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Abstract

Genome-scale metabolic models (GEMs) offer unprecedented possibil-
ities to study human metabolism, including alterations in cancers.
Yet, analyses of GEMs still entail several disadvantages. In partic-
ular, constraint-based methods, such as flux balance analysis, are
typically restricted to analyse steady-state flux distributions. In con-
trast, kinetic models based on ordinary differential equations allow
assessment of regulatory properties and dynamics. Building kinetic
models, however, is still hampered by the lack of knowledge about
kinetic parameters and is typically focused on individual pathways.
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Here, we present an approach to derive kinetic models of metabolism
augmented by coarse-grained overall reactions that represent the remain-
ing cellular metabolism and biosynthetic processes. Using algorithmic
network reduction, we derive coarse-grained reactions that preserve
the correct stoichiometry of precursors, energy, and redox equivalents
required for cellular growth. Analysis of the GEM-embedded kinetic
model uses Monte Carlo sampling to address parameter uncertainty.
We exemplify our approach by constructing a kinetic model of cancer
metabolism that includes an explicit description of cellular growth. We
show that the GEM-embedded kinetic model differs in its control prop-
erties from the corresponding model without growth, with implications
for understanding regulatory hotspots and drug target identification.

Keywords: Flux Balance Analysis (FBA), Cancer Metabolism, Warburg
Effect, Stoichiometric Model Reduction, Metabolic Control Analysis (MCA),
Drug Targets.
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Introduction

Metabolic reprogramming to support enhanced cell growth and proliferation
is widely recognized as a hallmark of cancer (Hanahan and Weinberg, 2011),
and understanding cancer-related metabolic alterations has attracted substan-
tial efforts over the past decade (DeBerardinis and Chandel, 2016; Pavlova
and Thompson, 2016; Vander Heiden and DeBerardinis, 2017). Concomitant
to advances in analytical tools, computational models of cancer metabolism,
have played a crucial role to investigate the consequences of metabolic repro-
gramming and to identify potential therapeutic interventions and possible drug
targets (Ghaffari et al, 2015b; Yizhak et al, 2015; Resendis-Antonio et al,
2015). In particular, genome-scale metabolic models (GEMs) provide a com-
putational framework to analyze metabolic phenotypes, facilitate multi-omics
data integration, and investigate metabolic reprogramming in cancer cells (Fol-
ger et al, 2011; Shlomi et al, 2011; Agren et al, 2014; Ghaffari et al, 2015b).
GEMs seek to provide a comprehensive account of the stoichiometry of all
possible metabolic interconversions in a tissue or cell by establishing gene-
enzyme-reaction relationships derived from the annotated genome sequence,
literature data, and reaction databases (Kanehisa and Goto, 2000; Milacic et al,
2023). Following the publication of the human genome (Lander et al, 2001),
the first human GEMs were presented in 2007 (Duarte et al, 2007), with con-
tinuous updates and improvements resulting in the latest iteration, the human
metabolic atlas (Robinson et al, 2020). A human genome-derived GEM allows
researchers to extract context-, tissue- or cell-specific subnetworks, based on
transcriptomic or proteomic data. The analysis of context-specific GEMs is
widely applied to the analysis of cancer metabolism (Jerby et al, 2010; Agren
et al, 2012; Ghaffari et al, 2015a; Lewis et al, 2021).

Notwithstanding its merits, however, the analysis of GEMs using
constraint-based methods also entails several drawbacks and disadvantages.
In particular, constraint-based methods, such as flux balance analysis (FBA),
are typically restricted to steady-state properties of metabolic fluxes derived
from the stoichiometric matrix. In addition, since solutions obtained from
constraints on the mass balance of the stoichiometric matrix are typically
under-determined, applications require the definition of a suitable objective
function, such as the maximization of biomass yield given constraints on uptake
fluxes, to predict relevant metabolic properties.

In contrast, kinetic models of metabolism, based on ordinary differential
equations (ODEs), allow us to study the dynamics and regulatory properties
(Teusink et al, 2000; Wolf et al, 2000; Wolf and Heinrich, 2000; Steuer and
Junker, 2009; Murabito et al, 2011; Roy and Finley, 2017; Shestov et al, 2014;
Mulukutla et al, 2015; Maŕın-Hernández et al, 2011; Maŕın-Hernández et al,
2014; Moreno-Sánchez et al, 2018; Snaebjornsson et al, 2025). The construction
of kinetic models, however, requires detailed knowledge about the biochemi-
cal processes, such as appropriate kinetic rate equations and enzyme-kinetic
parameters for each reaction–knowledge that is typically available only for a
small set of reactions. Hence, the construction of kinetic models is currently
not straightforwardly feasible on a genome-scale and is typically focused on
individual pathways or specific parts of metabolism. As a consequence, kinetic
models often do not incorporate the metabolic context of the respective path-
way, such as withdrawal of metabolic intermediates and energy and redox
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equivalents required for growth and other cellular functions. Instead, adjacent
energy-consuming pathways are often modelled using a general ATP hydrolysis
reaction (ATPase), sometimes, in particular in models of glycolysis, as the only
intracellular metabolic sink. In models where a description of cellular growth
is required, the growth rate has previously been implemented in dependence
of internal metabolites concentrations, such as ATP and glutamine, without
necessarily accounting for the withdrawal of metabolic intermediates, energy
and redox equivalents in the correct stoichiometric ratios.

To overcome these limitations, and to put pathway-focussed kinetic mod-
els into a broader whole-cell context, we seek to implement a workflow that
augments a kinetic model of core cancer metabolism with stoichiometrically
correct coarse-grained reactions to describe cellular growth. Specifically, we
make use of stoichiometric network reduction (Erdrich et al, 2015; Röhl and
Bockmayr, 2017; Singh and Lercher, 2020) to derive a reduced stoichiomet-
ric network that describes the metabolism of a cancer cell line. The reduction
algorithms allows us to retain a set of core reactions, including glucose uptake
and the glycolytic pathway, whereas the remaining reactions are aggregated
into coarse-grained overall reactions. These coarse-grained overall reactions
are stoichiometrically consistent with the full model and its requirements for
growth. That is, the coarse-grained reactions withdraw metabolic intermedi-
ates, energy and redox equivalents in the correct stoichiometric ratios and
amounts required for growth.

We discuss and exemplify our workflow using a model of aerobic cancer
glycolysis previously developed by Shestov et al (2014). Our aim is to aug-
ment this model with an explicit description of cellular growth, and to study
the differences in dynamic properties and the metabolic control profiles. We
show that the GEM-embedded model provides an estimate of a biochemically
plausible growth rate as a function of nutrient uptake, retains relevant conser-
vation relationships, and exhibits a modified control profile compared to the
original model. To account for unknown enzyme-kinetic parameters, we further
utilize a Monte-Carlo (MC) approach based on parameter sampling to assess
the dependency and robustness of control properties with respect to the choice
of enzyme-kinetic parameters. Our approach provides a general template to
construct and contextualize kinetic models of metabolism.

Results and Discussion

Summary of the workflow

Our approach is visualized in Figure 1. Individual steps are detailed in the fol-
lowing sections. In brief, our starting point is a genome-scale reconstruction
of human metabolism, Human1 (Robinson et al, 2020), from which a cell-
type and context-specific stoichiometric model is extracted (Agren et al, 2014).
The cell-type specific model is then reduced using algorithms for stoichiomet-
ric network reduction (Erdrich et al, 2015). Stoichiometric network reduction
requires us to specify a minimal set of metabolic functions that the reduced
model must be capable of. Here, the specifications are such that the reduced
network (i) must allow for an identical rate of biomass formation on a defined
medium as the original model, (ii) must be capable of growth-independent
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Fig. 1 Summary of the workflow. Our aim is to derive a GEM-embedded kinetic model
that is capable to describe the kinetics of a metabolic pathway within a cellular context.
(1) Starting point is a genome-scale metabolic reconstruction from which a tissue-specific
stoichiometric model is extracted. (2) The tissue- or cell type-specific model is subject to
stoichiometric network reduction such that desired reactions are retained and the remaining
metabolism is aggregated into coarse-grained overall reactions. (3) The reduced stoichiom-
etry is converted into a GEM-embedded kinetic model by assigning kinetic rate equations
and parameters to all reactions. The dynamics and control properties of the GEM-embedded
kinetic model are then evaluated. The robustness with respect to parameterization is eval-
uated using parameter sampling.

ATP production from glucose under aerobic as well as anaerobic conditions,
and (iii) must include all reactions of core glycolysis.

The reduced model is then subject to lossless compression and further
reduced to a GEM-embedded glycolytic core model that consists of 18 reac-
tions, 19 internal metabolites and 4 mass conservation relationships, resulting
in 15 independent internal metabolites. The GEM-embedded glycolytic core
model includes an explicit description of cellular growth and oxidative phos-
phorylation, and is evaluated with respect to its stoichiometric and kinetic
properties.

Of particular interest are shifts in the control profile of glycolytic flux
compared to a previously published model of cancer glycolysis that lacks the
metabolic context provided by the genome-scale stoichiometric reduction. To
evaluate the robustness of the results, we utilize conditional Monte-Carlo (MC)
sampling of kinetic parameters, following established methods (Steuer and
Junker, 2009; Murabito et al, 2014). Conditional MC sampling of parameters
allows us to evaluate the control properties of the system without requiring
detailed knowledge of kinetic parameters.

Our approach establishes a template to derive a GEM-embedded kinetic
model from a genome-scale metabolic reconstruction and to analyze its
stoichiometric and kinetic properties.

Establishing a cell type-specific reconstruction

Our first step is to establish a suitable cell type-specific stoichiometric model.
For proof of concept, we choose the HT-29 cell line, a fast-growing human
colon cancer cell line with a division time of approx. 24 hours in Dulbecco’s
Modified Eagle Medium (DMEM) (Petitprez et al, 2013). The cell type-
specific reconstruction is obtained from the human metabolic reconstruction
Human1 (Robinson et al, 2020), using the tINIT algorithm (Agren et al, 2014).
The tINIT algorithm uses RNA-seq data to determine which reactions of the
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full model are present in the context-specific model, and allows us to specify
which metabolic tasks the cell type-specific model must be able to fulfill. For
the latter, we choose the 57 tasks proposed by Agren et al (2014) that are essen-
tial to cell viability (see Materials and Methods, Section ’Workflow’). The cell
type-specific network consists of 8483 reactions and 3008 unique metabolites
in 9 cellular compartments and describes growth of the HT-29 cell line.

We note that the choice of the in silico medium is crucial for further analy-
sis. We here use an in silico medium consisting of 39 extracellular compounds,
and constrain the maximum uptake rates for all compounds provided in the
medium according to the limits given by Folger et al (2011). In addition, the
medium includes also retinoate, alpha-tocopherol, beta-tocopherol, linoleate,
and linolenate, to account for the increased nutrient requirements of Human1
compared to earlier reconstructions. The uptake rate of glucose is constrained
to 5.0 mmol/gDW/h, that of glutamine to 0.5 mmol/gDW/h. The complete list
of compounds and uptake constraints are provided in Supplementary Table S1.

The network was tested for feasibility of growth in the defined medium.
To obtain a reference solution for model reduction, we maximize the biomass
objective function as a proxy for the growth rate using constraints on all
exchange metabolites, given in Supplementary Table S1, as a function of the
upper bound of the oxygen (O2) uptake rate. Figure 2A shows the maximal
growth rate, as well as the lactate and glucose exchange fluxes obtained using
parsimonious FBA (pFBA, Lewis et al (2010)). For very low upper bounds on
the O2 uptake rate, growth is limited because O2 is required as a substrate for
biosynthesis, independent of its use in respiration. At a critical value (vO2 ≈
0.03 mmol/gDW/h), the stoichiometric demands for O2 for biosynthesis are
no longer limiting, and the maximal growth rate is reached. At this point,
the ratio of lactate secretion versus glucose uptake (vLACT/vGLCT) is at its
maximal value (vLACT/vGLCT ≈ 1.87).

For higher upper bounds on the uptake rate, O2 is increasingly used as
the electron acceptor in respiration and lactate secretion decreases, and hence
the ratio vLACT/vGLCT, decreases until the cell exclusively relies on oxidative
phosphorylation to regenerate ATP (vLACT/vGLCT = 0). We note that, under
the constraints chosen here, glucose is not essential for viability and growth,
and the maximal growth rate is independent of the upper bound on vO2 .
Instead, the metabolites linoleate, linolenate, choline, serine, and aspartate are
taken up with maximally allowed rate and therefore are limiting growth. We
emphasize that, in the following, we do not analyze a particular FBA solution,
the results shown in Figure 2A solely serves to specify a reference solution for
stoichiometric model reduction.

Stoichiometric model reduction

Stoichiometric network reduction is performed using NetworkReducer (Erdrich
et al, 2015). The algorithm implements a two-step reduction process. Within
the first step, reactions that are not required to support the protected
metabolic functions are iteratively removed (pruning). As a second step,
stoichiometrically coupled reactions are combined into coarse-grained over-
all reactions. The second step does not reduce the feasible flux space of
the network (loss free compression), but significantly reduces the number of
reactions.
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Fig. 2 Reference solutions for the cell type-specific model compared to the stoichiomet-
rically reduced model. (A) Growth rate and exchange fluxes (glucose uptake and lactate
secretion) for the cell-type specific full stoichiometric model. Lines correspond to a pFBA
solution with maximal biomass formation (growth rate) as a function of the constraint on
maximal oxygen uptake flux. (B) The corresponding flux solutions after stoichiometric model
reduction. The results are not unique, shown is the solution with minimal glucose uptake.
For both models, there exists a minimal amount of O2 required for growth. Beyond the
minimal amount, O2 uptake limits respiration and the cell gradually shift from a partially
fermentative state to a fully respiratory state. For simplicity, all exchange fluxes are depicted
with a positive sign.

The pruning step requires a list of protected network elements (metabo-
lites and reactions), as well as a list of ’metabolic functions’ or ’phenotypes’.
The latter are given as FBA or pFBA constraints that the reduced network
is required to fulfill. In our case, the protected functions are such that the
reduced stoichiometry (i) must allow to regenerate ATP from glucose under
aerobic conditions with a yield that matches the full model, (ii) must allow
to regenerate ATP from glucose under anaerobic conditions with a yield that
matches the full model, and (iii) is capable of growth on the defined medium
with a maximal growth rate that matches the growth rate of the full model at
the reference point defined by a ratio vLACT/vGLCT = 1.87 of lactate secretion
versus glucose consumption (see Fig 2). The protected functions are imple-
mented as a feasibility problem that the reduced network must be capable to
fulfill.

In addition to the functional constraints, we protect all reactions of core
glycolysis. The resulting reduced stoichiometry, after pruning, consists of 797
reactions and 835 metabolites (including external metabolites) and gives rise
to 282 elementary flux modes (EFMs, Schuster and Hilgetag (1994)). The sub-
sequent loss-free compression results in a model with 59 reactions, 46 external
metabolites, and 72 internal metabolites subject to 20 mass-conservation rela-
tionships, resulting in 52 independent metabolites. Figure 2B shows an FBA
solution of the reduced network, which can be directly compared to the solu-
tion of the full network in Figure 2A. As shown, the reduction retains the
required properties of the full network. We note that the flux solutions are not
unique and exhibits considerable variability. Both figures show the solution
with minimal glucose uptake. The reduced network is provided as Supplemen-
tary File 1 (pruned network, SBML) and Supplementary File 2 (pruned and
compressed network, SBML).

While kinetic modeling is, in principle, feasible using the pruned and com-
pressed network, for the purpose of this study we seek to further reduce the
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Fig. 3 Schematic of the final GEM-embedded model. The model describes glycolysis, the
fermentation of glucose to lactate, oxidative phosphorylation, and growth. It consists of 18
reactions, 19 internal metabolites and includes four mass conservation relationships. A list
of abbreviations is provided in Materials and Methods. The stoichiometric coefficients of the
growth reaction are given in the main text and in Supplementary Table S4. Other nutrients
are taken up proportionally to the growth reaction but are not explicitly included in the
kinetic model.

network. In particular, we are interested in a direct comparison of the reduced
kinetic model with the computational model of cancer glycolysis proposed
by Shestov et al (2014). To obtain a stoichiometry similar to Shestov et al
(2014), we therefore follow the approaches of Baroukh et al (2014) and Tumm-
ler et al (2015) and collapse the EFMs for respiration and biomass formation
of the pruned model into two single coarse-grained reactions, using the FBA
solution as a reference. The final network is shown in Figure 3 and consists
of 18 metabolic reactions and 19 internal metabolites, which are subject to 4
mass conservation relationships. A list of reaction stoichiometries is provided
in Table S2 in the Supplementary Information.

Stoichiometric properties of the GEM-embedded model

Consistent with the objectives of the reduction, the reduced model describes
the glycolytic pathway, as well as ATP regeneration and the formation of
biomass. The remaining metabolic processes, including the uptake of other
nutrients, are aggregated into the coarse-grained overall reaction for growth.
The growth reaction describes the conversion of central metabolites into cel-
lular biomass, as shown in Figure 3, with the overall stoichiometry,



Stoichiometric reduction for cancer metabolism 9

Table 1 The GEM-embedded model shown in Figure 3 gives rise to four conservation
relationships. The values of total concentrations are part of the parameterization and
independent of the stoichiometric reduction.

Moiety Metabolities Value [mmol/l]
phosphate moiety [G6P] + [F6P] + 2 [FBP] + [GAP] + [DHAP]

+ 2 [BPG] + [PG2] + [PG3] + [PEP] + 2
[ATP] + [P] + [ADP]

13.24

adenylate moiety [ATP] + [ADP] + [AMP] 3.02
oxididation state [PG3] + [PG2] + [BPG] + [PEP] + [PYR] +

[NAD]
2.01

redox potential [NADH] + [NAD] 0.55

0.0007 mmol BPG + 0.4801 mmol PG3 + 0.1953 mmol DHAP + 0.0043
mmol FBP + 0.4712 mmol O2 + 0.1647 mmol F6P + 0.07 mmol GAP +
0.4129 mmol G6P + 2.8958 mmol NADH + 2.415 mmol PYR + 62.9543
mmol ATP −→ 1 gDW Biomass + 62.9543 mmol ADP + 2.8958 mmol

NAD + 64.287 mmol Pi .

Due to the algorithmic reduction, the full mass-balance of growth is pre-
served in the reduced model. All remaining nutrients, including nutrients not
explicitly modelled, are taken up proportional to the growth reaction and can,
in principle, be included in a simulation of batch growth. For the present reduc-
tion, approximately 20.3% of carbon in the biomass derives from glucose, close
to literature values (Hosios et al, 2016).

We highlight two advantages of this algorithmic reduction. Firstly, the
stoichiometric coefficients of the coarse-grained growth reaction preserve mass-
balance and account for the correct requirements of co-factors, such as ATP
and NADH.While kinetic models sometimes include withdrawal reactions from
glycolysis (Teusink et al, 2000), or describe growth as a function of metabolic
intermediates (Roy and Finley, 2017), such ad hoc assignments mostly do not
reflect the actual nutrient and energy requirements of growth, and do typi-
cally not allow us to derive a quantitative value for the growth rate based on
nutrient uptake.

Secondly, the algorithmic reduction preserves the conservation relation-
ships of the pathway. The GEM-embedded model shown in Figure 3 gives rise
to 4 conservation relationships, summarized in Table 1. While conservation
relationships involving only a few conserved moieties, such as the conserva-
tion of the adenylate moiety, can be readily identified and preserved using ad
hoc withdrawal reactions, the algorithmic reconstruction also preserves more
complex conservation relationships. This indicates that the inclusion of with-
drawal reactions without genome-scale stoichiometric context are not always
suitable for model construction and may result in systematic errors.

A kinetic model of cancer metabolism

Given the GEM-embedded stoichiometry shown in Figure 3, the next step is
to convert the stoichiometric network into a kinetic model by assigning rate
equations and kinetic parameters to all reactions. To this end, protected enzy-
matic reactions, i.e. reactions that are retained from the original stoichiometry
and not compressed into coarse-grained overall reactions, can be parameterized
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Fig. 4 (A) Dependency of the specific growth rate on the maximal reaction velocity
vmax,BM of the coarse-grained overall growth reaction. The parameter is chosen such that
growth is mostly saturated (vmax,BM = 200 1/h, indicated by dashed line). Shown are the
results for four concentrations of external glucose. (B) Dependence of OxPhos flux as a
function of the maximal reaction velocity vmax,OxPhos of the coarse-grained OxPhos reac-
tion. The parameter is chosen such that mitochondrial capacity is limiting vmax,OxPhos =
5.25 mmol/l/h, indicated by dashed line).

following established workflows (Smith et al, 2018; Foster et al, 2019) mak-
ing use of kinetic parameters obtained from reaction databases and primary
literature (Chang et al, 2021; Wittig et al, 2017).

In the following, however, our aim is a direct comparison with the model
derived from Shestov et al (2014) (see Materials and Methods for model defini-
tions), hence we assign all rate equations and parameters of reactions present in
both models to the rate equations and parameters used in the original model.
In brief, Shestov et al (2014) use reversible Michaelis-Menten equations for
all reactions, with thermodynamic information sourced from Goldberg et al
(2004) and König et al (2012), and Michaelis-Menten parameters assigned
to values that correspond to measured intracellular concentrations of the
respective metabolites. Coarse-grained reactions are assigned to irreversible
Michaelis-Menten kinetics, withKM parameters assigned to measured intracel-
lular concentrations of the respective metabolites. We later evaluate different
choices of parameter values to assess the robustness of the parameterization.

The maximal reaction velocities of coarse-grained reactions are free param-
eters that do not correspond to the properties of individual enzymes. Hence,
the values are assigned according to plausible biological expectations. Specif-
ically, the maximal reaction velocity vmax,BM of the coarse-grained biomass
reaction is assigned such that it does not limit the rate of biomass formation.
Instead, the coarse-grained biomass reaction is limited by the availability of
metabolic precursors. This choice reflects the assumptions used for the under-
lying parsimonious FBA problem: the enzymes that constitute the overall
growth reaction are expressed such that the growth rate is close to its maximal
value and the growth rate is not limited by the expression of anabolic proteins.
Figure 4A shows the dependence of the growth rate as a function of vmax,BM

for different values of external glucose. The parameter vmax,BM is chosen such
that the growth rate reaches a plateau and the growth rate is approximately
µ = 0.347d−1 for an external concentration of glucose of [GLCe] = 12 mmol/l,
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Fig. 5 (A) The dependence of the specific growth rate of the GEM-embedded model as a
function of the extracellular glucose concentration. The reference value ([GLCe] = 5 mmol/l)
used in the following is represented by a dashed line. (B) The dependency of the specific
growth rate on the activity vmax,GLCT of the glucose transporter. The dashed line indicates
the reference value used in the analysis (vmax,GLCT = 100 mmol/l/h).

corresponding to experimental values reported by Wahl et al (2002). The
precise values of vmax,BM has no major impact on our further analysis.

Different to the rate of biomass formation, we assume that the mitochon-
drial capacity, as given by the maximal reaction velocity vmax,OxPhos, is limiting
respiration. Hence, we choose vmax,OxPhos such that the rate of the coarse-
grained OxPhos reaction is limited by vmax,OxPhos, as shown in Figure 4B.
A list of all kinetic parameters is provided in the Supplemental Materials,
Section 3.

Kinetic properties of the GEM-embedded model

With the GEM-embedded kinetic model fully defined, we now evaluate its
kinetic properties in comparison with the model without growth. Firstly, the
model allows us to assess the dependency of the predicted growth rate on
the external glucose concentration, as well as the dependence of the growth
rate on the expression of the glucose transporter (GLCT). Both dependen-
cies are shown in Figure 5. In the following, we choose an external glucose
concentration of [GLCe] = 5 mmol/l and a transporter activity vmax,GLCT =
100 mmol/l/h as a reference point for further analysis.

At the reference point, the specific growth rate is µmax ≈ 0.29 d−1, cor-
responding to a division time of TD ≈ 57.8h, well within the range of
experimental values for cancer cell lines, including the cell line used for the
parameterization of the model of Shestov et al. (Wahl et al, 2002). We note
that an explicit description of the specific growth rate in dependence of exter-
nal glucose or expression of transporters is a key feature of GEM-embedded
models and not straightforwardly possible in conventional pathway-focused
kinetic models.

Next, we assess how the inclusion of the coarse-grained growth reaction
affects the distribution of metabolic flux control in the model. To this end, we
evaluate the normalized flux control coefficients (FCCs) as defined in metabolic
control analysis (MCA, Kacser and Burns (1973); Burns et al (1985); Reder
(1988); Steuer and Junker (2009)). The FCCs quantify the response of a
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Fig. 6 Flux control coefficients (FCCs) on the hexokinase reaction as a proxy for glycolytic
flux. Shown are the FCCs for the GEM-embedded model in comparison to the Shestov-
derived model. The overall control profile is similar, key differences are discussed in the
text. We note that coarse-grained reactions do not correspond to a single enzyme whose
expression can be altered. Therefore, for these reactions, the FCCs should be interpreted as
an indicator of the sensitivity with respect to the assigned parameter value.

metabolic flux to a small change in enzyme expression. A definition is provided
in the Materials and Methods.

Figure 6 shows the FCCs of glycolytic enzymes on the hexokinase (HK)
reaction, used here as a proxy for glycolytic flux, in comparison to the FCCs
obtained from the Shestov-derived model. A positive FCC implies that a small
increase in the respective enzyme results in an increase of the HK flux pro-
portional to the value of the FCC. In both models, the control of flux through
the HK reaction is distributed across the pathway. We observe differences in
the control of both models exerted by upper glycolysis, in particular glucose
transport (GLCT), hexokinase (HK)and phosphofructokinase (PFK). Control
exerted by enzymes of lower glycolysis is mostly comparable, e.g. high control
is exerted by pyruvate kinase (PK) and the lactate transport (LACT). In both
models, GAPDH exhibits a high positive control over HK flux.

Notably, the FCCs of several reactions, in particular OxPhos and ATPase
change signs in the GEM-embedded model. We note that in the model derived
from Shestov et al (2014), ATPase is the sole energy sink within the model,
implicitly also accounting for ATP used for cellular growth. In contrast,
within the GEM-embedded model, the ATPase represents an separate ATP
sink (non-growth-associated ATP maintenance, NGAM), in addition to the
coarse-grained growth reaction.

Beyond the FCCs for HK, Figure 7 provides a global comparison of FCCs
between both models. Shown is the matrix of FCCs for both models. In addi-
tion, Figure 8 provides a direct comparison of FCCs as a scatter plot. Most
FCCs are close to the diagonal in Figure 8, demonstrating that the overall con-
trol of the models is similar. Both models also exhibit differences with respect
to metabolic control, in particular with respect to reactions related to ATP
production and consumption. Key differences are:

• Control of ATPase flux: In the model derived from Shestov et al (2014),
all enzymes have a positive or low FCC on ATPase flux (bottom row in
Figure 7 left side). That is, an increase of enzyme expression results in either
increased ATPase flux (as the sole energy sink) or has minor impact on
ATPase flux. In contrast, within the GEM-embedded model ATPase flux
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Fig. 7 A global comparison of FCCs between the Shestov-derived model and the GEM-
embedded model. Blue colors indicate negative FCCs, while red colors denote positive FCCs.
Within the matrix, the x-axis corresponds to enzymes whose expression is changes, the y-
axis corresponds to the reactions whose flux is affected.

Fig. 8 A global comparison of FCCs shown in Fig. 7 between the Shestov-derived model
and the GEM-embedded model. Shown is a scatter plot of all FCCs present in both mod-
els. Most values are close to the diagonal. Dots are color-coded based on the difference in
respective FCCs between the two models.

decreases upon increased expression of enzymes in upper glycolysis (GLCT,
HK, GPI, PFK, and ALD). Similar to Shestov et al., however, enzymes of
lower glycolysis, in particular GAPDH, have a positive FCCs on ATPase
flux. Highest control on ATPase in the GEM-embedded model is the NGAM-
associated reaction itself showing that flux through the ATPase reaction is
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largely determined by ATP demand, whereas in the Shestov-derived model,
the highest control is exerted by OxPhos reaction.

• Control of OxPhos flux: In both models, the highest control on OxPhos
is exerted by the expression of the associated enzymes itself. That is, mito-
chondrial flux is limited by the mitochondrial capacity, as also assumed in
the parameterization. Likewise, in both models, LACT exerts negative con-
trol on OxPhos. The most pronounced difference is the control exerted by
GAPDH with a positive FCC in the GEM-embedded model but a (small)
negative FCC in the model derived from Shestov et al (2014).

• Control of glycolytic flux: Overall control is similar in both models.
In the model derived from Shestov et al (2014), GAPDH exerts a strong
positive control over the glycolytic flux (see the corresponding column in
Figure 7), recapitulating a key result of their work (’flux through the enzyme
GAPDH is a limiting step’). Within the GEM-embedded model, GAPDH
likewise exerts strong positive control, however, other reactions, such as
GLCT, HK, PFK and PK exert a similar positive control. A key difference is
the low control of ATPase on glycolytic flux in the GEM-embedded model,
compared to the Shestov-derived model, again due to the ATPase being the
sole energy sink in the latter.

• Control of the growth reaction: The Shestov-derived model includes
no explicit representation of growth, hence its control can not be evaluated.
Within the GEM-embedded model, ATPase has strong negative control on
the growth reaction, since ATPase is a competing energy sink. Within the
GEM-embedded model, control of the growth reaction by glycolytic enzymes
is typically inverse to the control of the ATPase reaction as can be seen in
a comparison of the bottom two rows in Figure 7 right side, i.e., an enzyme
with positive control on the ATPase flux mostly has negative control on
growth, as expected for competing reactions. Exceptions are GAPDH and
OxPhos. OxPhos exerts a strong positive control on growth as well as on the
ATPase. The FCC of GAPDH on growth as well as on ATPase confirms the
strong impact of GAPDH on overall glycolytic flux. Different to its impact on
glycolytic flux, PK exerts a very small negative control on growth, possibly
because of its position in lower glycolysis such that it withdraws precursors
from the growth reaction. The control of growth is further discussed below.

Robustness and Monte-Carlo Analysis

The model derived from Shestov et al (2014), although still comparatively
small, already comprises 75 kinetic parameters. Identifying these parameters
remains challenging even with the increasing availability of large quantitative
experimental datasets, machine learning (Li et al, 2022; Choudhury et al, 2022;
Kroll et al, 2023), and dedicated databases (Chang et al, 2021; Wittig et al,
2017). To facilitate a comparison between the GEM-embedded model and the
Shestov-derived model, we followed the paramerization given in Shestov et al
(2014), and utilized the same set of parameters for all reactions common to
both models.

In the following, we seek to evaluate the robustness of model results with
respect to different choices of kinetic parameters. To this end, we make use
of Monte-Carlo (MC) sampling of kinetic parameters, based on a previously
established method (Steuer et al, 2006; Steuer and Junker, 2009; Murabito



Stoichiometric reduction for cancer metabolism 15

Fig. 9 Comparison of the distribution of FCCs for HK flux between the sampled model
instances of the Shestov-derived model and the sampled model instances of the GEM-
embedded model.

Fig. 10 Distribution of FCCs for the GEM-embedded model. Each column shows the FCC
corresponding to how a change in the expression of an enzymatic step (or coarse-grained
reaction) affects the fluxes. The individual distributions of FCCs is shown in [−1, 1] intervals.
The red line indicated the FCC obtained for the set of reference parameter, as shown in
Figure 7B.

et al, 2014). To this end, the steady state metabolite concentrations are
assigned to steady-state reference values obtained from the kinetic model ana-
lyzed in the previous section. The steady state flux distribution is obtained
from the FBA solution and likewise corresponds to the metabolic state ana-
lyzed in the previous sections. All flux and concentration values are provided
in Supplementary section.

For both models, we then sample the Michaelis-Menten parameters of all
enzymatic reactions within two orders of magnitude around their respective
original value. Each sampled set of parameters gives rise to a model instance
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while retaining the concenctration and flux values at the prescribed metabolic
state. Each model instance is then tested for stability of the steady-state
by evaluating the eigenvalues of the Jacobian matrix. For each stable model
instance, the FCCs of all enzymes are evaluated.

Figure 9 shows the resulting distribution of FCCs of enzymes on the HK
flux for both model ensembles, analogous to Figure 6 for the original param-
eterization. The medians of the distributions are in good agreement with the
values obtained for the original parameterization. The distributions of FCCs
of reactions close to equilibrium (i.e., GPI, ALD, TPI, PGM, ENO) are nar-
row and close to zero, reflecting the fact that enzymes of reactions close to
equilibrium typically do not exert large flux control (Steuer and Junker, 2009;
Murabito et al, 2014).

Several enzymes exhibit a broad distribution of FCCs on HK in both model
ensembles, in particular GLCT, HK, GAPDH, PK and LACT. Notably, the
median of the distributions of the FCCs of OxPhos on HK exhibit opposing
signs in both models, indicating that the different signs already observed in
Figure 6 are a result of the model structure and the metabolic state and not
the particular choice of kinetic parameters. The FCC of the ATPase on HK
exhibits a wide distribution for the Shestov-derived model, indicating a high
dependence on the parameterization, whereas the distribution in the GEM-
embedded model is narrow and with small absolute values. The results shown
in Figure 9, in comparison with Figure 6, confirm that the FCCs are mostly
not strongly sensitive to the specific choice of Michaelis-Menten parameters
and are constrained by network topology and the metabolic state.

Going beyond control of the HK reaction, Figure 10 provides a global view
on the distribution of FCCs for the GEM-embedded model ensemble. The
distributions reflect the results obtained for the original parameterization (as
shown as in Figure 7, right panel). For comparison, the values of the FCCs
of the original parameterization are depicted as red lines. The corresponding
figure for the model derived from Shestov et al (2014) is provided as Figure S3.

Small values of FCCs obtained for the original parameterization typically
correspond to narrow distributions of FCCs for the model ensemble, in par-
ticular for reactions close to equilibrium (e.g., GPI, ALD, TPI, PGM, ENO)
with absolute values close to zero. Large FCCs in the original parameterization
correspond to broad but often sign-dominant distributions, i.e., even for broad
distributions, most FCCs within the distribution have the same sign. The latter
is further illustrated by the sign distribution directly (provided as Supplemen-
tary Figure S4 for the GEM-embedded model ensemble and as Figure S5 for
the model ensemble corresponding to the Shestov-derived model).

We emphasize that the distributions of FCCs shown in Figure 10 repre-
sent possibilities in the context of uncertain or unavailable information about
enzyme-kinetic parameters, while assuming that the metabolite concentrations
are constrained close to values reported by König et al (2012). A broad distri-
bution does not imply a particular FCC is necessarily large. However, we argue
that the distributions can provide a good indication about the overall struc-
ture of flux control in a metabolic model and are useful to highlight differences
between models, irrespective of the choice of parameterization.
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Fig. 11 Distribution of FCCs on growth rate in the GEM-embedded model.

The control of cellular growth

Of particular interest is the control of the specific growth rate in the GEM-
embedded model, as pathway-focussed cancer models so far do typically not
provide an explicit description of the growth rate.

Figure 11 shows the distribution of FCCs on the growth reaction for
the GEM-embedded model ensemble. The figure confirms the possibility of
strong control of GAPDH on growth supporting its role as a possible drug
target (Shestov et al, 2014). The distribution, however, also indicates model
instances of weak positive or even negative control, depending on the param-
eterization. Likewise, the distribution of the FCC of PK on growth indicates
an ambiguous control, i.e., depending on the specific parameters the impact
might be either positive or negative, with negative impact likely caused by the
withdrawal of glycolytic precursors required for growth towards pyruvate.

HK has a potentially strong control over growth, different from its control
over ATPase (see Fig 10 for comparison). The ATPase itself has negative
control over growth, as ATP utilization is competing with ATP use for cellular
growth, but the ATPase has no strong control over the fluxes in glycolytic
reactions (see Fig 10).

As expected, the OxPhos reaction exerts positive control, whereas LACT
exhibits the possibilty of negative control on growth. The different signs of
the FCC of the OxPhos and LACT reaction on the growth rate reflects the
different yields in terms of ATP generation, as well as the competition of both
reactions for pyruvate.

Overall, Figure 11 shows that the growth rate in the GEM-embedded model
has a distinct control profile that does not necessarily match the control profile
of key glycolytic reactions. Hence, the inclusion of cellular growth as an explicit
process allows us to gain more specific insights in the control properties of the
pathway.

Conclusions

The purpose of this work was to outline a computational framework for the
generation of a GEM-embedded kinetic model and to exemplify this frame-
work by developing a kinetic model of cancer metabolism. Our aim was to
overcome limitations of current pathway-focused kinetic models of metabolism
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and to incorporate the information provided by recent high-quality genome-
scale reconstructions of human metabolism (Robinson et al, 2020). Specifically,
genome-scale metabolic reconstructions provide a comprehensive and stoi-
chiometrically correct account for the withdrawal of metabolic intermediates
for growth, allowing us to embed pathway-focused models into a metabolic
whole-cell context.

The proposed workflow combines several previously developed methods.
Our starting point was a cell-type-specific model extracted from a current
genome-scale reconstruction Agren et al (2012). The cell-type-specific model
is then stoichiometrically reduced such that a set of desired metabolic func-
tions is retained (Erdrich et al, 2015; Röhl and Bockmayr, 2017; Ataman et al,
2017). Reactions that are not part of the protected core model are aggregated
into coarse-grained overall reactions, as exemplified here with the coarse-
grained growth reaction and oxidative phosphorylation. We note that, while
there are a number of stoichiometric reduction algorithms implemented (Singh
and Lercher, 2020), they often include only the removal of reactions, without
subsequent compression implemented in Erdrich et al (2015).

Parameterization of the protected core reactions follows established meth-
ods, while the parameterization of coarse-grained overall reactions incorporates
biological knowledge, such as whether the respective flux is proteome- or
substrate-limited. Here, we assumed that biosynthesis and the growth reac-
tion is primarily limited by the availability of metabolic precursors (Fig. 4A),
whereas mitochondrial respiration (OxPhos) was assumed to be limited by
mitochondrial capacity (Fig. 4B).

The resulting GEM-embedded kinetic model was analyzed with respect to
its stoichiometric and kinetic properties. A key advantage of our approach is
the explicit incorporation of growth as a function within the model. Tradi-
tional kinetic models often approximate growth indirectly, typically by linking
it to ATP consumption. In our model we can explicitly study the dependency
between growth and the external glucose concentration or glucose transporter
expression, leading to physiologically relevant predictions. We argue that this
explicit representation allows for a more accurate assessment of metabolic
control properties and potential drug targets.

Metabolic control analysis revealed key differences in how various enzymes
regulate energy production and consumption within the GEM-embedded
model compared to the reference model derived from Shestov et al (2014).
Notably, while most enzymes in the reference model positively regulate ATPase
flux, our model demonstrates that upper glycolytic enzymes (GLCT, HK,
GPI, PFK, ALD) negatively control ATPase flux, reflecting a more distributed
energy regulation. Regarding glycolytic flux, both models indicate GAPDH
as a major control point. However, in particular within the GEM-embedded
model, control of glycolytic flux is distributed and shared across several
enzymes and reactions, such as HK, PFK, and LACT (Fig. 7).

Within the GEM-embedded model, ATPase has less control over glycolytic
flux. Rather, with the explicit representation of growth, ATPase acts as a
competing energy sink, exerting negative control on growth.

To account for uncertainties in kinetic parameters and to test the robust-
ness of the results independent of the parameterization, we implemented a
Monte Carlo (MC) sampling approach. This technique allowed us to assess the
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robustness of our results across a wide range of parameter values, confirming
that our findings reflect fundamental properties of the metabolic network.

Overall, our study presents a suitable approach for embedding kinetic
models within genome-scale networks, facilitating a more comprehensive and
accurate representation of cancer metabolism. We have shown that explicitly
modeling growth and incorporating stoichiometric constraints by incorporat-
ing genome-scale metabolic models into a kinetic GEM-embedded model can
improve metabolic simulations and subsequent analysis of control properties,
including the analysis of potential intervention points and drug targets.

Materials and Methods

Software tools

Several software tools and scripts were employed to process and analyze differ-
ent types of models and data. To extract the cell-specific model from a generic
GEM, we used a MATLAB implementation of tINIT algorithm (Agren et al,
2014) from the Raven Toolbox v2.6.1 (https://github.com/SysBioChalmers/
RAVEN).

For the analysis of constraint-based models, we applied the COBRApy
package (v0.23.0) (Ebrahim et al, 2013). The scripts for network reduction
and post-processing were developed in MATLAB using the NetworkReducer
implementation from the CellNetAnalyzer package (v2021.1) (von Kamp et al,
2017). To speed up the reduction process, we introduced parallelization into the
CNAreduceMFNetwork routine of CellNetAnalyzer (https://gist.github.com/
stairs/8dadb9f260a7354dc51db16af10e81f9). We note that the pruning step of
NetworkReducer is identical to MinNW (Röhl and Bockmayr, 2017), therein
formulated as a Mixed-Integer Linear Programming (MILP) problem.

For creation and analysis of kinetic models, we used COPASI v4.34
(Hoops et al, 2006). All developed kinetic and constraint-based models
were uploaded to GitHub in standard SBML format (Hucka et al, 2003).
The source code and data necessary to reproduce the workflow and gen-
erate the figures in this paper are available at https://github.com/stairs/
GEM-reduction-for-kinetic-modeling.

Workflow

As a starting point for developing a stoichiometrically-correct dynamic model
of cancer metabolism, we selected version 1.11.0 of the Human-GEM lin-
eage. As a comprehensive representation of the entire organism metabolism,
Human-GEM includes metabolic reactions occurring in any human cell type.
Since the study is focused on cancer cell metabolism, we first isolated a
GEM subnetwork that would be representative of a cancer cell line. To
this end, we performed GEM extraction using the expression profile of the
HT29 cell line from DepMap. The data was retrieved using gdc-client tool
(https://gdc.cancer.gov/) and converted to transcripts per million (TPM).

For contextualization of the model, we employed the tINIT algorithm
(Agren et al, 2014). To determine which reactions from the original model
should be included, we used RNA-Seq data with an expression threshold of

https://github.com/SysBioChalmers/RAVEN
https://github.com/SysBioChalmers/RAVEN
https://gist.github.com/stairs/8dadb9f260a7354dc51db16af10e81f9
https://gist.github.com/stairs/8dadb9f260a7354dc51db16af10e81f9
https://github.com/stairs/GEM-reduction-for-kinetic-modeling
https://github.com/stairs/GEM-reduction-for-kinetic-modeling
https://gdc.cancer.gov/
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1 TPM. Since tINIT requires the input model to have boundary metabo-
lites, we added reactants (or products) to all sink reactions before running
the algorithm. In addition, the tINIT tool provides the ability to specify
which metabolic tasks the contextualized model should be able to perform.
For this purpose, we used the 57 metabolic tasks proposed by Agren et al
(2014), i.e., key metabolic functions categorized as energy and redox (ER),
internal conversions (IC), substrate utilization (SU) and biosynthesis of prod-
ucts (BS). Examples of tasks include aerobic rephosphorylation of ATP from
glucose, oxidative phosphorylation, beta oxidation of long-chain fatty acids,
de novo synthesis of nucleotides, uptake of essential amino acids, among oth-
ers (Agren et al, 2014). For optimization, the Gurobi Optimizer version 9.0.1
was employed. The execution time of tINIT algorithm was about 50 minutes
on a machine with Quad-Core Intel Core i7, 2.2 GHz.

To define the nutritional constraints, we used limits for the essential nutri-
ents and then minimized the fluxes with the help of pFBA. The maximum
uptake rates for all media components were set according to the limits chosen
by Folger et al (2011), where each type of compound is assigned its average bio-
logically justified value. Thus, for example, vitamin intake is limited to 0.005
mmol/gDW/h, amino acids to 0.05 mmol/gDW/h, while glucose consumption
is allowed up to 5 mmol/gDW/h. The full list of applied medium constraints
is presented in Table S1. Under the given constraints, the growth rate is lim-
ited not by glucose uptake but by other essential nutrients. The FBA problem
was formulated such that we obtain the solution with minimal glucose uptake
at the maximal growth rate for the given medium constraint.

Ensuring consistent units of the growth reaction

When integrating the growth reaction from the reduced network into the
kinetic model, we must ensure consistent units in the definition of the growth
reaction. Constraint-based analysis typically measures fluxes in mmol/gDW/h,
whereas eperimental works typically use volume (mM/h). The respective
conversion factor was calculated for DB1 cells, which were instrumental in
parametrisation of the model derived from Shestov et al (2014). According to
Shestov et al (2014), 109 DB1 cells yield around 200 mg of dry mass, and the
volume of 5× 108 cells constitute approximately 1 ml. The DB1 cell dry mass
and volume are therefore, on average, 0.2 ng and 2 pl, respectively. Hence,
the conversion factor for the stoichiometric coefficients from mmol/gDW to
mmol/l was set to 0.01 l/gDW.

The definition of the growth reaction is analogeuos to the definition of used
in FBA. The mass balance of a growing cell is given as

N v(x)− µx = 0 , (1)

where x denotes the concentrations of biomass compounds and v is the vector of
reaction fluxes (measured in mmol/gDW/h). Per definition, 1 gDW of biomass
has to contain 1 g of biomass components, hence ρT x = 1 with ρ denoting the
molar mass of each component. For a given vector of concentrations x∗, the
rate of biomass formation is vBM = µx∗ (measured in mmol/gDW/h). within
the main text, we refer to the growth rate as µ (measured in units 1/h) that
is obtained from vBM by multiplication with gDW/mmol.
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Metabolic Control Analysis

Metabolic control analysis (MCA) was employed to analyze how embedding
of the model into a broader metabolic setting affects the distribution of
flux control. Specifically, we computed the scaled or normalized flux control
coefficients (Reder, 1988; Steuer and Junker, 2009), denoted as CJ

i ,

CJ
i = lim

∆vi→0

∆J/J

∆vi/vi
=

dJ/J

dvi/vi

The flux control coefficients measure the ratio between the relative change of
the steady-state flux J and the relative change in the activity of perturbed
enzyme i, caused by an infinitesimal increase in a parameter associated with
maximum enzyme activity. For the model parametrised with the reference
parameter set, MCA was conducted using COPASI v4.34 (Hoops et al, 2006).

For Monte Carlo sampling, we followed the formulation derived by Reder
(1988) to compute the matrix CJ describing the flux control coefficients

CJ = I +D−1
V0

· ∂v
∂S

∣∣∣∣
S0

·DS0 · CS (2)

where I denotes the identity matrix, while DS0
and DV0

are diagonal matrices
incorporating steady-state concentrations S0 and fluxes V0 along their main
diagonals. The matrix CS , which represents concentration control coefficients,
is defined as

CS = −D−1
S0

· L · J−1
R ·NR ·DV0

. (3)

Here, NR denotes the stoichiometric matrix of the reduced system, L is the
link matrix, and JR represents the Jacobian of the reduced system which is
computed as

JR = NR · ∂v
∂S

∣∣∣∣
S0

· L . (4)

See also Steuer and Junker (2009) for definitions and details. Applying
equation (2) for FCC computation only requires knowledge of the stoichiomet-
ric matrix, the flux vector V0, the vector of steady state concentrations S0,
as well as the elasticities, thereby circumvents the need for numerical integra-
tion of the set of differential equations. In the main text all reported control
coefficients refer to normalized (scaled) values and express relative changes.

Metabolic control of flux ratios

MCA can be used to quantify the impact of enzyme activity on flux ratio.
If we are interest how the ratio vA/vB of two metabolic fluxes changes a
function of the expression of an enzyme, the normalized control coefficient can
be calculated as,

RA/B
e =

e
vA

vB

d

de

vA
vB

= CA
e − CB

e . (5)

Figure S6 shows the normalized control coefficient for the ratio vLACT /vGLCT

in the GEM-embedded kinetic model.
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Monte-Carlo Sampling

The probabilistic analysis is based on the method detailed in Murabito et al
(2011, 2014), following earlier approaches (Wang and Hatzimanikatis, 2006a,b;
Steuer et al, 2006; Steuer and Junker, 2009). The Monte-Carlo sampling
approach relies on the premise that although exact values of kinetic parameters
are often not available, a metabolic state of interest, defined by steady-state
concentrations S0 and fluxes V0, can often be experimentally obtained. There-
fore the sampling strategy for kinetic parameters is designed to replicate the
metabolic state (S0, V0) for each sampled parameter set.

In our adaptation of the method proposed by Murabito et al (2011, 2014),
we start by randomly sampling each Michaelis-Menten kinetic parameter

from the interval [10−n · Kref
M , 10+n · Kref

M ], where n = 1 and krefM denotes
the reference value of the respective parameter, as defined in the original
model (Shestov et al, 2014). To ensure an even coverage across, parameter
values are drawn from a logarithmic distribution.

For each reaction rate with the functional form v = vmax·f(S,KM ), we then
determine the value of vmax such that the steady state flux V0 in this reaction
is preserved for each sampled set of parameter values, Vmax = V0

f(S0,KM ) .

We repeat the parameter sampling following the described routine until
105 parameter sets are generated. Only parameter sets that give rise to stable
models are retained. Stability of each sampled model is guaranteed by evalu-
ating eigenvalues of the associated Jacobian matrix and by verifying that all
of them have a negative real part. Following the Monte-Carlo sampling, we
analyze the ensemble of sampled models within the framework of metabolic
control analysis.

Definition of the Shestov-derived model

The comparison is based on a modified version of the model of Shestov
et al (2014). Compared to the original model, available on BioMod-
els with the ID MODEL1504010000 (https://www.ebi.ac.uk/biomodels/
MODEL1504010000), the model has a modified description of the respiratory
OxPhos reaction. In particular, we identified a numerical instability in the orig-
inal model that was caused by OxPhos and MAS (malate–aspartate shuttle)
reactions sharing an identical rate law. The two reactions were then combined
into a single reaction. The modification gave rise to a fourth mass conservation
law, related to the oxidation state of the metabolites (see Table 1). Addition-
ally, vmax,OxPhos was set to 5.25 mmol/l/h to align with the GEM-embedded
model and to enable comparative analysis.

We then assign all rate equations and parameters of reactions present in
both models to the rate equations and parameters used in modified model.
We note that to obtain the required Michaelis-Menten constants, Shestov
et al (2014) employed a heuristic approach, such that the KM values of sin-
gle substrate reactions were assumed to be equal to the steady-state substrate
concentration of the respective metabolite, with concentrations and thermo-
dynamic equilibrium values sourced from (König et al, 2012) and (Goldberg
et al, 2004), respectively. The modified Shestov model is provided as Supple-
mentary Data File S4 in SBML format and is referred to as ’Shestov-derived
model’ throughout the main text.

https://www.ebi.ac.uk/biomodels/MODEL1504010000
https://www.ebi.ac.uk/biomodels/MODEL1504010000
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Abbreviations and Notation

Metabolites

ADP - adenosine diphosphate
AMP - adenosine monophosphate
ATP - adenosine triphosphate
BPG - 1,3-bisphosphoglycerate
DHAP - dihydroxyacetone phosphate
F6P - fructose-6-phosphate
FBP - fructose-1,6-bisphosphate
GAP - glyceraldehyde-3-phosphate
GLC - glucose
G6P - glucose-6-phosphate
LAC - lactate
NAD - nicotinamide adenine dinucleotide
NADH - nicotinamide adenine dinucleotide (reduced)
O2 - oxygen
PEP - phosphoenolpyruvate
PG2 - 2-phosphoglycerate
PG3 - 3-phosphoglycerate
Pi - inorganic phosphate
PYR - pyruvate

Reactions

AK - adenylate kinase
ALD - aldolase
ATPase - ATP utilization/maintenance
ENO - enolase
GAPDH - glyceraldehyde-3-phosphate dehydrogenase
GLCT - glucose transport
GPI - glucose-6-phosphate isomerase
HK - hexokinase
LACT - lactate transport
LDH - lactate dehydrogenase
OxPhos - oxidative phosphorylation
OXYT - oxygen transport
PFK - phosphofructokinase
PGK - phosphoglycerate kinase
PGM - phosphoglycerate mutase
PK - pyruvate kinase
TPI - triosephosphate isomerase
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Supplementary Text S1
Putting models in context: deriving a kinetic model of
cancer metabolism that includes cellular growth using

genome-scale stoichiometric reduction

Komkova et al. (2025)

1 List of Supplementary Files

• Supplementary Text S1. A PDF file with additional figures and tables.

• Data File S1. SBML file with the stoichiometric model of the reduced cell
type-specific HT-29 cell GEM (pruned version).

• Data File S2. SBML file of the stoichiometric model of the cell type-specific
HT-29 GEM (pruned and compressed version).

• Data File S3. The GEM-embedded kinetic model in SBML format.

• Data File S4. The kinetic model of Shestov et al (2014) used as reference
in SBML format.

• Data File S5. A zip-archive containing the source code and data necessary
to reproduce the workflow and generate the figures presented in the paper.



2 Stoichiometric reduction for cancer metabolism

2 Medium composition for FBA and model
reduction

Table S1 Uptake constraints of the growth medium used for the FBA simulations.
Uptake constraints are according the limits given by Folger et al (2011).

Metabolite Maximum Uptake (mmol/gDW/h)
D-Glucose 5.0
L-Glutamine 0.5
O2 1000
Phosphate 1000
Fe2+ 1000
Thiamin 0.005
Riboflavin 0.005
Pyridoxine 0.005
Nicotinamide 0.005
myo-Inositol 0.005
Folate 0.005
(R)-Pantothenate 0.005
Choline 0.005
Alpha-tocopherol 0.005
Biotin 0.005
Linoleate 0.005
Linolenate 0.005
L-Alanine 0.05
L-Arginine 0.05
L-Asparagine 0.05
L-Aspartate 0.05
L-Cystine 0.05
L-Glutamate 0.05
L-Histidine 0.05
L-Isoleucine 0.05
L-Leucine 0.05
L-Lysine 0.05
L-Methionine 0.05
L-Phenylalanine 0.05
L-cysteine/glyciner 0.05
L-Serine 0.05
L-Threonine 0.05
L-Tryptophan 0.05
L-Tyrosine 0.05
L-Valine 0.05
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3 GEM-embedded kinetic model: definitions

Table S2 List of reactions of the GEM-embedded model and (net) flux values for the
reference state. The steady state growth rate for the reference parameters and external
glucose [GLCex] = 5.0mmol/l is 0.012 h−1.

Reaction ID Chemical equation
Flux

(mmol/l/h)
GLCT GLCex ↔ GLC 27.86
HK GLC +ATP → G6P + ADP+H 27.86
GPI G6P ↔ F6P 27.37
PFK F6P + ATP → FBP + ADP+H 27.17
ALD FBP ↔ DHAP+GAP 27.17
TPI DHAP ↔ GAP 26.94

GAPDH GAP+NAD+ Pi ↔ BPG+NADH+H 54.02
PGK BPG+ADP ↔ PG3 + ATP 54.02
PGM PG3 ↔ PG2 53.45
ENO PG2 ↔ PEP 53.45
PK PEP + ADP → PYR+ATP 53.45
LDH PYR+NADH ↔ LAC +NAD 47.05
LACT LAC ↔ LACex 47.05
ATPase ATP → ADP+ Pi + H 29.46
AK ATP +AMP ↔ 2ADP 0.00

OXYT O2ex ↔ O2 11.13
OxPhos PYR + 14.75ADP + 14.75Pi + 3O2 + NADH →

NAD + 14.75ATP
3.52

Growth 0.0007 BPG + 0.4801 PG3 + 0.1953 DHAP + 0.0043
FBP + 0.4712 O2 + 0.1647 F6P + 0.07 GAP +

0.4129 G6P + 2.8958 NADH + 2.415 PYR + 62.9543
ATP → 1 gDW Biomass + 62.9543 ADP + 2.8958

NAD + 64.287 Pi

0.012 h−1
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Table S3 The steady state concentrations of intracellular metabolites for the
GEM-embedded model at the reference state.

Metabolite Concentration (mmol/l)

GLC 2.3633
G6P 0.1225
F6P 0.0349
FBP 0.3925
DHAP 0.0200
GAP 0.0008
BPG 0.0153
PG3 0.7572
PG2 0.0430
PEP 0.2321
PYR 0.4162
LAC 15.0336
ATP 2.9217
ADP 0.0935
AMP 0.0030
Pi 5.5002
NADH 0.0032
NAD 0.5465
O2 0.0671
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3.1 GEM-embedded kinetic model including growth
d[GLC]

dt = vGLCT − vHK

d[G6P]
dt = vHK − vGPI + nG6P · µ

d[F6P]
dt = vGPI − vPFK + nF6P · µ

d[FBP]
dt = vPFK − vALD + nFBP · µ

d[DHAP]
dt = vALD − vTPI + nDHAP · µ

d[GAP]
dt = vALD + vTPI − vGAPDH + nGAP · µ

d[BPG]
dt = vGAPDH − vPGK + nBPG · µ

d[PG3]
dt = vPGK − vPGM + nPG3 · µ

d[PG2]
dt = vPGM − vENO

d[PEP]
dt = vENO − vPK

d[PYR]
dt = vPK − vLDH − vOxPhos + nPYR · µ

d[LAC]
dt = vLDH − vLACT

d[ATP]
dt = vPK + vPGK + 14.75 · vOxPhos − vHK − vPFK − vAK − vATPase + nATP · µ

d[ADP]
dt = vHK + vPFK + 2 · vAK + vATPase − vPGK − vPK − 14.75 · vOxPhos + nADP · µ

d[AMP]
dt = −vAK

d[Pi]
dt = vATPase − vGAPDH − 14.75 · vOxPhos + nPi · µ

d[NADH]
dt = vGAPDH − vLDH − vOxPhos + nNADH · µ

d[NAD]
dt = vLDH + vOxPhos − vGAPDH + nNAD · µ

d[O2]
dt = vOXYT − 3 · vOxPhos + nO2 · µ
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Table S4 Stoichiometry of the growth reaction (measured in mmol/l). We note that the
values in the main text are given relative to 1 gDW. The conversion factor for the
stoichiometric coefficients from mmol/gDW to mmol/l is 0.01 l/gDW.

Stoichiometric coefficient Value (mmol/l)
nG6P -41.29
nF6P -16.47
nFBP -0.43
nDHAP -19.53
nGAP -7.0
nBPG -0.07
nPG3 -48.01
nPYR -241.5
nATP -6295.43
nO2 -47.12

nNADH -289.58
nPi 6428.7

nADP 6295.43
nNAD 289.58

3.2 Conservation relationships

[NADH] + [NAD] = 0.55 mmol/l

[ATP] + [ADP] + [AMP] = 3.02 mmol/l

[PG3] + [PG2] + [BPG] + [PEP] + [PYR] + [NAD] = 2.01 mmol/l

[F6P] + 2[FBP] + [GAP] + [DHAP] + 2[BPG] + [PG2]+
[PG3] + [PEP] + 2[ATP] + [Pi] + [ADP] = 13.24 mmol/l



Stoichiometric reduction for cancer metabolism 7

3.3 Reactions, rate equations, and kinetic parameters

Glucose transport

GLCe ↔ GLC

vGLCT =
vmax,GLCT

km,GLCT,GLCe

· ([GLCe] − [GLC])(
1 +

[GLCe]

km,GLCT,GLCe

+
[GLC]

km,GLCT,GLC

)

Parameter Value Unit
vmax,GLCT 100 mmol/l/h

km,GLCT,GLCe 2.1 mmol/l
km,GLCT,GLC 2.1 mmol/l

[GLCe] 5 mmol/l

Hexokinase reaction

GLC+ATP → G6P + ADP+H

vHK =

vmax,HK,F

km,HK,F

(
[GLC] · [ATP] − [G6P] · [ADP] · [H]

KHK,EQ

)
1 +

[GLC] · [ATP]
km,HK,F

+
[G6P] · [ADP] · [H]

km,HK,B

Parameter Value Unit
vmax,HK,F 176 mmol/l/h

km,HK,F 7.5 mmol2/l2

km,HK,B 2.94e-10 mmol3/l3

KHK,EQ 2329.1603 mmol/l
[H] 1e-7 mmol/l

Glucose-6-phosphate isomerase reaction

G6P ↔ F6P

vGPI =

vmax,GPI

km,GPI,G6P

(
[G6P]− [F6P]

KGPI,EQ

)
1 +

[G6P]

km,GPI,G6P
+

[F6P]

km,GPI,F6P

Parameter Value Unit
vmax,GPI 858 mmol/l/h

KGPI,EQ 0.3258 -
km,GPI,G6P 0.25 mmol/l
km,GPI,F6P 0.0773 mmol/l
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Phosphofructokinase reaction

F6P + ATP → FBP + ADP+H

vPFK =
vmax,PFK,F

km,PFK,F · ka,PFK,AMP · DPFK
·

·
(
[F6P] · [ATP] · [AMP] − [FBP] · [ADP] · [H] · [AMP]

KPFK,EQ

)

DPFK = 1 +
[F6P] · [ATP]
km,PFK,F

+
[FBP] · [ADP] · [H]

km,PFK,B
+

[F6P] · [ATP] · [AMP]

km,PFK,F · ka,PFK,AMP
+

+
[FBP] · [ADP] · [H] · [AMP]

km,PFK,B · ka,PFK,AMP
+

[AMP]

ka,PFK,AMP

Parameter Value Unit
vmax,PFK,F 1769 mmol/l/h

KPFK,EQ 545.14 mmol/l
km,PFK,F 0.23 mmol2/l2

km,PFK,B 1.82e-10 mmol3/l3

ka,PFK,AMP 0.001 mmol/l
[H] 1e-7 mmol/l

Aldolase reaction

FBP ↔ DHAP+GAP

vALD =

vmax,ALD,F

km,ALD,F
·
(
[FBP] − [DHAP] · [GAP]

KALD,EQ

)
1 +

[FBP]

km,ALD,F
+

[DHAP] · [GAP]

km,ALD,B

Parameter Value Unit
vmax,ALD,F 321 mmol/l/h

KALD,EQ 4.82e-5 mmol/l
km,ALD,F 0.16 mmol/l
km,ALD,B 8.29e-5 mmol2/l2

Triosephosphate isomerase reaction

DHAP ↔ GAP

vTPI =

vmax,TPI,F

km,TPI,DHAP
·
(
[DHAP] − [GAP]

KTPI,EQ

)
1 +

[DHAP]

km,TPI,DHAP
+

[GAP]

km,TPI,GAP
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Parameter Value Unit
vmax,TPI,F 859 mmol/l/h

KTPI,EQ 0.0472 -
km,TPI,DHAP 0.04 mmol/l
km,TPI,GAP 0.002 mmol/l

Glyceraldehyde 3-phosphate dehydrogenase reaction

GAP+NAD+ Pi ↔ BPG+NADH+H

vGAPDH =
1

DGAPDH
·

vmax,GAPDH

km,GAPDH,GAP · km,GAPDH,NAD · km,GAPDH,Pi

·
(
[GAP] · [NAD] · [Pi] − [BPG] · [NADH] · [H]

KGAPDH,EQ

)

DGAPDH = 1 +
[GAP]

km,GAPDH,GAP
+

[NAD]

km,GAPDH,NAD
+

[Pi]

km,GAPDH,Pi
+

[BPG]

km,GAPDH,BPG
+

+
NADH

km,GAPDH,NADH
+

[GAP] · [NAD] · [Pi]
km,GAPDH,GAP · km,GAPDH,NAD · km,GAPDH,Pi

+

+
[BPG] · [NADH] · [H]

km,GAPDH,BPG · km,GAPDH,NADH · km,GAPDH,H

Parameter Value Unit
vmax,GAPDH,F 781 mmol/l/h

KGAPDH,EQ 0.03503 -
km,GAPDH,GAP 0.002 mmol/l
km,GAPDH,NAD 0.55 mmol/l
km,GAPDH,Pi 4 mmol/l

km,GAPDH,BPG 0.1 mmol/l
km,GAPDH,NADH 0.001 mmol/l

km,GAPDH,H 1e-7 mmol/l
[H] 1e-7 mmol/l

Phosphoglycerate kinase reaction

BPG+ADP ↔ PG3 + ATP

vPGK =

vmax,PGK,F

km,PGK,F
·
(
[BPG] · [ADP] − [PG3] · [ATP]

KPGK,EQ

)
1 +

[BPG] · [ADP]

km,PGK,F
+

[PG3] · [ATP]
km,PGK,B

Parameter Value Unit
vmax,PGK,F 221 mmol/l/h

KPGK,EQ 6083.56 -
km,PGK,F 0.00118 mmol2/l2

km,PGK,B 1.5 mmol2/l2
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Phosphoglycerate mutase reaction

PG3 ↔ PG2

vPGM =

vmax,PGM,F

km,PGM,PG3
·
(
[PG3] − [PG2]

KPGM,EQ

)
1 +

[PG3]

km,PGM,PG3
+

[PG2]

km,PGM,PG2

Parameter Value Unit
vmax,PGM,F 528 mmol/l/h

KPGM,EQ 0.0772 -
km,PGM,PG3 0.5 mmol/l
km,PGM,PG2 0.03 mmol/l

Enolase reaction

PG2 ↔ PEP

vENO =

vmax,ENO,F

km,ENO,PG2
·
(
[PG2] − [PEP]

KENO,EQ

)
1 +

[PG2]

km,ENO,PG2
+

[PEP]

km,ENO,PEP

Parameter Value Unit
vmax,ENO,F 1340 mmol/l/h

KENO,EQ 6.0689 -
km,ENO,PG2 0.03 mmol/l
km,ENO,PEP 0.15 mmol/l

Pyruvate kinase reaction

PEP + ADP → PYR+ATP

vPK =

vmax,PK,F

km,PK,F · ka,PK,FBP
·
(
[PEP] · [ADP] · [FBP] − [PYR] · [ATP] · [FBP]

KPK,EQ

)
DPK

DPK = 1 +
[PEP] · [ADP]

km,PK,F
+

[PYR] · [ATP]
km,PK,B

+
[PEP] · [ADP] · [FBP]
km,PK,F · ka,PK,FBP

+

+
[PYR] · [ATP] · [FBP]
km,PK,B · ka,PK,FBP

+
[FBP]

ka,PK,FBP
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Parameter Value Unit
vmax,PK,F 212 mmol/l/h

KPK,EQ 57783.82 mmol/l
km,PK,F 0.00177 mmol2/l2

km,PK,B 0.15 mmol2/l2

ka,PK,FBP 0.5 mmol/l

Lactate dehydrogenase reaction

PYR+NADH ↔ LAC +NAD

vLDH =

vmax,LDH,F

km,LDH,PY R · km,LDH,NADH
·
(
[PYR] · [NADH] − [LAC] · [NAD]

KLDH,EQ

)
DLDH

DLDH = 1 +
[PYR]

km,LDH,PY R
+

[NADH]

km,LDH,NADH
+

[PYR] · [NADH]

km,LDH,PY R · km,LDH,NADH
+

+
[LAC]

km,LDH,LAC
+

[NAD]

km,LDH,NAD
+

[LAC] · [NAD]

km,LDH,LAC · km,LDH,NAD

Parameter Value Unit
vmax,LDH,F 434 mmol/l/h

KLDH,EQ 15285.09 -
km,LDH,PY R 0.5 mmol/l
km,LDH,NADH 0.001 mmol/l
km,LDH,LAC 5 mmol/l
km,LDH,NAD 0.549 mmol/l

Lactate transport

LAC ↔ LACex

vLACT =
vmax,LACT

km,LACT,LAC
· ([LAC] − [LACex])(

1 +
[LAC]

km,LACT,LAC
+

[LACex]

km,LACT,LACex

)

Parameter Value Unit
vmax,LACT,F 60 mmol/l/h

km,LACT,LACex 3 mmol/l
km,LACT,LAC 3 mmol/l

[LACex] 0.5 mmol/l

ATPase reaction

ATP → ADP+ Pi + H

vATPase =

vmax,ATPase,F

km,ATPase,F
·
(
[ATP] − [ADP] · [Pi] · [H]

KATPase,EQ

)
1 +

[ATP]

km,ATPase,F
+

[ADP] · [Pi] · [H]

km,ATPase,B
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Parameter Value Unit
vmax,ATPase,F 390 mmol/l/h

KATPase,EQ 478343.7 mmol2/l2

km,ATPase,F 3 mmol/l
km,ATPase,B 4.71e-9 mmol3/l3

[H] 1e-7 mmol/l

Adenylate kinase reaction

ATP+AMP ↔ 2 ·ADP

vAK =

vmax,AK,F

km,AK,F
· ([ATP] · [AMP] − [ADP] · [ADP])

1 +
[ATP] · [AMP]

km,AK,F
+

[ADP] · [ADP]

km,AK,B

Parameter Value Unit
vmax,AK,F 2000 mmol/l/h

km,AK,F 5 mmol2/l2

km,AK,B 2 mmol2/l2

Oxygen transport

O2ex ↔ O2

vOXY T = kOXY T · ([O2ex]− [O2])

Parameter Value Unit
kOXY T 164 1/h
[O2ex] 0.135 mmol/l

OxPhos reaction

PYR+ 14.75 ·ADP+ 14.75 · Pi + 3 ·O2 + NADH → NAD+ 14.75 ·ATP

vOxPhos = vmax,OxPhos · [PYR]

km,OxPhos,PY R + [PYR]
· [O2]

km,OxPhos,O2 + [O2]
·

· [ADP]

km,OxPhos,ADP + [ADP]
· [NADH]

km,OxPhos,NADH + [NADH]
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Parameter Value Unit
vmax,OxPhos 5.25 mmol/l/h

km,OxPhos,PY R 0.001 mmol/l
km,OxPhos,O2 0.005 mmol/l
km,OxPhos,ADP 0.005 mmol/l
km,OxPhos,NADH 0.001 mmol/l

Growth reaction

0.0007 BPG+ 0.4801 PG3 + 0.1953 DHAP + 0.0043 FBP + 0.4712 O2 +

+0.1647 F6P + 0.07 GAP + 0.4129 G6P + 2.8958 NADH+ 2.415 PYR +

+ 62.9543 ATP → 1 gDW Biomass + 62.9543 ADP + 2.8958 NAD+ 64.287 Pi

The stoichiometric coefficients of the growth reaction are measured in mmol/gDW.

vBM = vmax,BM · [G6P]

km,BM,G6P + [G6P]
· [FBP]

km,BM,FBP + [FBP]
· [DHAP]

km,BM,DHAP + [DHAP]
·

· [PG3]

km,BM,PG3 + [PG3]
· [PYR]

km,BM,PY R + [PYR]
· [ATP]

km,BM,ATP + [ATP]
·

· [NADH]

km,BM,NADH + [NADH]
· [BPG]

km,BM,BPG + [BPG]
· [O2]

km,BM,O2 + [O2]
·

· [F6P]

km,BM,F6P + [F6P]
· [GAP]

km,BM,GAP + [GAP]

Parameter Value Unit
vmax,BM 200 1/h

km,BM,G6P 0.25 mmol/l
km,BM,FBP 0.155 mmol/l
km,BM,DHAP 0.0414 mmol/l
km,BM,PG3 0.5 mmol/l
km,BM,PY R 0.5 mmol/l
km,BM,ATP 3 mmol/l

km,BM,NADH 0.001 mmol/l
km,BM,BPG 0.1 mmol/l
km,BM,O2 0.04 mmol/l
km,BM,F6P 0.0773 mmol/l
km,BM,GAP 0.002 mmol/l
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4 Additional Figures

Fig. S1 Differences in the flux control coefficients between the Shestov-derived model and
the GEM-embedded model. Shown are results for the control of (A) LACT, (B) OxPhos,
and (C) ATPase flux, in addition to the control of HK flux (shown in the main text).

Fig. S2 Flux control coefficients of growth rate in the GEM-embedded model.
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Fig. S4 Probabilistic sign distribution of FCCs in the ensemble of GEM-embedded models.
The color of the entry in the i-th row and j-th column corresponds to the percentage of FCCs
with a positive values, indicating that an increase in enzyme j will result in an increase of
the flux through reaction i. Most FCCs are sign-dominant, i.e., percentages are either close
to 100% or close to 0%.

Fig. S5 Probabilistic sign distribution of FCCs in the Shestov-derived model, corresponding
to the distributions shown in Figure S3. The color of the entry in the i-th row and j-th
column corresponds to the percentage of FCCs with a positive values, indicating that an
increase in enzyme j will result in an increase of the flux through reaction i. Most FCCs are
sign-dominant, i.e., percentages are either close to 100% or close to 0%.
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Fig. S6 Control coefficients for the ratio vLACT /vGLCT in the GEM-embedded model,
describing the sensitivity of the ratio to a perturbation in enzyme activity. An increase in
LACT will increase the ratio, whereas an increase in OxPhos (mitochondrial capacity) will
decrease the ratio.
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