

and statistical differences were assessed using Wilcoxon pairwise test. 

Supplementary Table S6. The 16S rRNA highest identity BLAST hit for species-level MAGs 

representing a novel species. The table only includes high-quality MAGs that have at least one of their 

16S rRNA hits with >99% identity to 16S rRNA NCBI databases.  

Supplementary Table S7. Shanghai Dog circular extrachromosomal elements catalog metadata 

(n=185). The table includes basic descriptive information (size, sample origin, and category of the ECE). 
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Uncategorized elements might include genetic markers for both viruses and plasmids, or may lack 

identifiable markers. Finally, for 52 of them, we computationally predicted the putative bacterial host. 

Supplementary table S8. Metadata for the representative Canid samples: one sample per dog. This 

metadata includes Shanghai Dogs, and external shotgun metagenomics studies from: public datasets (up 

to February 2023); a new pet dog cohort in Germany. For longitudinal studies, we chose a single 

representative sample per dog based on: the baseline diet (e.g., in dietary intervention studies); or the 

‘healthiest’ status (e.g., absence of clinical signs after treatment, in cases of chronic enteropathies). 

Supplementary Table S9. Metadata for all the Canid datasets used. For external public datasets, it 

includes dog shotgun metagenomics studies up to February 2023. Finally, it also includes metadata for a 

pet dog cohort in Germany. 
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