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Flexynesis: A deep learning toolkit for bulk
multi-omics data integration for precision
oncology and beyond
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Ricardo Wurmus 1, Mohammed Maqsood Shaik1, Björn Grüning 2,
Vedran Franke 1 & Altuna Akalin 1

Accurate decision making in precision oncology depends on integration of
multimodal molecular information, for which various deep learning methods
have been developed. However, most deep learning-based bulk multi-omics
integration methods lack transparency, modularity, deployability, and are
limited to narrow tasks. To address these limitations, we introduce Flexynesis,
which streamlines data processing, feature selection, hyperparameter tuning,
and marker discovery. Users can choose from deep learning architectures
or classical supervised machine learning methods with a standardized input
interface for single/multi-task training and evaluation for regression, clas-
sification, and survival modeling. We showcase the tool’s capability across
diverse use-cases in precision oncology. To maximize accessibility, Flexyn-
esis is available on PyPi, Guix, Bioconda, and the Galaxy Server (https://
usegalaxy.eu/). This toolset makes deep-learning based bulk multi-omics
data integration in clinical/pre-clinical research more accessible to users
with or without deep-learning experience. Flexynesis is available at https://
github.com/BIMSBbioinfo/flexynesis.

Cancer is a complex disease primarily resulting from genomic aber-
rations. The disease is marked by abnormal cell growth, invasive pro-
liferation, and tissuemalfunction, impacting twentymillion individuals
and causing tenmillion yearly deaths worldwide1. To bypass protective
mechanisms, cancer cellsmust acquire several key characteristics, such
as resistance to cell death, immune evasion, tissue invasion, growth
suppressor evasion, and sustained proliferative signaling2. Unlike rare
genetic disorders, caused by few genetic variations, complex diseases,
like cancer, require a comprehensive understanding of interactions
between various cellular regulatory layers. This entails data integration
from various omics layers, such as the transcriptome, epigenome,
proteome, genome,metabolome, andmicrobiome3. In clinical settings,
genome-informed diagnostics to identify disease-causing variants are

already in use4. However, capturing the complexity of most cancers
requires more than a panel of genomic markers. Multi-omics profiling
is a vital step toward understanding not only cancer but other complex
diseases like cardiovascular and neurological disorders5–7. Proof-of-
concept studies have shown the benefits of multi-omics patient pro-
filing for health monitoring, treatment decisions, and knowledge
discovery8. Recent longitudinal clinical studies in cancer are evaluating
the effects of multi-omics-informed clinical decisions compared to
standard of care9. Addressing this need for multi-omic profiling to
improve the understanding of complex diseases, major international
initiatives have developed multi-omic databases such as The Cancer
Genome Atlas (TCGA), the Cancer Cell Line Encyclopedia (CCLE)10 to
enhance molecular profiling of tumors and disease models.
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While cell regulation at the molecular level is highly inter-
connected, redundant, and has non-linear relationships between
components, the information about these intricate relationships is
usually isolated in different molecular data modalities. Each mole-
cular profile is measured one assay at a time (as in assays developed
for profiling the transcriptome, the genome, the methylome etc),
however, all the different layers of molecular information are
in actuality in a cross-talk with one another. Therefore, it is impor-
tant to capture the non-linear relationships, and impacts of disrup-
tions of the different components of the cellular machinery by
combining the disparate data modalities into a more meaningful
synthesis. However, the high dimensionality of molecular assays and
heterogeneity of the studied diseases create computational
challenges.

The challenges of multi-omics data integration prompted devel-
opment of various machine learning algorithms, including deep
learning approaches11,12. Available benchmarking studies that com-
pared different deep-learning-based methods for multi-omics inte-
gration for classification and regression tasks13,14 have shown that none
of the methods clearly outperformed others in all the tasks at hand.
This necessitates a flexible and reproducible approach that provides
adaptable architectures for solving each computational task.

Before setting out to develop yet another deep learning-based
multi-omics integration method, despite the availability of the myr-
iad of published studies11, we collated a survey of available bulkmulti-
omics data integration methods to see which tools can be easily
adapted for our own translational research projects (Supplementary
Data 1). Such projects usually include heterogeneous cohorts of
cancer patients and pre-clinical disease models with multi-omics
profiles. A primary issue we observed with existing methods is their
limited reusability or adaptability to different datasets and contexts.
Themajority of published approaches do not provide accompanying
code, severely limiting their accessibility and applicability. Even
when the code is available, it often exists as an unpackaged collection
of scripts or notebooks. Such a disorganized format makes these
methods difficult, if not impossible, to install, reuse, and incorporate
into existing bioinformatics pipelines. Out of the 80 studies collated,
29 studies provide no codebase. 45 studies provide collections of
scripts/notebooks, with the goal of reproducing the findings in the
published study rather than serving as a generic tool for multi-omics
integration. While these methods (Supplementary Data 1) are valu-
able contributions to the scientific community, they still require
extensive customization to make them usable for different datasets
and tasks.

Besides lacking readily available code, publishedmethods suffer
from one or more of the criteria that are crucial for ensuring the
reliability and reproducibility of machine learning applications.
Standard operating procedures such as training/validation/test
splits, hyperparameter optimization, feature selection, and marker
discovery are frequently overlooked or manually defined, without
any accompanying documentation again underscoring the arduous
amount of work needed to adapt these approaches for custom
problems.

Another limitation of current deep learning methods is their
narrow task specificity.Many tools are designedexclusively for specific
applications, such as regression, survival modeling, or classification.
Comprehensive multi-omics data analysis frequently requires a mix-
ture of such tasks, however, the specialization of already existing tools
restricts their applicability.

While deep learning methods are sometimes considered as
superior, classical machine learning algorithms frequently outperform
them15–17. This performance differential is not immediately apparent,
and often not tested with the currently existing tools, requiring users
to undertake extensive benchmarking to uncover the most effective
solution to their specific problem.

Addressing these challenges, we introduce Flexynesis, a deep
learning framework for multi-omics data integration designed to
overcome the above-mentioned limitations (Fig. 1). We demonstrate
the versatility of Flexynesis through various use cases, including drug
response prediction, cancer subtype modeling, survival analysis, and
biomarker discovery. We demonstrate how to handle multiple tasks
simultaneously, supporting a combinationof regression, classification,
and survival tasks. We show use-cases where the flexibility of neural
networks can be utilized in different prediction tasks by building
models of both unsupervised and supervised tasks, with one or more
supervision heads, and symmetric (auto-encoders) and asymmetric
(cross-modality) encoder-decoder combinations. To further enhance
its utility, we provide an accessory pipeline and a collection of datasets
for benchmarking different flavors of Flexynesis. This benchmarking
includes a comparison to classical machine learning methods (Ran-
dom Forest, Support VectorMachines, XGBoost, and RandomSurvival
Forest). In summary, the landscape of published deep learning meth-
ods for bulk multi-omics data integration is fraught with challenges
that hinder their effective reuse and integration into broader bioin-
formatics workflows. This manuscript addresses these challenges and
introduces Flexynesis, a comprehensive solution designed to enhance
the utility and applicability of deep learning in multi-omics data
analysis.

Results
We designed Flexynesis for automated construction of predictive
models of one or more outcome variables. For each outcome variable,
a supervisor multi-layer-perceptron (MLP) is attached onto the enco-
der networks (a selection of fully connected or graph-convolutional
encoders) to perform the modeling task. Clinically relevant machine
learning tasks such as drug response prediction (regression), disease
subtype prediction (classification), and survival modeling (right-cen-
sored regression) tasks are all possible as individual variables or as a
mixtureof variables, such that eachoutcome variable has an impact on
the low-dimensional sample embeddings (latent variables) derived
from the encoding networks (See Supplementary Figs. 1–8 for the
schematic representation of different model architectures, workflows
for data processing, hyperparameter optimisation, and model fine-
tuning).

Single-task modeling: predicting only one outcome variable
In Fig. 2, we demonstrate the different kinds ofmodeling tasks that are
possible with Flexynesis using a single outcome variable (single MLP)
as regression (Fig. 2A), classification (Fig. 2B), and survival models
(Fig. 2C). For the regression task, we trained Flexynesis onmulti-omics
(gene expression and copy-number-variation) data fromcell lines from
the CCLE database10 to predict the cell line sensitivity levels to the
drugs Lapatinib, a tyrosine kinase inhibitor, and Selumetinib, a MEK
inhibitor. We evaluated the performance of the trained model on the
cell lines from the GDSC2 database18 which were also treated with the
same drugs, where we observed a high correlation between the known
drug response values and the predicted response values for both
drugs (Fig. 2A).

For the single-variable classification task, we demonstrate classi-
fication of seven TCGA datasets including pan-gastrointestinal and
gynecological cancers with respect to their microsatellite instability
(MSI) status using gene expression and promotermethylation profiles.
MSI is amolecular phenotype that displays a highmutational load that
results from deficient DNA mismatch repair mechanisms19. Moreover,
high-MSI levels are predictive of response to immune checkpoint
blockade therapies20, underscoring the relevance of detecting MSI-
High samples. As MSI-High is characterized by a high mutational load,
it would not be surprising to achieve a good classificationperformance
to predict the MSI status using mutation data. We demonstrate that,
without using the mutation data, we can achieve a very high accuracy
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classifier (AUC=0.981) using gene expressionandmethylation profiles
(Fig. 2B). We have also benchmarked multiple deep learning archi-
tectures and data type combinations and observed that the best per-
forming model was trained on gene expression data only
(Supplementary Data 2). This result suggests that samples that have
been profiled using RNA-seq, but lack genomic sequencing data could
still be classified in terms of MSI status.

As the third type of modeling task, we demonstrate survival
modeling using Flexynesis on a combined cohort of lower grade
glioma (LGG) and glioblastoma multiforme (GBM) patient samples21.
For survival modeling, a supervisor MLP with Cox Proportional
Hazards loss function is used to guide the network to learn patient-
specific risk scores based on the input overall survival endpoints as has
been demonstrated previously22. After training the model on 70% of
the samples,wepredicted the risk scores of the remaining test samples
(30%) and split the risk scores by the median risk value in the cohort.
The embeddings visualized based on the median risk score stratifica-
tion shows that the test samples are clearly separable in the sample
embedding space, which is also confirmed by the Kaplan-Meier survi-
val plot, which shows a significant separation of patients in terms of
predicted risk scores (Fig. 2C).

Multi-task Modeling: Joint prediction of multiple outcome
variables
While being able to build deep learning models with any of the
regression/classification/survival tasks individually offers an
improved user experience, this is also usually possible with classical
machine learning methods. The actual flexibility of deep learning is
more evident in a multi-task setting where more than one MLPs are
attached on top of the sample encoding networks, thus the embed-
ding space can be shaped by multiple clinically relevant variables.
This flexibility is even more pronounced in the presence of missing
labels for one or more of the variables, which is tolerated by
Flexynesis.

To demonstrate the use of multi-task modeling, we trained
models on 70% of the METABRIC dataset (a metastatic breast cancer
cohort with multi-omics profiles of 1865 patients)23 and obtained the
embeddings for the 30% of the samples. In order to compare and
contrast the effect of multi-task modeling with single-task modeling,
we chose two clinically relevant variables for this cohort: subtype
labels (CLAUDIN_SUBTYPE) and chemotherapy treatment status
(CHEMOTHERAPY). We built three different models: a single-task
model using only the subtype labels (Fig. 3A), a single-taskmodel using
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Fig. 1 | Summary of the Flexynesis data integration and analysis workflow.
Flexynesis accepts as input one or more data tables in tabular format along with
sample metadata, carries out various data-cleaning steps, and provides multiple
feature-selection options. A sequential Bayesian hyperparameter optimization rou-
tine is applied for model training. The trained models are evaluated on the test data
using a variety of metrics, and input features are assessed and ranked based on
feature attribution scores with respect to their contribution to outcome prediction
tasks. Flexynesis currently supportsmultiple neural network architectures, including

classical feedforward neural networks, variational autoencoders, multi-triplet neural
networks, and graph-convolutional neural networks. Each network can be utilized in
a supervised multi-task setting for regression, classification, or survival analysis, as
well as in unsupervised or cross-modality prediction tasks. Separate data modalities
can be fused using either early or intermediate fusion options. Flexynesis is available
for installation through publicly accessible repositories such as PyPI, Guix, and
Bioconda, and is ready to be used on the Galaxy platform. Flexynesis is developed
using PyTorch, PyTorch Lightning, and PyTorch Geometric.

Article https://doi.org/10.1038/s41467-025-63688-5

Nature Communications |         (2025) 16:8261 3

www.nature.com/naturecommunications


R = 0.6, p < 2.2e−16

0.0

0.1

0.2

0.3

0.4

0.0 0.2 0.4 0.6
y

y_
ha
t

Lapatinib

R = 0.61, p < 2.2e−16

0.0

0.2

0.4

0.0 0.2 0.4 0.6
y

y_
ha
t

Selumetinib
A

MSI−High

MSI−Other

−10

0

10

−10 0 10
tSNE1

tS
N
E2

MSI−High MSI−Other

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate

Tr
ue
Po
si
tiv
e
R
at
e

ROC Curve for (MSI−High): AUC = 0.981
B

high_risk

low_risk

−10

−5

0

5

10

−8 −4 0 4 8
tSNE1

tS
N
E2

+++++++
++++++++++++++++++++

++++++++++++++ ++ ++ +
+

++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++

+ + + + + ++ + + +

+p = 9.94475168880626e−10
0.00

0.25

0.50

0.75

1.00

0 50 100 150
Time

Su
rv
iv
al
pr
ob
ab
ilit
y

Strata
+ risk_group=high_risk
+ risk_group=low_risk

C

Fig. 2 | Flexynesis supports single-task modeling for regression (A), classifica-
tion (B), and survival (C). For all three tasks, both a fully-connected-network and a
supervised variational auto-encoder was trained and best-performing model’s
results were presented. A Performance evaluation of Flexynesis on drug response
prediction of a model trained on 1051 cell lines from CCLE (using RNA and CNV
profiles) and evaluated on 1075 cell lines from GDSC2 for the drugs Lapatinib
(Pearson correlation test, r =0.6, p = 7.750175e-42) and Selumetinib (Pearson cor-
relation test, r =0.61, p = 3.873949e-50). The x-axis depicts observed drug response
values (AAC-recomputed as in Pharmacogx package)60 and the y-axis depicts the
predicted drug response values for the test samples. B Evaluation of Flexynesis on
microsatellite instability (MSI) status prediction using gene expression and/or
promoter methylation data from seven different TCGA cohorts (gastrointestinal
and gynocological cancers) withmicrosatellite instability (MSI) annotations: TCGA-
COAD (Colon Adenocarcinoma), TCGA-ESCA (Esophageal Carcinoma), TCGA-
PAAD (Pancreatic Adenocarcinoma), TCGA-READ (Rectum Adenocarcinoma),
TCGA-STAD (Stomach Adenocarcinoma), TCGA-UCEC (Uterine Corpus

Endometrial Carcinoma), TCGA-UCS (Uterine Carcinosarcoma). The models were
trained on 70% of the samples (N = 1133) withMSI status annotations and evaluated
on the remaining 30% of the samples (N = 283). The tSNE (t-distributed Stochastic
Neighbor Embedding) plot represents the sample embeddings colored by MSI
status and the ROC curve represents the best performing deep learning model
basedonboth gene expression andmethylation data.C Evaluation of Flexynesis on
a survival modeling task on a merged cohort of LGG (Lower Grade Glioma) and
GBM (Glioblastoma Multiforme) (using mutations and copy-number-alteration
profiles). The model is trained on 557 samples and evaluated on 239 test samples.
The tSNE plot depicts the sample embeddings obtained from the model encoder
for the test samples colored by the predicted Cox proportional hazard risk scores
stratified into “high-risk” and “low-risk”basedon themedian risk score. TheKaplan-
Meier-Plot represents the survival stratification of the test samples based on this
risk stratification (Logrank Test, p = 9.94475168880626e− 10). Source data are
provided as a Source Data file.
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only the chemotherapy status of the patients (Fig. 3B), and finally a
multi-task model using both subtype labels and chemotherapy status
as outcome variables (Fig. 3C). Coloring the samples by the subtype
labels and chemotherapy status, we can observe that the sample
embeddings obtained exclusively for the subtype modeling reflect a
clear clustering of samples by subtype, but not by the chemotherapy
status (Fig. 3A). Similarly, the sample embeddings obtained from the
model trained exclusively with the chemotherapy status as outcome

variable shows a clear separation of samples by treatment status,
however the separation by subtypes is not as evident anymore
(Fig. 3B). In the multi-task setting where the model had twoMLPs (one
for subtype labels and one for chemotherapy status), the sample
embeddings show a clear separation of both by the subtype labels and
also the chemotherapy status (Fig. 3C).

We also analyzed the LGG and GBM cohort (from Fig. 2C) in a
multi-task setting where we attached three separate MLPs on the
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Fig. 3 | t-SNE plots representing sample embeddings of 1865 metastatic breast
cancer samples from the METABRIC study. These plots compare the impact of
single-task and multi-task modeling on the clustering of samples by clinical vari-
ables. Plots on the left are colored by the breast cancer subtype and the plots on the
right are colored by the treatment status. A Single-Task Model – Breast Cancer
Subtypes: t-SNE (t-distributed Stochastic Neighbor Embedding) visualization of
sample embeddings obtained from a single-task model trained exclusively to pre-
dict breast cancer subtypes. B Single-Task Model – Chemotherapy Status: t-SNE

plot visualization of sample embeddings from a model trained only to predict the
chemotherapy status of patients, showing the segregation capability of the single-
task model with respect to treatment status. C Multi-Task Model – Subtypes and
Chemotherapy Status: t-SNE plot of sample embeddings from a multi-task model
trainedwith dual supervisor heads: one for breast cancer subtypes and another for
chemotherapy status. The plot shows how multi-task learning influences the
embedding space, enhancing the separation of samples based on both clinical
variables simultaneously. Source data are provided as a Source Data file.
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encoder layers: a regressor to predict the patient’s age (AGE), a
classifier to predict the histological subtype (HISTOLOGICAL DIAG-
NOSIS), and another survival head tomodel the survival outcomes of
the patients (OS_STATUS). Concurrently training the model with
three different tasks at the same time, we inspected the sample
embeddings and observed that older patients with high risk scores
have the glioblastoma subtype, while younger patients with lower
risk scores have the other subtypes, where low risk young patients
can still be distinguished mainly by histological subtype (Fig. 4A).
Thus, training the model on three clinically relevant variables helps
us obtain sample embeddings that reflect all three variables in a
hierarchical manner. Inspecting the top markers for each of these
variables, we observe common genes for all three variables such as
IDH1, IDH2, ATRX, PIK3CA, and EGFR (Fig. 4B), which could be
explained by the fact that the clinical variables such as age and his-
tological subtype are correlated with the survival outcomes of the
patients, underpinning the importance of these genes in the etiology
of the gliomas, which have been extensively studied and reported
before24.

Unsupervised learning: finding groups and general patterns
One of the main architectures provided in Flexynesis is the variational
auto-encoders (VAE) with maximum mean discrepancy (MMD) loss25.
While VAEs are usually employed in unsupervised training tasks, in
Flexynesis they can be used for both supervised and unsupervised
tasks. In the absence of any target outcome variables (in other words,
without any additionalMLPmodules attached on top of the encoders),
the network behaves as a VAE-MMD where the sole goal is to recon-
struct the input data matrices, while generating embeddings that fol-
low a Gaussian distribution due to the MMD loss.

As a proof of principle experiment, we trained a VAE-MMDmodel
without any attached supervisor MLPs, to test the unsupervised
dimension reduction capabilities on 21 cancer types from the TCGA
resource using gene expression and methylation as input modalities.
Applying k-means clustering (k from 18 to 24), weobtained a clustering
of the samples based on the trained sample embeddings. The tSNE
representation of the resulting sample embeddings shows a clear
separation of unsupervised clusters (Fig. 5A) and the known sample
labels (Fig. 5B) with a good correspondence between unsupervised
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Fig. 4 | Flexynesis can be trained concurrently for all three types of tasks:
regression, classification, and survival at a single run. Themodel was trained on
557 training samples from themerged cohort of the LGG (LowerGradeGlioma) and
GBM (Glioblastoma Multiforme) patient samples with three supervisor heads: a
regressor for the patient age (AGE), a classifier for the histological diagnosis, and a
survival head for the overall survival status of the patient (OS_STATUS). A Displays
the tSNE (t-distributedStochastic Neighbor Embedding) visualizationof the sample

embeddings for 239 test samples, where the size of the points reflect the age of the
patient, the colors represent the histological diagnosis, and the samples were
stratified into high-risk and low-risk groups based on the predicted risk scores for
each patient. The sample embeddings reflect the impact of all three clinical vari-
ables concurrently. B Displays the top 10 most important features discovered for
each supervisor head for the patient’s age, histological subtype, and survival status.
Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-025-63688-5

Nature Communications |         (2025) 16:8261 6

www.nature.com/naturecommunications


clusters and known sample labels (adjusted mutual information: 0.78)
(Fig. 5C, Supplementary Data 3).

Cross-modality learning: transferring knowledge between dif-
ferent omic data types
While variational autoencoders are designed to reconstruct the initial
input data, this can be formulated in a different fashion such that the
goal of the reconstruction is a set ofmatrices different from the inputs.
Thus, it is possible to build models where the input data modalities
differ from the output datamodalities. For instance, a gene expression
data matrix could be used to reconstruct a mutation data matrix, thus
learning how to translate between these modalities, while simulta-
neously learning the low-dimensional embeddings that reflect this
translation. Due to themodular structure of the Flexynesis, we can also
attach one or more MLPs on top of these cross-modality encoder
models for one or more target variables as supervisors for regression,
classification, and survival tasks.

In order to demonstrate this feature, we designed an experiment
using the genome-wide gene essentiality scores measured for >1000
cell lines as part of the DepMap project26. The DepMap database
contains measurements of cellular proliferation after perturbation of
all protein coding genes. It has been previously shown that for a given

cell line, the gene expression profiles of the cell lines can be used to
predict the gene essentiality scores27,28. Here, we carried out a similar
approach, where gene expression profiles of genes across cell lines
were used as input with a goal to reconstruct the cancer cell line
dependency scores of the samegenes.Weexpanded this approach to a
multi-modal setup, where we used two additional data modalities
besides the gene expression: (1) we used pre-trained large language
models to generate protein sequence embeddings for the same genes
using Prot-Trans29 and obtained sequence embedding vectors for each
gene (using the canonical protein sequences) (2) we used the struc-
tural and functional features of proteins (such as disorder profiles,
evolutionary sequence conservation, secondary structures, post-
translational modification sites) from the DescribePROT database30.
Thus, each gene was represented by three data modalities: gene
expression profiles across cell lines, protein sequence embeddings,
anddescribeProt features.Weused thesemodalities to reconstruct the
gene-essentiality scores for each of the cell lines in the DepMap data-
base. In addition, we attached a supervisor MLP to guide the network
to predict the hubness-score of each gene in the genetic interaction
networks obtained from the STRING database31 assuming that the
centrality of a gene in biological interaction networks could be a
contributing factor in its essentiality for cell survival (Fig. 6A). Thus, the
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Fig. 5 | Flexynesis can be used for unsupervised training and clustering. The
figure displays the unsupervised analysis of 21 cancer types from the TCGA study
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the tSNE plot of the training sample embeddings colored by the best performing
clustering scheme using the k-means algorithm for values of 18 < = k < = 24, where
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(t-distributed Stochastic Neighbor Embedding) plot as in (A) but colored by the
known cancer type labels. C The heatmap displays the concordance between the
cluster labels from (A) and known cancer type labels from (B), where the adjusted
mutual information score is 0.78. Each row is normalized to add up to 100% where
the color of the cells represent the concordance percentage of the cancer types to
the corresponding cluster labels. Source data are provided as a Source Data file.
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model was trained concurrently to predict both the gene essentiality
score in a particular cell line (as amatrix), alongwith the gene hubness
(as a vector). We trained the model on 70% of the genes and evaluated
the model on the remaining 30% of the genes, by computing the
average correlation of each cell line’s predicted gene dependency
scores with themeasured scores. The addition of the protein sequence
embeddings from the languagemodels had a significant improvement
on the performance of the model, while the addition of DescribeProt
features did not make an additional improvement over the protein
language embeddings (Fig. 6B), which suggests that LLM-based pro-
tein embeddingsmight be already capturing similar information to the
features from describePROT. For comparison, we also built models
without the supervision for the “hubness” feature. We observed that
depending on the data combinations used as input, using a supervisor
for “hubness” led to an improvement for the single data modality case
(Fig. 6B, right panel) but also a deterioration for the reconstruction
scores when all three modalities were used as input (Fig. 6B, middle
panel), which could bebecause the networkmay have putmoreweight
on learning the “hubness” feature while the weights on cross-modality
reconstructionmayhave been dilutedwith the addition of further data
modalities in this particular case.

Improving model performance via model fine-tuning
One of the conveniences offered by neural networks compared to
classical machine learning approaches is that the neural networks
trained on a source dataset can be fine-tuned on a small portion of the
target dataset. This feature offers a possibility to tune the trained
model on the potentially shifted distribution of the target dataset
compared to the source32. We implemented an optional fine-tuning
procedure, which uses a portion of the test dataset to modify the
model parameters (following a combination of model parameter

freezing strategies and different learning rates). The fine-tuned model
is then evaluated on the remaining test dataset samples. In the first
experiment, we trained multiple neural network models along with
baseline methods (Random Forests, SVM, XGBoost) on drug response
profiles of the CCLE database and fine-tuned the trained neural net-
work models on 100 samples from the test dataset (GDSC database).
We observed that, while fine-tuning can be beneficial for different
models, it doesn’t create an overall meaningful difference from the
models that were not fine-tuned (Fig. 7A, see Supplementary Data 4 -
Sheet 2 for paired bootstrap test statistics).

As the CCLE and GDSC databases have a relatively similar origin,
resulting in good concordance with similar distributions, fine-tuning
didn’t yield a clear advantage. Therefore, we tested fine-tuning in a
separate experiment where the source (training) dataset and target
(test) datasets come from completely different sources. We built
models to predict the cancer types of human tumor samples from
three different TCGA cohorts (breast cancer, glioblastoma, and col-
orectal cancer) and used the trainedmodel to predict the cancer types
of cell lines derived from the corresponding three different cancer cell
lines from the CCLE using gene expression and copy number variation
data as input. We observed that all the models performed very poorly
without fine-tuning, with an F1 score of ~0.16, with similar perfor-
mances by Random Forest, XGBoost, and SVMmodels, too. However,
fine-tuning the deep learning models using 50 samples led to a sig-
nificant improvement in the prediction performance achieving
F1 scores of up to 0.8 (Fig. 7B, see Supplementary Data 4 - Sheet 1 for
paired bootstrap test statistics).

Discovering biomarkers of drug response in cell lines
All model architectures implemented in Flexynesis, are equipped
with a marker discovery module based on Integrated Gradients and

with
hubness

without
hubness

with
hubness

without
hubness

with
hubness

without
hubness

0.45

0.50

0.55

0.60

0.65

0.70

Pe
ar
so
n
C
or
re
la
tio
n

Gene Expression
Gene Expression

+ Protein Embeddings
+ DescribeProt Features

Gene Expression
+ Protein EmbeddingsGene

Expression
in Cell Lines

A) B)

Protein
Sequence
Embeddings
(ProtTrans)

Gene
Dependency
Scores in
Cell Lines

Decoded
Output

Train a cross-
modality encoder on
70% of the genes

Protein Sequence
Features

(DescribeProt)

Use Gene
Embeddings to
Predict Gene
Hubness

Compute the correlation
between decoded and
actual dependency

scores for each cell line

Integrated Gene
Embeddings

Fig. 6 | Flexynesis can be used to build matrix-to-matrix (cross-modality) pre-
diction models. A Multi-modal cross-modality prediction of gene knock-out
dependency probabilities of cell lines. A cross-modal encoder-decoder model was
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GradientSHAP feature attribution methods33–35. In order to evaluate
whether the trained Flexynesis models can capture known/expected
markers, we constructed models predicting drug response, for eight
drugs with known molecular targets. The models were trained on
drug response data from CCLE and evaluated on the corresponding
features from the GDSC dataset. We trained both a fully connected
network (DirectPred), a supervised variational auto-encoder (super-
vised-vae), and graph-convolutional neural network (GNN-SAGE)
using various data type combinations (mutations, mutations + RNA
expression, and mutations + RNA expression + copy number var-
iants). The top ten markers per drug were extracted from the best
performing model among all the experiments (Fig. 8A) using both
Integrated Gradients and GradientSHAP methods. The two methods
yielded almost identical results (Supplementary Fig. 9), therefore we

report the feature attribution metrics only from the Integrated Gra-
dients method. We labeled the top markers by data type and also by
the presence of the marker in civicDB36, a database of clinically
actionable genetic biomarkers of drug response. For 6 out of 8 drugs,
we could find at least one knownmarker, present in civicDB (Fig. 8B).
In addition, we observe that the best performing models are
never trained on “mutations-only”. Topmarkers for each of the drugs
are dominated by single nucleotide variants, however, we also
observe that the best performingmodels (Fig. 8A) are the ones where
the mutation data is complemented with at least the “RNA” layer,
which is in line with previous findings, we and others have demon-
strated before, that using the gene expression data on top of the
mutation features significantly improves drug response prediction
performance37,38.

The Flexynesis benchmarking pipeline
Previous benchmarking of different neural network architectures13,14,39,
showed that none of the methods outperform others in all tested
scenarios. It is challenging to choose the best performing neural net-
work architecture along with the type of multi-omic modalities best
suited for a given task ahead of time. Additionally, it is possible that the
accuracy of the classical machine learning methods, such as a random
forest classifier, is sufficient for a given prediction task. Therefore, to
attain the best performing model, we have to execute multiple
experiments with different data type combinations, different fusion
approaches, and different neural network architectures. Moreover,
some tasks might benefit from building multi-task training, while
others might perform better for the target variable of interest in a
single-task setting.

To accommodate such combinatorial experimentations, we
setup a benchmarking pipeline which can be configured to run dif-
ferent flavors of Flexynesis on different combinations of
data modalities, different fusion options, fine-tuning options,
along with a baseline performance evaluation using random forest,
support vector machines, XGBoost and random survival for-
est methods. The pipeline then builds a dashboard with rankings of
different experiments in terms of prediction performances for dif-
ferent tasks.

We ran the benchmarking pipeline on datasets with clinically
relevant outcome variables and built a dashboard of rankings of the
different experiments (See dashboard and Supplementary Data 6).
We designed 14 different tasks across 5 different datasets in a total
of 222 different experiments, where we tested different tools, tool
flavors, data fusion and fine-tuning options. Immediate observation
confirms previous findings that no single neural network model
outperforms others in all tasks. Of the 14 tasks, the top ranking
method was equally divided between deep learning models and
classical machine learning models (SVM, Random Forest, XGBoost)
(Fig. 9A, see Supplementary Data 6: Sheet 2 for paired bootstrap
tests for the comparison of best performing deep learning and
baseline models). Cross-experiment comparison of model perfor-
mances suggest a slight edge for deep learningmodels (Fig. 9B) with
small effect sizes, nonetheless. Furthermore, we compared the deep
learning models in terms of omics data modality fusion options (see
Methods: Data modality fusion options). Among the best perform-
ing models, we don’t observe a significant difference between early
or intermediate fusion settings (Fig. 9C). Similarly, fine tuned deep
learning models don’t show any insignificant improvement over the
counterparts with no fine-tuning (Fig. 9D). Finally, among the GNN
models, the choice of SAGE convolution method yields slightly
better results in our experiments (Fig. 9E), but doesn’t achieve sta-
tistical significance. These experiments suggest that the choice of
deep learning versus baseline methods, or deep learning method
settings such as model tuning, fusion options, or convolution
methods probably depends on the specific task and it is not possible
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to generalize to all possible situations. The value of different
approaches is task specific, therefore we advise running multiple
experiments to obtain the best model for the dataset at hand. This
accessory pipeline ameliorates the execution of such experiments.
The pipeline is available at https://github.com/BIMSBbioinfo/
flexynesis-benchmarks.

Discussion
In this paper, we presented Flexynesis, a deep learning based bulk
multi-omics integration suite with a focus on (pre-)clinical variable
prediction. Despite the availability of many published deep learning-
based methods, the main reason for developing this package was to
provide an improved user experience when adapting deep learning
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for multi-omic data analysis. Existing methods lack one or more of
the important components, where the absence of any of these
components creates significant overhead for the users when adapt-
ing deep learning applications in their experiments. We provide a
package that is easily installable, supported with good documenta-
tion, real-life benchmarking datasets with example applications, and
automates data cleanup and harmonization, feature selection,
hyperparameter optimisation, model evaluation, and feature

importance ranking. The package is designed in a way that the user
can easily switch different kinds of model architectures, can easily
decide which data types to use in modeling by simply providing a list
of files, experiment withmodeling different kinds of clinical variables
in single-task or multi-task settings and build models for supervised
(regression, classification, survival), unsupervised, or cross-modality
tasks without having any in-depth experience in building deep
learning architectures. Thus, the user can focus on the biological
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context of the study and come up with interesting questions to solve
with this diverse toolkit.

It has been previously shown that deep learning may struggle to
outperform classical machine learning methods15–17, which we have
also observed in a subset of our benchmarking experiments. Even
though classical machine learning methods might perform as good as
a neuralnetwork in certain situations, thedecision to usedeep learning
is not guided solely by the prediction performance for a given task.
Deep learning offers a broader level of flexibility such as tolerance for
missing labels, support for multi-task modeling, enables both super-
vised/unsupervised/and matrix-to-matrix predictions while simulta-
neously allowing dimension reduction. Furthermore, pre-trained deep
learning models can be fine-tuned on a separate dataset enabling
transfer learning. Finally, deep learning gains a competitive advantage
with increasing amounts of data39,40, which should be more common-
place in clinical research as multi-omic profiling becomes easier and
cheaper over time.

Although we use Flexynesis mainly for multi-omics data integra-
tion, current implementation is built in a data-agnosticmanner, where
the only assumption is that the input data matrices are in a tabular
format, in other words, it is a multi-modal data integration tool suite.
Along this line of thought, we have utilized not just bulk omics data,
but other kinds of tabular data such as protein-language model
embeddings.With the samemotivation, we alsowanted to observe if it
would work on supervised tasks on single-cell multi-omics, and it
turned out to be useful for the cell type classification task using CITE-
Seq data (Fig. 9A, Supplementary Data 6). However, we don’t see
Flexynesis in its current form as an alternative to single-cell-oriented
tools. A major difference in the kinds of applications where we utilize
Flexynesis in contrast to the typical single-cell pipelines, is that there is
a big emphasis on supervised tasks in (pre)-clinical cohort studies as
there are always some clinical sample labels available that can guide
the analysis, such as survival outcomes, disease subtypes, histology,
patient characteristics such as age, gender, so on and so forth. On the
other hand, the single-cell omics applications are usually driven by
unsupervised applications, where individual cell identities are not
always apparent, therefore unsupervised approaches for data inte-
gration and clustering is typically carried out, which is followed by
differential marker analysis to ascribe identities to such clusters.
Although we have also provided such functionalities for Flexynesis
(unsupervised clustering using variational autoencoders, clustering,
and associated utility functions for visualisation), purely unsupervised
approaches are not our main goal, rather a side-product of what we
would like to achieve with Flexynesis. Other single-cell oriented tools
are better equipped for investigation of such unsupervised clusters
with methods for unsupervised integration, marker analysis, and a
variety of accessory utilities one needs to inspect such clusters of
single-cells. As per the usual unsupervised clustering that are usually
carried out for the (pre-)clinical bulk sequencing cohorts such as dis-
ease subtyping, we expect Flexynesis to be used in a supervised
manner. For instance, to investigate prognostic disease subtypes, a
model can be trained with supervisor MLPs that predict survival out-
comes or MLPs that predict treatment outcomes. Thus the sample
embeddings would reflect clusters that are guided by prognostic
labels. Similar ideas can be applied for any subtyping scheme, whether
diagnostic or prognostic. Thanks to the multitasking support, one can
do clustering of samples across multiple patient covariates, thus deli-
neating intersectional diagnostic/prognostic subtypes. So, even for the
typically unsupervised tasks such as disease subtyping, we expect
Flexynesis to be used in conjunctionwith some supervision associated
with clinical variables.

By easily adapting Flexynesis into a bioinformatics pipeline, we
have assessed both the relative performance of different flavors of
deep learning architectures, along with other parametric choices
one can make in multi-omics integration such as the combination of

data modalities, different fusion options, and fine-tuning options.
The benchmarking pipeline we built with various real-life datasets
should allow both the developers in assessing the strengths and
weaknesses of the novel features contributed to the package, but
also guide the users to make choices based on the nature of the
modeling task.

For future development of the toolkit, each of the multiple com-
ponentswill be easily expanded by implementing alternativemethods.
Currently we offer multiple alternative models for training and meth-
ods for marker discovery, but not for feature selection or hyperpara-
meter optimisation.Weplan to implement alternative hyperparameter
optimization algorithms provided by libraries such as Ray Tune41 or
Optuna42, and expand the marker discovery, using various ranking
algorithms available within the Captum library. Feature selection can
be extended using unsupervised feature selection methods such as
Fractal Autoencoders43.

As a final remark, it is important to note that what we developed
here is not a set of novel deep learning algorithms. None of the com-
ponents we built are novel, however the innovation comes from how
these components are brought together into a usable package. Flex-
ynesis improves user experience and makes multi-omic deep learning
accessible to a broader audience.

Methods
Flexynesis is a pytorch-lightning based deep learning framework
designed for bulk multi-omics data integration with a focus on preci-
sion oncology applications, however it is possible to use it for any
tabular multi-modal datasets. Flexynesis workflow consists of the fol-
lowing main steps: importing the multi-omics data and metadata for
training and testing samples, running a bayesian sequential hyper-
parameter optimisation routine using scikit-optimize package44 on the
training dataset and choosing the best model parameters in terms of
validation metrics, evaluating the best performing model on the test
(holdout) dataset, and computing the ranking of the input features in
terms of importance using the Captum package34. If the user opts for a
fine-tuning procedure, the trainedmodel is fine-tuned on a subsample
of the testing set and the fine-tuned model is evaluated on the
remaining test samples.

Importing the training and test datasets
Flexynesis expects a path to a data folder which contains training and
testing data. Both training and testing data folders should contain at
least one matching data modality (e.g. omics1.csv, omics2.csv…) as a
data matrix and a meta-data file that contains sample labels for each
sample (clin.csv). The omics data files contain omic profiles of samples
where the columnnames represent unique sample/patient ids and row
names represent the profiled omic features. The sample metadata file
(clin.csv) contains the unique sample names in rows and clinical fea-
tures (outcome variables) as column names.

During the data import (Supplementary Fig. 1), Flexynesis checks
for common file format errors and cross-checks information available
in omics data files and metadata files to make sure that both training
and testingdatasets are ready for downstreamanalysis. After the sanity
checks, the training data is further processed. Common issues with
tabular data such as missing values are imputed, features with low
variance are removed, samples with no available features are dropped.
After the data cleanup, depending on the user’s requirements, a fea-
ture selection is implemented to keep the top most informative fea-
tures based on the Laplacian Scoring method45. Among the top most
informative features, highly redundant features are also dropped to
keepunique and informative features. The feature selection is done for
each data modality separately. The user can choose to keep a mini-
mum number of features per data modality. In case the user opted to
use a graph convolutional network, the genetic interaction networks
are downloaded from the STRING database (according to the
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requested organism id) and the training data modalities are filtered to
keep only the features that are found in the interaction networks.

After feature selection, the training data is scaled and centered
and optionally log-transformed. Once themodifications to the training
data are finished, testing data is harmonized with the training data to
make it compatible with the finalmodel. To avoid data leakage, testing
data is only scaled/centered using the scaling factors learned from the
training data and the features selected for training data are kept in the
testing data. Thus the testing data does not influence feature selection
or data normalization. All omic data and sample labels are finally
converted into pytorch tensors.

If the user decides to use a subset of the clinical variables as
covariates in the model, the variables are processed to convert cate-
gorical variables into numerical variables by one-hot-encoding. The
numerical variables are kept as they are. Missing features are imputed
to the median values. Thus the list of covariates are converted into a
numericalmatrixwhich is used as an additional input datamodality for
model training.

Hyperparameter optimisation
In the current implementation of the Flexynesis package, a Bayesian
sequential hyperparameter optimization procedure is followed (Sup-
plementary Fig. 2). Initially a random set of model specific hyper-
parameters are assigned and scikit-optimize package44 is used to
suggest different parameters after each hyperparameter optimization
iteration. The user decides on how many iterations to carry out. The
commonly optimized hyperparameters are “latent_dim”: the number
of units to use for the encoding (the number of dimensions to aim for
the sample embeddings) per data modality, “hidden_dim_factor”: the
size of the hidden layer units in relation to the size of the previous
network layer. Instead of setting this to absolute value terms, we
decided to make it into relative values so that the parameter search
behaves similarly depending on different input sizes, as different data
modalities may have different number of features, thus having differ-
ent input layer sizes in the network. “Supervisor_hidden_dim”: repre-
sents the number of units to use in the hidden layer of the MLP heads.
The input layer size of this MLP is the total size of the latent factors
(number of modalities x latent dim parameter). “lr”: the learning rate
for the ADAM optimiser46, “epochs”: the max number of epochs to
continue the training. We use the ‘early_stop_patience’ callback so that
the training is stopped if the validation loss values aren’t improving
after a set number of epochs. Using the early stop patience sig-
nificantly improves training speed and also avoids overfitting on the
training data, thus improving model generalization on test data. See

Table 1 for the default search space configurations used by different
model architectures.

Model/network/encoding options
Flexynesis currently contains a selection of architectures which can be
used to train the models.

• DirectPred: Amulti-task fully connectedneural network for direct
prediction of one ormore target variables (Supplementary Fig. 4).

• supervised_vae: A variational autoencoder model architecture
with MMD loss (Supplementary Fig. 5).

• CrossModalPred: A cross-modality encoder/predictor, which is a
special implementation of the variational auto-encoders, in which
the input datamodalities and output datamodalities can be set to
different subsets of the available data modalities (Supplemen-
tary Fig. 6).

• MultiTripletNetwork: A fully connected neural network imple-
mented with a triplet loss-based contrastive learning (Supple-
mentary Fig. 7).

• GNN: A graph neural network that by default uses the STRING
database as interaction networks. Different graph convolution
options are available: GraphConv47, GCNConv48, and SAGEConv49.
Currently supports only early-fusion of data modalities (Supple-
mentary Fig. 8).

All of these networks can be augmented with one or more Multi-
Layered-Perceptrons (MLPs) depending on the number of target vari-
ables the user wants to build a prediction model for. The user can
select one or more target variables for regression/classification tasks.
On top of these regression/classification heads, a survival MLP can be
added for which the user needs to provide two variables, where time
represents the time since last followup, and event is a binary value
(0 or 1) which represents whether an event has occurred since the last
follow up. An event can be any clinically relevant event such as disease
progression or a death event.

Runtimes and resources
In order to highlight resources consumed by a typical Flexynesis run,
we ran a resource profiling experiment, in which we used 500 breast
cancer samples with gene expression and copy number alteration data
modalities consisting of 2000 features each.We profiled the time (wall
clock time) it takes to import data and run a single hyperparameter
optimization step.We also profiled theCPU (Intel(R) Xeon(R) Platinum
8168 CPU @ 2.70GHz) RAM usage and GPU (Nvidia Tesla P40) RAM
usage statistics for 5 different neural network architectures with two

Table 1 | Hyperparameter Optimization Search Spaces

Model Hyperparameter Type Range / Values Notes

DirectPred / supervised_vae / CrossModalPred /
MultiTripletNetwork

latent_dim Integer 16–128 –

hidden_dim_factor Real 0.2–0.5 Relative to input dimension

lr Real (log) 1e-4–1e-2 Learning rate

supervisor_hidden_dim Integer 8–32 –

max epochs Categorical [500] Fixed

batch_size Categorical 32–128 (powers of 2) Dataset-dependent

GNN latent_dim Integer 16–128 –

node_embedding_dim Integer 4–32 Node embedding size

num_convs Integer 1–4 Number of convolutional layers

lr Real (log) 1e-4–1e-2 –

supervisor_hidden_dim Integer 8–32 –

max epochs Categorical [500] Fixed

activation Categorical [‘relu’] Fixed

batch_size Categorical 32–128 (powers of 2) Dataset-dependent
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different fusion approaches (early/intermediate). We observe that
DirectPred (classical feed forward network) with intermediate fusion
utilizedwithGPU is the fastestoption.Modelswith intermediate fusion
have smaller number of parameters, therefore faster to train and
consume lessmemory (Supplementary Fig. 10, Supplementary Data 7).

Data modality fusion options
Flexynesis supports two kinds of data modality fusion options for
fusing the omics layers.With “early fusion”, all input omicmatrices are
concatenated prior to training. With intermediate fusion, the input
omic matrices are individually propagated through dedicated encod-
ing networks. The output layer of the encoding networks (or the latent
layer in the auto-encoder architectures) are concatenated and used as
input to the MLP heads for each target/survival variable.

Model training and loss functions
During model training, the training data is split by default into 80/20
portions for training and validation. The user can also select to do a
k-fold cross-validation, in which the training data will be split into
k-folds. For each MLP head dedicated to the corresponding outcome
variable, a loss function is computed according to the variable types. If
the variable is a continuous/numeric variable, a mean-squared-error
loss is computed. If the variable is a categorical variable, a cross-
entropy loss value is computed. If the variable is a survival variable, the
cox-proportional hazards loss function is computed. The VAE models
have an additional loss value: Maximum Mean Discrepancy (MMD)
Loss25. The MultiTripletNetwork models use a triplet loss for con-
trastive learning, where the similarity between the anchor sample and
positive examples are maximized, while the similarity between the
anchor sample and the negative examples are minimized50.

Depending on the model architecture and the number of MLP
heads, there may be multiple loss values computed for a training task.
The total loss is computed by summing up the individual loss values.
However, as different loss functions can have different scales, itmaybe
beneficial or even necessary to have a weighting schema to avoid one
of the loss values to dominate the training. For this, we implemented
the uncertainty weighting method51, which can be disabled.

The total validation loss guides the training process. The final
validation loss obtained from the training run is used to inform the
hyperparameter optimiser to set the next set of hyperparameters for
the next run.

Model fine-tuning
When the user opts for a fine-tuning procedure, a portion of the test
samples (user defined) are used to fine-tune the trained model para-
meters (Supplementary Fig. 3). The fine-tuning can be beneficial in
cases of dramatic shifts in dataset distributions between training and
test datasets. The fine-tuning procedure consists of a five-fold cross-
validation scheme on a grid searching a combination of different
learning rates and different model parameter freezing strategies
(freeze the encoders, freeze the MLP heads or freeze none). Again an
early stop callback is used with a low patience (3 epochs) to avoid
overfitting to the testing dataset. The best model from this cross-
validation scheme is chosen as thefine tunedmodel to be evaluated on
the remaining test samples.

Model performance evaluation metrics
Once amodel is optimized on the training/validation sets, themodel is
evaluated on the testing dataset. For regression tasks, we compute the
mean squared error, R-squared, and the Pearson correlation coeffi-
cients to evaluate the performance of a model. For classification tasks,
we compute the balanced accuracy, F1 score (weighted average),
AUROC (weighted average), AUPR (weighted average), and kappa
statistic. For survival tasks, we compute the Harrel’s C-index as the
model evaluation metric.

Feature importance calculation for marker detection
After model training, most important features for each target variable
and for each factor within the target variable are calculated using two
alternative feature attribution methods: the Integrated Gradients
method33 and GradientSHAP method.

Assessment of baseline performance
Flexynesis also contains functions to evaluate the prediction perfor-
mance of classical machine learning algorithms on the same task. For
regression and classification tasks, random forests52, support vector
machines53, and XGBoost54; for survival tasks, random survival forests55

are utilized. These models are trained using a 5-fold cross-validation
scheme where hyperparameter optimization is carried out on the
training data and the best performing model is evaluated on the test
datasetwith the samemetrics asweuse for the neural networkmodels.
Scikit-learn library was extensively utilized for these methods and
computing the evaluation metrics56.

Paired bootstrap evaluation
We used paired bootstrapping to compare model performance across
multiplemetrics. For each task, 100bootstrap sampleswere generated
by resampling test instances with replacement. Model predictions
were evaluated using task-specific metrics (e.g., F1 score, Pearson
correlation, concordance index), applied to each bootstrap sample.
Confidence intervals (95%) were computed using the percentile
method. For pairwisemodel comparison, we conducted a paired t-test
over bootstrap scores.

Network analysis
Human genetic interaction networks were downloaded from the
STRING database31 and network centrality measure (hubness score)
was calculated using the igraph R package57.

Batch-Alignment of Embeddings Post-training
In the cases when different datasets were combined to build models,
sample embeddings originating from different datasets can be aligned
in the embedding space after the model training phase. Two different
approaches are currently implemented:
1. Batch alignment using reciprocal PCA with mutual nearest

neighbors: We utilize Reciprocal PCA (rPCA) to align sample
embeddings derived from two different datasets by applying
Principal Component Analysis (PCA) independently to each batch
and projecting the data into the other’s principal component
space. Anchor samples are identified using Mutual Nearest
Neighbors (MNN) where the anchors represent samples that are
closest across batches in both transformed spaces. Using the
anchors a reciprocal PCA space is learned and other non-anchor
samples are transformed in this space58.

2. Batch alignment using optimal transport: we use Python POT
library59 to compute optimal transport plans between twobatches
of sample embeddings, where we map the samples from one
batch to another in a way that preserves their relative Euclidean
distances, harmonizing batch-specific variations.

Datasets
CCLE. Multi-omic and drug response data for the cell lines from the
CCLE10 was downloaded from https://zenodo.org/records/3905462
and processed using the PharmacoGx R package60.

GDSC2. Multi-omic and drug response data for the cell lines from the
GDSC was downloaded from https://zenodo.org/record/3905481 and
processed using the PharmacoGx R package60.

Datasets from Cbioportal. The merged cohorts for Lower Grade
Glioma (LGG) and Glioblastoma MultiForme (GBM) dataset21 were
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downloaded from: https://www.cbioportal.org/study/summary?id=
lgggbm_tcga_pub.

The TCGA pan-cancer atlas datasets used in the fine-tuning use-
case (Fig. 6B), includingmulti-omics data for colorectal cancer61, breast
invasive carcinoma62, and glioblastoma multiforme21 was down-
loaded from:
– https://www.cbioportal.org/study/summary?id=coadread_tcga_

pan_can_atlas_2018
– https://www.cbioportal.org/study/summary?id=brca_tcga_pan_

can_atlas_2018
– https://www.cbioportal.org/study/summary?id=gbm_tcga_pan_

can_atlas_2018

METABRIC. Multi-omic data for the metastatic breast cancer cohort
from the METABRIC study23 was downloaded from Cbioportal:

https://www.cbioportal.org/study/summary?id=brca_metabric

Single-cell CITE-Seq of bone marrow. Single-cell CITE-Seq dataset63

wasdownloaded andprocessedusing Seurat (v5.1.0)64. 5000cellswere
randomly sampled for training and 5000 cells were sampled for
testing.

DepMap. The omics data, CRISPR screens and PRISM drug screening
data for cell lines from theDepMapproject26 wasdownloaded from the
DepMap Portal (https://DepMap.org/portal).

TCGA data. The TCGA datasets were downloaded using the TCGA-
Biolinks package65.

Prot-trans sequence embeddings. Protein sequence embeddings for
each gene was obtained using the prot_t5_xl_uniref50 transformer
model (available at https://huggingface.co/Rostlab/prot_t5_xl_
uniref50)29. The canonical protein sequences of the human pro-
teome were downloaded from the UniProt database66. For each pro-
tein sequence, the transformermodel outputs a numeric matrix of the
dimensions 1024 xN where N is the number of amino-acids in the
protein sequence. For each protein sequence, the row-wise averages
were calculated to obtain protein-level 1024 dimensional vector
embeddings.

describePROT. Structural/functional features of human protein
sequences were downloaded from the describePROT database30:

http://biomine.cs.vcu.edu/servers/DESCRIBEPROT/download_
database_value/9606_value.csv.

Data visualization
Data visualization methods implemented in the Flexynesis package
uses Matplotlib67 and Seaborn68 and lifelines69 python libraries.

We used icons fromwww.flaticon.com in the graphical abstract of
this manuscript.

Clustering
Flexynesis is equipped with utility functions to cluster a given matrix
and choose optimal clusters. Currently two clustering methods are
supported: Louvain clustering from the community package70 and
k-means algorithm from the scikit-learn package56, where the cluster-
ing can be done for different values of k and the optimal clustering
result can be selected by Silhouette score rankings.

Integration with the Galaxy Server
Flexynesis was integrated into the Galaxy Server deployed into the
European Galaxy platform (usegalaxy.eu) to improve accessibility and
usability71. To guarantee reproducibility and ease of installation in the
Galaxy environment, a Bioconda package was developed72, and a Bio-
Container was created73. Thanks to this integration, users without

access to large computing resources may run Flexynesis without
requiring command-line expertise using an intuitive online graphical
interface. Furthermore, Flexynesis can be integrated within estab-
lished Galaxy workflows, such as RNA-seq and ATAC-seq, to enhance
reproducibility, and ease of use, and enable broader adoption among
the scientific community. In-depth testing and documentation were
conducted to provide the optimal performance and user experience
inside the Galaxy environment.

Statistics and reproducibility
In this manuscript, the primary source of data was publicly available
multi-omic datasets of patient cohorts and cancer cell lines. No sta-
tistical method was used to predetermine sample size. No data were
excluded from the analyses. The experiments were not randomized.
The Investigators were not blinded to allocation during experiments
and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the datasets used in this study are previously published datasets
(see Methods for how they were further processed for training). None
of these datasets are under restricted accesss: - Multi-omic and drug
response data for the cell lines from the CCLE10 can be downloaded
from https://zenodo.org/records/3905462. - Multi-omic and drug
response data for the cell lines from the GDSC can be downloaded
from https://zenodo.org/record/3905481. - The merged cohorts for
Lower Grade Glioma (LGG) and Glioblastoma MultiForme (GBM)
dataset21 are available at: https://www.cbioportal.org/study/summary?
id=lgggbm_tcga_pub. - Multi-omics data for colorectal cancer (TCGA)
are available at Cbioportal: https://www.cbioportal.org/study/
summary?id=coadread_tcga_pan_can_atlas_2018. - Multi-omics data
for breast invasive carcinoma (TCGA) are available at Cbioportal:
https://www.cbioportal.org/study/summary?id=brca_tcga_pan_can_
atlas_2018. - Multi-omics data for glioblastoma multiforme21 are avail-
able at Cbioportal: https://www.cbioportal.org/study/summary?id=
gbm_tcga_pan_can_atlas_2018. - Multi-omic data for the metastatic
breast cancer cohort from the METABRIC study23 are available at
Cbioportal: https://www.cbioportal.org/study/summary?id=brca_
metabric - Single-cell CITE-Seq dataset63 is available via the Seurat
(v5.1.0)64 package. - The omics data, CRISPR screens and PRISM drug
screening data for cell lines from the DepMap project26 is available at
the DepMap Portal (https://DepMap.org/portal). - The TCGA datasets
are available via the TCGABiolinks package65. - Structural/functional
features of human protein sequences are available at the describe-
PROT database30: http://biomine.cs.vcu.edu/servers/DESCRIBEPROT/
download_database_value/9606_value.csv. All the above-mentioned
datasets were further processed to enable training Flexynesis models.
The datasets prepared for training Flexynesis models and the outputs
of the model training required to reproduce the figures and tables in
this manuscript are available in the Zenodo database under DOI
accession 10.5281/zenodo.16442997 (https://zenodo.org/records/
16442998)74. The source data for the figures are provided with this
paper. Source data are provided with this paper.

Code availability
The source code repositories developed for this study at the time of
this manuscript submission are deposited at the Zenodo database: -
The raw/processed dataset descriptions along with code to reproduce
manuscript figures can be found at https://github.com/BIMSBbioinfo/
flexynesis_manuscript. (v.1.0.3 is available at https://zenodo.org/
records/16444303)75. The repo is accessible with an MIT licence. -
The core Flexynesis software package is available at: https://github.
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com/BIMSBbioinfo/flexynesis (v1.0.0 available at https://zenodo.org/
records/16444460)76. The repo is accessible with a Modified MIT
License for Academic and Non-Commercial Use. - The accessory
benchmarking pipeline utilizing Flexynesis is available at: https://
github.com/BIMSBbioinfo/flexynesis-benchmarks (v.1.0.0 is available
at https://zenodo.org/records/16443659)77. The repo is accessible with
a Modified MIT License for Academic and Non-Commercial Use.
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