
RESEARCH ARTICLE OPEN ACCESS

Deep Learning Modeling to Differentiate Multiple 
Sclerosis From MOG Antibody–Associated Disease
Rosa Cortese, 1 Francesco Sforazzini, 2 Giordano Gentile, 1,2 Anna de Mauro, 1 Ludovico Luchetti, 1,2

Maria Pia Amato 3,4 et al.

Neurology ® 2025;105:e214075. doi:10.1212/WNL.0000000000214075

Correspondence 

Dr. Cortese 

rosa.cortese@unisi.it

Abstract
Background and Objectives
Multiple sclerosis (MS) is common in adults while myelin oligodendrocyte glycoprotein 
antibody–associated disease (MOGAD) is rare. Our previous machine-learning algorithm, 
using clinical variables, ≤6 brain lesions, and no Dawson fingers, achieved 79% accuracy, 78% 
sensitivity, and 80% specificity in distinguishing MOGAD from MS but lacked validation. The 
aim of this study was to (1) evaluate the clinical/MRI algorithm for distinguishing MS from 
MOGAD, (2) develop a deep learning (DL) model, (3) assess the benefit of combining both, 
and (4) identify key differentiators using probability attention maps (PAMs).

Methods
This multicenter, retrospective, cross-sectional MAGNIMS study included scans from 19 
centers. Inclusion criteria were as follows: adults with non-acute MS and MOGAD, with high-
quality T2-fluid-attenuated inversion recovery and T1-weighted scans. Brain scans were scored 
by 2 readers to assess the performance of the clinical/MRI algorithm on the validation data set. 
A DL-based classifier using a ResNet-10 convolutional neural network was developed and 
tested on an independent validation data set. PAMs were generated by averaging correctly 
classified attention maps from both groups, identifying key differentiating regions.

Results
We included 406 MRI scans (218 with relapsing remitting MS [RRMS], mean age: 39 years ±11, 
69% F; 188 with MOGAD, age: 41 years ±14, 61% F), split into 2 data sets: a training/testing set (n = 
265: 150 with RRMS, age: 39 years ±10, 72% F; 115 with MOGAD, age: 42 years ±13, 61% F) and 
an independent validation set (n = 141: 68 with RRMS, age: 40 years ±14, 65% F; 73 with MOGAD, 
age: 40 years ±15, 63% F). The clinical/MRI algorithm predicted RRMS over MOGAD with 75% 
accuracy (95% CI 67–82), 96% sensitivity (95% CI 88–99), and specificity 56% (95% CI 44–68) in 
the validation cohort. The DL model achieved 77% accuracy (95% CI 64–89), 73% sensitivity (95% 
CI 57–89), and 83% specificity (95% CI 65–96) in the training/testing cohort, and 70% accuracy 
(95% CI 63–77), 67% sensitivity (95% CI 55–79), and 73% specificity (95% CI 61–83) in the 
validation cohort without retraining. When combined, the classifiers reached 86% accuracy (95% CI 
81–92), 84% sensitivity (95% CI 75–92), and 89% specificity (95% CI 81–96). PAMs identified key 
region volumes: corpus callosum (1872 mm 3 ), left precentral gyrus (341 mm 3 ), right thalamus
(193 mm 3 ), and right cingulate cortex (186 mm 3 ) for identifying RRMS and brainstem (629 mm 3 ),
hippocampus (234 mm 3 ), and parahippocampal gyrus (147 mm 3 ) for identifying MOGAD.

Discussion
Both classifiers effectively distinguished RRMS from MOGAD. The clinical/MRI model showed 
higher sensitivity while the DL model offered higher specificity, suggesting complementary roles. 
Their combination improved diagnostic accuracy, and PAMs revealed distinct damage patterns. 
Future prospective studies should validate these models in diverse, real-world settings.

Classification of Evidence
This study provides Class III evidence that both a clinical/MRI algorithm and an MRI-based 
DL model accurately distinguish RRMS from MOGAD.
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Introduction
Myelin oligodendrocyte glycoprotein (MOG) antibody– 
associated disease (MOGAD) is distinct from multiple 
sclerosis (MS), 1 but their clinical and radiologic differentia-
tion remains challenging. First, early clinical presentations 
may overlap, despite differences in pathogenesis, prognosis, 
and treatment. 1,2 Second, while MRI has a crucial role in
differentiating the 2 disorders, 3 MOGAD lesions evolve dy-
namically, forming during attacks and resolving in remission, 
complicating marker identification. 4,5 Third, although MOG
antibodies (MOG-Abs) can be detected through cell-based 
assays (CBAs), titers may fluctuate and MOG-Abs occa-
sionally can be found in patients diagnosed with MS (2% with 
fixed CBAs and approximately 0.5% with live CBAs). 6,7 Given
the low relative prevalence of MOGAD compared with MS, 
indiscriminate testing for MOG-Abs in large, unselected 
populations inevitably leads to false-positive results. 8,9 Finally,
there are numerous unresolved questions regarding MOGAD 
pathogenesis. 10 Addressing these challenges is essential for
improving diagnostic accuracy.

Artificial intelligence–based algorithms applied to clinical MRI 
have shown promise in classifying neurologic diseases. 11 In a re-
cent MAGNIMS study, we used machine learning on a large 
cohort to identify markers differentiating MOGAD from MS 
using conventional scans. A combination of fewer brain lesions 
(≤6) and absence of Dawson fingers distinguished 162 MOGAD 
cases from 189 relapsing remitting MS (RRMS) cases with 79% 
accuracy, 78% sensitivity, and 80% specificity. Sensitivity im-
proved when the first clinical presentation included bilateral 
optic neuritis, optic neuritis with transverse myelitis, or acute 
disseminated encephalomyelitis (ADEM). 12 Validation on new
cohorts is still needed to confirm the model’s replicability.

The integration of MRI with deep learning (DL) has gained 
traction for its ability to tackle complex classification chal-
lenges by automatically extracting key features from raw data. 
In MS, DL, particularly convolutional neural networks 
(CNNs), has successfully classified patients by disability levels 
and predicted progression. 13-15 While DL shows promise in
distinguishing CNS demyelinating diseases such as MS and 
neuromyelitis optica spectrum disorder (NMOSD), 16,17 its
application to differentiate MS from MOGAD remains 
underexplored. In addition, explainable DL techniques, such 
as attention maps, could provide deeper insights into disease

characteristics, offering a more nuanced understanding of 
damage distribution in the CNS. 18,19

The aim of this study was to evaluate the effectiveness of the 
clinical/MRI algorithm and a DL-based model in dis-
tinguishing MS from MOGAD, both independently and in 
combination, in 3 steps. First, we performed a validation of the 
previously proposed clinical/MRI algorithm in a new non-
acute cohort, which was not part of the previous study. Next, 
we developed an MRI-based DL model to distinguish MS 
from MOGAD and explored the underlying factors behind 
the differentiation using probability attention maps (PAMs). 
Finally, we combined both approaches to determine whether 
this integration would enhance diagnostic accuracy.

The primary research question of this study is whether 
a clinical/MRI algorithm and a DL model, individually or in 
combination, can accurately distinguish RRMS from 
MOGAD and identify key differentiating brain regions.

Methods
Study Design and Population
This multicenter, retrospective study used data from 19 Eu-
ropean and non-European centers, collected as part of the 
Magnetic Resonance Imaging in Multiple Sclerosis (MAG-
NIMS) collaboration 20 project. The study included scans of
patients who met the following inclusion criteria: diagnosis of 
RRMS or MOGAD according to the respective diagnostic 
criteria 2,21 ; age at MRI 18 years or older; being ≥6 months
after an acute event; availability of ≥1 sequence for white 
matter lesion detection (T2-fluid-attenuated inversion re-
covery [FLAIR]/proton density/T2-weighted) and a 3D 
T1-weighted sequence of adequate quality. The scans were 
divided into 2 independent data sets:

1. Training/testing set: this set comprised patients from the
original MAGNIMS cohort where a clinical/MRI classifier
was previously developed. 12 This set was further split into
2 independent subsets, 80% for training and 20% for
testing, ensuring that centers in the training set were not
included in the testing set. The training and testing data
sets were split randomly, ensuring that both sets reflected
the same ratio of patients with MS and MOGAD by
incorporating the outcome data during stratification.

Glossary
ADEM = acute disseminated encephalomyelitis; AUC = area under the curve; CBA = cell-based assay; CNN = convolutional 
neural network; DL = deep learning; FLAIR = fluid-attenuated inversion recovery; FN = false negative; FP = false positive; 
MAGNIMS = Magnetic Resonance Imaging in Multiple Sclerosis; MNI = Montreal Neurological Institute; MOG = myelin 
oligodendrocyte glycoprotein; MOG-Ab = MOG antibody; MOGAD = MOG antibody–associated disease; MS = multiple 
sclerosis; NMOSD = neuromyelitis optica spectrum disorder; NPV = negative predictive value; OCB = oligoclonal band; 
PAM = probability attention map; PPV = positive predictive value; ROC = receiver operating characteristic; RRMS = relapsing 
remitting MS; TN = true negative; TP = true positive.
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2. Validation test set: this set was separately collected for
the purpose of this study, with data provided by both
previous and new centers that contributed scans from
newly enrolled patients.

Although no formal sample size calculation was performed, 
the data set was considered sufficiently large based on pre-
vious DL studies in similar settings and the rarity of 
MOGAD 16,17 ; its adequacy was further supported by the
model’s robust performance on an independent validation set.

Standard Protocol Approvals, Registrations, 
and Patient Consents
Each participant provided written consent for research within 
each center. The final protocol for analyzing fully anonymized 
scans, acquired independently at each center, was approved by 
the MAGNIMS collaboration and by local ethics committees. 
Scans were shared according to the MAGNIMS framework 
agreement, and centers not covered by this agreement signed 
a separate data transfer agreement with Siena.

MRI Analysis
MRI protocols and acquisition parameters of the centers were 
previously described. 12 White matter lesions were semi-
automatically segmented on FLAIR/T2 sequences using 
a lesion prediction algorithm implemented in the lesion seg-
mentation tool (LST) version for statistical parametric map-
ping version 12 (SPM12), and lesion masks were created. The 
quality of lesions was manually checked and corrected by 2 
readers (R.C. and A.d.M.) through consensus. The MRI 
analysis was centralized in Siena.

The image-processing pipeline consisted of 4 steps (Figure 1).

Brain Scan Scoring and Clinical/MRI Classification
The number of lesions for each patient was automatically 
calculated. FLAIR/T2 sequences of the scans from the vali-
dation test set were scored by 2 readers (R.C. and A.d.M.) for 
the presence of Dawson fingers, which were previously 
reported to be useful differentiators of RRMS and 
MOGAD. 12 Scans were classified as indicative of RRMS if
they exhibited >6 brain lesions and ≥1 Dawson finger. Scans 
not meeting these criteria were categorized as MOGAD. 
Then, clinical presentation at onset was added to the classifier, 
and in particular, when the initial episode was either unilateral 
optic neuritis, or isolated transverse myelitis, or other symp-
toms related to brain involvement, the scans were considered 
indicative of RRMS.

Development of DL-Based Classifier
The DL classifier was developed using a CNN with a 10-layer 
Residual Network (ResNet-10) architecture. 22 This ResNet-
10 classifier had the following stacked layers: 1 convolutional 
layer (64 convolutional filters, 3 × 3 with stride 2 and padding 
of 3, and output with shape 64 × 34 × 34), followed by a max 
pooling layer (64 max pooling filters, 3 × 3 with stride 2 and 
padding 1, and output with shape 64 × 17 × 17); 4 residual

layers (the output after these 4 residual layers has the shape of 
512 × 3 × 3); 1 average pooling layer (512 average pooling 
filters, 2 × 2 with stride 1 and 0 padding, and output is a vector 
of 512 neurons); and 1 fully connected layer to generate 
predictions of the 2 classes. The output of each convolutional 
layer was processed by batch normalization 23 to prevent
vanishing/exploding gradient problem. FLAIR and T1 images 
were used as input channels. Before feeding to the network, 
both images underwent the following preprocessing: (1) 
correction for magnetic field inhomogeneities using N420 
and normalization of their intensities to a common range 
(0–10,000); (2) resampling to have an isotropic resolution of
1 mm, nonlinearly registering to the Montreal Neurological 
Institute (MNI) space, and brain extraction; (3) final crop 
to remove nonbrain voxels. The input shape of the network 
was set to 182 × 145 × 155 voxels. The batch size was set to 
10, and the network was trained for 500 epochs using an 
initial learning rate of 0.0001, with polynomial decay, sto-
chastic gradient descent (SGD) as the optimizer, and 
a dropout of 0.7 to avoid overfitting. To further mitigate 
overfitting, we applied data augmentation techniques in 
addition to using a clinically balanced and sufficiently 
large data set, which collectively contributed to the model’s 
stable performance on unseen data. Cross-entropy was 
used as a loss function. The images coming from the 
patients during the evaluation phase underwent the same 
preprocessing and were then fed to the trained network, 
without any recalibration or retraining of the model. To 
evaluate the performance of the DL-based classifier, we 
used balanced accuracy in correctly classifying each patient 
by their diagnosis and sensitivity and specificity of correctly 
classified patients with RRMS vs MOGAD.

CNN-Derived Attention Map Analysis
To uncover key disease mechanisms leading to differentiation, 
CNN-derived attention maps were generated to indicate the 
most relevant anatomical features for CNN-based decisions. 19

The attention within a voxel, indicating its importance for de-
cision making, was calculated using a guided back propagation 
approach and then normalized using z-scores. Two PAMs were 
created, one for each disease group by non-linearly registering 
the maps to MNI space and then averaging all the correctly 
classified attention maps of RRMS and MOGAD, respectively.

To identify the brain regions referring to the areas signifi-
cantly contributing to the differentiation, the 2 PAMs 
were intersected with 2 atlases, the Adult Brain Maximum 
Probability Map (“Hammersmith”) and the Johns Hopkins 
University diffusion tensor imaging (JHU DTI)-based white 
matter atlases. The regions within the intersection were 
tested for differences between RRMS and MOGAD using 
a t-test. This step resulted in 2 maps, 1 for each disease, with 
the value of the t statistic in each area. The volume (mm 3 ) of
each region involved in the classification was calculated.

Finally, to understand the rationale behind the selection of 
specific regions for identifying different diseases, a group-level
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comparison of lesion distribution was conducted using the 
non-parametric permutation testing tool Randomise with 
cluster-based thresholding.

Integration of DL-Based and Clinical/MRI Classifiers
To explore whether the integration of the clinical/MRI features 
and DL could provide a more accurate discrimination between 
the 2 diseases, a fusion model was implemented. Specifically, 
the binarized total number of brain lesions (1: number >6, 0: 
otherwise) and the presence of Dawson fingers (1: present, 0: 
otherwise) for each patient were concatenated to the deep 
features extracted from the last residual layer of DL classifier. 
Then, a fully connected layer was added to generate the final 
class prediction. In addition, to assess whether incorporating 
other clinical discriminators could further improve model 
performance, we separately concatenated (1) the binarized 
presence of CSF-restricted oligoclonal bands (OCBs) and (2) 
clinical presentation involving the brain with the extracted deep 
imaging features before final classification.

Statistical Analysis
Means, medians, proportions of demographics, clinical features, 
and lesion characteristics were calculated for patients. Differ-
ences were evaluated using the Kruskal-Wallis or χ 2 test as

appropriate. Based on the final diagnosis (RRMS or MOGAD) 
of the clinical/MRI algorithm, participants were classified as true 
positive (TP, clinical/MRI classifier fulfilled, diagnosis RRMS), 
true negative (TN, clinical/MRI classifier negative, diagnosis 
MOGAD), false positive (FP, clinical/MRI classifier positive, 
diagnosis MOGAD), or false negative (FN, clinical/MRI clas-
sifier negative, diagnosis RRMS). We obtained the accuracy of 
having RRMS vs MOGAD by the ratio TP + TN/TP + TN + 
FP + FN, sensitivity by the ratio TP/(TP + FN), specificity by 
TN/(TN + FP), positive predictive value (PPV) as TP/(TP + 
FP), negative predictive value (NPV) as TN/(TN + FN), and 
both the receiver operating characteristic (ROC) and precision 
recall area under the curve (AUC).

The model outputs consisted of 2 activation units (1 per 
class), with the predicted class determined by the highest 
activation. For ROC analysis, outputs were converted to class 
probabilities using the softmax function.

Data Availability
The anonymized grouped data that support the findings of this 
study may be available to qualified noncommercial investigators 
from the corresponding author, on reasonable request and in 
accordance with consent and ethics requirements.

Figure 1 Schematic Representation of the Study Design

The work was structured in 3 steps: (A) FLAIR/T2 sequences of the scans from the validation test set were assessed and scored considering the number of 
lesions and the presence of Dawson fingers (blue). (B) ResNet-10 architecture was trained using cross-entropy loss function and then accuracy was assessed 
on the validation test set (green). Then, individual attention maps were created using a guided backpropagation approach and then normalized using 
z-scores. Finally, 2 PAMs (1 for each disease group) were created by nonlinearly registering to MNI and then averaging all the correctly classified attention
maps of RRMS and MOGAD, respectively (yellow). (C) The DL-based and clinical/MRI classifiers were combined to assess their performances in differentiating
the 2 disorders (red). In brief, both the number of lesions and the presence of Dawson fingers were concatenated to the features extracted by the DL network
and used to discriminate between the 2 classes. CNN = convolutional neural network; DL = deep learning; FLAIR = fluid-attenuated inversion recovery; MNI =
Montreal Neurological Institute; MOGAD = myelin oligodendrocyte glycoprotein antibody–associated disease; MRI = magnetic resonance imaging; PAMs =
probability attention maps; RRMS = relapsing remitting multiple sclerosis.
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Results
Study Population
In total, we analyzed 406 T2-FLAIR and T1-weighted brain 
MRI scans from patients with RRMS (n = 218, 150 F, mean 
[SD] age: 39 years [±11]) and MOGAD (n = 188, 114 F, 
mean [SD] age: 41 years [±14]). The training/testing cohort 
(number of patients: 265/406 [65%]) included 150 patients 
with RRMS and 115 patients with MOGAD. This set was 
further split into 2 independent subsets: the training set 
(number of patients: 212/265 [80%]), including 120 patients 
with RRMS and 92 patients with MOGAD, and the testing set 
(number of patients: 53/265 [20%]), including 30 patients 
with RRMS and 23 patients with MOGAD.

The validation group (number of patients: 141/406 [35%]) 
included 68 patients with RRMS and 73 patients with 
MOGAD. Clinical details of patients in the different sets are 
summarized in Table 1.

Validation of the Clinical/MRI Algorithm on the 
Validation Data Set
On the validation test set, the combination of >6 brain lesions 
and the presence of Dawson fingers predicted RRMS instead 
of MOGAD with 75% accuracy (95% CI 67–82), 96% sen-
sitivity (95% CI 88–99), 56% specificity (95% CI 44–68), 
67% PPV (95% CI 57–76), 93% NPV (95% CI 81–99), and 
a ROC-AUC of 0.76 (95% CI 0.70–0.82). The addition of the 
clinical presentation at onset (i.e., unilateral optic neuritis/ 
transverse myelitis/other symptoms related to brain in-
volvement) reached an accuracy of 52% (95% CI 44–61), 
sensitivity of 100% (95% CI 94–100), specificity of 23% (95% 
CI 11–30), PPV of 56% (95% CI 46–65), NPV of 99% (95% 
CI 81–99), and ROC-AUC of 0.61 (95% CI 0.56–0.67).

Performance of the DL-Based Classifier
The trained CNN classifier identified RRMS rather than 
MOGAD on the testing set with an accuracy of 77% (95% CI 
64–89), sensitivity of 73% (95% CI 57–89), specificity of 83% 
(95% CI 65–96), and ROC-AUC of 0.82 (95% CI 0.69–0.93). 
The final DL model was further tested using the validation, 
unseen test set, reaching an accuracy of 70% (95% CI 63–77), 
sensitivity of 67% (95% CI 55–79), specificity of 73% (95% CI 
61–83), PPV of 70% (95% CI 59–82), NPV of 69% (95% CI 
58–81), and ROC-AUC of 0.74 (95% CI 0.65–0.82).

Probability Attention Maps
Using the validation test set, in the correctly classified RRMS 
cohort, PAMs revealed the involvement of corpus callosum 
(total volume: 1872 mm 3 ), left precentral gyrus (total vol-
ume: 341 mm 3 ), right thalamus (total volume: 193 mm 3 ), and
right cingulate cortex (total volume: 186 mm 3 ) for the iden-
tification of the disease.

In the correctly classified MOGAD cohort, PAMs revealed 
the involvement of brainstem, particularly midbrain (total 
volume: 629 mm 3 ); bilateral hippocampus (total volume:

234 mm 3 ); and parahippocampal gyrus (total volume:
147 mm 3 ) for the identification of the disease.

Figure 2 shows the distribution of relevant voxels across the 
different anatomical regions.

The voxel-wise comparison of the lesion probability maps 
revealed that RRMS lesions were significantly more likely 
than MOGAD lesions to be periventricular (Figure 3).

Integration of Classifiers
When tested on the validation set, the combination of the 
clinical/MRI and DL-based classifiers reached the highest per-
formance in differentiating the 2 diseases. Specifically, when the 
DL-based model was combined with having >6 brain lesions and 
presence of ≥ 1 Dawson finger, it was able to identify RRMS vs 
MOGAD with 86% accuracy (95% CI 81–92), 84% sensitivity 
(95% CI 75–92), 89% specificity (95% CI 81–96), 89% PPV 
(95% CI 80–96), 84% NPV (95% CI 75–92), and an ROC-
AUC of 0.90 (95% CI 0.84–0.95). Figure 4 shows examples of 
RRMS and MOGAD cases classified by the DL model, dem-
onstrating how combining the 2 classifiers enhanced differen-
tiation and enabled more accurate classification.

Among the 11 misclassified patients with RRMS, 10 (91%) 
were CSF-restricted OCBs positive and only 1 had a pheno-
type at onset involving the brain compartment. Among the 7 
misclassified patients with MOGAD, 2 (29%) had unmatched 
OCBs and 1 had ADEM. All other misclassified patients had 
optic neuritis and/or myelitis at onset but presented with 
brain lesions at the time of MRI analysis. The model in-
corporating the presence of CSF-restricted OCBs achieved an 
accuracy of 76% (95% CI 67–84), a sensitivity of 70% (95% 
CI 56–84), a specificity of 82% (95% CI 70–92), a PPV of 78 
(95% CI 64–91), and an NPV of 74 (95% CI 61–86). The 
model incorporating clinical presentation involving the brain 
achieved an accuracy of 79% (95% CI 71–85), a sensitivity of 
77% (95% CI 66–86), a specificity of 81% (95% CI 71–90), 
a PPV of 82% (95% CI 72–90), and an NPV of 75% (95% CI 
64–85).

Table 2 summarizes the results of the validation analysis, 
highlighting the performance of the clinical/MRI features, the 
DL model, and their combination in distinguishing RRMS 
from MOGAD.

Classification of Evidence
This study provides Class III evidence that both a clinical/ 
MRI algorithm and an MRI-based DL model accurately dis-
tinguish RRMS from MOGAD.

Discussion
In this multicenter study, we showed that both the clinical/ 
MRI algorithm and the DL model differentiated RRMS from 
MOGAD with high accuracy, sensitivity, and specificity across
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Table 1 Clinical Features of Patients With RRMS and MOGAD in the Whole Cohort, Training/Testing Set, and Validation 
Test Set

Whole cohort (n = 406)
Training/testing set 
(n = 265, 65%) Validation test set (n = 141, 35%)

RRMS 
(n = 218)

MOGAD 
(n = 188)

p 
Value a

RRMS 
(n = 150)

MOGAD 
(n = 115)

p 
Value a

RRMS 
(n = 68)

MOGAD 
(n = 73)

p 
Value a

Sex (F/M) 150/68 114/74 0.10 108/42 70/45 0.07 44/24 46/27 0.97

Age at MRI, y, mean ± SD 39 ± 11 41 ± 14 0.06 39 ± 10 42 ± 13 0.02 40 ± 14 40 ± 15 0.85

Disease duration, y, median (range) 5.7
(0.3–52.5)

3.0
(0.3–47.3)

0.01 5.7
(0.3–29.3)

4.5
(0.3–47.1)

0.13 5.5
(0.3–52.5)

2.2
(0.3–47.3)

0.01

EDSS score at MRI, median (range) b 2 (0–8.0) 2 (0–8.5) 0.42 2 (0–8) 2 (0–7.5) 0.43 2 (0–6) 2 (0–8.5) 0.74

Patients with CSF oligoclonal 
bands, n (%)

Absence 14 (6) 134 (71) <0.001 9 (6) 84 (73) <0.001 5 (7) 50 (68) <0.001

Presence 145 (67) 26 (14) 90 (60) 16 (14) 54 (80) 10 (14)

NA 59 (27) 28 (15) 51 (34) 15 (13) 9 (13) 13 (18)

Patients tested with CBA, n (%) c

Fixed 11 (5) 93 (50) <0.001 8 (5) 68 (59) <0.001 3 (4) 25 (34) <0.001

Live 0 (0) 88 (47) 0 (0) 40 (35) 0 (0) 48 (66)

NA 207 (95) 7 (3) 142 (95) 7 (6) 65 (96) 0 (0)

Type of presenting attack, n (%) patients

Unilateral ON 52 (24) 59 (31) <0.001 35 (23) 34 (30) <0.001 17 (25) 25 (34) 0.04

Bilateral ON 4 (2) 34 (18) 2 (1) 22 (19) 2 (3) 12 (16)

Short myelitis 70 (32) 14 (8) 51 (34) 9 (8) 19 (28) 5 (7)

LETM 1 (0.5) 27 (14) 1 (1) 19 (17) 0 8 (11)

Brainstem/cerebellar attack 30 (14) 8 (4) 17 (11) 6 (5) 13 (19) 2 (3)

Cortical encephalitis 0 (0) 0 (0) 0 0 0 0

ADEM 2 (1) 10 (5) 2 (2) 5 (4) 0 5 (7)

Cerebral mono/polyfocal 22 (10) 3 (2) 14 (9) 1 (1) 8 (12) 2 (3)

Combination of symptoms 12 (5.5) 29 (16) 4 (3) 16 (14) 8 (12) 13 (18)

NA 25 (11) 4 (2) 24 (16) 3 (2) 1 (1) 1 (1)

No. of relapses at study inclusion, median 
(range)

2 (1–13) 1 (1–15) 0.25 2 (1–13) 1 (1–15) 0.75 2 (1–4) 1 (1–5) 0.27

Patients with brain lesions, n (%) 218 (100) 154 (82) <0.001 150 (100) 87 (76) <0.001 68 (100) 67 (92) 0.06

No. of brain lesions, mean ± SD 32 ± 27 14 ± 26 <0.001 28 ± 22 9 ± 13 <0.001 41 ± 33 24 ± 37 0.004

No. of patients with ≥6 brain T2 lesions 190 65 <0.001 128 33 <0.001 62 32 <0.001

No. of patients with ≥1 Dawson finger 160 22 <0.001 104 16 <0.001 56 6 <0.001

Abbreviations: ADEM = acute disseminated encephalomyelitis; CBA = cell-based assay; EDSS = Expanded Disability Status Scale; LETM = longitudinally 
extensive transverse myelitis; MOGAD = myelin oligodendrocyte glycoprotein antibody–associated disease; NA = not available; ON = optic neuritis; RRMS = 
relapsing remitting multiple sclerosis.
a Using the Kruskall–Wallis or χ 2 test as appropriate, depending on the nature of the variable. The distribution of continuous variables was evaluated applying
the Shapiro-Wilk test.
b Time at MRI corresponds to study inclusion.
c In line with recent evidence and clinical recommendations, 24 only a subset of patients with MS was tested for MOG-IgG to avoid false positives and diagnostic
misclassification.
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multiple cohorts. Although the clinical/MRI algorithm 
exhibited superior sensitivity, the DL model achieved greater 
specificity. The combination of both methods further im-
proved diagnostic accuracy, indicating their potential for di-
agnosing challenging cases or identifying patients for research 
studies. In addition, PAMs offered valuable insights into the 
distribution and severity of brain damage, providing a deeper 
understanding of the distinct pathophysiologic mechanisms 
underlying the 2 conditions.

In this study, we retrospectively validated our clinical/MRI al-
gorithm 12 within a new multicenter cohort of patients with
RRMS and MOGAD. The results demonstrate that the algo-
rithm can be effectively integrated into the diagnostic process for 
non-acute adult patients with suspected CNS inflammatory

diseases, aiding in the identification of those who should undergo 
testing for MOG-Abs. Routine testing for MOG-Abs in all 
patients suspected of having MS is not appropriate in clinical 
practice because it could lead to an increased incidence of false-
positive results. 8 Therefore, it is essential to pinpoint specific
clinical and imaging features that increase the likelihood of 
MOGAD rather than RRMS. Our validation of the clinical/MRI 
algorithm demonstrated high sensitivity in accurately identifying 
patients with non-acute RRMS, thereby minimizing FNs, a sig-
nificant consideration given the differing epidemiology of these 2 
conditions. While MS is relatively common in adults (prevalence 
is increasing, exceeding 200/100,000 in some American and 
European countries), 25-27 MOGAD remains rare (prevalence
1.3–3.7/100,000). 9,28 As awareness and diagnostic testing for
MOGAD continue to improve, its reported incidence and

Figure 2 Topographical Distributions of the Areas Significantly Contributing to the Differentiation Between Patients With 
RRMS and With MOGAD

PAMs revealed the involvement of corpus cal-
losum, right cingulate cortex, right thalamus, and 
left precentral gyrus for the identification of RRMS 
(A) while the relevant role of the brainstem, bi-
lateral hippocampi, and parahippocampal gyri in
the identification of MOGAD (B). Significant voxels
are shown in a color scale from light blue to dark
blue for RRMS and from yellow to red for MOGAD,
from the most to the less significant, respectively
(all p < 0.001). MOGAD = myelin oligodendrocyte
glycoprotein antibody–associated disease; PAMs =
probability attention maps; RRMS = relapsing re-
mitting multiple sclerosis.

Figure 3 Voxel-Wise Comparison of RRMS and MOGAD Lesion Maps

The voxel-wise comparison between RRMS and 
MOGAD showed a highest probability of RRMS 
lesions in the periventricular area. Significant voxels 
are shown in a color scale from yellow to red for 
RRMS, from the most to the least significant, re-
spectively (all p < 0.001). MOGAD = myelin oligoden-
drocyte glycoprotein antibody–associated disease; 
RRMS = relapsing remitting multiple sclerosis.
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prevalence are expected to rise, potentially surpassing NMOSD 
over time, as suggested by recent studies. 9

Our algorithm selectively identifies patients who may not 
need MOG-Ab testing, focusing on those more likely to have 
MOGAD. In non-acute adult patients with suspected CNS 
involvement, testing is questionable if there are >6 brain T2 
lesions and ≥1 Dawson finger. Notably, adding information 
on onset presentation, CSF-restricted oligoclonal bands, or 
brain involvement did not improve the model’s performance.

This suggests that deep imaging features, especially those 
captured in the remission phase, may provide more robust 
discriminative power between MS and MOGAD, particularly 
in those MOGAD cases with overlapping symptoms with MS.

It is important to note that we developed a DL model that 
accurately differentiates between the 2 diseases, demonstrating 
high specificity. This has the potential to refine clinical workflows 
by identifying patients who would benefit most from MOG-Ab 
testing while minimizing false positives. Recent studies validating

Figure 4 Performance of DL-Based Classifiers in Differentiating RRMS and MOGAD

The figure shows examples of MRI, as classified 
by the DL classifier. (A) For MS, the classifier 
correctly identified oval-shaped periventricular 
and deep white matter lesions on axial FLAIR, 
with Dawson fingers and involvement of the 
temporal lobe. (B) For MOGAD, the classifier ac-
curately detected large, ill-defined lesions in the 
juxtacortical/cortical and periventricular regions. 
(C) An example of MS misclassified as MOGAD
revealed a poorly defined hyperintensity in the
right cerebellar peduncle, along with more than 6
supratentorial lesions, some of which were
round-shaped, and 1 Dawson finger. (D) By con-
trast, MOGAD misclassified as MS exhibited
a well-defined peripheral lesion in the pons,
alongside 4 supratentorial confluent lesions, in-
cluding 2 round-shaped lesions involving the
corpus callosum. The integration of clinical and
imaging classifiers enabled accurate diagnosis in
(C) and (D). DL = deep learning; FLAIR = fluid-
attenuated inversion recovery; MNI = Montreal
Neurological Institute; MOGAD = myelin oligo-
dendrocyte glycoprotein antibody–associated
disease; MS = multiple sclerosis; RRMS = re-
lapsing remitting MS.
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the 2023 MOGAD criteria 2 have shown better classification
during attacks than remissions, 29 underscoring the challenge of
diagnosing MOGAD in non-acute phases when typical clinical 
features may be absent. Therefore, our DL model offers 
a promising tool for improving the accuracy of MOGAD di-
agnosis, particularly in challenging non-acute phases.

A key advantage of DL is its ability to identify imaging fea-
tures beyond visible lesion distribution. Because 18% of 
patients with MOGAD were lesion-free, the CNN model likely 
classified disorders using non-lesion features, a notable benefit. 
This is critical because optic nerve and spinal cord lesions, com-
mon in adult MOGAD, are less frequently imaged than the 
brain. 24 A DL tool using only brain MRI, which is more routinely
acquired, has significant clinical relevance. Using multicenter data 
improved the model’s robustness and generalizability, performing 
well on validation tests without fine-tuning. Integrating DL with 
our clinical/MRI algorithm enhanced performance, demonstrat-
ing its potential to aid clinicians while emphasizing the importance 
of combining clinical and imaging insights for final decisions. 
However, translating this model to clinical settings requires rig-
orous validation on data acquired prospectively to confirm its 
performance across diverse populations and clinical scenarios.

Notably, the use of PAMs facilitated the visualization of distinct 
patterns in damage severity within the brain, providing deeper 
insights into the underlying pathophysiologic differences be-
tween the 2 conditions. To elucidate the rationale behind 
selecting specific regions for distinguishing diseases, we con-
ducted a voxel-wise comparison of lesion probability maps to 
differentiate RRMS from MOGAD. This comparison revealed 
that lesions in RRMS were significantly more likely periven-
tricular than those in MOGAD. This finding likely explains why

the corpus callosum was chosen as a key region for identifying 
MS. Moreover, our recent comparison of gray matter volumes 
indicated widespread atrophy in MS, particularly pronounced 
in the deep gray matter compared with MOGAD, accounting 
for the involvement of the thalamus in identifying MS. 30

In MOGAD, the characteristic fluffy infratentorial lesions during 
acute phases tend to resolve at a higher rate than in other 
regions. 4,5 Therefore, we can speculate that brainstem in-
volvement may be linked to microstructural damage after lesion 
resolution. However, further longitudinal studies are needed to 
confirm this observation. The role of hippocampal volume in 
differentiating MOGAD from MS has been demonstrated in 
various studies, though with conflicting results. Generally, lower 
hippocampal and parahippocampal volumes are associated with 
greater disability in MOGAD, 31 and these volumes tend to de-
crease over time at a higher atrophy rate compared with MS. 32

However, PAMs identify regions most responsible for DL-based 
differentiation without indicating the direction of damage, making 
our interpretations speculative. To strengthen these findings, ad-
ditional studies with larger sample sizes and advanced imaging 
techniques are required.

This study has several limitations. MOGAD is a dynamic disease, 
with lesions evolving over time, 4 and it remains unclear whether
microstructural damage may also change. Consequently, the 
cross-sectional design of our study may be limiting. Future re-
search could consider integrating combined attack and remission 
scans with DL models to enhance sensitivity and specificity, 
particularly given the strong predictive value of T2 lesion reso-
lution. 5 Moreover, longitudinal studies are needed to assess the
potential evolution of microstructural damage in MOGAD and 
to determine whether the DL model can adapt to these changes

Table 2 Results From the Validation Analysis to Predict RRMS Over MOGAD Using the Clinical/MRI Features and the Deep 
Learning Model, Alone and in Combination

Features
ROC-AUC 
(95% CI)

PR-AUC 
(95% CI)

Accuracy (%) 
(95% CI)

Sensitivity (%) 
(95% CI)

Specificity (%) 
(95% CI)

PPV (%) 
(95% CI)

NPV (%) 
(95% CI)

Dawson fingers ≥1 + no. of 
brain T2 lesions >6

0.76 (0.70–0.82) 0.89 (0.79–0.95) 75 (67–82) 96 (88–99) 56 (44–68) 67 (57–76) 93 (81–99)

Number of brain T2 lesions >6 + 
clinical presentation at onset a

0.61 (0.56–0.67) 0.73 (0.60–0.86) 52 (44–61) 100 (94–100) 23 (11–30) 56 (46–65) 99 (81–99)

DL model only 0.74 (0.65–0.82) 0.70 (0.58–0.82) 70 (63–77) 67 (55–79) 73 (61–83) 70 (59–82) 69 (58–81)

DL model + Dawson fingers ≥1 + 
no. of brain T2 lesions >6

0.90 (0.84–0.95) 0.91 (0.83–0.96) 86 (81–92) 84 (75–92) 89 (81–96) 89 (80–96) 84 (75–92)

DL model + Dawson fingers ≥1 + 
no. of brain T2 lesions >6 +
CSF oligoclonal bands

0.81 (0.71–0.90) 0.77 (0.60–0.90) 76 (67–84) 70 (56–84) 82 (70–92) 78 (64–91) 74 (61–86)

DL model + Dawson fingers ≥1 + 
no. of brain T2 lesions >6 + clinical 
presentation involving brain

0.85 (0.78–0.92) 0.82 (0.72–0.93) 79 (71–85) 77 (66–86) 81 (71–90) 82 (72–90) 75 (64–85)

Abbreviations: AUC = area under curve; CSF = cerebrospinal fluid; DL = deep learning; MOGAD = myelin oligodendrocyte glycoprotein antibody–associated 
disease; NPV = negative predictive value; PPV = positive predictive value; PR = precision recall; ROC = receiver operating characteristic; RRMS = relapsing 
remitting multiple sclerosis.
a Either unilateral optic neuritis, or isolated transverse myelitis, or other symptoms related to brain involvement.
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over time. In addition, we did not account for other clinical and 
imaging features, including MOG-Abs titers, and presence of 
optic nerve and cord lesions, because our focus was on using 
mostly the previously identified factors that distinguish the 2 
diseases. Only patients aged 18 years or older were included, and 
future studies could investigate whether early disease pre-
sentations affect model predictions and evaluate its utility in 
younger populations. Regarding the methodological aspects, the 
study’s generalizability may be limited by the reader’s experience 
in assessing certain variables, such as Dawson fingers, although 
most variables remain objectively measurable. Finally, DL model 
training requires a large data set to provide robust results and 
avoid overfitting. Despite the use in this study of regularization 
techniques and data augmentation to mitigate the aforemen-
tioned limitations, more extensive tests on unseen data are 
needed to assess the generalizability of the proposed solution. 
Additional training/fine-tuning might be also required. Our fu-
ture goal is to develop an online platform that, based on 
uploaded clinical data and MRI scans, can apply the most ap-
propriate model to support diagnosis, particularly in complex 
cases. This approach could help guide antibody testing in un-
certain cases and assist treatment decisions while awaiting test 
results in cases of possible overlap between MS and MOGAD.

In conclusion, this multicenter study demonstrates that both 
the clinical/MRI algorithm and the DL model effectively 
distinguish RRMS from MOGAD, with each showing com-
plementary strengths in sensitivity and specificity. The in-
tegration of these approaches enhances diagnostic accuracy, 
underscoring their potential to refine clinical decision making. 
In addition, the application of PAMs has provided valuable 
insights into the distinct pathophysiologic features of these 
conditions, contributing to a deeper understanding of their 
underlying mechanisms. Future research should focus on 
prospectively validating the clinical/MRI algorithm and DL 
model in clinical scenarios using larger, diverse populations, 
including pediatric patients and those with atypical pre-
sentations of RRMS and MOGAD.
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istero dell’Università e ricerca (MUR); and received fees for 
consultation from BMS, Janssen, Roche, Genzyme, Merck, 
Biogen, and Novartis. C. Lapucci has received honoraria for 
speaking, travel grants, and participating in advisory boards 
from Merck, Sanofi, Novartis, Roche, and Alexion. S. Llufriu 
received compensation for consulting services and speaker 
honoraria from Biogen Idec, Novartis, Bristol Myers Squibb, 
Sanofi, Johnson & Johnson, and Merck. C. Lukas received 
a research grant from the German Federal Ministry for Edu-
cation and Research, BMBF, and German Competence 
Network Multiple Sclerosis (KKNMS, grant 01GI1601I); and 
has received consulting and speaker’s honoraria from Biogen 
Idec, Bayer Schering, Daiichi Sanykyo, Merck Serono, 
Novartis, Sanofi, Genzyme, and TEVA. J. Müller has received 
funding from the Swiss National Science Foundation (grants 
P500PM_214230 and P5R5PM_225288). J. Palace has re-
ceived support for scientific meetings and honoraria for ad-
visory work from Merck Serono, Novartis, Chugai, Alexion, 
Roche, Medimmune, Argenx, UCB, Mitsubishi, Amplo, 
Janssen, and Sanofi; has received grants from Alexion, Roche, 
Medimmune, UCB, and Amplo Biotechnology; has patent ref. 
P37347WO and licence agreement Numares multimarker MS 
diagnostics Shares in AstraZeneca; and acknowledges partial 
funding by highly specialized services NHS England. F. Paul 
serves on scientific advisory boards for Novartis, Viela Bio, 
and Alexion; and has received speaker honoraria from Bayer, 
Teva, Merck, Viela, Alexion, Roche, and Novartis. F. Prados 
received a Guarantors of Brain fellowship 2017–2020 and is 
supported by National Institute for Health Research (NIHR), 
Biomedical Research Centre initiative at University College 
London Hospitals (UCLH). A.K. Pröbstel has participated as 
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