An explorative analysis of plasma biomarkers associated with cerebral amyloid angiopathy

Ersin Ersözlü^{1,2,3}, François Meyer^{1,3,4}, Lukas Preis^{1,2,3}, Orkan Arslan¹, Daria Gref^{1,2,3}, Louise von Droste^{1,2,3}, and Julian Hellmann-Regen^{1,2,3} for the Alzheimer's Disease Neuroimaging Initiative*

Short title: Plasma biomarkers of cerebral amyloid angiopathy

Corresponding author:

Ersin Ersözlü, ersin.ersoezlue@charite.de

Klinik für Psychiatrie und Psychotherapie, Gedächtnissprechstunde, Hindenburgdamm 30, 12203 Berlin

Tel.: +49 30 450 517 685

¹ Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Psychiatry and Neurosciences, Campus Benjamin Franklin, Berlin, Germany

² German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Berlin, Germany

³ Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Psychiatry and Neurosciences, Experimental and Clinical Research Center (ECRC), Campus Berlin Buch, Berlin, Germany

⁴ Neurocognitive Disorders Research Group, GIGA Clinical Neurosciences, University of Liège, Liège, Belgium

^{*}Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how-to-apply/ADNI Acknowledgement List.pdf

Abstract

Background: Cerebral amyloid angiopathy (CAA) remains diagnostically challenging, particularly in asymptomatic individuals. While CAA often co-exists with Alzheimer's disease (AD), it may even have a direct impact on AD pathophysiology and the cognitive decline within the clinical course of AD. While fluid biomarkers are well-established for AD pathology, reliable markers to improve the characterization of CAA are lacking.

Methods: We analyzed two subsets of participants from the Alzheimer's Disease Neuroimaging Initiative: one with available T2*-weighted gradient echo magnetic resonance imaging (MRI) (n=21) and another with postmortem neuropathological data (n=24), all with available plasma biomarkers from a 145-analyte multiplex immunoassay panel. We defined CAA as two or more lobar microbleeds in MRI or moderate to severe neocortical amyloid angiopathy in neuropathological examination. Plasma analytes were assessed twice per subject, one year apart, with the earlier sample obtained up to 6.6 years prior to either the first MRI or neuropathological examination. Non-parametric correlation and receiver operating characteristic curves were mainly reported.

Results: In both cohorts, various markers related to inflammation, lipid metabolism, and cell adhesion were associated with CAA proxy measures. Specifically, both increased (Osteopontin, VCAM-1) and decreased (vitronectin or endothelial growth factor) biomarker levels were associated with MBs, while increased apolipoproteins (ApoAII, ApoCI and ApoCIII, ApoE and clusterin) and decreased AXL were associated with CAA severity in neuropathology. Ratios between inversely associated markers enhanced correlation strength and discriminated CAA status.

Conclusions: Several candidate plasma biomarkers of CAA were identified in individuals with either MRI or neuropathological indicators of CAA.

Background

Cerebral amyloid angiopathy (CAA) is a cerebrovascular disorder caused by the buildup of β -amyloid (A β) in the walls of leptomeningeal and cortical blood vessels. CAA affects 25% of the general elderly population and can clinically manifest with intracerebral hemorrhage, temporary disturbances in cortical functions (such as motor, somatosensory, visual, or language functions), and progressive cognitive decline. CAA shares key pathological characteristics with Alzheimer's disease (AD), including the accumulation of A β -peptides. Notably, in AD, A β plaques primarily accumulate in the brain parenchyma adjacent to neurons, whereas CAA involves A β buildup outside the brain in cerebral blood vessels. In around 50% of cases, CAA co-occurs with AD.

Previously, diagnosing CAA relied on postmortem brain tissue examination. The introduction of the Boston Criteria enabled the diagnosis of in vivo CAA, defining "possible" or "probable" CAA by using mainly clinical and magnetic resonance imaging (MRI) findings such as lobar microbleeds (MBs)⁵. The Boston Criteria v2.0 has extended the criteria notably with clinical features and non-hemorrhagic findings⁶. However, when applied to asymptomatic patients or patients with cognitive impairment, the v.2.0 criteria revealed a 28.6% sensitivity and 65.3% specificity for "probable CAA" only⁷. This can be considered rather low, compared to diagnostic performances in the field of AD, where fluid biomarkers in cerebrospinal fluid (CSF) and plasma have evolved into reliable diagnostic tests⁸. A limited number of studies have addressed the unmet need for accurate diagnostic approaches to CAA and found that CAA may be differentiated from AD by lower CSF Aβ40 and Aβ42 levels, while CAA-related inflammation has been linked to activation of microglia and T cells as well as increased CSF tau concentrations^{9,10}.

Given the heterogeneous clinical manifestation and the limited diagnostic accuracy of present diagnostic strategies, we aimed to conduct an exploratory analysis of candidate plasma markers of CAA by using MRI and neuropathological indicators of CAA.

Methods

Participants

Data used in the preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). Participants included in our analyses were recruited for the prospective the Alzheimer's Disease Neuroimaging Initiative (ADNI)-1 convenience cohort (National Clinical Trial (NCT): 00106899), while MRI data were acquired during follow-up visits within ADNI-go, ADNI-2 and ADNI-3 convenience cohorts (NCT00106899, NCT01231971 and NCT02854033).

A summary of inclusion and exclusion criteria and detailed characteristics of the included study sample are provided in the supplementary material. In short, we included participants with available plasma biomarkers and either with available visual assessments of MBs in T2*-GRE MRI (cohort-MRI, n=21) or postmortem neuropathological assessment (cohort-NP, n=24) (Supplementary Figure 1).

Study design

For the primary analysis, we selected a time point (T0) when all multiplex panel measurements (MPM) were accessible. Using a longitudinal approach, we also investigated the associations of a second MPM after one year (T1) with radiologic and neuropathological assessments for lobar MBs (Figure 1A) and neuropathological findings indicative of CAA (Figure 1B), respectively.

Fluid biomarkers

For the plasma measurements, we included all available analytes (n=145) in the multiplex immunoassay panel, consisting of proteins related to cancer, cardiovascular disease, metabolic disorders, inflammation, and AD—see **Supplementary Table 1**. Notably, plasma analytes were measured at time points TO and T1, with a one-year interval. Summarized descriptions of measurements of plasma and CSF markers are presented in the supplementary material. The plasma samples were analyzed by using the Luminex xMAP (Multi-Analyte Profiling) technology, while the CSF samples were analyzed using the electrochemiluminescence immunoassay

(ECLIA) Elecsys on a fully automated Elecsys cobas e instrument (Roche Diagnostics GmbH, Penzberg, Germany). The cut-off value of 0.1 was defined for p-tau181p/A β 1-42 as reported elsewhere¹¹.

Cranial MRI Acquisition and Analysis

The imaging protocol includes multicentric 3T MRI examinations including GE, Siemens, and Philips MRI Systems, among others including T2*-GRE sequences (repetition time (TR) 650 ms, echo time (TE) 20 ms, flip angle (FA) 20 degrees) and T1-MPRAGE (TR 2300 ms, TE 2.95 ms, FA 9 degrees) sequences. T2* imaging enables in vivo detection of microhemorrhage-derived hemosiderin deposits as a hypointense signal.

Detailed descriptions of MB detection and atlas assignment methods have been reported in the ADNI Methods document, "Mayo (Jack Lab) – ADNI MRI MCH [ADNIGO,2,3], version 2021-12-13" by Clifford R. Jack, Jr., M.D., from the Mayo Clinic in Rochester, MN, available at http://adni.loni.usc.edu/. A summary of image acquisition parameters, as well as quality and radiological visual assessments, is also provided in the supplementary material. Notably, the participants with two or more lobar microbleeds have been classified as CAA⁶.

Neuropathological Assessment

Pathological lesions within the brain were assessed during autopsy using established neuropathologic diagnostic criteria. Detailed descriptions of neuropathological assessments have been reported in the ADNI Methods document, "ADNI_Neuropathology_Core_Methods_FINAL_20221114", available at http://adni.loni.usc.edu/, and are presented in summary in the supplementary material.

The central neuropathological severity scales for AD (Variable NPADNC) and CAA (Variable NPAMY) have been included. We included the semi-quantitative (None, low, intermediate, high) assessment for AD using the Alzheimer's Disease — NIA-AA Neuropathological Change level¹². Likewise, the semi-quantitative assessment of overall neocortical amyloid angiopathy refers to the global CAA according to the following scale that refers to the global CAA burden: 0 — None: Absent 1 — Mild: Scattered positivity in parenchymal and/or leptomeningeal vessels, possibly in only one brain area 2 — Moderate: Intense positivity in many parenchymal and/or leptomeningeal vessels 3 — Severe: Widespread (more than one brain area) intensive positivity in parenchymal and leptomeningeal vessels.

Importantly, we classified subjects with 'Moderate' or 'Severe' CAA burden as CAA positive, based on the previous literature suggesting its clinical importance¹³.

Statistics

All statistical analyses and graphical representations were carried out using SPSS® Statistics (IBM®, v29). Likewise, we generated the scatter plots and receiver operating characteristic (ROC) curves in SPSS®. The sample size was not predetermined by statistical methods; instead, all available data were included in the analysis.

In summary, group differences at baseline were assessed using Mann-Whitney U and chi-square tests. Nonparametric correlations were assessed with Spearman's rank correlation. The results of the subsequent analyses were then corrected for multiple testing by using false discovery rate (FDR) with α <0.05. ROC analyses were conducted to evaluate the discriminatory performance of biomarker ratios for clinical outcome groups, reporting mainly area under the curves (AUCs). The detailed descriptions of the statistical methods are presented in the supplementary material.

Results

The CAA groups in cohort-MRI and cohort-NP did not differ in demographic, genetic, and clinical features, except clinical diagnosis (**Supplementary Table 2**). Additionally, we presented the group characteristics of subgroups divided by CAA status within both cohorts (**Supplementary Table 3**), revealing no differences except that $A\beta42$ was lowered in the CAA+ group in cohort-NP.

Linking Plasma Biomarkers to CAA Proxy Measures

The correlation analyses revealed several positive and negative associations. Positive associations included adhesion (VCAM-1), vascular (Angiopoietin-2, RAGE), and immune response/inflammation (Osteopontin, FASLG, NGAL) markers correlating with MB count and several apolipoproteins (ApoAII, ApoCI, ApoCIII, ApoE and CLU), ComFH, TTR and Leptin correlating with neuropathological CAA severity (Supplementary Table 4). Due to inverse relationships among analytes and to address physiological limitations in measuring plasma analytes we propose several ratios that partly strengthened the correlations (VCAM1/vitronectin, FASLG/EGF Ratio, NGAL/EGF Ratio, and RAGE/EGF in cohort-MRI; ApoAII/AXL, ApoCI/AXL, ApoCIII/AXL, ApoE/AXL, CLU/AXL, ComFH/AXL, TTR/AXL, and Leptin/AXL in cohort-NP) (Table 1, Supplementary Figure 2).

Discrimination of CAA Status Based on Plasma Biomarker Levels

To further test whether the ratios can discriminate CAA status separately in both cohorts, binarized CAA status was discriminated by ratios of data-driven selected plasma markers with moderate to high discrimination power AUCs 0.74-0.98 for cohort-MRI and AUCs 0.76-0.91 for cohort-NP) (Figure 2, Supplementary Table 5). The highest three AUC values have been found for FASLG/EGF (0.93, 95% CI 0.81-1.06), RAGE/EGF (0.93, 95% CI 0.78-1.07) and FASLG/Vitronectin (0.88, 95% CI 0.68-1.07) at T0 (Figure 2A) and for FASLG/Vitronectin (0.98, 95% CI 0.92-1.04), NGAL/Vitronectin (0.94, 95% CI 0.82-1.06) and FASLG/EGF (0.94, 95% CI 0.83-1.05) at T1 (Figure 2B) in cohort-MRI. The highest three AUC values were revealed for ApoCIII/AXL (0.91, 95% CI, 0.8-1.03), ApoE/AXL (0.81, 95% CI, 0.6-1.032) and ComFH/AXL (0.79, 95% CI, 0.58-1) at T0 (Figure 2C) and for ComFH/AXL (0.85, 95% CI 0.68-1.02), CLU/AXL (0.8, 95% CI 0.57-1.04) and ApoCIII (0.79, 95% CI 0.56-1.01) at T1 (Figure 2D) in cohort-NP.

Trajectories of lobar microbleeds and their correlation with plasma analyte ratios

To evaluate the correlations between plasma analyte ratios and longitudinal trajectories of MBs, we calculated annual change rate of MBs. Here, we observed that Ang2/EGF positively correlated with change in MBs at both time points, while not remaining significant following the FDR correction. Considering further uncorrected results, FASLG/vitronectin and Osteopontin/vitronectin revealed positive correlations at T1 and ApoE/AXL a negative correlation at T2 (Supplementary Table 6, Supplementary Figure 3).

Discussion

Examining the associations of ante-mortem and post-mortem indicators of CAA with plasma marker levels separately, we identified several plasma biomarkers related to immune activation, inflammation, cell adhesion, apoptosis, and glycosylation as candidate biomarkers of CAA. However, the identified candidate markers differed depending on the modality used to define CAA (MRI or neuropathology) and are also likely to reflect processes such as aging or non-CAA pathologies.

Among other markers, higher levels of FASLG/EGF and FASLG/vitronectin ratios have been observed in participants with more than two lobar microbleeds at both time points, as well as longitudinally with changes in lobar microbleed count in a U-shaped manner (uncorrected). FASLG, also known as CD95L, is associated with astrocyte reactivation and cell apoptosis, while being reported in neuroinflammatory and neurodegenerative diseases as well as ischemic stroke 14,15 . Moreover, FASLG upregulation has been observed in in vitro AD models and contributed to A β -mediated neuronal cell death 16 .

Further elevation was found for osteopontin/EGF and osteopontin/vitronectin in relation to higher microbleed counts. Higher osteopontin/vitronectin levels also predicted a longitudinal increase in lobar microbleed count,

although this did not survive correction for multiple testing. Osteopontin is an extracellular phosphoprotein and potentially related to pathological processes in AD and CAA, as well as vascular dementia^{17,18}. The mechanisms of osteopontin upregulation in neurodegenerative diseases might include neuroinflammatory or compensatory response¹⁷.

We further identified several glycoproteins, such as clusterin, which is multifunctional and has been linked to the pathophysiology of cerebral amyloidosis in both AD^{19} and CAA^{20} , where the authors also identified upregulation of further proteins, including ApoE and vitronectin, by examining biopsied leptomeningeal and cortical vessels of patients with CAA^{20} . More interestingly, the authors also found an in vitro model of CAA in which physiological concentrations of ApoE and clusterin might inhibit $A\beta$ amyloid deposition in CAA^{20} . Considering the mixed results, one possible interpretation of our results is that ApoE and clusterin might be elevated in response to emerging CAA pathology, as plasma levels have been measured many years before the neuropathological assessment. In contrast, our results in the MRI cohort revealed a negative association of vitronection with MBs. We argue that the difference might have occurred due to the difference in modality - MRI versus pathological assessment.

Microglial activity is involved in the pathophysiological pathways leading to CAA pathology, and TAM receptors mediate the glial response to cerebral and vascular A β plaques^{10,21}. With this in mind, regarding the stronger associations of proportions built with AXL compared to single analytes such as proinflammatory ApoCIII²², a reduced capacity of microglial response can be argued alongside the upregulated markers of immunity and inflammation.

Confirmatory studies are crucial to address possible confounding factors and temporal relationships. Importantly, the study group characteristics revealed unremarkable differences between CAA and non-CAA groups. Further limitations include the partly applied Boston criteria v2.0, which allows for defining probable CAA with only one MB when typical non-hemorrhagic findings are present. This decision was made to define probable CAA cases more homogeneously, considering the limited sample size. With this in mind, the markers predicting MBs might be nonspecific to CAA and could offer screening of MBs resulting from various etiologies.

While these exploratory results certainly need replication in another CAA cohort, our findings might contribute to a more precise diagnosis of CAA and, regarding the participants with concomitant AD pathology, also to estimate probabilities of response and risk related to future combination strategies of new pharmacological approaches²³, especially anti-amyloid antibodies and amyloid-related imaging abnormalities¹⁰.

Acknowledgement

Data collection and sharing for the Alzheimer's Disease Neuroimaging Initiative (ADNI) is funded by the National Institute on Aging (National Institutes of Health Grant U19AG024904). The grantee organization is the Northern California Institute for Research and Education. In the past, ADNI has also received funding from the National Institute of Biomedical Imaging and Bioengineering, the Canadian Institutes of Health Research, and private sector contributions through the Foundation for the National Institutes of Health (FNIH) including generous contributions from the following: AbbVie, Alzheimer's Association; Alzheimer's Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; BristolMyers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics.

Disclosures

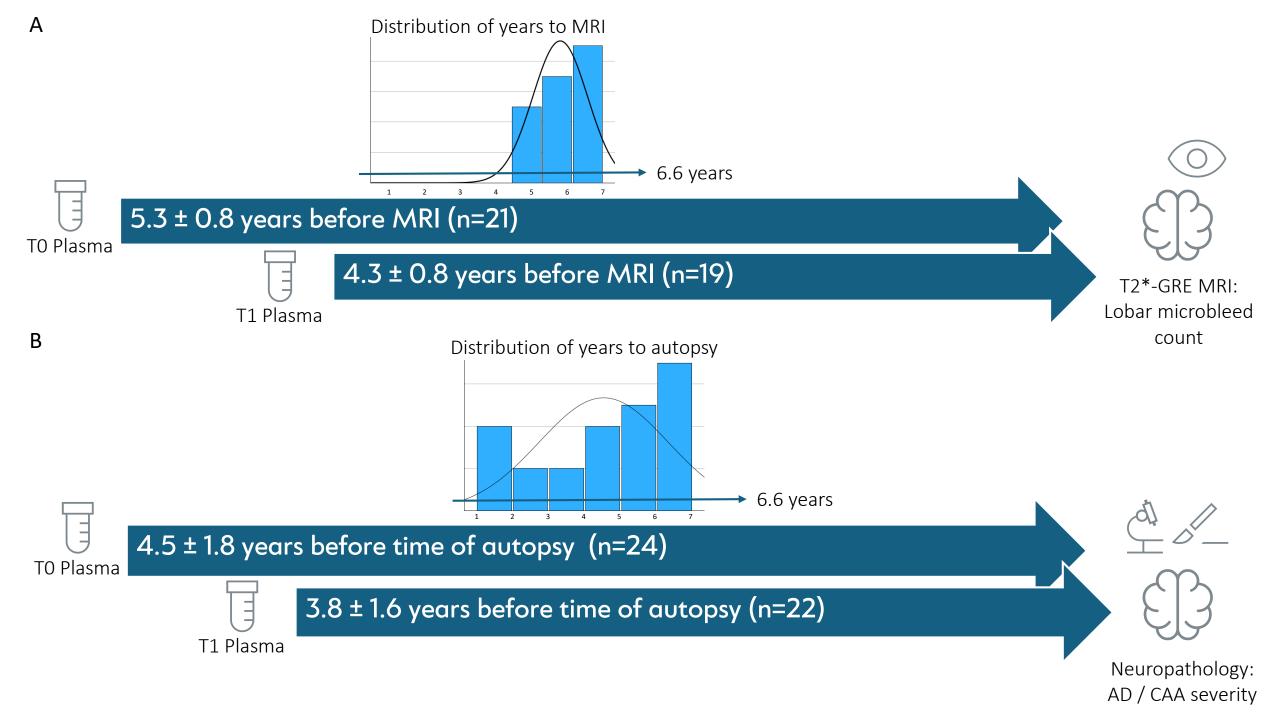
The authors report no disclosures related to the study.

References:

- 1. Jäkel L, De Kort AM, Klijn CJM, Schreuder FHBM, Verbeek MM. Prevalence of cerebral amyloid angiopathy: A systematic review and meta-analysis. *Alzheimers. Dement.* 2022;18:10–28.
- 2. Cozza M, Amadori L, Boccardi V. Exploring cerebral amyloid angiopathy: Insights into pathogenesis, diagnosis, and treatment. *J. Neurol. Sci.* 2023;454:120866.
- 3. Attems J, Jellinger KA, Lintner F. Alzheimer's disease pathology influences severity and topographical distribution of cerebral amyloid angiopathy. *Acta Neuropathol.* 2005;110:222–231.
- 4. Weller RO, Subash M, Preston SD, Mazanti I, Carare RO. Perivascular drainage of amyloid-beta peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer's disease. *Brain Pathol.* 2008;18:253–266.
- 5. Knudsen KA, Rosand J, Karluk D, Greenberg SM. Clinical diagnosis of cerebral amyloid angiopathy: validation of the Boston criteria. *Neurology*. 2001;56:537–539.
- 6. Charidimou A, Boulouis G, Frosch MP, Baron J-C, Pasi M, Albucher JF, Banerjee G, Barbato C, Bonneville F, Brandner S, et al. The Boston criteria version 2.0 for cerebral amyloid angiopathy: a multicentre, retrospective, MRI-neuropathology diagnostic accuracy study. *Lancet Neurol.* 2022;21:714–725.
- 7. Switzer AR, Charidimou A, McCarter S, Vemuri P, Nguyen AT, Przybelski SA, Lesnick TG, Rabinstein AA, Brown RD, Knopman DS, et al. Boston criteria v2.0 for cerebral amyloid angiopathy without hemorrhage: An MRI-neuropathologic validation study. *Neurology*. 2024;102:e209386.
- 8. Graff-Radford J, Yong KXX, Apostolova LG, Bouwman FH, Carrillo M, Dickerson BC, Rabinovici GD, Schott JM, Jones DT, Murray ME. New insights into atypical Alzheimer's disease in the era of biomarkers. *Lancet Neurol.* 2021;20:222–234.
- 9. Theodorou A, Tsantzali I, Kapaki E, Constantinides VC, Voumvourakis K, Tsivgoulis G, Paraskevas GP. Cerebrospinal fluid biomarkers and apolipoprotein E genotype in cerebral amyloid angiopathy. A narrative review. Cereb. Circ. Cogn. Behav. 2021;2:100010.
- 10. Hampel H, Elhage A, Cho M, Apostolova LG, Nicoll JAR, Atri A. Amyloid-related imaging abnormalities (ARIA): radiological, biological and clinical characteristics. *Brain*. 2023;146:4414–4424.
- 11. Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM, Aisen PS, Petersen RC, Blennow K, Soares H, Simon A, Lewczuk P, et al. Cerebrospinal fluid biomarker signature in Alzheimer's disease neuroimaging initiative subjects. *Ann. Neurol.* 2009;65:403–413.
- 12. Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC, Dickson DW, Duyckaerts C, Frosch MP, Masliah E, et al. National Institute on Aging-Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease. *Alzheimers. Dement.* 2012;8:1–13.
- 13. Vidoni ED, Yeh H-W, Morris JK, Newell KL, Alqahtani A, Burns NC, Burns JM, Billinger SA. Cerebral β-amyloid angiopathy is associated with earlier dementia onset in Alzheimer's disease. *Neurodegener. Dis.* 2016;16:218–224.
- 14. Choi C, Benveniste EN. Fas ligand/Fas system in the brain: regulator of immune and apoptotic responses. Brain Res. Brain Res. Rev. 2004;44:65–81.
- 15. Bechmann I, Lossau S, Steiner B, Mor G, Gimsa U, Nitsch R. Reactive astrocytes upregulate Fas (CD95) and Fas ligand (CD95L) expression but do not undergo programmed cell death during the course of anterograde degeneration. *Glia*. 2000;32:25–41.
- 16. Su JH, Anderson AJ, Cribbs DH, Tu C, Tong L, Kesslack P, Cotman CW. Fas and Fas Ligand are associated with neuritic degeneration in the AD brain and participate in β-amyloid-induced neuronal death. *Neurobiol. Dis.* 2003;12:182–193.

- 17. Chai YL, Chong JR, Raquib AR, Xu X, Hilal S, Venketasubramanian N, Tan BY, Kumar AP, Sethi G, Chen CP, et al. Plasma osteopontin as a biomarker of Alzheimer's disease and vascular cognitive impairment. *Sci. Rep.* 2021;11:4010.
- 18. Grand Moursel L, van der Graaf LM, Bulk M, van Roon-Mom WMC, van der Weerd L. Osteopontin and phospho-SMAD2/3 are associated with calcification of vessels in D-CAA, an hereditary cerebral amyloid angiopathy. *Brain Pathol.* 2019;29:793–802.
- 19. Foster EM, Dangla-Valls A, Lovestone S, Ribe EM, Buckley NJ. Clusterin in Alzheimer's Disease: Mechanisms, Genetics, and Lessons From Other Pathologies. *Front. Neurosci.* 2019;13:164.
- 20. Endo Y, Hasegawa K, Nomura R, Arishima H, Kikuta K-I, Yamashita T, Inoue Y, Ueda M, Ando Y, Wilson MR, et al. Apolipoprotein E and clusterin inhibit the early phase of amyloid-β aggregation in an in vitro model of cerebral amyloid angiopathy. *Acta Neuropathol. Commun.* 2019;7:12.
- 21. Huang Y, Happonen KE, Burrola PG, O'Connor C, Hah N, Huang L, Nimmerjahn A, Lemke G. Microglia use TAM receptors to detect and engulf amyloid β plaques. *Nat. Immunol.* 2021;22:586–594.
- 22. Zewinger S, Reiser J, Jankowski V, Alansary D, Hahm E, Triem S, Klug M, Schunk SJ, Schmit D, Kramann R, et al. Apolipoprotein C3 induces inflammation and organ damage by alternative inflammasome activation. *Nat. Immunol.* 2020;21:30–41.
- 23. Cummings J, Gold M, Mintun M, Irizarry M, von Eschenbach A, Hendrix S, Berry D, Sampaio C, Sink K, Landen J, et al. Key Considerations for Combination Therapy in Alzheimer's Clinical Trials: Perspectives from an Expert Advisory Board Convened by the Alzheimer's Drug Discovery Foundation [Internet]. Available from: http://dx.doi.org/10.1016/j.tjpad.2024.100001

Figure Legends


Figure 1. Graphical summary of the study design. Abbreviations: AD, Alzheimer's disease; CAA, cerebral amyloid angiopathy.

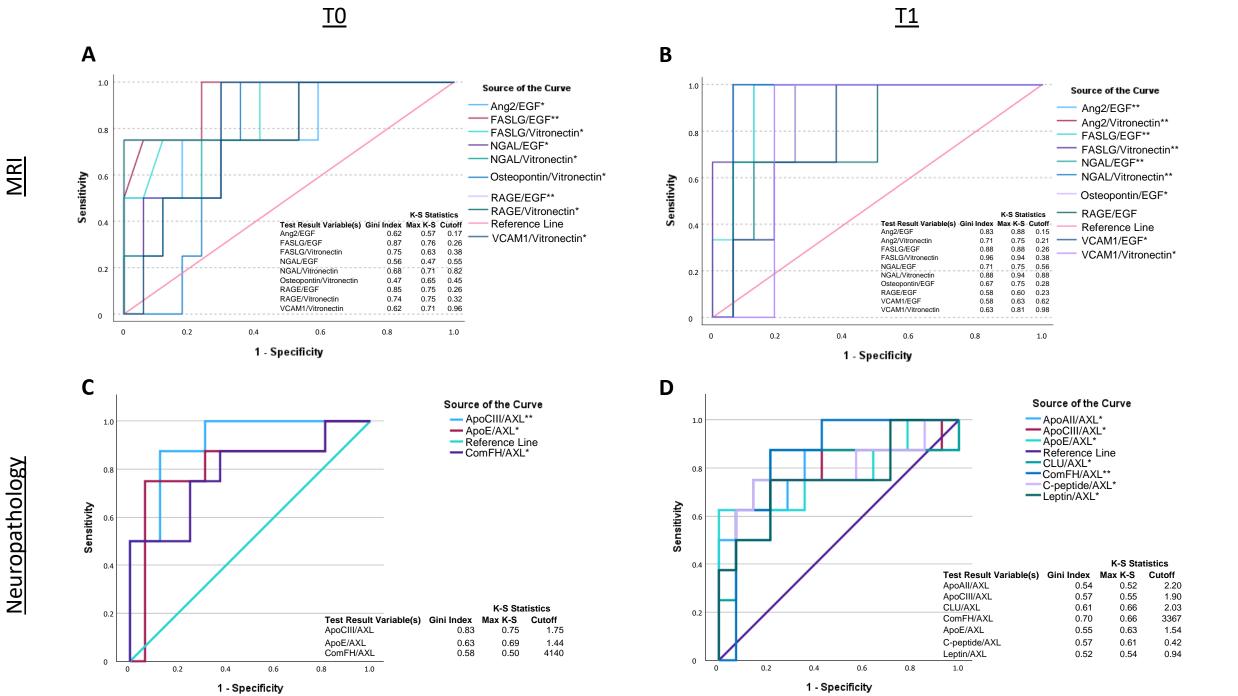

Figure 2. ROC curves of ratios of analytes in the differentiation of CAA among the study groups and time points. *False discovery rate (FDR) corrected-p<0.05; **FDR-p<0.001. Abbreviations: CAA, cerebral amyloid angiopathy; Ang2, Angiopoietin-2; Epidermal Growth Factor Receptor; NGAL, Neutrophil Gelatinase-Associated Lipocalin; RAGE, Receptor for Advanced Glycation End; VCAM1, Vascular Cell Adhesion Molecule-1; Apo, Apolipoprotein; CLU, Clusterin; ComFH, Complement Factor H.

Table 1. Correlations of lobar microbleed count and neuropathological cerebral amyloid angiopathy severity score with plasma analytes. Only results with p<0.05 in both time points are presented. Results with false discovery rate (FDR) corrected p<0.05 are marked in bold.

Abbreviations: Ang2, Angiopoietin-2; FASLG, FAS Ligand Receptor; KIM1, Kidney Injury Molecule-1; NGAL, Neutrophil Gelatinase-Associated Lipocalin; RAGE, Receptor for advanced glycosylation end; VCAM1, Vascular Cell Adhesion Molecule-1; EGF, Epidermal Growth Factor Receptor; Apo, Apolipoprotein; CLU, Clusterin; ComFH, Complement Factor H; TTR, Transthyretin.

		TO					T1				
					95% Confiden	ce interval			95% Confidence interval		
	Analyte	rho	р	p-FDR	Lower Bound	Upper Bound	rho	р	p-FDR	Lower Bound	Upper Bound
MRI - Lobar microbleed count	Ang2/Vitronectin Ratio	0.236	0.304	0.33	-0.231	0.614	0.616	0.005	0.018	0.211	0.841
	FASLG/Vitronectin Ratio	0.519	0.016	0.04	0.099	0.782	0.452	0.052	0.062	-0.017	0.758
	KIM 1/Vitron ectin Ratio	0.505	0.02	0.04	0.080	0.774	0.45	0.053	0.062	-0.02	0.757
	NGAL/Vitronectin Ratio	0.612	0.003	0.02	0.231	0.83	0.405	0.085	0.09	-0.074	0.733
	RAGE/Vitronectin Ratio	0.432	0.05	0.08	-0.013	0.735	0.499	0.03	0.042	0.043	0.783
	Osteopontin/Vitronectin Ratio	0.367	0.102	0.12	-0.091	0.696	0.548	0.015	0.023	0.11	0.808
	VCAM 1/Vitron ectin Ratio	0.621	0.003	0.02	0.246	0.834	0.586	0.008	0.018	0.166	0.826
	Ang2/EGF Ratio	0.446	0.043	0.08	0.004	0.742	0.706	0.0007	0.01	0.357	0.882
	FASLG/EGF Ratio	0.56	0.008	0.04	0.156	0.804	0.667	0.002	0.014	0.293	0.864
	KIM 1/EGF Ratio	0.033	0.889	0.89	-0.416	0.469	-0.032	0.897	0.9	-0.49	0.44
	NGAL/EGF Ratio	0.512	0.018	0.04	0.089	0.778	0.58	0.009	0.018	0.157	0.823
	RAGE/EGF Ratio	0.522	0.015	0.04	0.103	0.783	0.586	0.008	0.018	0.166	0.826
	Osteopontin/EGF Ratio	0.405	0.069	0.10	-0.046	0.719	0.608	0.006	0.018	0.198	0.837
	VCAM 1/EGF Ratio	0.373	0.096	0.12	-0.084	0.7	0.548	0.015	0.023	0.11	0.808
Neuropathological CAA severity	ApoAII/AXL Ratio	0.514	0.01	0.02	0.127	0.765	0.537	0.01	0.02	0.136	0.787
	ApoCIII/AXL Ratio	0.675	0.0003	0.003	0.362	0.851	0.551	0.008	0.02	0.156	0.794
	ApoCI/AXL Ratio	0.463	0.023	0.03	0.061	0.736	0.614	0.002	0.007	0.247	0.827
	ApoE/AXL Ratio	0.53	0.008	0.02	0.148	0.774	0.631	0.002	0.007	0.274	0.836
	CLU/AXL Ratio	0.514	0.01	0.02	0.127	0.765	0.436	0.042	0.042	0.005	0.731
	ComFH/AXL Ratio	0.514	0.01	0.02	0.127	0.765	0.51	0.015	0.021	0.099	0.772
	C-peptide/AXL Ratio	0.286	0.175	0.19	-0.145	0.626	0.628	0.002	0.007	0.269	0.834
	Proinsulin/AXL Ratio	0.165	0.442	0.44	-0.267	0.542	0.443	0.039	0.042	0.013	0.735
	TTR/AXL Ratio	0.479	0.018	0.03	0.081	0.745	0.457	0.033	0.041	0.03	0.743
	Leptin/AXL Ratio	0.33	0.116	0.15	-0.1	0.654	0.512	0.015	0.02	0.102	0.773

