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Abstract Most acquired cardiovascular diseases are more common in older people, and the biological mechanisms and manifestations of
aging provide insight into cardiovascular pathophysiology. Measuring aging within the cardiovascular system may help to better
understand risk profiles for specific individuals and direct targeted preventative therapy. In this review, we explore telomere attri
tion, cellular senescence, epigenetic modifications, and mitochondrial dysfunction as key molecular mechanisms of aging. These
phenomena are associated with cardiovascular disease through endothelial dysfunction and systemic inflammation, which are meas
urable in clinical practice with a variety of clinical, laboratory, and imaging techniques. Finally, we discuss that the next tools for
modelling cardiovascular aging must be capable of incorporating a vast amount of diverse data from a given patient, pointing to
recent developments in artificial intelligence and machine learning.
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1. Introduction
Cardiovascular aging is a fundamental process that contributes to frailty 
and the development of various life-threatening diseases, including hyper
tension, heart failure (HF), aortic valve disease, and atherosclerosis.1–3 As 
life expectancy continues to rise globally, the burden of age-related cardio
vascular conditions has become a critical determinant of both healthspan— 
the period of life spent in good health—and overall lifespan. The increasing 
prevalence of these conditions highlights the urgent need to understand 
and mitigate the effects of cardiovascular aging.

The cardiovascular system plays a multifaceted role in maintaining 
physiological homeostasis. Beyond its primary function of delivering oxy
gen and essential nutrients to all tissues while removing metabolic waste, 
it serves as a central regulator of interorgan communication. The intricate 
network of blood vessels not only supplies vital resources but also facili
tates the exchange of biochemical signals between organs, influencing 
metabolic, immune, and neurological functions. This complex interplay un
derscores the circulatory system’s role as a gatekeeper of healthy aging.

With advancing age, vascular dysfunction, endothelial impairment, and
arterial stiffening progressively disrupt cardiovascular homeostasis.4,5

These changes increase the risk of systemic inflammation, oxidative stress,
and impaired tissue perfusion, all of which accelerate biological aging pro
cesses. Measuring and modelling cardiovascular aging have therefore be
come crucial for identifying early markers of decline and developing
targeted interventions. In this review, we focus on imaging, biomarker ana
lysis, and computational modelling that could pave the way for personalized
strategies to delay or even reverse cardiovascular aging, ultimately promot
ing longevity and quality of life.

2. Biological basis of cardiovascular
aging
2.1 Telomeres and telomerase
Telomeres, located at the ends of chromosomes, consist of tandem re
peats of the hexanucleotide sequence TTAGGG and form a higher-order 
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structure stabilized by DNA-binding proteins.6 These structures prevent 
degradation, recombination, and chromosome fusions as well as the recog
nition of chromosome ends as DNA double-strand breaks. Telomere attri
tion, the gradual shortening of telomeres with each cell division, is a 
fundamental process of aging. It is an inevitable process, which occurs 
due to the so-called end replication problem, describing the circumstance 
that the replication machinery cannot fully duplicate the end of linear 
double-stranded DNA.7 After a critical limit of cell divisions, this process 
leads to cellular senescence, a hallmark of aging.8,9 This telomere erosion is 
counteracted by the enzyme telomerase, which—as holoenzyme—consists 
of the catalytic subunit Telomerase Reverse Transcriptase (TERT), the 
Telomerase RNA Component (TERC), and several accessory proteins.10

2.1.1 Telomere length in atherosclerosis and HF
The most easily accessible patient material is blood, which allows the de
termination of telomere length in circulating cells by various methods.11

In humans, shortened telomeres in leukocytes have been consistently ob
served in individuals with coronary artery disease (CAD) and HF.12–14 Our 
own studies have shown that telomere shortening occurs uniformly across 
various haematopoietic compartments, including bone marrow–derived 
myeloid cells and thymic progenitor cells, suggesting that leukocyte telo
mere length (LTL) attrition reflects systemic influences such as increased 
cellular turnover or DNA damage due to inflammation and oxidative 
stress—common features of aging—rather than being a direct cause of 
chronic disease .15,16

A large-scale meta-analysis involving 14 studies and over 200 000 parti
cipants reported a linear inverse association between LTL and CAD risk: 
each 1 kb increase in telomere length was associated with an approximate 
23% reduction in coronary heart disease (CHD) risk.12 These findings sup
port LTL as a robust biomarker of atherosclerotic cardiovascular risk.

While the association between short LTL and CHD is well established, 
evidence for a causal relationship remains inconclusive. Mendelian random
ization (MR) offers a powerful strategy to address issues of confounding 
and reverse causation by using genetic variants as proxies for lifelong ex
posure.17 A two-sample MR study of over 470 000 individuals demon
strated that genetic determinants of longer telomeres were associated 
with a modest but statistically significant reduction in CAD risk within 
European-ancestry populations, though no causal relationship was ob
served for cerebral or peripheral atherosclerosis.18

Scheller Madrid et al.19 further explored this question using MR in a co
hort of 290 000 individuals. They examined three single nucleotide poly
morphisms (SNPs) associated with reduced telomere length—located in 
TERT, TERC, and OBFC1. They found modest but statistically significant 
increases in ischaemic heart disease risk for variants in TERT (RR: 1.04; 
95% CI: 1.02–1.06) and OBFC1 (RR: 1.05; 95% CI: 1.03–1.08), whereas 
the TERC variant, although associated with shorter telomeres, showed 
no significant association with disease risk (RR: 1.01; 95% CI: 0.99–1.03). 
Unlike the protein-coding TERT and OBFC1, TERC encodes the RNA 
template essential for telomerase activity. These findings raise the possibil
ity that telomere length may serve as a downstream marker of diminished 
telomerase function, rather than being intrinsically pathogenic. Thus, short
er telomeres alone may not be sufficient to drive pro-inflammatory dis
eases such as atherosclerosis.

In a UK Biobank cohort of 40 459 middle-aged adults, longer LTL was 
associated with favourable cardiac remodelling parameters on cardiac 
MRI and a reduced incidence of HF over a median follow-up of 12 years 
(HR: 0.86 for highest vs. lowest quartile).13 Similarly, a larger UK Biobank 
analysis of ∼403 000 individuals without pre-existing cardiovascular disease 
(CVD) found that individuals in the lowest LTL quartile had a significantly 
higher incidence of sudden cardiac death, coronary events, and HF hospi
talizations.20 Another UK biobank study using MR in over 470 000 partici
pants suggested that shorter telomere length can decrease life span up to 
2.5 years.21 These studies suggest that longer telomeres may confer resili
ence against structural cardiac decline and support the concept of LTL as a 
biomarker of biological rather than chronological aging.

At the myocardial level, cardiomyocytes from patients with HF exhibit 
significantly shorter telomeres than those from healthy controls. 
Functional studies using patient-derived induced pluripotent stem cell car
diomyocytes revealed that telomere shortening leads to chromatin remod
elling and upregulation of the developmental transcription factor Forkhead 
Box C1. This, in turn, promotes cellular senescence and contractile dys
function.22 These findings provide a mechanistic basis for the clinical obser
vation that short telomeres are associated with poor cardiac outcomes, 
establishing a direct link between telomere attrition and myocardial failure.

2.1.2 Telomerase and mitochondrial function
Telomere maintenance is undoubtedly critical in stem cells, germ cells, and 
tissues with high proliferative capacity. However, other aging-related me
chanisms could be more important in slowly or non-dividing cells, like neu
rons and the major structural cell types of the cardiovascular system, 
cardiomyocytes, endothelial cells (ECs), vascular smooth muscle cells, 
and fibroblasts. Here, mitochondrial dysfunction, another hallmark of 
aging,9 might be more relevant. The functions of mitochondria reach far be
yond energy provision as they integrate multiple metabolic signals and, 
thus, serve as a central node in metabolism23 and signalling organelles.24,25

Moreover, they are at the center of oxidative metabolism, as they detoxify 
molecular oxygen in the respiratory chain and themselves are one of the 
major intracellular producers of reactive oxygen species (ROS).26 Thus, 
they play an important role in the cellular redox homeostasis, which be
comes disturbed with increasing age resulting in oxidative stress.27,28

The constant work of cardiomyocytes consumes enormous amounts of 
adenosine triphosphate (ATP), generated by mitochondria, but ECs, vascu
lar smooth muscle cells, and fibroblasts all also rely on proper mitochon
drial function.29–31 Mitochondrial dysfunction is therefore a typical 
feature of CVD.32

Interestingly, TERT is also critical for normal mitochondrial function. The 
holoenzyme telomerase was originally identified as a nuclear enzyme re
sponsible for telomere maintenance in the unicellular eukaryote 
Tetrahymena33 and subsequently also in humans.34 Nearly two decades la
ter, its catalytic subunit TERT has been detected in mitochondria of human 
cells by several independent groups.35–38 Localization of TERT in these or
ganelles can be explained by the presence of a bona fide mitochondrial tar
geting sequence at the N-terminus of the mammalian protein,35,37 in 
addition to the nuclear import and export signals,39,40 allowing transport 
of TERT into either of the two organelles. However, the mode of action 
in mitochondria must be different from the nucleus as the circular mito
chondrial DNA (mtDNA) does not contain telomeres and because 
TERC is not imported into mitochondria.41 A direct link between TERT 
and mitochondrial functions was originally provided by the observations 
that TERT binds to mtDNA and protects it against damage,37,41 reduces 
mitochondrial superoxide levels36,37,40,41 and is required for full complex 
I activity,37,42 several processes interrelated to each other. Moreover, ex
pression of a TERT mutant defective in mitochondrial import led to ultra
structural changes in mitochondria,41 while expression of TERT forced into 
the mitochondria restored nitric oxide (NO)-mediated dilation of micro
vessels from patients with CAD.43

All studies to this point were either performed by expressing TERT 
forced into the cell nucleus or the mitochondria by disruption or addition 
of specific targeting signals, on a TERT-proficient cellular background, or in 
global TERT-knockout animals and organs thereof. This made it difficult to 
unequivocally assign specific effects to nuclear or mitochondrial TERT, re
spectively, especially in vivo. This dilemma was solved by the generation of 
two unique mouse models containing TERT exclusively in one of the cel
lular compartments in all cells of the body.44 Using these mice, it was 
shown that mitochondrial, but not nuclear TERT is necessary and sufficient 
to maintain mitochondrial complex I activity and to ameliorate ischaemia/ 
reperfusion injury of the heart. The latter can be ascribed—at least in 
part—to protection of cardiomyocytes against apoptosis, improved 
revascularization, and enhanced myofibroblast differentiation.44

Thus, mitochondrial TERT has a protective effect with respect to 
age-related CVDs, and it may be desirable to increase the levels of TERT 
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in mitochondria in humans. Such an effect has been demonstrated with 
TA-65®, a purified extract from the medicinal plant Astragalus membran
aceous in primary human ECs, along with improved migratory capacity44

and reduced ROS release in brain mitochondria.45 Moreover, dietary re
striction increases mitochondrial TERT levels in the brain.46 In a clinical set
ting, remote ischaemic preconditioning in patients undergoing coronary 
artery bypass grafting, which had a cardioprotective effect that was accom
panied by improved mitochondrial respiration,47 also led to an increase in 
mitochondrial TERT levels in right atrial appendages.44

In summary, TERT uses different modalities to counteract at least two 
hallmarks of aging, namely telomere erosion and mitochondrial dysfunction 
(Figure 1). In rapidly dividing cells, its most important role might be the pre
vention of telomere erosion. Its predominant effect in cells with low prolif
erative capacity, such as those in the brain and the cardiovascular system, 
appears to be the maintenance of mitochondrial function, specifically sup
porting electron transport chain function and restricting production of ROS.

2.2 Senescence
On a whole-organism level, a recognized feature of aging pathologies is the 
accumulation of senescent cells: these are defined as cells, which have irre
versibly exited the cell cycle and display a particular combination of char
acteristics including overexpression of pro-survival Bcl-2 family proteins 
and expression of the pro-inflammatory senescence-associated secretory 
phenotype (SASP).48,49 From its initial definition as simply replicative ex
haustion,50 it is now known that cellular senescence is a complex pheno
type, which can be acquired in a telomere-independent fashion by 
post-mitotic cell types, including cardiomyocytes, and can contribute to 

disease in various organ systems, including atherosclerosis,51,52 myocardial
infarction (MI),53 and HF.54,55 In addition to replicative exhaustion, senes
cence can be induced by a range of stressful stimuli, termed stress-induced
premature senescence, with the common features of oxidative stress and
mitochondrial dysfunction. Overproduction of ROS, or inadequate anti
oxidant processes, leads to DNA damage and a DNA damage response
(DDR).56 DDR then leads to cell cycle arrest, through activation of the
p53/p21 pathway, and senescence.

Multiple cardiovascular risk factors beyond age are also closely linked
with senescence. Hyperglycaemic media shifts cells towards senescence
in vitro, and senescence of pancreatic islet cells has been implicated in the
development of diabetes.57 High levels of lipids also contribute to senes
cence as, in the presence of ROS, lipids are oxidized and cause
ER-stress.58 White adipose tissue (WAT) is especially prone to senes
cence, and this is accelerated in the presence of obesity or diabetes.59,60

In models of obesity, senescent WAT cells appear very early in the disease
process, suggesting senescent cells may contribute to the core pathogen
esis of obesity and insulin resistance.61–63 Cigarette smoking also acceler
ates senescence,64 and in mouse models targeting senescence improves
smoking-related lung disease.64 Sarcopenia, the loss of muscle mass which
commonly occurs with aging, is also strongly linked to senescence and CVD
incidence.65

Attenuated macroautophagy and an accumulation of dysfunctional 
mitochondria via impaired mitophagy are recognized hallmarks of aging,9

and of cellular senescence.48,66 Accordingly, short hairpin RNA–based 
knockdown of key mitophagy components, such as PINK1, Parkin, or 
p62, is sufficient to induce senescence. Further, several pharmacological in
terventions identified as ‘anti-senescent’ have been found to promote 

Figure 1 Telomerase reverse transcriptase counteracts different hallmarks of aging through dissimilar, organelle-specific mechanisms. In the nuclei of germ
line cells, stem cells, e.g. in the bone marrow or in intestinal crypts and of rapidly dividing cells like the intestinal epithelium, the telomerase holoenzyme con
sisting of TERT, TERC, and accessory proteins prevents telomere erosion and, thus, induction of cellular senescence. Conversely, in slowly or non-dividing cells 
of e.g. the brain, the vasculature and the heart, mitochondrial TERT protects mitochondrial DNA against damage, maintains activity of respiratory chain com
plex I and limits superoxide production, thereby maintaining mitochondrial functionality. TERT, telomerase reverse transcriptase; TERC, telomerase RNA 
component; OMM, outer mitochondrial membrane; IMS, intermembrane space; IMM, inner mitochondrial membrane; mtDNA, mitochondrial DNA.
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mitophagy, with their anti-senescent effects being dependent on functional 
expression of the autophagic machinery.67 In the context of CVD and 
myocardial aging, mouse models have demonstrated that functional autop
aphy within cardiomyocytes is critical to maintain myocardial health. 
Disruption in autophagy via cardiomyocyte-specific deletion of Atg5 re
sults in myocardial dysfunction with characteristics of age-related remod
elling.68 In non-cardiomyocyte cell lineages, including fibroblasts and 
primary human cardiac microvascular ECs, enhancing autophagy has 
been shown to have therapeutic potential. Novel small molecules that 
activate mitophagy machinery, such as p62, have shown promising anti- 
senescence and anti-aging properties.67 The action of many longevity- 
promoting interventions often converges on the activation of AMP kinase 
(AMPK), activation of the Sirtuin pathway, or dampening of mechanistic 
target of rapamycin. Some suggest that widespread changes in these com
plex and far-reaching pathways (such as by administering rapamycin) are 
regulated in the cardiac microenvironment by post-transcriptional me
chanisms such as micro RNA (miRNA) networks.69,70 Certainly, more pre
cise molecular mechanisms and targeting strategies must be elucidated to 
maximize the potential of any longevity-promoting intervention. Although 
tracking changes in mitophagic flux in real time is technically challenging, 
fluorescent reporters have recently been used both in vitro alongside or
thogonal studies, and in vivo, to great effect.67,71

The mechanisms by which enhanced autophagy appears to improve cel
lular function centre on improved mitochondrial function, as a result of in
creased mitophapy and mitochondrial turnover. This is perhaps 
unsurprising, as dysfunctional mitochondria contribute to several patho
logical processes related to aging. Mitochondria act as a source of oxidants 
in the cell, and mitochondrial dysfunction (e.g. decreased membrane po
tential and increased proton leak) accelerates senescence in large part by 
release of ROS.72,73 Mitochondria-derived ROS form part of the SASP 
and studies using mitochondria-depleted senescent cells show that the or
ganelles are in fact required for expression of the SASP; mitochondria- 
depleted senescent cells remain in cell cycle arrest but fail to express the 
classical senescence markers p16 and p21, or the typical pro-inflammatory 
and pro-oxidant phenotype.74 It has been suggested that increased perme
ability of the outer mitochondrial membrane in senescent cells allows the 
release of mtDNA, which can activate the cGAS-STING pathway (normal
ly responsible for recognising exogenous, pathogenic, cytoplasmic 
DNA).75,76 Additionally, against the backdrop of increased pro-survival 
pathway expression, insufficient cytochrome c release and caspase activa
tion in a senescent cell may result in sublethal apoptotic processes, which 
induce DNA damage and contribute to further genetic instability.

Some argue that nuclear DNA leakage may also be a trigger for cellular 
DNA sensors and inflammation. Senescent cells have been shown to ex
trude chromatin fragments from their nuclei to the cytoplasm, thereby 
triggering the cGAS-STING pathway.77 Consequently, NF-kB signalling is 
activated, transcription of pro-inflammatory genes is switched on, and 
SASP released. Other DNA sensors may also be activated by nuclear or 
mtDNA in senescent cell cytoplasm, including toll-like receptor 9, and 
the inflammasome complex. Clinically, there is significant interest in how 
circulating mtDNA correlates with hypertension,78 and how cell-free 
mtDNA is associated with MI.79 Dampening DNA-leakage sensors using 
small molecules has been investigated in preclinical studies,80 and further 
research is warranted to assess their potential in senescence and CVD.

With aging being the biggest risk factor for CVD, prophylactically or 
curatively abrogating senescent cell burden in the aging heart is an exciting 
concept. Landmark studies explored this notion using senolytics: pharma
cological agents, such as Navitoclax, which selectively induce senescent 
cells to apoptosis by inhibiting Bcl-2 family proteins.

Suggesting that senescent cells may be detrimental post-MI, the use of 
Navitoclax in mice post-MI has been shown to attenuate cardiomyocyte 
hypertrophy and myocardial profibrotic TGFβ2 expression.81 Standard 
treatment of MI involves reperfusion of the ischaemic area of myocardium, 
but this sudden reperfusion is itself associated with localised oxidative 
stress and inflammation, termed ischaemia-reperfusion injury (IRI).82 In 
an IRI setting, Navitoclax treatment was associated with reduced infarct 
scar size, increased angiogenesis, and reduced SASP expression.53,81

Though the heart is thought to have limited regenerative capacity over
all, a small population of cardiac progenitor (or stem) cells (CPCs) are 
thought to underpin this capacity, which is important for reparative poten
tial post-insult. In patients  > 70 years of age, over half of CPCs have been 
shown to be senescent, and unable to fulfil their regenerative, reparative 
role in an infarcted heart. Furthermore, the SASP of these CPCs was 
able to induce senescence in non-senescent CPC populations in vitro, but 
the addition of senolytic combination therapy with dasatinib and quercetin 
abrogated these effects.83

Overall, several aspects of the senescent cell phenotype may lend them
selves to promotion of CVD in an aging setting, including the 
pro-inflammatory SASP and the loss of any limited regenerative potential. 
The prospect of senolytics is exciting, but the long-term effects of remov
ing cells from a post-mitotic cardiomyocyte population are uncertain. It is 
heartening, however, that Navitoclax is being employed in Phase II clinical 
trials in an oncology setting and shows a favourable safety profile. Novel 
approaches such as senomorphics (drugs which modify or dampen the sen
escent phenotype, particularly SASP) may hold more promise, but even 
these show mixed efficacy from preclinical studies.84 Certainly, a better un
derstanding of the detrimental aspects of the senescent phenotype will al
low for more targeted therapeutic approaches.

2.3 Epigenetics
One of the key mechanisms contributing to the chronic low-grade inflam
mation observed in aging cardiovascular systems is driven by dynamic and 
flexible age-related epigenetic modifications. These modifications, including 
DNA methylation, histone modifications, alterations in chromatin struc
ture, and RNA-based mechanisms, play a pivotal role in controlling the 
gene expression of inflammatory pathways without altering the underlying 
DNA sequence.85,86 As aging progresses, epigenetic alterations occur 
sporadically in response to both exogenous and endogenous factors and 
are closely associated with healthspan and lifespan.87–89 Sex-specific differ
ences have also been observed in genome-wide DNA methylation patterns 
and associations with several cardiometabolic traits and varying risks of 
CVD, including MI and stroke.90,91 These findings suggest that the epigen
etic landscape might play a critical role in understanding disease pheno
types and tailoring sex-specific treatments. Epigenetic age is therefore 
emerging as a personalized and accurate predictor of biological age. It 
has been linked to numerous age-related diseases and mortality,92 while 
epigenetic age acceleration is associated with the presence of subclinical 
atherosclerosis, a process mediated by systemic inflammation.93

Epigenetic mechanisms can be modified by pharmacological agents, lifestyle 
interventions, or diet.94–96 Consequently, epigenetic clocks that track bio
logical age may serve as valuable tools for interventions aimed at mitigating 
the effects of aging, especially if they can detect biological aging in young 
individuals who show no signs of disease.

2.3.1 DNA methylation
DNA methylation is a dynamic process involving the addition of a methyl 
group by DNA methyltransferases (DNMTs) or its removal by ten-eleven 
translocation methyl-cytosine dioxygenases (TET), primarily targeting 
cytosine residues in CpG dinucleotide sites, leading generally to transcrip
tional repression. These enzymes are regulated by genetic and environ
mental factors and by age.97,98 DNA methylation influences the 
inflammatory response of circulating leukocytes, enhances the release of 
inflammatory cytokines, and promotes the progression of age-related 
CVDs.99–102 In the general population, over 10% of people older than 
70 years harbor blood cell clones with loss-of-function mutations in epi
genetic modifiers such as TET2 and DNMT3A.103 While 75% of CpG sites 
are typically methylated in mammalian cells, aging leads to deviations in glo
bal DNA methylation patterns. Global hypomethylation occurs alongside 
localized hypermethylation at specific loci, contributing to genomic instabil
ity.104–107 Atherosclerotic lesions in humans and preclinical models exhibit 
global DNA hypomethylation, while promoter regions of atheroprotective 
genes associated with endothelial and smooth muscle cell functions often 
show hypermethylation.108–111 Reduced DNA methylation has also been 
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observed in the promoter region of TNFα,112 a potent inflammatory cyto
kine associated with vascular aging.113,114 Additionally, age-dependent 
DNA hypomethylation regulates interleukin (IL)-1β and IL-6 expres
sion.115,116 Since the benefit of IL-1β-targeting therapies like canakinumab 
depends on the magnitude of the IL-6 response,117,118 DNA methylation 
levels may partly explain why patients with somatic variations in TET2 or 
DNMT3A face an increased risk of major adverse cardiovascular events.119

2.3.2 Histone modifications and chromatin 
remodelling
Aging is associated with specific changes in histone levels and their numer
ous post-translational modifications, including ubiquitination, which alters 
chromatin structure and accessibility. This shift from tightly packed hetero
chromatin to loosely organized euchromatin leads to genomic instability, 
loss of silencing, and increased transcription of retrotransposons.120–122

Senescent cells accumulate senescence-associated heterochromatin foci, 
which silence cell cycle-related genes like E2F target genes.123,124

Changes in specific histones, such as decreased H3K9me3 levels and in
creased H4K20m33 and H3S10P levels, contribute to inflammageing, the 
gradually increasing activation of the immune system through aging.125,126

Sirtuins, a class of histone deacetylases (HDAC), regulate genes involved in 
NO signalling, oxidative stress, autophagy, and vascular aging through chro
matin remodelling.127 HDAC inhibitors have been shown to significantly 
reduce TNF-α-stimulated VCAM-1 expression.128 Similarly, HDAC9 is 
linked to increased inflammation in advanced plaques, CAD, and ischaemic 
stroke.129–131 HDAC9-deficient mice exhibit reduced atherosclerotic le
sions, while macrophage-specific HDAC9 deficiency upregulates histone 
H3 and H4 acetylation and increases ABCA1 and PPARγ levels, preventing 
cholesterol efflux.132

2.3.3 RNA-based mechanisms
Non-coding RNA profiles, including microRNAs (miRNAs), long non- 
coding RNAs (lncRNAs), and circular RNAs (circRNAs), are profoundly af
fected by aging and are associated with all-cause mortality and age-related 
traits.133–136 These non-coding RNAs serve as critical regulators of mul
tiple biological processes related to aging.86,137 Several miRNAs, such as 
miR-21, miR-146a, miR-155, miR-126, and miR-3a, are implicated in inflam
mageing.137 Increased levels of miR-34 and reduced expression of its target 
gene, SIRT1, have been identified in replicative-senescent human ECs, 
replicative-senescent human aortic smooth muscle cells, and aged mouse 
aortas.138,139 In humans, miR-34 is associated with aortic stiffness, a surro
gate marker of arterial aging, and the presence of CAD.140 Notably, 
leukocyte-specific deletion of miR-34 mitigates atherosclerotic plaque de
velopment and enhances Sirt1 expression in an atherosclerosis mouse 
model.140 The lncRNA BACE1-AS has been shown to enhance BACE1 
mRNA stability, promoting Aβ formation.141,142 This lncRNA is associated 
with accelerated vascular aging and the presence, extent, and incidence of 
atherosclerosis in humans.143 Although few studies directly link post- 
transcriptional regulation to inflammageing, accumulating evidence high
lights the critical roles of RNA-binding proteins and RNA modifications 
in age-related diseases.144–147 The contribution of these RNA metabolism 
regulatory processes to inflammageing is poised to become a central focus 
of scientific research in the years ahead.

2.4 Endothelial dysfunction
Aging significantly impacts the vascular endothelium, the monolayer of ECs 
lining arteries, veins, and capillaries.148 ECs serve as gatekeepers, regulating 
the movement of molecules, nutrients, and immune cells between blood 
and tissues. In their quiescent state, ECs express factors that prevent 
leukocyte adhesion, platelet activation, and oxidative stress. However, 
aging leads to a progressive decline in endothelial function, shifting the 
endothelium towards a proinflammatory, vasoconstrictive, and prothrom
botic state, ultimately increasing the risk of CVDs.148

A key factor in endothelial dysfunction is the reduced availability of NO, 
a vasodilator that regulates vascular tone and inhibits platelet aggregation. 

The decline in NO bioavailability reduces the ability of blood vessels to ex
pand and contract, contributing to elevated blood pressure.149,150 The me
chanisms underlying age-related endothelial dysfunction also include 
increased oxidative and nitrosative stress, cellular senescence, mitochon
drial dysfunction, and impaired angiogenesis.148,151–153

Alongside SIRT1’s aforementioned role in RNA-based mechanisms, the 
sirtuin family members SIRT1 and SIRT3 have been implicated as important
players tying together endothelial dysfunction, oxidative stress, mitochon
drial dysfunction, and cellular senescence in age-associated CVD. Using no
vel techniques, it was recently shown that chronic, targeted delivery of the
phenolic antioxidant compound esculetin to the mitochondria of human
aortic ECs resulted in improved mitochondrial respiration and delayed
senescence-like features through SIRT1 activation.154 Furthermore, chron
ic treatment with this targeted therapy alleviated age-associated athero
sclerosis in Apoe−/− mice. In aortic ECs, a reported contributing
mechanism of esculetin’s beneficial effects is enhanced mitochondrial bio
genesis via the AMPKα-SIRT3 axis but crucially, targeted delivery of escu
letin to the mitochondria is required for its in vivo beneficial effect.155

Altogether, these studies highlight SIRT1 and SIRT3 as common players
within interconnecting processes of CVD and aging, whilst also emphasiz
ing the power of targeted, mechanistically-informed interventions like
antioxidants.

With aging, ECs show increased expression of adhesion molecules pro
moting leukocyte recruitment to the arterial wall, a critical step in athero
sclerosis development.156,157 Age-related alterations in cytokine levels,
such as IL-6 and TNF-α, further drive inflammation and endothelial activa
tion.158 Endothelial dysfunction is also linked to metabolic disorders such
as diabetes and obesity,159,160 which worsen insulin resistance and increase
the risk of vascular complications.161 The chronic inflammation associated
with impaired endothelial function contributes to metabolic imbalances,
providing a fertile ground for the development of age-related diseases.162,163

Structural changes in the arterial wall are also observed with aging, in
cluding luminal enlargement, intima and media thickening, and medial calci
fication. Smooth muscle cells undergo phenotypic switching, transforming
into a synthetic, osteogenic, and pro-inflammatory phenotype.149,164 This
shift alters the extracellular matrix (ECM) composition, increasing collagen
and reducing elastin.165 Additionally, aged endothelium shows increased
permeability,166,167 allowing infiltration of immune cells that produce
ECM-degrading enzymes, such as matrix metalloproteinases.168 Medial ar
terial calcification leads to the precipitation of hydroxyapatite crystals in
the arterial wall,169 further contributing to arterial stiffness, an independent
predictor of incident CVD and all-cause mortality.170

In large arteries, endothelial dysfunction, combined with vascular wall re
modelling and calcification, promotes atherosclerosis, a chronic inflamma
tory disease.4,171,172 Atherosclerotic lesions typically develop in areas of
disturbed blood flow, damaging vascular ECs and triggering inflammation.
Compromised endothelial integrity facilitates the accumulation of oxidized
low-density lipoprotein particles, leading to monocyte differentiation into
macrophages and foam cell formation, contributing to the plaque forma
tion. This may lead to increased vascular resistance and platelet aggrega
tion, raising the risk for hypertension, thrombosis, and acute
cardiovascular events, such as MI and stroke.4,171,172 The relationship be
tween endothelial dysfunction and atherosclerosis appears bidirectional,
indicating that these pathological mechanisms exacerbate each
other.173,174 Although aging-associated processes, such as endothelial dys
function and media remodelling, equally affect veins and arteries, their ef
fects in the two are dramatically different because of the haemodynamic
differences. Indeed, human veins do not develop atherosclerosis, but the
slower blood flow predisposes to thrombosis, especially in the lower
limbs.175,176 In microvascular beds, aging impairs endothelial vasodilation,
endothelial permeability, and reduces capillary density, to compromise 
the arterial myogenic tone, a mechanism of autoregulation, to maintain a 
relatively constant blood flow in the capillary bed.177 Aging-related changes 
in this process explain why older adults are more prone to hypertension- 
related complications, such as chronic kidney disease.

Understanding the complex interplay of mechanisms underlying endo
thelial dysfunction in aging offers promising insights into interventions 
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that may slow or even reverse these processes. Regular physical exercise 
has been shown to improve NO production and maintain vascular elasti
city.178 Dietary interventions, like the Mediterranean diet, can mitigate oxi
dative stress and inflammation.179 Pharmacological strategies, including 
cholesterol-lowering and blood pressure-lowering drugs, can further im
prove endothelial function.180,181 Similarly, KCa channel activator im
proved endothelium-dependent vasodilation, and prevented the 
aging-associated declines in cardiac ejection fraction.182 Senolytics, which 
remove senescent ECs in vitro, improve cardiac and endothelial function 
in aged mice.183,184 By targeting the cellular and molecular mechanisms 
driving endothelial aging, these interventions may delay or even reverse 
vascular dysfunction, ultimately reducing the burden of age-related CVD.

2.5 Oxidative stress
Oxidative stress, characterized by an imbalance between the production of 
ROS and the antioxidant systems that detoxify them, plays a central role in 
the accelerated progression of cardiovascular aging.185 This imbalance is 
particularly detrimental to the vascular endothelium, where excessive 
ROS generation impairs NO bioavailability, promotes inflammation, and 
accelerates endothelial dysfunction. Mitochondria, the primary source of 
ROS in cardiovascular cells, become progressively dysfunctional with age, 
contributing to a vicious cycle of oxidative damage and cellular senes
cence.186,187 Mitochondrial ROS not only damage DNA, proteins, and li
pids but also activate redox-sensitive signalling pathways, further 
exacerbating vascular inflammation and apoptosis.188 In ECs, this oxidative 
burden reduces angiogenic capacity, impairs vasodilation, and increases 
vascular stiffness, which are precursors to age-related CVDs.189

The oxidative stress theory of aging, first proposed by Denham Harman 
in the 1950s, posits that accumulated ROS generated during normal aerob
ic metabolism cause damage to proteins, lipids, and DNA, thereby acceler
ating the aging process.190 Experimental evidence from genetically 
modified mouse models with altered expression of superoxide dismutase 
(Sod1 or Sod2), two key antioxidant enzymes, has provided compelling 
support for this theory. Sod1 knockout (KO) mice, lacking cytosolic super
oxide dismutase, display elevated oxidative stress and an accelerated aging 
phenotype, characterized by muscle atrophy, weakness, and a 30% reduc
tion in lifespan.191–193 Knockout of mitochondrial superoxide dismutase 
(Sod2) results in neonatal lethality due to dilated cardiomyopathy, support
ing the essential role of mitochondrial ROS detoxification in cardiac devel
opment and survival.194 Heterozygous Sod2+/− mice, which survive into 
adulthood, exhibit age-dependent endothelial dysfunction, increased mito
chondrial oxidative stress, and DNA strand breaks, further linking oxidative 
stress to vascular aging.195 Similarly, deficiency of the antioxidant enzyme 
glutathione peroxidase-1 in aged mice exacerbates vascular inflammation, 
characterized by monocyte and macrophage infiltration, oxidative DNA 
damage, and impaired endothelial function.196 In humans, patients with 
CAD and low red-cell GPx-1 activity are independently at higher risk of 
cardiovascular events,197,198 further highlighting the importance of en
dogenous antioxidant systems in maintaining vascular integrity during aging.

Importantly, oxidative damage extends beyond local vascular effects, 
contributing to systemic aging through genomic instability. Levels of oxi
dized DNA bases such as 8-oxo-2’-deoxyguanosine (8-oxo-dG) have 
been shown to inversely correlate with lifespan across species,199 suggest
ing that the efficiency of DNA repair and antioxidant defences may critic
ally determine species-specific aging rates. The relevance of oxidative stress 
in premature vascular aging is further supported by studies of Hutchinson– 
Gilford progeria syndrome (HGPS), a genetic disorder characterized by 
accelerated aging. ECs derived from HGPS patients exhibit premature sen
escence, including telomere shortening, increased ROS production, and 
impaired angiogenic function.200–202 In hypertensive heart disease, oxida
tive stress accelerates telomere shortening, and elevated markers of telo
meric damage serve as strong predictors of HF progression,203 confirming 
that ROS-induced genomic instability may mechanistically link molecular 
aging to clinical cardiovascular outcomes.

Oxidative stress also interacts with lifestyle and environmental factors 
that modulate cardiovascular aging.204 Interventions that reduce oxidative 

load, such as antioxidant-rich diets, regular physical activity, and pharmaco
logical agents, have shown beneficial effects in both preclinical models and 
clinical studies. Empagliflozin, a sodium-glucose cotransporter 2 (SGLT2) 
inhibitor, has been shown to improve endothelial function and reduce 
mitochondrial oxidative stress in frail hypertensive and diabetic patients, 
highlighting a potential therapeutic strategy for mitigating vascular aging.205

Angiotensin II–induced upregulation of SGLT1 and SGLT2 promotes 
endothelial senescence and dysfunction via oxidative stress pathways, an 
effects that can be reversed by gliflozins treatment.206 Metformin, a widely 
used antidiabetic drug, has also been shown to extend healthspan by redu
cing oxidative stress, improving endothelial function, and modulating meta
bolic pathways.207 Taurine, a sulfur-containing amino acid with antioxidant 
properties, has been associated with improved endothelial function and re
duced oxidative stress in aging models, suggesting its potential as a dietary 
supplement to counteract cardiovascular aging.208 Although the direct link 
to human aging remains to be fully clarified, these findings suggest that tar
geting oxidative stress pathways may offer benefits against age-related vas
cular decline.

While the role of oxidative stress in aging is multifaceted, mounting evi
dence indicates that it acts not only as a marker of biological aging but also 
as a driver of pathological cardiovascular changes. Thus, targeting oxidative 
mechanisms presents a promising strategy to delay the onset of CVDs and 
extend healthspan. However, it is essential to distinguish between physio
logical ROS signalling, which is crucial for normal vascular tone, immune de
fence, and cellular adaptation, and pathological oxidative stress, which 
overwhelms compensatory mechanisms. Future research must therefore 
focus on refining therapeutic approaches that restore redox balance with
out impairing vital cellular signalling pathways.

2.6 Inflammation and cardiovascular aging
Inflammageing refers to the increasing activation of the immune system 
through repeated antigenic stimulation through life.209 The aged immune 
system is simultaneously less effective at preventing and clearing infec
tions210 and overactivated with higher circulating levels of cytokines and 
higher incidences of some autoimmune diseases, such as giant cell arter
itis.211–213 By helping to unravel this seeming paradox, inflammageing pro
vides insights into many CVDs of aging.

With aging, the composition of the immune cell repertoire changes. 
Lymphoid-biased haematopoietic stem cells (HSCs) persist in smaller num
bers than myeloid-biased HSCs, leading to a myeloid shift in circulating im
mune cells.214 This phenomenon can be easily observed in the blood count 
of older individuals as a higher neutrophil-to-lymphocyte ratio (NLR), 
which correlates with both chronological age and markers of biological 
age, such as reduced grip strength.215 NLR also predicts cardiovascular out
comes, including cardiovascular mortality, in a range of clinical situations, 
suggesting this myeloid shift may be actively involved in CVD.216,217 MR 
analysis of a UK biobank cohort, however, has not found evidence for a 
causal link between NLR and CAD or MI.218

The causative association between systemic inflammation and CVD is 
well established, through both observational studies and clinical trials. 
C-reactive protein (CRP) levels predict long-term adverse cardiovascular
outcomes similarly well, or better, than cholesterol levels,219 and inflamma
tory diseases such as rheumatoid arthritis and systemic lupus erythemato
sus are robustly associated with increased CVD risk.220 Systemic
inflammation is also common in patients with atherosclerotic CVD
(ASCVD), with a large study in Sweden finding 60% of patients
with ASCVD have a CRP of 2 mg/L or higher. The inflammatory
hypothesis of atherothrombosis was proven with the Canakinumab
Anti-Inflammatory Thrombosis Outcome Study, in which the IL-1β inhibi
tor canakinumab was superior to placebo with regards to cardiovascular
events in the secondary prevention setting—the first time an anti- 
inflammatory medication has been proven effective in improving cardiovas
cular outcomes. Later, trials of colchicine, another anti-inflammatory
treatment, have further cemented the finding that changes in the immune
system have a causative relationship with cardiovascular outcomes.221–223
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Mitochondrial function, as an upstream regulator of inflammation, also 
represents a promising target for immunomodulatory therapies in CVD. 
In a randomized clinical trial of 90 post-MI patients aged over 65, twice- 
daily treatment with the mitochondrial telomerase activator TA-65 for 
12–15 months resulted in reduced circulating inflammatory markers and 
increased numbers of adaptive immune cells compared with placebo.224

Patients receiving TA-65 also experienced 30% fewer adverse events, sug
gesting a therapeutic advantage over conventional anti-inflammatory 
agents, which are often limited by systemic side effects.

In summary, the aging immune system changes substantially, both 
through a myeloid shift of immune cells and cellular senescence, with 
SASP-induced inflammation. Inflammation is concretely associated with 
CV disease, and this inflammation of aging is a key mechanism for adverse 
CV outcomes in the elderly.

3. Complications associated with
cardiovascular ageing
Cardiovascular aging has a wide range of clinical consequences, and most 
acquired CVDs are linked to aging processes (summarized in Figure 2). 
Aging of large arteries is linked to increased arterial stiffness, hypertension, 
atherosclerosis, and aneurysm formation—this may result in myocardial is
chaemia, thromboembolic events, and spontaneous dissection or rupture 

of the aorta, all of which carry a risk of fatal consequences.4 At the core 
of most aging-related CVDs lies the progressive dysfunction of the endo
thelium, which impacts arterioles and the microcirculation by 
impairing EC-dependent vasodilation225 and promoting microvascular rar
efaction.226 The resulting myocardial hypoperfusion contributes to cardio
myocyte apoptosis and necrosis, which in turn accelerates hypertrophy of 
surviving cardiomyocytes and stimulates fibroblast proliferation, leading to
further left ventricular (LV) hypertrophy.227

The loss of arterial myogenic tone228 in response to increased intralum
inal pressure in older individuals heightens the risk of hypertension-related
complications, including chronic kidney disease and stroke.229 Additionally,
age-related capillary depletion is linked to vascular cognitive impairment,228

peripheral artery disease,230 and macular degeneration.231,232 In the myo
cardium, the relatively stable capillary network becomes dysfunctional, in
creasing the risk of MI with nonobstructive coronary arteries.233

Among structural heart diseases, calcific aortic valve disease (CAVD)
with haemodynamically significant aortic stenosis is particularly prevalent
in older individuals.234 Although its pathophysiology remains largely un
clear, CAVD shares features with arterial stiffness and atherosclerosis,235

including genetic predisposition, immune cell infiltration, unresolved in
flammation, vascular smooth muscle cell phenotypic shifts, and phosphate- 
calcium metabolism dysregulation.236

HF is a leading cause of morbidity in aging populations,237 characterized
by myocardial stiffening, LV thickening, and reduced β-adrenergic receptor

Figure 2 A summary of age-related complications in the cardiovascular system. MINOCA,  myocardial infarction with non-obstructive coronary arteries.

How to measure and model cardiovascular aging 1495



responsiveness.238–241 Large-artery stiffening increases LV afterload, lead
ing to compensatory LV hypertrophy, which in turn raises myocardial oxy
gen demand.235,242 Although some studies suggest that aging reduces 
systolic contractility,243 diastolic dysfunction is more prevalent, as evi
denced by the predominance of HF with preserved ejection fraction 
(HFpEF) over HF with reduced ejection fraction (HFrEF) in older adults.244

HFpEF, often secondary to ischaemic insults, is a key contributor to cardio
vascular mortality, with diastolic dysfunction emerging as a hallmark of 
myocardial aging.245

The brain vasculature plays a critical role in maintaining cerebral homeo
stasis, by delivering oxygen and nutrients and removing waste products.246

Aging of the cerebrovascular system is associated with reduced elasticity of 
blood vessels, endothelial dysfunction, and decreased perfusion cap
acity.247 These age-associated vascular alterations not only impair nutrient 
and oxygen delivery but also compromise the blood–brain barrier, increas
ing susceptibility to neuroinflammation and neurodegeneration.247 Indeed, 
microvascular impairment and inflammation promote vascular cognitive 
impairment.228,248,249 Consequently, compromised cerebral blood flow, 
microvascular integrity, and vascular remodelling processes have been in
creasingly recognised as central contributors to age-related neurodegen
erative conditions, particularly vascular dementia and Alzheimer’s 
disease.250,251 These conditions are particularly prevalent in the aging 
population and are frequently associated with cardiovascular risk factors 
such as hypertension, atherosclerosis, diabetes mellitus, obesity, and 
hyperlipidemia.252–256 Reciprocally, the presence of established cardiovas
cular risk factors predicts faster cognitive decline.257 As such, cognitive im
pairment is tightly connected to cardiovascular aging in a likely bidirectional 
manner.258 Importantly, these conditions do not act in isolation but inter
act synergistically with genetic predispositions and lifestyle factors to influ
ence cognitive trajectories in aging populations.259 Given these 
multifaceted interactions, monitoring and managing vascular health, 
through lifestyle intervention, pharmacological treatment of cardiovascular 
risks, and early imaging biomarkers, may offer promising avenues for pre
venting or delaying the onset of vascular cognitive impairment.

4. Measuring cardiovascular ageing
4.1 Clinical biomarkers
Hypertension is among the strongest predictors of incident CVD, and is 
closely tied to aging.260 Broadly, hypertension can be classified as either iso
lated diastolic (IDH), isolated-systolic (ISH), or systolic-diastolic (SDH), de
pending which of the systolic and diastolic blood pressure (BP) are above 
the reference limit. Data from the National Health and Nutrition 
Examination Survey (NHANES), a large population study in the United 
States, demonstrate that ISH and SDH predict an increased risk of cardio
vascular events, while IDH does not.261,262 Older patients in this study had 
a remarkably different profile of hypertension. The prevalence of IDH de
creased steadily from 39.2% in patients under 40 years old to 0.2% in those 
over 80, while the prevalence of ISH peaks in the 7th and 8th decades, 
largely due to arterial stiffness.263 It is well established that BP then starts 
to fall in the very old, and that lower BP in the elderly predicts all-cause 
mortality and even cardiovascular events.264–266 This makes BP a complex 
marker of aging in the cardiovascular system, with the trend of a person’s 
BP over many years giving important prognostic information.

Multiple genome-wide association (GWA) studies have sought a herit
able basis for extreme longevity, and the SNP rs429358 [apolipoprotein 
E (ApoE) ϵ4] is consistently associated with lower odds of longevity, while 
other ApoE variants (ϵ2 and ϵ3) are associated with greater odds.267,268

ApoE is the major carrying molecule for lipids, and its consistent associ
ation with longevity highlights the major impact of atherosclerotic disease 
on lifespan. ApoE ϵ4 may also hold promise as a novel biomarker, particu
larly for Alzheimer’s dementia.269,270

Markers of systemic inflammation, including C-reactive protein (CRP), 
IL-6, and IL-1β increase steadily with age. These markers are also robustly 
associated with CVD. CRP is associated with arterial stiffness271,272 and ca
rotid calcification,273 although interestingly not with coronary artery 

calcium (CAC) score.274 IL-6 and IL-1β, which are upstream of CRP in 
the same axis, also associate with subclinical and clinical atherosclerosis.275

Interestingly, MR studies show that genetically lower CRP does not reduce 
CVD outcomes, while lower IL-6 does.276 Conversely, polymorphisms 
which increase the level of the IL-1 receptor antagonist, IL-1R, and so de
crease the activity of IL-1, are associated with higher incidence of coronary 
heart disease.277 These data suggest that IL-6 may be the key signalling mol
ecule in this pathway, and uniquely amenable to treatment. Clinically, CRP 
is currently the only inflammatory biomarker for CVD recommended by 
international guidelines, with the American Heart Association (AHA) re
commending its measurement for more detailed assessment of cardiovas
cular risk.278

4.2 The blood-based peptide amyloid-beta 
1–40
A new marker of biological age holding great potential is the amyloid-beta 
1-40 (Aβ40) blood-based peptide, which is linked to several CVDs
(Figure 3). Aβ is a proteolytic fragment of the amyloid precursor protein
(APP), known for its involvement in Alzheimer’s disease.142 APP is pro
duced in neurons, platelets, cardiomyocytes, and all vascular cells.141,142

β-secretase (BACE1) is involved in APP cleavage, and further cleavage by
γ-secretases generates peptides of length 40 (Aβ40), which is found in vas
cular lesions, and 42 (Aβ42), which is associated with brain lesions in
Alzheimer’s disease. The BACE1 antisense transcript (BACE1-AS), a con
served long noncoding RNA, has been found to enhance BACE1 mRNA
stability and thus promote Aβ formation.279,280 Several factors, including
inflammation, renal dysfunction, or ischaemia, increase circulating levels
and subsequent tissue deposition of Aβ by augmenting its production
and processing or by decreasing Aβ clearance.141,142 Under normal condi
tions, equilibrium exists between Aβ production and removal.
Deregulation of this balance may lead to CVD-associated accumulation
of Aβ in the blood, vessels, and heart.141,142 Increased APP processing
and Aβ production may be directly linked to endothelial dysfunction in
cerebral and peripheral blood vessels. Aβ peptides at high concentrations
are toxic to brain and peripheral ECs, causing cellular damage,
enhanced vasoconstriction, and impairment of endothelium-dependent re
laxation, thereby promoting atherosclerosis, an age-related disease.281

Additionally, APP and Aβ have been detected in human carotid plaques
and atherosclerotic aortas.282 Overexpression of APP accelerates athero
sclerosis,283 while APP deletion partially protects against the development
of aortic atherosclerosis in ApoE−/− mice.284 Clinical and experimental evi
dence indicates that Aβ may play a crucial role not only in the brain but also
in the general vasculature. Amyloid deposits are found in the aortic walls of
almost 100% of individuals over 50 years of age.285 Interestingly, the aortas
of elderly individuals with either mild fatty streaks or advanced atheroscler
otic lesions predominantly contain Aβ40 peptides.286,287 Furthermore, ele
vated circulating amyloid concentrations in obesity and diabetes promote
vascular dysfunction.288 Although the source of elevated plasma Aβ40 le
vels in aged humans remains unknown, endothelial APP significantly contri
butes to blood Aβ levels, as shown in mice.289 Unexpectedly, it has been
recently proposed that upregulation of APP in the vascular endothelium
of aging mice may be an adaptive response designed to protect endothelial
function.290 Altogether, these data suggest that while endothelial Aβ pro
duction is necessary for normal function, an excess could contribute to
age-related arterial stiffening.

Increased plasma Aβ40 levels have been associated with subclinical car
diac disease, as indicated by elevated high-sensitivity cardiac troponin T, 
N-terminal pro-B-type natriuretic peptide, and lower LV ejection frac
tion.291,292 Additionally, plasma levels of Aβ40 are associated with declining
cardiorespiratory fitness in patients without clinically overt CVD.291

Elevated circulating Aβ40 levels have also been observed in patients with
hypertension, diabetes mellitus, and dyslipidemia.293 In a prospective study
of healthy young to middle-aged adults, changes in plasma Aβ40 levels were
found to independently predict changes in aortic stiffness, a surrogate
marker of vascular aging.291 In patient at risk for ASCVD, Aβ40 is asso
ciated with all-cause mortality partly mediated through renal
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dysfunction.294 Aβ40 levels are associated with the presence, extent, and 
progression of carotid atherosclerosis in postmenopausal women295 and 
are linked to plaque composition and burden in patients without clinically 
overt atherosclerotic CVD.296 Circulating Aβ40 provides incremental 
prognostic value and enhances risk stratification in patients with stable 
CAD and non-ST elevation acute coronary syndrome for predicting ad
verse cardiovascular events.297,298 It is also independently associated 
with mortality in HF patients, possibly due to worsening cardiac func
tion.292,297,298 Its prognostic significance has largely been demonstrated 
through retrospectively analyzed prospective studies. Implementing bed
side Aβ40 measurement tests in clinical trials could facilitate the establish
ment of baseline levels and thresholds for predicting adverse outcomes 
across various age groups. Notably, numerous effective anti-aging strat
egies have been found to enhance Aβ40 metabolism, highlighting its pivotal 
role in the aging process.141

4.3 CHIP
Clonal haematopoiesis (CH) describes the process when haematopoietic 
stem and progenitor cells (HSPCs) acquire mutations in genes known to 

be associated with haematological malignancy but in the absence of an
overt blood disorder. These mutations are passed on to progeny cells, re
sulting in clones of mutant cells that are detectable in the peripheral circu
lation. CH is defined when the variant allele frequency (VAF) is ≥1% and
has been associated with several age-related CVDs. These include athero
sclerosis, ischaemic heart disease, MI, HF, as well as outcomes from CVD,
including death.299–303

CH is an age-related phenomenon as mutations are acquired over time,
affecting ∼10% of those over the age of 65 years in population studies.304

Age is also strongly associated with the presence of CH in most reported
disease cohorts, as well as being a predictor of accelerated clonal
growth.305 The most frequently identified mutations are in DNMT3A and
TET2 genes, genes which encode enzymes responsible for methylating
and demethylating DNA CpG sites, respectively. DNMT3A- and 
TET2-CH confers abnormal function to mature blood cells, leading to pre
dominantly pro-inflammatory effects.300,301

Other than age, clonal growth is also promoted by several established, 
cardio-metabolic risk factors, including atherosclerosis,306 obesity,307,308

and smoking.309 It is also associated with metabolic dysfunction, specifically 
low HDL cholesterol levels, which was not observed in patients who 

Figure 3 Central role of amyloid-β 1-40 in vascular aging and its contribution to both cardiovascular and neurovascular diseases. Lifestyle and genetics fac
tors, such as a Western diet, smoking, genetic predisposition, dyslipidemia, diabetes mellitus, and hypertension contribute to accelerated cardiovascular aging. 
The subsequent elevated circulating levels of Amyloid-β 1-40 leads mitochondrial dysfunction, immune cell infiltration, vascular dysfunction, inflammation, loss 
of membrane integrity, and platelet activation, ultimately promoting arteriosclerosis, myocardial infarction, heart failure, cerebrovascular diseases, and cerebral 
amyloid angiopathy. Amyloid-β 1-40 as a central driver of the interplay between metabolic, inflammatory, and vascular pathways emerges as a valuable bio
marker of cardiovascular aging. Figure created with Biorender: https://BioRender.com/yogrvis.
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underwent bariatric surgery.308 CH progression has also been potentiated 
in a mouse model of obesity, which was partially recovered by anti- 
inflammatory treatment.307 Similarly, atherosclerosis has been shown to 
exacerbate stem cell division and clonal expansion,306 while smoking was 
shown to be a causal risk factor for CH in MR studies performed in the 
UK Biobank.309 Interestingly, this study also identified longer LTL as a cau
sal risk factor for CH. Given the association between telomere shortening 
and cellular senescence,310 this suggests a complex relationship between 
cellular aging and clonal expansion.

It is therefore not known to what extent CH contributes to or is a con
sequence of aging. The first human evidence of causality has emerged from 
the Progression of Early Subclinical Atherosclerosis (PESA) study.311 Based 
on longitudinal CH assessment and serial vascular imaging, this study sug
gested that CH has a unidirectional, causative association with the develop
ment of atherosclerosis. Specifically, having a mutation related to CH, 
especially at higher VAF, was associated with an increased risk of develop
ing de novo femoral atherosclerosis over 6 years, but the presence or sever
ity of atherosclerosis did not influence clonal expansion over the same 
period. The causal effect of CH is supported by several animal studies, par
ticularly those investigating TET2 mutations,312 but has not yet been tested 
in clinical perturbation studies.

Therefore, while CH is inherently linked with aging, its association with 
age-related CVD suggests that it could both contribute to and result from 
systemic aging processes.

4.4 Imaging techniques
An arsenal of imaging techniques is available to help characterize cardiovas
cular aging. Echocardiography is the most widely used and accessible test of 
ventricular function and is vital in the diagnosis of HF with both reduced 
and preserved ejection fraction (HFrEF and HFpEF, respectively). HFpEF, 
especially, is largely a disease of aging, with ventricular stiffness in diastole 
commonly identified in older echo subjects.313 Measures of diastolic dys
function, such as a dilated left atrium (LA), reduced E/A ratio and increased 
E/e’ ratio are useful measures of cardiovascular aging even in the absence of 
a diagnosis of HFpEF.314 Atria abnormalities such as dilatation may re
present ‘atrial cardiopathy’,315 which is a strong predictor of both incident 
atrial fibrillation (AF) and stroke. However, clinical trials in patients with at
rial cardiopathy, but not AF, have not yet yielded strong evidence for anti
coagulant use.316

Measured with B-mode ultrasound, the carotid artery intima-media 
thickness (CIMT) is a measure of subclinical atherosclerosis and is well 
studied as a risk-stratifying tool.317 Although a higher CIMT correlates 
with higher event rates, it remains unclear whether CIMT measurement 
in clinical practice improves outcomes, and it is therefore not recom
mended for this purpose in international guidelines.318 CIMT increases ro
bustly with age, and this appears to influence its predictive power, with one 
retrospective study finding CIMT improved risk stratification for cardiovas
cular death only in younger patients.319 Each standard deviation increase in 
CIMT was associated with a 27% increased risk of cardiovascular death in 
the 35–44 years age group, but only a 14% increase in the 65–74 years 
group.319 CIMT may therefore be most valuable as an assessment of pre
mature cardiovascular aging, losing value in those who are already old.

Coronary calcium deposition is a hallmark of atherosclerosis and cardio
vascular aging,320,321 and CT imaging provides rapid, non-invasive estima
tion of the burden of calcium in coronary arteries—a CAC score.322

CAC increases with age, and can therefore be used to give an ‘estimated 
coronary age’.323 This gives vital information in assessing risk for athero
sclerotic CVD but also gives a powerful way to relate this risk to a patient.

In comparison to CT and ultrasonography, cardiac MRI has higher spatial 
resolution and so produces the most detailed assessment of myocardial tis
sue structure,324,325 making it an attractive modality for multiparametric 
assessment of myocardial aging. Several studies have applied deep learning 
algorithms to the UK Biobank population, analysing genetic associations 
with markers of ventricular stiffness, diastolic dysfunction and aortic disten
sibility, among other MR evidence of aging.326–328 These studies have 
shown that aortic and left atrial dimensions appear particularly predictive 

of aging and contribute the most to a synthesized age-prediction model 
based on imaging parameters.

Together, these varied imaging techniques allow powerful assessment of 
myocardial aging and risk stratification in older individuals.

4.5 Vascular function assessment
Arterial stiffness and endothelial dysfunction are a fundamental mechanism 
of many CVDs of aging, including hypertension, atherosclerosis and throm
bosis329 and both can be measured non-invasively.

The carotid-femoral pulse wave velocity (PVW) is the gold-standard 
non-invasive assessment of central arterial stiffness, with relatively simple 
and reproducible measurement and a large body of evidence supporting 
its association with CVD.330–335 PVW uses electrocardiography and tono
metry to measure the delay for an arterial pulsation to arrive at the carotid 
and femoral arteries, with stiffer arteries transmitting the pulsation more 
quickly. Notably, PVW values increase substantially with age, even in pa
tients without CVD and normal blood pressure, and increase even more 
sharply in older patients with hypertension.330 This suggests that arterial 
stiffness, as measured by PVW, is a usable surrogate marker for cardiovas
cular age.336

Coronary artery endothelial dysfunction in atherosclerosis was first de
monstrated with paradoxical vasodilatation after injecting acetylcholine 
into diseases coronary arteries,337 but technique is invasive and difficult 
to perform. Non-invasive assessments of endothelial dysfunction have 
since been introduced, including flow-mediated dilatation (FMD), which 
broadly assess the microvasculature, and peripheral arterial tonometry 
(PAT), assessing the microvasculature.338

FMD, which measures endothelium-dependent vasodilation, involves 
visualizing the brachial artery with ultrasound and then occluding the artery 
distally, using a cuff inflated to supra-systolic pressure. The dilatation of the 
brachial artery is then measured using ultrasound, with less dilatation indi
cating endothelial dysfunction. Lower FMD is associated with the presence 
and progression of atherosclerosis,339,340 and the occurrence of cardiovas
cular events,341–343 but its lack of incremental predictive power over trad
itional risk factors has prevented its recommendation in guidelines.338

An alternative measure of endothelial dysfunction in the PAT technique, 
in which a finger probe measures changes in the pulse waveform before 
and after reactive hyperaemia, which is induced with temporary occlusion 
of arterial flow with an inflated cuff.344 This has the advantage of being 
much less operator-dependent than FMD measurement, although the 
body of evidence linking PAT measurements to CVD, while present, is 
less robust.345,346

5. Modelling cardiovascular ageing
Traditionally, statistical models have played a central role in estimating car
diovascular risk and the progression of cardiovascular aging. Among the 
most established models is the Framingham Risk Score, which estimates 
a 10-year risk of cardiovascular events based on key clinical variables 
such as age, blood pressure, cholesterol levels, smoking status, and the 
presence of diabetes.347 Additional risk models like SCORE (Systematic 
COronary Risk Evaluation)347,348 and QRISK349 have been developed to 
tailor cardiovascular risk prediction to specific population groups. These 
traditional models predominantly use linear and logistic regression techni
ques, which assume a relatively linear progression of cardiovascular aging 
and focus on a restricted set of modifiable and non-modifiable risk factors.

While instrumental in clinical risk stratification, these models present sig
nificant limitations. They often struggle to capture complex, non-linear in
teractions among diverse biological processes and are not designed to 
integrate high-dimensional data sources, such as genomics, metabolomics, 
or imaging modalities. To address these shortcomings, systems biology ap
proaches have emerged, leveraging the integration of multi-omics data— 
including genomic, transcriptomic, and proteomic profiles—alongside clin
ical and environmental variables to build more comprehensive predictive 
models of cardiovascular aging.350 Network-based modelling further facil
itates the identification of molecular pathways and biomarkers that 
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underpin cardiovascular aging, providing a foundation for targeted thera
peutic interventions.351

Recent findings underscore the utility of such integrative approaches. A 
study involving over 6200 middle-aged individuals demonstrated that 
organ-specific proteomic signatures are predictive of long-term risk for 
age-related diseases.352 Notably, the study found high organ specificity 
for chronic HF and dilated cardiomyopathy among participants exhibiting 
a pronounced heart-age gap.

In parallel, advances in machine learning (ML) and artificial intelligence (AI) 
have revolutionized the modelling of cardiovascular aging. In contrast to 
traditional regression-based methods, ML techniques can manage extensive, 
multidimensional datasets and detect complex non-linear relationships that 
influence cardiovascular aging. Various ML strategies—including ensemble 
models that integrate random forests, support vector machines, neural net
works, and deep learning—have been successfully applied to large datasets 
such as the UK Biobank, comprising over 375 000 individuals, to enhance 
cardiovascular risk prediction.353 Notably, the incorporation of mental 
health questionnaire data into the ensemble algorithm significantly improved 
predictive accuracy, increasing CVD risk prediction from 71% to 85%.

Biological aging clocks, which estimate biological age and highlight the di
vergence from chronological age, may also be valuable tools in modelling car
diovascular aging and capturing individual aging dynamics.354 An effective 
clock would also be sensitive to interventions or drug effects. Current clocks 
are based on measures such as epigenetic changes, inflammatory markers, 
plasma proteomics, or metabolomics (Table 1). However, their low inter
correlation suggests they capture distinct facets of the aging process.

In conclusion, the modelling of cardiovascular aging has progressed from 
conventional statistical models to sophisticated, AI-driven approaches and 
systems biology frameworks that offer deeper insights and improved pre
dictive capability.

6. Future directions
The modelling of cardiovascular aging has progressed from conventional 
statistical models to AI-driven approaches and systems biology 

frameworks that offer deeper insights and improved predictive capability.
By integrating multi-dimensional biomarkers, such as epigenetic clocks,
proteomic profiles, and arterial stiffness measures, personalized models
that can quantify biological age and capture individualized vascular aging tra
jectories will be a transformative frontier in preventive and precision medi
cine.352,361,362 Furthermore, continuous monitoring allowing dynamic risk
assessment through wearable technology and digital health tools can en
hance these models by providing real-time data on physical and chemical
signals that reflect the health conditions of older adults.363 Sex-specific fac
tors, including differential vascular biology, plaque vulnerability, and hormo
nal influences, must be systematically incorporated in these models to
enhance predictive accuracy, particularly given the accelerated vascular stif
fening observed in postmenopausal women and distinct CVD manifesta
tions between sexes.364–366 Emerging insights into epigenetic, clonal
haematopoiesis and neuro-cardiovascular axes further underscore the
need to expand biomarker panels to better reflect systemic aging pro
cesses.301,367,368 In that view, Aβ40 holds great potential for predicting ad
verse outcomes across life.141,142 However, critical challenges persist,
including the standardization of measurements, validation of biomarkers
across diverse ethnic, socioeconomic, and gender-diverse populations,
and the establishment of causal links through large longitudinal studies.
Ethical and regulatory frameworks must also evolve to support the trans
lation of predictive models into clinical practice, particularly for preventive
gerotherapeutics. By bridging mechanistic insights with clinical innovation,
personalized models hold promise not only for mitigating CVD burden but
also for redefining healthy aging paradigms in our increasingly diverse and
aging global population.
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Table 1 Blood-based biological clocks from large or midsized studies that predict mortality and/or cardiovascular relevant endpoints (adapted from 
Liberale et al., 2025)148

Blood-based 
biological clocks

Description Predictive value for lifespan and/or healthspan

Haematological aging 

clock355

Several deep learning-based biological age predictors trained on 20 

population-specific blood biomarkers and cell counts.

Associated with all-cause mortality

DNAmAge354 DNAm age is a molecular readout reflecting intrinsic aging processes and is 

defined as the predicted biological age

Associated with increased risk for all-cause mortality and CV 

disease. Diet and lifestyle treatment leads to a decrease in 

DNAmAge.
GlycanAge356 A biological age test measuring chronic inflammation via blood-based glycan 

profiles on IgG antibodies, which correlate with chronological age

Associated with multiple diseases, among others CV disease 

and diabetes.

PhenoAge356 An epigenetic clock based on DNA methylation at CpG sites strongly 
correlated with chronological age

Associated with risk of cancer, Alzheimer’s disease, CHD.

Proteomic clocks357 Proteomic clocks use protein biomarkers as intermediate phenotypes 

closely linked to age-related diseases, offering potentially greater 
accuracy in assessing aging and pathology

May predict CV death

Metabolomic clock358 Metabolomic clocks assess metabolites and small molecules as key links 

between genotype and phenotype in aging and age-related disease

Associated with all-cause, CV, cancer- and infection-related 

mortality
iAGE (Inflammatory 

aging clock)359

A blood-based immune biomarker metric for chronic inflammation, used to 

predict aging phenotypes and understand vascular aging mechanisms

Associated with exceptional longevity in centenarians. 

Associated with multimorbidity, immunosenescence, frailty 

and CV aging.
IMM-AGE (Immune 

aging score)360

A high-dimensional immune aging trajectory that more accurately reflects 

immune status than chronological age.

Better performance in predicting mortality in older adults than 

the epigenetic clock.
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