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Alterations in energy metabolism are recognized as a hallmark of cancer. Experimental evidence shows 
that oncogenes play a key role in the reprogramming of metabolism. In neuroblastoma, the oncogene 
MYCN, a main risk factor of poor prognosis, has been demonstrated to lead to expression changes in 
numerous glycolytic enzymes. It is not clear whether all these targets are required and how they jointly 
shape metabolic responses. Here we use a computational modeling approach to dissect the effects 
of MYCN targets on the pathway individually and in combination. We develop the first mathematical 
model of the energy metabolism in neuroblastoma cells based on our published experimental data. 
The analysis shows that overall, MYCN overexpression leads to Warburg-like flux alterations. However, 
individual MYCN targets can have opposing and sometimes unexpected effects. Interestingly, not 
all of them contribute to notable flux alterations, at least with regard to glycolysis. Moreover, our 
model predicts a potential bistability of cellular metabolism with a low-flux state likely representing a 
non-proliferative state. Overall, our study emphasizes that perturbations such as expression changes 
should be analysed in the context of realistic pathway models, in which specific interactions and 
complex regulations are captured.

Otto Warburg observed that cancer cells exhibit alterations in energy metabolism in the 1920s. According to 
his hypothesis, cancer cells tend to take up more glucose and convert it to lactate instead of using the more 
energy efficient pathways of mitochondrial metabolism, even in the presence of sufficient oxygen. This effect was 
termed aerobic glycolysis, or Warburg effect, but it would be decades before it came back into the focus of cancer 
research1. Today, an altered energy metabolism is recognized as one of the hallmarks of cancer development2, 
but we lack a thorough understanding of how the metabolism of cancer cells becomes deregulated and how 
specific genetic alterations drive metabolic changes. The topic has been a focus of both experimental and 
theoretical research, and the impact of oncogenes on energy metabolism has been intensively studied for various 
tumour types3,4. Here we aim to investigate the impact of the oncogene MYCN on metabolic flux alterations in 
preclinical neuroblastoma models.

Neuroblastoma is one of the most common solid cancers of childhood, accounting for approximately 8% of 
paediatric cancers and 15% of cancer deaths in children5. Prognoses are highly heterogeneous: while the cancer 
spontaneously regresses in some patients, it is highly aggressive in others. The survival rate in high-risk cases is 
still below 50%6. One of the major risk factors in neuroblastoma is the amplification of the MYCN oncogene, 
observed in around 20%-25% of patients5,6. MYCN is a transcription factor of the MYC family, which also 
includes c-MYC and MYCL. While its role in neuroblastoma is known for decades7, MYCN amplification was 
found in 7% of all samples from The Cancer Genome Atlas (TCGA), representing 33 distinct tumour types8. 
Experiments have shown that the amplification of MYCN induces changes in diverse processes such as cell 
proliferation, senescence and inflammation9. MYCN also influences metabolism in a variety of ways, altering the 
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expression of glycolytic enzymes10–12 and influencing glutamine metabolism13, β-oxidation14 and biosynthetic 
pathways15. We and others have shown that MYCN reprograms metabolism on a global scale and enhances 
glycolysis16,17.

An early large-scale analysis identified four glycolytic genes as MYCN targets: aldolase (ALD), triosephosphate 
isomerase (TPI), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and pyruvate kinase (PK)10. A later 
study reported an upregulation of the lactate transporters (monocarboxylate transporters MCT1 and MCT2)11. 
Also upregulated are the glucose transporter GLUT1, the enzymes hexokinase (HK), phosphoglycerate kinase 
(PGK), lactate dehydrogenase (LDH) and pyruvate dehydrogenase kinase (PDK)12. Because PDK inactivates 
pyruvate dehydrogenase (PDH), PDH activity decreases if MYCN is overexpressed. Although a plethora of 
MYCN targets have been described, it is unclear why MYCN has so many targets involved in central energy 
metabolism, how they interact and the degree to which specific targets contribute to metabolic reprogramming, 
in light of the complex and multilayered regulation of the energy metabolism.
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Here we address these questions by developing and analysing a computational model of the energy metabolism 
and employing experimental data from a neuroblastoma cell line model with and without overexpression of 
MYCN17. Computational modelling is a well-established method to study metabolic pathways and has been 
applied to different cell types, including mammalian and yeast cells18–22. Investigations using both core and 
detailed kinetic models have helped elucidate regulatory principles of energy metabolism and the impact of 
intercellular metabolic coupling18,20,23–25. Recent modelling approaches also focus on cancer cells, in particular 
pancreatic26, cervical27 and general cancer properties28. The model by Shestov et al.28 motivated an investigation 
of targeting GAPDH in cells that employ aerobic glycolysis29. While these cancer specific models are available, 
to our knowledge, no neuroblastoma-specific model exists. Here we address this by developing a model of 
the energy metabolism to investigate the effect of alterations in gene expression induced by overexpression of 
MYCN in neuroblastoma cells, based on our previously published experimental data. Our analysis demonstrates 
a shift of fluxes to a Warburg-like phenotype, but not all experimentally described MYCN targets are required. 
Our interaction analysis indicates that most target effects act additively, and only very few target combinations 
show antagonistic effects. We observe bistability in both MYCN-low and MYCN-high cells, which might be 
attributable to differences between metabolically active and inactive cells.

Results
A model of the energy metabolism in neuroblastoma
Here we develop a model of energy metabolism that allows for the integration of cell type-specific metabolomics 
and extracellular flux data obtained from isogenic neuroblastoma cell lines with and without overexpression of 
MYCN17. For this purpose, we built a model that describes all glycolytic reactions from glucose uptake to pyruvate 
production, lactate production, secretion and acetyl-CoA production in detail. To reduce complexity, the citric 
acid cycle (TCA), the respiratory chain and the overall ATP consumption are represented by lumped reactions. 
A scheme of the model is given in Fig. 1a. The model incorporates the uptake of the external metabolites glucose 
and oxygen as well as an exchange of lactate with the medium. The overall model structure is grouped in five 
parts, marked by coloured vertical bars in Fig. 1a: upper glycolysis (dark green), lower glycolysis (light green), 
lactate production and exchange (blue), ATP consumption (red) and mitochondrial metabolism (purple). It 
incorporates well-described pathway regulations: HK is inhibited by its product Glc6P; phosphofructokinase 
(PFK) is regulated by the energy level of the cell, here modelled as inhibition by ATP; and PK is activated by 
Fru1,6-BP (all metabolite abbreviations are explained in the legend of Fig. 1). Overall, the model incorporates 
18 reactions and 19 metabolites. There are three conserved moieties: a conservation relation for ATP and ADP, 
one for NAD and NADH, and a third capturing the total phosphate level, thus including phosphate, ATP and 
all glycolytic intermediates from Glc6P to PEP. Details of the model are given in the Supplementary Material.

All but two reactions follow Michaelis-Menten type kinetics. These concern oxygen transport and overall ATP 
consumption, which are represented by mass action kinetics. While most reactions are modelled as reversible 
reactions, the mitochondrial and ATP consumption reactions are represented as irreversible processes. The 
detailed kinetic descriptions are given in the supplementary material. The kinetic parameters are estimated 
from neuroblastoma cell-line-based metabolomics data and extracellular flux measurements, supplemented by 
parameter values from literature. Our metabolomics data capture metabolite levels in SH-EP neuroblastoma 
cells with Tet-inducible MYCN expression, which were grown under three different glucose concentrations17. In 
addition, for these conditions we measured the extracellular acidification rate (ECAR), which characterizes the 
lactate release of the cells, and the oxygen consumption rate (OCR) using a Seahorse analyser. Since maximal 
velocities are commonly assumed to be cell-type specific, we used the neuroblastoma-specific metabolomics and 
flux data to estimate these values by parameter fitting. Details on the parameter assignment, fitting procedure 
and the robustness of model parametrisation and predictions are given in Materials and Methods.

Fig. 1.  Model structure and sensitivity of fluxes. (a) Structure of the computational model of the energy 
metabolism. The model contains the following metabolites: Glc glucose, Glc6P glucose 6-phosphate, 
Fru6P fructose 6-phosphate, Fru16BP fructose 1,6-bisphosphate, GAP glyceraldehyde 3-phosphate, 
DHAP dihydroxyacetone phosphate, BPG 1,3-bisphosphoglycerate, 3PG 3-phosphoglycerate, 2PG 
2-phosphoglycerate, PEP phosphoenolpyruvate, Pyr pyruvate, Lac lactate, ACoA acetyl-coenzyme A, P 
Phosphate, O2 O2, as well as ATP, ADP, NAD and NADH. The external metabolites glucose glc_ext, lactate 
lac_ext, and oxygen O2_ext are not shown. The included reactions are: glctp glucose transport, HK hexokinase, 
GPI glucose 6-phosphate isomerase, PFK phosphofructokinase, ALD aldolase, TPI triosephosphate isomerase, 
GAPDH glyceraldehyde 3-phosphate dehydrogenase, PGK phosphoglycerate kinase, PGM phosphoglycerate 
mutase, ENO enolase, PK pyruvate kinase, LDH lactate dehydrogenase, lactp lactate transporter, PDH, 
pyruvate dehydrogenase, TCA (or CC) tricarboxylic acid cycle, Resp Respiration, o2tp oxygen transport, 
atp_cons ATP consumption. Arrows represent reactions or transport processes, dashed lines regulations. The 
overall pathway can be divided in five parts, which are marked by coloured vertical bars: upper glycolysis 
(dark green), lower glycolysis (light green), lactate production and exchange (blue), mitochondrial metabolism 
(purple) and ATP consumption (magenta). (b) Normalized flux sensitivity coefficients for changes in the 
maximal velocity of HK at the reference state of the baseline model. Flux sensitivities are equal within the 
pathway parts shown in panel a: upper and lower glycolysis, lactate production, mitochondrial metabolism and 
ATP consumption. (c) Sensitivities of all model fluxes to kinetic parameters. Given are normalized sensitivity 
coefficients of the model fluxes (y-axis, labeled by enzyme name of the reaction) for changes in parameters 
(x-axis, all maximal velocities and rate constants). Red colours show positive sensitivity coefficients, blue 
negative sensitivity coefficients.
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The parameter set of the best model fit is given in Supplement Table S.1. We refer to the model using that 
parameter set as the baseline model, and the fitted steady state as the reference state. Comparing its metabolite 
concentrations to respective literature values shows that all values are in the expected range, see Figure S.1. The 
values of steady-state metabolite concentrations and fluxes are given in Supplemental Tables S.2 and S.3.

Sensitivity analysis of the baseline model shows strong impact of kinases, respiration and 
ATP consumption
To find out how strongly a change in one reaction affects all other reactions, we analysed the sensitivity of 
the steady state fluxes towards parameter changes. Figure  1b shows the effect of a parameter change in the 
maximal velocity of HK. Groups of fluxes respond similarly: this holds for processes of upper and lower part 
of glycolysis (dark and light green in Fig. 1a), for lactate production and exchange (blue bar in Fig. 1a), and for 
the mitochondrial metabolism (purple bar in Fig. 1a). Steady state fluxes within these groups show the same 
sensitivity towards parameter changes, which result from stoichiometric constraints within the pathway leading 
to linear dependencies of fluxes. Therefore, four exemplary fluxes are sufficient to characterize the response of 
the system. We chose glucose uptake, lactate release, oxygen uptake and ATP consumption (red bar in Fig. 1a) 
for this purpose.

Next, we analysed how strongly the parameters of all reactions influence the steady state fluxes of the system. 
Figure 1c shows the impact of parameters, in particular the maximal velocities and rate constants, on all steady 
state fluxes. This demonstrates that the parameters of six processes have the strongest impact: ATP consumption 
(k1_atp_cons), oxygen transport (k1_o2tp), respiration (vmax_resp) and the kinase mediated reactions (vmf_
HK, vmf_PFK1, vmf_PK). Other parameters have a very small or no impact (Fig. 1c, white colour). Notably, the 
maximal velocities of the kinases HK and PFK have a strong impact on the flux distribution. While an increase 
in the activity of both kinases leads to increased fluxes through glycolysis and lactate production (red colour in 
Fig. 1c), there is a decrease in mitochondrial metabolism and ATP consumption for HK (blue colour), while 
an increase in PFK activity leads to an increased flux through these reactions. The sensitivity coefficients of the 
maximal velocity of the PK reaction are generally smaller and show a decrease in glycolytic and lactate fluxes 
combined with an increase in the fluxes of mitochondrial reactions and ATP consumption. This pattern can 
also be observed qualitatively for oxygen transport and the respiration process. The ATP consumption reaction 
has a strong effect on the steady state flux distribution, with a negative effect on the lactate related reactions and 
a positive effect on all other reactions. Overall, this analysis shows that the maximal velocities of the kinases, 
respiration and ATP consumption have specific and strong impacts on the steady state flux distribution.

The baseline model shows bistability with an additional, low-flux state
Since bistability has been observed in glycolysis in yeast30 and mammalian cells31, we investigated the co-
existence of steady states in our model. Because the complexity of the derived model does not allow for a 
full bifurcation analysis, we investigated the existence of stable attractors using a simulation strategy: for that 
purpose, parameters are altered slightly and stable steady states are identified by time course simulations. Details 
of the approach are given in the Materials and Method Section. There is a wide parameter region where two 
stable steady states coexist, as exemplified for the maximal velocities of HK (Fig. 2a) PFK and PDH (Suppl. Fig 
S.2). In addition to the steady state that best fits the experimental data (reference state, upper branch in Fig. 2a), 
we observe a second steady state characterized by a very low rate of glucose uptake (lower branch in Fig. 2a). 
The parameter value of the reference state (Fig. 2a, broken vertical line) lies within the parameter region of two 
coexisting stable states, whereas for high vmf_HK values only the steady state with a low glucose uptake rate 
exists.

Fig. 2.  Coexistence of two stable steady states. (a) Stable steady state values in dependence of one parameter, 
that is the maximal velocity of the hexokinase reaction. The dashed line indicates the fitted value of the 
parameter vmf_HK. All other parameters are at their reference values (Supplement Table S.1). The shaded 
area confined by dotted lines marks the parameter region of coexisting steady states. (b) Fluxes and (c) 
concentrations in the two steady states for the reference parameter set. (d) Time course simulations of the ADP 
concentration at the reference parameter set for different initial concentrations.
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We next investigated the fluxes in this alternative state (Fig. 2b). All of them, including glucose and O2 uptake 
as well as ATP consumption were considerably low, in line with a non-proliferative state of the cells. We therefore 
designated this as “low flux state.” This is also characterized by lactate uptake instead of secretion, indicated by 
a negative value of the lactate release flux and suggesting that lactate fuels the mitochondrial metabolism. An 
investigation of the steady state concentrations under this condition demonstrated that almost the entire ATP-
ADP pool shifted to ADP with only minimal levels of ATP (Fig. 2c). For the redox pool a high concentration in 
NADH can be observed, while NAD levels are very low, in strong contrast to the reference state. The phosphate 
concentration in the low flux state is also reduced. This shows that in all conserved moieties, rather extreme 
ratios are reached. Furthermore, concentrations within upper glycolysis are increased, and decreased in lower 
glycolysis (Suppl. Table S.2). Our results suggest that GAPDH serves as a bottleneck, as two of its substrates 
(NAD, phosphate) are present in very low concentrations.

In order to investigate the attractor basins of the two stable steady states, the model was simulated from 
various initial concentrations. We randomly assigned 2000 initial concentrations obeying the constraints of the 
conserved moieties. In these simulations, all trajectories reach the reference state. In a second set of simulations, 
initial concentrations of metabolites were assigned randomly but ATP and phosphate concentrations were 
restricted to very low initial values (0.001 mM). In this case, simulations from 2000 initial conditions show that 
both stable steady states can be reached (Fig. 2d, exemplified by the high and low ADP concentration of the two 
states). This verifies the existence of the two stable steady states and highlights that the low flux steady state has 
a rather restricted basin of attraction.

Implementation of MYCN target effects
The establishment and analysis of the baseline model, which represents a low MYCN state, serves as a basis to 
investigate the effects of MYCN overexpression. As outlined in the introduction, the literature describes a large 
number of MYCN targets. Relevant for our model are the transporters of glucose and lactate and the enzymes 
HK, ALD, TPI, GAPDH, PGK, PK and LDH. PDK has also been described as a target of MYCN. Since PDK 
inactivates PDH, PDH activity is lowered if MYCN is over-expressed. These MYCN targets are visualized in 
Fig. 3a, illustrating their broad distribution over the pathway.

In order to implement the MYCN effects in the model, maximal velocities of the respective reactions 
are changed. This is motivated by the fact that maximal velocity of each reaction depends on the enzyme 
concentration [E] as vmax = kcat • [E]. Since MYCN induces the expression of the mentioned enzymes, 
the maximal velocities were increased – except for PDH, which was reduced due to the effects that have been 
described for an increase in the PDK expression. Therefore, the maximal velocities are multiplied by a ‘MYCN 
factor’, and for the maximal velocity of PDH a reciprocal factor was applied. So far, there are no data to explicitly 
derive the size of these factors for each reaction directly from experiments. In earlier studies including our 
own17, changes in the specific activity of some of the enzymes had been observed to be rather small. On the other 
hand, analyses of the gene expression levels mostly showed stronger induction10–12. Therefore, we here mostly 
investigated MYCN factors in the range1,2.

Effects of individual and paired MYCN targets
Next we addressed the question how individual MYCN targets and their combined effects influence pathway 
behaviour. The impact of individual MYCN targets on the model behaviour was investigated by applying a 
MYCN factor that represents MYCN-induced changes in enzyme expression and subsequent effects on the 
maximal velocity of the respective enzyme. Next, the resulting effects on the steady state flux distribution were 
analysed. For example, a MYCN factor of 2 induces strong changes in flux distribution for only three out of the 
ten MYCN targets: HK, PK and PDH; the strongest changes are seen in the activity of HK (Fig. 3b). This leads to 
an increase in glycolytic and lactate production fluxes (purple bars) and a decreased flux through mitochondrial 
metabolism and ATP consumption (green bars). Changes in the activity of PK also shows an effect which is 
opposite to that of HK, thus causing a decrease in glycolysis and lactate production (green bars) and a slight 
increase in mitochondrial metabolism and ATP consumption (light purple bars). This suggests that these are 
partly ATP/ADP mediated effects, since ATP is a substrate for the HK reaction, while ADP is a substrate of PK. 
A third enzyme with a notable effect on the flux distribution is PDH. A reduction in the rate of this enzyme, 
which catalyses the first reaction in the mitochondrial module in our model, leads to a reduced flux through 
mitochondrial metabolism (green bar). Moreover, it slightly increases the flux through glycolysis and lactate 
production (purple bars), and decreases ATP consumption (light green bar). Applying a factor for the other 
MYCN targets does not lead to notable flux alterations (white bars in Fig. 3b for a MYCN factor of 2). The result 
is similar for other values of the MYCN factors in the range1,2. Overall, this supports the sensitivity analysis of 
the baseline model performed for very small parameter perturbations, which also indicated that hardly any flux 
changes are induced by changes in the maximal velocities (vmax) of ALD, TPI, GAPDH, PGK and LDH as well 
as of the glucose and lactate transport (compare to Fig. 1c).

For the analysis of paired MYCN targets we investigated the effect on the representative fluxes defined above: 
glucose uptake, lactate release, oxygen uptake and ATP consumption. In the analysis two enzyme rates were 
simultaneously altered by the same factor and the changes in the steady state fluxes were observed. The results 
were visualized in individual subplots of Fig. 3c; here, in each case, the diagonal elements represent the impact 
of individual alterations, allowing for an easier comparison with Fig. 3b. Due to the symmetry of the analyses, 
only half of each subfigure is filled.

The subplots of Fig. 3c show that the three MYCN targets HK, PK and PDH that dominate when individually 
changed also shape the response of the system for combined perturbations. For the most part, enzymes and 
transporters that played no substantial individual role make no strong contributions in the combined cases 
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(white boxes, Fig. 3c). An exception is PGK, which shows a small effect on lactate release, oxygen uptake and 
ATP consumption fluxes; these effects were not observable in individual perturbations, mostly due to the scaling.

The effect of combined perturbations is often dominated by one of the perturbations, e.g. for the pair HK and 
ALD. However, in some cases a modulation of the effect of both perturbations can be observed, e.g. for PDH 
and PK, or HK and PK. This raises the question whether the effects of MYCN targets are always simply additive. 
In order to study different potential target interactions, we used an algorithm that classifies interactions as one 
of three types: additive (if the flux changes are given by the sum of the two individual changes); synergistic (if 
the change is higher than the sum of the two); and antagonistic (if the change is smaller than the sum of the two 
changes). This approach has been adapted from Piggott et al.32 and details are given in the Materials and Method 

Fig. 3.  Effect of MYCN targets on flux distribution. (a) Visualization of literature derived MYCN targets in 
the pathway model. Red and blue stars mark the enzymes with a described expression increase and decrease in 
MYCN dependence, respectively. (b) Effect of individual MYCN targets on the flux distribution for a MYCN 
factor of 2 (the PDH activity is decreased, all other enzyme activities are increased); white corresponds to an 
unchanged flux; purple and green show increases and decreases in the fluxes, respectively.(c) Effect of pairwise 
MYCN targets on the flux distribution for a MYCN factor of 2. The diagonal elements of each subfigure depict 
the individual effects for comparison. Only half of each subfigure is filled due to symmetry.
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Section. Supplementary Figure S.3 shows the results of this interaction classification for a MYCN factor of 2. 
We find the majority of changes for MYCN targets pairs to be additive. Interestingly, in two cases antagonistic 
interactions were detected. These are HK changes paired with changes in PK and PDH enzymes. We did not, 
however, detect any synergistic effects between MYCN targets. Similar results are seen for MYCN factors of 
1.5 and 5. Overall, this shows that the effect of MYCN targets is not always additive, but there are also cases of 
antagonism, which demonstrate that two targets can have counteractive effects on pathway fluxes that extend 
beyond their individual contributions.

The MYCN-high model shows Warburg-like changes in steady state fluxes
In the case of MYCN overexpression, all MYCN targets are likely influenced simultaneously. This was 
implemented by applying a MYCN factor to all targets simultaneously, the resulting model will be referred to as 
MYCN-high model. In a first scenario we used the same factor for all MYCN targets and compared the model 
behaviour to that of the baseline model. Simulations of the MYCN-high model were performed for MYCN 
factors of 1.5 and 2.

The steady state fluxes and concentrations of the corresponding MYCN-high model are listed in Supplemental 
Tables S.3 and S.4. The MYCN-high model shows an increase in the glucose uptake and lactate release fluxes 
as the MYCN factor increases (Table S.3). In contrast, oxygen uptake and ATP consumption decrease with 
increasing MYCN factor, demonstrating that the MYCN-high models exhibit a Warburg-like phenotype. The 
strongest relative change can be observed in lactate release compared to moderate changes in the other fluxes.

We next investigate the flux sensitivities of the MYCN-high model. The result for a MYCN factor of 2 is given 
in Fig. 4a. It shows that the MYCN-high model is sensitive to changes in the maximal velocities of the kinases 
HK, PFK, PK and atp_cons, which were also prominent in the baseline model. For these parameters, compared 
to the baseline model, the sensitivity of glycolysis and lactate production are lower, while that of mitochondrial 
metabolism increases. A striking observation is the strongly reduced sensitivity for k1_o2tp in the MYCN-
high model indicating that this model becomes more independent from oxygen. In addition, the sensitivity 
towards the maximal velocity of PDH increases in the MYCN-high model. The other maximal velocities have no 
significant impact on the fluxes, shown by their very low sensitivity coefficients (white colour in Fig. 4a), which 
is similar to their impact in the baseline model. Overall, the baseline and the high MYCN model are largely 
sensitive towards the same parameters, with the prominent exception of sensitivity towards the oxygen uptake 
rate of the cell.

It is an interesting question whether the MYCN-high model can also exhibit multi-stationarity. Figure 4b 
shows the result of the corresponding analysis, demonstrating that the MYCN-high model has an additional 
steady state characterised by a very low glucose uptake rate (Fig. 4b). Overall, the bifurcation-like diagram is 
very similar to that of the baseline model, with two stable steady states coexisting for a broad parameter range, 
compare Fig. 2a. A detailed comparison of the bistabilities reveals quantitative differences between the baseline 
and MYCN-high model: it shows that (i) the glucose uptake flux in the alternative steady state is slightly increased 
in the MYCN-high model and (ii) the parameter range of vmf_HK for co-existing steady states is slightly smaller 
for the MYCN-high model. These analyses together highlight that the general behaviour between the baseline 
and MYCN-high model is qualitatively similar, but quantitative changes occur.

Fig. 4.  Flux sensitivities and bistability in the MYCN-high model. (a) Normalized flux sensitivity coefficients 
for all maximal velocities and rate constants of the MYCN high model; MYCN factor 2. (b) Stable steady states 
in dependence of the maximal velocity of the hexokinase reaction for a MYCN factor of 2. The dashed line 
indicates the starting parameter value, the dotted lines mark the parameter values where one of the steady 
states becomes unstable.
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Individually assigned MYCN factors predict the range of characteristic flux changes
So far we have analysed cases where all MYCN targets are altered by the same factor; here we examine how the flux 
distribution changes when each MYCN target is altered by an individual factor. To that end, we assigned random 
values for the MYCN factors to each MYCN target. The values are drawn from a uniform distribution of a given 
range, and steady state flux simulations are performed for 100.000 assignments of the factors. Figure 5a shows 
the results for MYCN factors of the range 1 to 2. This demonstrates that for nearly all simulations, an increase in 
glucose uptake and lactate release is accompanied by a decrease in oxygen uptake and ATP consumption rates 
compared to the baseline model (red broken line in Fig. 5a) is observed. In only very few cases does a decrease 
in glucose uptake and lactate release occur; increases in oxygen uptake and ATP consumption are slightly more 
common.

To study the flux changes for higher MYCN factors, that is stronger MYCN effects, the analysis was repeated 
for MYCN factors from the range of 1 to 10 (Fig. 5b). In this case, the flux distribution is shifted towards even 
higher values for glucose uptake and lactate release, and lower values for oxygen uptake and ATP consumption. 
Interestingly, here some simulations lead to the alternative steady state representing the low-flux state. In 
these cases, all four fluxes are close to zero. Overall, the analyses highlight that MYCN over-expression leads 
to an increased flux through glycolysis and an increased lactate production with decreases in activity of the 
mitochondrial metabolism. This represents a Warburg-like phenotype. Stronger MYCN effects can also lead to 
the alternative state.

Fig. 5.  Characteristic steady state fluxes for variable MYCN factors. Flux distribution for randomly assigned 
factors of each MYCN target. Values assigned from a pre-defined range: (a)[1,2], (b) [1,10]. The model is 
simulated 100,000 times for individually assigned random factors for the MYCN targets. For PDH the activity 
is decreased, all others are increased. The red dashed line indicates the corresponding flux in the fitted baseline 
model. All fluxes in [mM/min]. (c) Only five of the described MYCN targets, that is glctp, HK, PGK, PK and 
PDH, are altered by a randomly chosen individual value from the range [1,2].
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Not all MYCN targets are required for the induction of characteristic flux changes
Since the earlier analysis showed that not all analysed MYCN targets have a strong effect on the flux state (see 
Fig. 4a), we investigated the steady state fluxes of the MYCN-high model via a ‘leave one out’ analysis, in which 
all targets are altered except one.

The results of this analysis are given in Table S.5 in the Supplement for a MYCN factor of 2. They show that 
the MYCN targets ALD, TPI, GAPDH, LDH and lactp can be left out without a noticeable change in the flux 
distribution of the model. Only leaving out one of the MYCN targets glctp, HK, PGK, PK and PDH change the 
characteristic fluxes (highlighted in grey in Supp. Table S.5). The negligible impact of ALD, TPI, GAPDH, LDH 
and lactp was confirmed by a simulation where these targets were simultaneously left out. Indeed, leaving out 
all five does not significantly alter the steady-state flux distribution, see Table S.5. In order to verify the result 
that glctp, HK, PGK, PK and PDH suffice to alter flux distribution in the MYCN-high model, the analysis for 
individual alterations of the MYCN factors performed in Fig. 5a was repeated, but for only these five targets, 
when altered by a random factor between 1 and 2. The resulting flux distribution, shown in Fig. 5c, is very similar 
to that in Fig. 5a, in which all MYCN factors have been modified. Taken together, these analyses demonstrate 
that not all MYCN-induced alterations are required to achieve Warburg-like flux changes.

Discussion
The oncogene MYCN is well known as having a wide range of cellular targets and has been shown to play a critical 
role in reshaping cellular metabolism in the context of cancer. The literature describes a high number of MYCN 
targets involved in core energy metabolism, raising questions about how the multiple targets interact and jointly 
shape the effects of MYCN. Here we established a kinetic model for the energy metabolism in neuroblastoma 
cell lines and analysed all described MYCN targets. We demonstrated that while MYCN expression leads overall 
to a Warburg-like shift in the fluxes, there are significant differences in the impact of individual targets (Fig. 3). 
We found that several targets have a minimal impact on fluxes, while others change fluxes in an enzyme-specific 
way. The strongest flux changes can be observed for the MYCN targets HK and PK and for PDH, which is an 
indirect MYCN target that is regulated via pyruvate dehydrogenase kinase. An interaction analysis of the targets 
demonstrates that their effects are mostly additive, but antagonistic effects can be observed for the pairs HK-PK 
and HK-PDH (Fig. S3). We did not observe any synergistic effects between MYCN targets on the fluxes of the 
energy metabolism.

A wide range of flux changes can be seen in simulations where all MYCN targets are simultaneously modified 
by individual MYCN factors (Fig. 5a). While in most of these cases there is a Warburg-typical increase in glucose 
uptake and lactate release combined with a decrease in oxygen uptake and ATP consumption, there are also 
cases where the direction of flux changes varies. This might reflect variability in conditions or cell lines, as for 
instance reported by Oliynik et al.16; they described reduced ECAR and OCR values in response to MYCN 
down-regulation in a different, MYCN-amplified neuroblastoma cell line. In this context is would be interesting 
to further explore the impact of intra- or inter-tumour heterogeneity33,34 by introducing variability in the model 
parametrization. This will require an experimental characterisation of multiple neuroblastoma cell lines under 
comparable conditions. Furthermore, one could consider spatial variability within tumours that involves the 
availability of nutrients or oxygen, as it has been reported that MYCN directly affects the cellular oxygen sensing 
system by interacting with HIF-1 in hypoxic neuroblastoma cells12. The neuroblastoma-specific model developed 
here might be valid for other cancer cell lines. Since considerable differences in metabolite concentrations as 
well as uptake and release rates have been measured in various tissues and cancer cell lines35–37 a reuse of the 
neuroblastoma model for other cancer types requires a careful comparison of metabolic datasets.

An interesting observation from our computational model is that both the baseline and the MYCN-high 
model show bistability. The additional stable steady state that we observe is characterized by very low fluxes, 
which suggests that this is likely a non-proliferative state of cells. Potentially this is linked to metabolically 
inactive, dormant or senescent cells. As the ATP concentration is also very low, this state could possibly also 
lead to cell death. Simulations showed the basin of attraction of the alternative state in our model to be rather 
small, but low initial ATP and phosphate levels can shift the system towards these states. It will be interesting to 
explore this bistability, both experimentally and theoretically, in different scenarios, such as under the influence 
of transient signals or diverse media compositions, to predict the conditions under which MYCN-high cells 
can be targeted and shifted to non-proliferative states. While the concept of coexisting metabolic active and 
inactive states has been computationally and experimentally studied in detail in yeast30,38, only recently has 
this been shown for a case of targeting hepatocellular carcinoma39. In-depth analyses in yeast showed that this 
arises from an imbalance of ATP-producing and consuming reactions in the glycolytic pathway and represents 
a type of metabolic variability of nongenetic origin. The detailed studies in yeast suggest that the low flux steady 
state observed here is not specific for our model but rather results from the structure of the glycolytic pathway 
and can indeed be a threat for the cells. Moreover, multistability in glycolysis has been experimentally and 
computationally shown to be possible due to compositions of different isoforms of glycolytic enzymes31.

We used the model that we developed to compare the flux sensitivities with and without over-expression 
of the MYCN oncogene. Despite the overall shift in fluxes, we found that sensitivities differ only slightly in the 
baseline and MYCN-high models. The only strong deviation is a substantial decrease in the sensitivity of the 
MYCN-high model toward oxygen transport. This shows that in our model, despite its high number of targets, 
the overexpression of MYCN does not seem to create distinct vulnerabilities towards targeted therapies within 
glycolysis. Moreover, our analysis demonstrated that not all targets are required to remodel the flux distribution. 
The leave-one-out analysis showed that a number of MYCN targets have minimal effects on the central fluxes 
(Fig.  5c, Table S.5). One can contemplate that these targets and the MYCN induced change in metabolite 
concentrations may be involved in the regulation of side branches of glycolysis such as the pentose phosphate 
pathway and nucleotide metabolism branching from glc6p; or the serine and one-carbon metabolism branching 
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from 3PG. While one can expect differential effects by MYCN on these pathways, direct conclusions on the 
reshaping of flux distributions based on the current model are hampered by the fact that these side branches 
also depend on cofactors such as ADP, ATP, NAD and NADH and that a number of the involved enzymes have 
been reported to be affected by MYCN over-expression in experiments17,40,41. Comprehensive metabolic models 
including side branches and biosynthetic processes will be required to study the impact of MYCN on larger 
metabolic networks. So far, however, most kinetic cancer models have focused on central energy metabolism, 
with some extending this to glycogen or glutamine metabolism26,28,42,43. An interesting future approach to foster 
the understanding of cancer metabolism might be hybrid modelling combining detailed kinetic models with 
genome scale models. Our study lays the foundation for a better understanding of MYCN-driven metabolic 
changes. This might help to identify critical nodes in tumour metabolism that can be exploited in future 
therapeutic approaches.

Materials and methods
Processing and incorporation of experimental data of neuroblastoma cell lines
Our model is based on an experimental characterization of SHEP-TR_MYCN neuroblastoma cells by mass 
spectrometry-based metabolomics measurements and flux measurements by Seahorse technology. The 
methods previously described in detail17 provide metabolite levels, extracellular acidification rates and oxygen 
consumption rates under low and high MYCN expression as well as three different glucose concentrations in the 
medium. The model fitting is based on the data for low MYCN expression only. For these conditions metabolite 
levels were quantified for a total of 499 metabolites in three replicates17. The metabolomics data was normalized 
to cell count and median for scaling. Data for 12 metabolites without imputation of missing values are used 
for model fitting. Scaling and error parameters are fitted once for each metabolite. From three independent 
extracellular flux measurement, which quantify the acidification rate of the medium and the oxygen uptake of 
the cell over time, we aimed to extract steady state values for the lactate secretion and oxygen uptake. Therefore, 
we consistently used the third time point of the experiments, since at the first two timepoints a steady state is not 
yet reached, later time points do not represent unperturbed state in all experiments. The oxygen consumption 
rate (OCR) was corrected for non-mitochondrial uptake by subtracting the value of last time point of the 
experiment after Rotenone treatment. The extracellular acidification rate (ECAR) was correlated to lactate uptake 
as described in literature44. The buffering power of all three media was determined by linear fits. The fitting of 
the parameter maxH/O2 was restricted to the range 0.65 to 1, based on the range given in literature44. The pH 
value was set to the mean pH value of the experiment. For each experiment individual scaling parameter which 
were the same for OCR/ECAR are fitted and can be interpreted as a conversion from pmol/min to mM/min, but 
the same error parameters for all experiments were fitted. Since no glucose uptake experiments were available, a 
literature derived value is used45, the maximal velocities could be scaled to represent different absolute rates. The 
parameter boundaries for the maximal velocities were on a logscale [-2,4], which corresponds the typical range 
in similar models. The Michaelis-Menten constants for condensed reactions (TCA cycle, respiratory chain) were 
also estimated by fitting, since the parameters of condensed reactions cannot be directly derived from databases. 
For these the boundaries are [-3,1] based on the typical values for this parameter type. Additional kinetic 
parameter such as km values were taken from the databases BRENDA46 and SABIO-RK47. For equilibrium 
constants literature data was acquired48.

Parameter fitting
Parameters that could not be derived from literature and databases were fitted using the Data2Dynamics (D2D) 
Toolbox49. The starting values for the Michaelis-Menten constants are drawn from a random distribution 
between 10− 3 and 101, the other parameters are fitted between 10− 2 and 104. The range for initial concentrations 
of the metabolites are based on literature values26,50. The external glucose concentration is known in the 
experiments, external lactate was set to 0.5 mM, which is comparable to other models and the external oxygen 
concentration was set to 0.181 mM51. For the fitting 25,000 initial parameter sets were sampled using latin 
hypercube sampling and then optimized using the default algorithm LSQNONLIN. The model was fitted to the 
pre-processed metabolomics data and Seahorse measurements as described in the Method Section ‘Processing 
and incorporation of experimental data of Neuroblastoma cell lines. In both cases scaling factors and error 
parameters are estimated. Since the data sets represent steady state conditions, the model is equilibrated towards 
a steady state for fitting. This is achieved using the arSteadyState function available in the toolbox49. In order 
to reach feasible steady state concentrations, the function SteadyStateBounds is used, which adds a quadratic 
penalty when the steady state concentration for parameter sets falls outside of defined boundaries. The chosen 
boundaries for the metabolites are derived from literature26 and represent typical concentrations in various 
mammalian cell lines, mostly representing cancer.

Model simulations
All simulations were performed in MATLAB 2019a, using either the D2D framework or the inbuilt ODE solver 
ode23s. All model analyses in this paper were done using a medium glucose concentration of 11.1 mM, which 
is the intermediate concentrations used in the experiments17. Model investigations were performed for the best 
model fit. The MYCN related analysis was performed for MYCN factors of 1.5 and 2, showing the same trends 
in the model behaviour.

Robustness of model parametrisation and predictions
To validate the best model fit, we analysed and compared the flux distribution in the 10 best fits (see Supplemental 
Table S6). We find the fluxes in these to be very similar. While all model simulations were reported for the best 
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fit, we repeated the analyses of individual and pairwise MYCN factor impact as well as random changes in the 
MYCN factor the second and third best fit. This confirmed the results for the best fitting parameter set.

Sensitivity coefficients
Sensitivity coefficients s of the readout y, here the steady state flux, and the parameter p are calculated as 
s = p

y
∆ y
∆ p . They are calculated for a 1% increase in the parameters.

Analysis of bistability
Due to the model complexity, direct bifurcation analyses cannot be performed. In order to analyse the possible 
bistability of the model, an alternative strategy was used: the model was simulated after stepwise alterations of 
individual parameters. Overall, parameters were changed by a factor of 100 and 1/100. The overall parameter 
range was divided in 1000 steps on a log scale. For each step, the model is simulated for 100,000  min, to 
ensure that the systems reached a steady state. The final state of the previous simulation was used as the initial 
concentration for the simulation.

Random assignment of fold changes for MYCN targets
For each of the 10 described MYCN targets a random fold change value is drawn from a univariate distribution 
within the given borders1,2 or1,10 (see Fig. 5a, b). For that the inbuilt MATLAB function rand is used. The model 
is then simulated for each set of parameters with D2D49. This is repeated 100,000 times resulting in a distribution 
of fluxes.

Interaction analysis
For the interaction analysis, we adapted the approach of Piggott et al.32, which was developed to investigate 
the interaction between multiple stressors and analyses positive and negative changes. We adapted the method 
originally applied to systems in ecology, since it considers changes in both directions contrary to many interaction 
analysis methods classically used for drug interactions. Here we concentrate on three potential interactions types: 
additive, if the overall change is the sum of the two individual changes; synergistic, if the overall change is higher 
than the sum of the individual changes or change direction; antagonistic, if the overall change is smaller than 
the sum of the individual changes. In contrast to Piggott et al., we here did not explicitly include the definition 
of positive and negative antagonism and synergism. The interaction analysis is based on numerical simulations 
with a threshold of 1%. Therefore, an effect is termed additive as long as the overall change is within a threshold 
of 1% around the sum. In the algorithm, it is first checked whether the additive case is true, followed by a check 
for synergy. If these are not true, the interaction is classified as antagonistic.

Data availability
The model is available in the BioModels data base52 with the identifier MODEL2502190001 ​h​t​t​p​s​:​/​/​w​w​w​.​e​b​i​.​a​c​.​
u​k​/​b​i​o​m​o​d​e​l​s​/​M​O​D​E​L​2​5​0​2​1​9​0​0​0​1​​​​​.​​

Received: 25 February 2025; Accepted: 3 September 2025

References
	 1.	 Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell 

proliferation. Science 324, 1029–1033. https://doi.org/10.1126/science.1160809 (2009).
	 2.	 Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​j​.​c​e​l​l​.​2​0​1​1​.​0​

2​.​0​1​3​​​​ (2011).
	 3.	 Nagarajan, A., Malvi, P. & Wajapeyee, N. Oncogene-Directed alterations in cancer cell metabolism. Trends Cancer. 2, 365–377. 

https://doi.org/10.1016/j.trecan.2016.06.002 (2016).
	 4.	 Seth Nanda, C., Venkateswaran, S. V., Patani, N. & Yuneva, M. Defining a metabolic landscape of tumours: genome Meets 

metabolism. Br. J. Cancer. 122, 136–149. https://doi.org/10.1038/s41416-019-0663-7 (2020).
	 5.	 Colon, N. C., Chung, D. H. & Neuroblastoma Adv. Pediatr. ;58:297–311. https://doi.org/10.1016/j.yapd.2011.03.011. (2011).
	 6.	 Smith, V. & Foster, J. High-Risk neuroblastoma treatment review. Children 5, 114. https://doi.org/10.3390/children5090114 (2018).
	 7.	 Brodeur, G. M., Seeger, R. C., Schwab, M., Varmus, H. E. & Michael Bishop, J. Amplification of N-myc in untreated human 

neuroblastomas correlates with advanced disease stage. Sci. (80-). 224, 1121–1124. https://doi.org/10.1126/SCIENCE.6719137 
(1984).

	 8.	 Schaub, F. X. et al. Pan-cancer alterations of the MYC oncogene and its proximal network across the cancer genome atlas. Cell. Syst. 
6, 282–300e2. https://doi.org/10.1016/j.cels.2018.03.003 (2018).

	 9.	 Westermark, U. K., Wilhelm, M., Frenzel, A. & Henriksson, M. A. The MYCN oncogene and differentiation in neuroblastoma. 
Semin Cancer Biol. 21, 256–266. https://doi.org/10.1016/j.semcancer.2011.08.001 (2011).

	10.	 Boon, K. et al. N-myc enhances the expression of a large set of genes functioning in ribosome biogenesis and protein synthesis. 
EMBO J. 20, 1383–1393. https://doi.org/10.1093/emboj/20.6.1383 (2001).

	11.	 Gan, L. et al. Metabolic targeting of oncogene MYC by selective activation of the proton-coupled monocarboxylate family of 
transporters. Oncogene 35, 3037–3048. https://doi.org/10.1038/onc.2015.360 (2016).

	12.	 Qing, G. et al. Combinatorial regulation of neuroblastoma tumor progression by N-Myc and hypoxia inducible factor HIF-1α. 
Cancer Res. 70, 10351–10361. https://doi.org/10.1158/0008-5472.CAN-10-0740 (2010).

	13.	 Ren, P. et al. ATF4 and N-Myc coordinate glutamine metabolism in MYCN-amplified neuroblastoma cells through ASCT2 
activation. J. Pathol. 235, 90–100. https://doi.org/10.1002/path.4429 (2015).

	14.	 Ruiz-Pérez, M. V., Henley, A. B. & Arsenian-Henriksson, M. The MYCN protein in health and disease. Genes (Basel). 8, 113. 
https://doi.org/10.3390/genes8040113 (2017).

	15.	 Du, B. et al. Joint metabolomics and transcriptomics analysis systematically reveal the impact of MYCN in neuroblastoma. Sci. Rep. 
14, 1–16. https://doi.org/10.1038/s41598-024-71211-x (2024).

	16.	 Oliynyk, G. et al. MYCN-enhanced oxidative and glycolytic metabolism reveals vulnerabilities for targeting neuroblastoma. 
IScience 21, 188–204. https://doi.org/10.1016/J.ISCI.2019.10.020 (2019).

Scientific Reports |        (2025) 15:32708 11| https://doi.org/10.1038/s41598-025-18656-w

www.nature.com/scientificreports/

https://www.ebi.ac.uk/biomodels/MODEL2502190001
https://www.ebi.ac.uk/biomodels/MODEL2502190001
https://doi.org/10.1126/science.1160809
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1016/j.trecan.2016.06.002
https://doi.org/10.1038/s41416-019-0663-7
https://doi.org/10.1016/j.yapd.2011.03.011
https://doi.org/10.3390/children5090114
https://doi.org/10.1126/SCIENCE.6719137
https://doi.org/10.1016/j.cels.2018.03.003
https://doi.org/10.1016/j.semcancer.2011.08.001
https://doi.org/10.1093/emboj/20.6.1383
https://doi.org/10.1038/onc.2015.360
https://doi.org/10.1158/0008-5472.CAN-10-0740
https://doi.org/10.1002/path.4429
https://doi.org/10.3390/genes8040113
https://doi.org/10.1038/s41598-024-71211-x
https://doi.org/10.1016/J.ISCI.2019.10.020
http://www.nature.com/scientificreports


	17.	 Tjaden, B. et al. N-Myc-induced metabolic rewiring creates novel therapeutic vulnerabilities in neuroblastoma. Sci. Rep. 10, 1–10. 
https://doi.org/10.1038/s41598-020-64040-1 (2020).

	18.	 Sel’kov, E. E. Self-Oscillations in Glycolysis 1. A simple kinetic model. Eur. J. Biochem. 4, 79–86. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​1​1​/​J​.​1​4​3​2​-​1​0​
3​3​.​1​9​6​8​.​T​B​0​0​1​7​5​.​X​​​​ (1968).

	19.	 Rapoport, T. A. & Heinrich, R. Mathematical analysis of multienzyme systems. I. Modelling of the Glycolysis of human 
erythrocytes. Biosystems 7, 120–129. https://doi.org/10.1016/0303-2647(75)90049-0 (1975).

	20.	 Teusink, B. et al. Can yeast Glycolysis be understood in terms of in vitro kientics of the constitutent enzyme? Testing biochemnistry. 
Eur. J. Biochem. 267, 5313–5329 (2000).

	21.	 Wolf, J. et al. Transduction of intracellular and intercellular dynamics in yeast glycolytic oscillations. Biophys. J. 78, 1145–1153. 
https://doi.org/10.1016/S0006-3495(00)76672-0 (2000).

	22.	 Bakker, B. M., Michels, P. A. M., Opperdoes, F. R. & Westerhoff, H. V. Glycolysis in bloodstream form trypanosoma brucei can be 
understood in terms of the kinetics of the glycolytic enzymes. J. Biol. Chem. 272, 3207–3215. https://doi.org/10.1074/jbc.272.6.3207 
(1997).

	23.	 Mojica-Benavides, M. et al. Intercellular communication induces glycolytic synchronization waves between individually oscillating 
cells. Proc. Natl. Acad. Sci. U S A. 118. https://doi.org/10.1073/pnas.2010075118 (2021).

	24.	 Schütze, J., Mair, T., Hauser, M. J. B., Falcke, M. & Wolf, J. Metabolic synchronization by traveling waves in yeast cell layers. Biophys. 
J. 100, 809–813. https://doi.org/10.1016/j.bpj.2010.12.3704 (2011).

	25.	 Wolf, J. & Heinrich, R. Effect of cellular interaction on glycolytic oscillations in yeast: a theoretical investigation. Biochem. J. 345 
(Pt 2), 321–334 (2000).

	26.	 Roy, M. & Finley, S. D. Computational model predicts the effects of targeting cellular metabolism in pancreatic cancer. Front. 
Physiol. 8, 1–16. https://doi.org/10.3389/fphys.2017.00217 (2017).

	27.	 Marín-Hernández, A. et al. Modeling cancer Glycolysis. Biochim. Biophys. Acta - Bioenerg. 1807, 755–767. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​
/​J​.​B​B​A​B​I​O​.​2​0​1​0​.​1​1​.​0​0​6​​​​ (2011).

	28.	 Shestov, A. A. et al. Quantitative determinants of aerobic Glycolysis identify flux through the enzyme GAPDH as a limiting step. 
Elife 3, 1–18. https://doi.org/10.7554/eLife.03342 (2014).

	29.	 Liberti, M. V. et al. A predictive model for selective targeting of the Warburg effect through GAPDH Inhibition with a natural 
product. Cell. Metab. 26, 1–12. https://doi.org/10.1016/j.cmet.2017.08.017 (2017).

	30.	 Van Heerden, J. H. et al. Lost in transition: Start-up of Glycolysis yields subpopulations of nongrowing cells. Sci. (80-. 343. ​h​t​t​p​s​:​/​/​
d​o​i​.​o​r​g​/​1​0​.​1​1​2​6​/​s​c​i​e​n​c​e​.​1​2​4​5​1​1​4​​​​ (2014).

	31.	 Mulukutla, B. C., Yongky, A., Daoutidis, P. & Hu, W. S. Bistability in Glycolysis pathway as a physiological switch in energy 
metabolism. PLoS One. 9. https://doi.org/10.1371/journal.pone.0098756 (2014).

	32.	 Piggott, J. J., Townsend, C. R. & Matthaei, C. D. Reconceptualizing synergism and antagonism among multiple stressors. Ecol. Evol. 
5, 1538–1547. https://doi.org/10.1002/ECE3.1465 (2015).

	33.	 Dagogo-Jack, I. & Shaw, A. T. Tumour heterogeneity and resistance to cancer therapies. Nat. Publ Gr. 15. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​3​8​/​
n​r​c​l​i​n​o​n​c​.​2​0​1​7​.​1​6​6​​​​ (2018).

	34.	 Simon, M., Konrath, F. & Wolf, J. From regulation of cell fate decisions towards patient-specific treatments, insights from 
mechanistic models of signalling pathways. Curr. Opin. Syst. Biol. 39, 100533. https://doi.org/10.1016/j.coisb.2024.100533 (2024).

	35.	 Gustafsson, J. et al. Generation and analysis of context-specific genome-scale metabolic models derived from single-cell RNA-Seq 
data. Proc. Natl. Acad. Sci. U S A ;120:e2217868120. https://doi.org/10.1073/pnas.2217868120. (2023).

	36.	 Jain, M. et al. Metabolite profiling identifies a key role for Glycine in rapid cancer cell proliferation. Sci. (80-). 336, 1040–1044. 
https://doi.org/10.1126/science.1218595 (2012).

	37.	 Benedetti, E. et al. A multimodal atlas of tumour metabolism reveals the architecture of gene–metabolite covariation. Nat. Metab. 
2023 56. 5, 1029–1044. https://doi.org/10.1038/s42255-023-00817-8 (2023).

	38.	 Overal, G. B., Teusink, B., Bruggeman, F. J., Hulshof, J. & Planqué, R. Understanding start-up problems in yeast Glycolysis. Math. 
Biosci. 299, 117–126. https://doi.org/10.1016/j.mbs.2018.03.007 (2018).

	39.	 Snaebjornsson, M. T. et al. Targeting aldolase A in hepatocellular carcinoma leads to imbalanced Glycolysis and energy stress due 
to uncontrolled FBP accumulation. Nat. Metab. https://doi.org/10.1038/s42255-024-01201-w (2025).

	40.	 Xia, Y. et al. Metabolic reprogramming by MYCN confers dependence on the Serine-Glycine-One-Carbon biosynthetic pathway. 
Cancer Res. 79, 3837–3850. https://doi.org/10.1158/0008-5472.CAN-18-3541 (2019).

	41.	 Arlt, B. et al. Inhibiting phosphoglycerate dehydrogenase counteracts chemotherapeutic efficacy against MYCN-amplified 
neuroblastoma. Int. J. Cancer. 148, 1219–1232. https://doi.org/10.1002/IJC.33423 (2021).

	42.	 Mosca, E. et al. Computational modeling of the metabolic States regulated by the kinase Akt. Front. Physiol. 3, 418. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​
/​1​0​.​3​3​8​9​/​f​p​h​y​s​.​2​0​1​2​.​0​0​4​1​8​​​​ (2012).

	43.	 Marin-Hernandez, A. et al. Modeling cancer Glycolysis. Biochim. Biophys. Acta - Bioenerg. 1807, 755–767. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​
/​j​.​b​b​a​b​i​o​.​2​0​1​0​.​1​1​.​0​0​6​​​​ (2011).

	44.	 Mookerjee, S. A., Goncalves, R. L. S., Gerencser, A. A., Nicholls, D. G. & Brand, M. D. The contributions of respiration and Glycolysis 
to extracellular acid production. Biochim. Biophys. Acta - Bioenerg. 1847, 171–181. https://doi.org/10.1016/j.bbabio.2014.10.005 
(2015).

	45.	 Niewisch, M. R. et al. Influence of Dichloroacetate (DCA) on lactate production and oxygen consumption in neuroblastoma 
cells: is DCA a suitable drug for neuroblastoma therapy? Cell. Physiol. Biochem. 29, 373–380. https://doi.org/10.1159/0003384928 
(2012).

	46.	 Jeske, L., Placzek, S., Schomburg, I., Chang, A. & Schomburg, D. BRENDA in 2019: A European ELIXIR core data resource. Nucleic 
Acids Res. 47, D542–D549. https://doi.org/10.1093/nar/gky1048 (2019).

	47.	 Wittig, U. et al. SABIO-RK - Database for biochemical reaction kinetics. Nucleic Acids Res. 40, D790–D796. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​9​
3​/​n​a​r​/​g​k​r​1​0​4​6​​​​ (2012).

	48.	 Holzhütter, H. G. The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks. Eur. J. 
Biochem. 271, 2905–2922. https://doi.org/10.1111/j.1432-1033.2004.04213.x (2004).

	49.	 Raue, A. et al. Data2Dynamics: A modeling environment tailored to parameter Estimation in dynamical systems. Bioinformatics 
31, 3558–3560. https://doi.org/10.1093/bioinformatics/btv405 (2015).

	50.	 Mulukutla, B. C., Gramer, M. & Hu, W. S. On metabolic shift to lactate consumption in fed-batch culture of mammalian cells. 
Metab. Eng. 14, 138–149. https://doi.org/10.1016/j.ymben.2011.12.006 (2012).

	51.	 Place, T. L., Domann, F. E. & Case, A. J. Limitations of oxygen delivery to cells in culture: an underappreciated problem in basic 
and translational research. Free Radic Biol. Med. 113, 311–322. ​h​t​t​p​s​:​​​/​​/​d​o​​i​.​o​r​​g​/​​1​0​.​1​0​​1​​​6​/​J​.​F​​R​E​E​R​A​D​​B​I​O​​M​E​​D​.​​2​0​1​​​7​.​1​0​.​0​0​3 (2017).

	52.	 Malik-Sheriff, R. S. et al. BioModels-15 years of sharing computational models in life science. Nucleic Acids Res. 48, D407–D415. 
https://doi.org/10.1093/nar/gkz1055 (2020).

Acknowledgements
M.S. was funded by a PhD fellowship of the graduate school “Computational Systems Biology” of the German 
Research Foundation (DFG Graduiertenkolleg 1772). The project was supported by a grant from the e: Med-pro-
gram of the German Federal Ministry of Education and Research (BMBF): SYSMED-NB to J.W. (grant number: 
01ZX1607F) and A.S (grant number:01ZX1607C). AS acknowledges funding by the CANTAR network of the 

Scientific Reports |        (2025) 15:32708 12| https://doi.org/10.1038/s41598-025-18656-w

www.nature.com/scientificreports/

https://doi.org/10.1038/s41598-020-64040-1
https://doi.org/10.1111/J.1432-1033.1968.TB00175.X
https://doi.org/10.1111/J.1432-1033.1968.TB00175.X
https://doi.org/10.1016/0303-2647(75)90049-0
https://doi.org/10.1016/S0006-3495(00)76672-0
https://doi.org/10.1074/jbc.272.6.3207
https://doi.org/10.1073/pnas.2010075118
https://doi.org/10.1016/j.bpj.2010.12.3704
https://doi.org/10.3389/fphys.2017.00217
https://doi.org/10.1016/J.BBABIO.2010.11.006
https://doi.org/10.1016/J.BBABIO.2010.11.006
https://doi.org/10.7554/eLife.03342
https://doi.org/10.1016/j.cmet.2017.08.017
https://doi.org/10.1126/science.1245114
https://doi.org/10.1126/science.1245114
https://doi.org/10.1371/journal.pone.0098756
https://doi.org/10.1002/ECE3.1465
https://doi.org/10.1038/nrclinonc.2017.166
https://doi.org/10.1038/nrclinonc.2017.166
https://doi.org/10.1016/j.coisb.2024.100533
https://doi.org/10.1073/pnas.2217868120
https://doi.org/10.1126/science.1218595
https://doi.org/10.1038/s42255-023-00817-8
https://doi.org/10.1016/j.mbs.2018.03.007
https://doi.org/10.1038/s42255-024-01201-w
https://doi.org/10.1158/0008-5472.CAN-18-3541
https://doi.org/10.1002/IJC.33423
https://doi.org/10.3389/fphys.2012.00418
https://doi.org/10.3389/fphys.2012.00418
https://doi.org/10.1016/j.bbabio.2010.11.006
https://doi.org/10.1016/j.bbabio.2010.11.006
https://doi.org/10.1016/j.bbabio.2014.10.005
https://doi.org/10.1159/0003384928
https://doi.org/10.1093/nar/gky1048
https://doi.org/10.1093/nar/gkr1046
https://doi.org/10.1093/nar/gkr1046
https://doi.org/10.1111/j.1432-1033.2004.04213.x
https://doi.org/10.1093/bioinformatics/btv405
https://doi.org/10.1016/j.ymben.2011.12.006
https://doi.org/10.1016/J.FREERADBIOMED.2017.10.003
https://doi.org/10.1093/nar/gkz1055
http://www.nature.com/scientificreports


Ministry for Culture and Science NRW. The manuscript is partly based on data generated in a project funded by 
German Cancer Aid (70113455, PI: A.S.). The funders had no role in study design, data collection and analysis, 
decision to publish, or preparation of the manuscript.

Author contributions
J.W. and A.S designed the project. J.W., U.B., and K.B. supervised the analyses. Data analysis was performed by 
K.B. and M.S., quantitative dynamic modeling, and model analysis were performed by M.S., Visualization was 
done by M.S. and J.W., M.S. and J.W. wrote and all authors approved the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​
0​.​1​0​3​8​/​s​4​1​5​9​8​-​0​2​5​-​1​8​6​5​6​-​w​​​​​.​​

Correspondence and requests for materials should be addressed to J.W.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give 
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and 
indicate if changes were made. The images or other third party material in this article are included in the article’s 
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy 
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025 

Scientific Reports |        (2025) 15:32708 13| https://doi.org/10.1038/s41598-025-18656-w

www.nature.com/scientificreports/

https://doi.org/10.1038/s41598-025-18656-w
https://doi.org/10.1038/s41598-025-18656-w
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/scientificreports

	﻿A computational model elucidates the effects of oncogene-induced expression alterations on the energy metabolism of neuroblastoma
	﻿Results
	﻿A model of the energy metabolism in neuroblastoma
	﻿Sensitivity analysis of the baseline model shows strong impact of kinases, respiration and ATP consumption
	﻿The baseline model shows bistability with an additional, low-flux state
	﻿Implementation of MYCN target effects
	﻿Effects of individual and paired MYCN targets
	﻿The MYCN-high model shows Warburg-like changes in steady state fluxes
	﻿Individually assigned MYCN factors predict the range of characteristic flux changes
	﻿Not all MYCN targets are required for the induction of characteristic flux changes

	﻿Discussion
	﻿Materials and methods
	﻿Processing and incorporation of experimental data of neuroblastoma cell lines
	﻿Parameter fitting
	﻿Model simulations
	﻿Robustness of model parametrisation and predictions
	﻿Sensitivity coefficients
	﻿Analysis of bistability
	﻿Random assignment of fold changes for MYCN targets
	﻿Interaction analysis

	﻿References


