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Summary 

 

Temporal single-cell transcriptomics enables the reconstruction of dynamic gene expression 

changes during development. Yet, its analytical power is often limited by data sparsity, technical 

noise, and imbalanced representation of cell types across time points. To overcome these 

challenges, we present GeneSys (Generative Modeling of Developmental System), a generative 

deep learning model that simulates single-cell transcriptomic landscapes under developmental 

constraints, which is informed by prior biological knowledge or user-defined hypotheses. GeneSys 

integrates a temporal variational autoencoder with a cell-type classifier, requiring a lineage 

blueprint as input, which enables it to model the temporal transitions of transcriptional states with 

cell-type specificity. Leveraging data from Arabidopsis thaliana roots and mouse embryos, we 

show that GeneSys learns robust developmental trajectories, generates imputed and representative 

transcriptomes, and enhances gene prioritization accuracy compared to unregularized scRNA-seq 

data. By applying gene masking and augmentation, GeneSys reveals interpretable gene expression 

programs (GEPs) and serves as an in silico platform to test the impact of specific genes or gene 

sets on user-defined developmental outcomes. Additionally, GeneSys computes linear interaction 

matrices (LIMAs) to infer dynamic gene networks and prioritize transcription factors with 

spatiotemporal resolution. These features enable GeneSys to nominate key genes governing state 

transitions in a developmental system, supporting both mechanistic insight and hypothesis 

generation. Together, GeneSys provides a flexible and extensible framework to denoise single-cell 

data and simulate transcriptomic developmental landscape guided by known or hypothesized 

developmental constraints, empowering the discovery of regulatory mechanisms from high-

dimensional single-cell datasets. 
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Introduction 

  

Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for capturing the 

transcriptomic profiles of individual cells, enabling researchers to identify and characterize diverse 

tissues and cell types1. By collecting scRNA-seq data across multiple time points or inferring the 

developmental trajectories of each cell type, researchers can trace the dynamics of transcriptomic 

changes at single-cell resolution over time2, 3. 

  

Temporal information is crucial for studying various cellular processes, such as cell differentiation, 

cell cycle progression, responses to stimuli, host-microbes interaction, growth and development4. 

Sampling cells at different time points allows researchers to detect transient or rare cell states that 

might otherwise be overlooked in static, single-time-point analyses. Moreover, this temporal data 

aids in the construction of gene regulatory networks (GRNs), which can infer regulatory 

relationships by leveraging changes in gene expression at the single-cell level to reveal the 

underlying molecular mechanisms driving cellular, organ, and organismal behavior5, 6. 

  

Despite the promising applications of temporal inference in single-cell transcriptomics, several 

challenges remain in the analysis and modeling of developmental dynamics. The inherent sparsity 

of scRNA-seq data often necessitates denoising and imputation to reduce uncertainty in 

downstream analyses7, 8. Combined with technical noise, bias and variation introduced during 

sample and library preparation, this can lead to the underrepresentation or overrepresentation of 

specific cell types and developmental stages9, 10. Such imbalances complicate the task of linking 

cells within and across time points, making it challenging to learn continuous trajectories for each 

cell type. As a result, researchers may struggle to obtain representative transcriptomic profiles 

across developmental time, leading to inferred GRNs that fail to fully capture the dynamics of 

developmental processes9, 11. Attempts to address this limitation by integrating scRNA-seq data 

from different studies to increase cell numbers for each time point introduce new challenges: batch 

effects and technical noise from diverse profiling platforms and different choice of preprocessing 

pipelines further hinder accurate reconstruction of cellular trajectories9. 

 

To address these challenges, single-cell data scientists have used both statistical models and deep 

neural networks to denoise, impute, and integrate data. Either by modeling the distribution of noise 

and true biological signal or by training unsupervised autoencoders to learn robust data 

representations9. However, these approaches face persistent issues: model selection is often 

arbitrary and based on assumptions that may deviate from the ground truth, and reconstruction by 

neural networks could further exacerbate sampling biases toward abundant cell types or states 

introduced during sample and library preparation. We therefore argue that denoising and 

imputation should be guided by domain knowledge, developmental constraints, or specific 

hypotheses to minimize bias and ensure balanced representation of all cell states in a system. This 

highlights the need for computational techniques capable of encoding such knowledge directly 
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into the imputation process. In addition, a typical developmental system encompasses both cell 

differentiation and cellular maturation, the two tightly coordinated processes that drive 

development. Consequently, imputation methods should explicitly model each of these aspects. 

  

To meet the need, we developed GeneSys, a deep generative model trained on annotated scRNA-

seq data that incorporates both cell type identities and temporal information, such as 

developmental stages or treatment time points in time-series datasets. GeneSys combines a 

temporal variational autoencoder with a cell type classifier and requires a user-defined cell lineage 

blueprint to configure the known or hypothesized developmental pathways for each cell type 

within a biological system. It learns the transcriptomic dynamics along these trajectories and 

generates representative single-cell transcriptomes for any specified cell state. This generative 

capability enables the extraction of gene expression dynamics that span developmental transitions, 

while also facilitating noise reduction and imputation of missing data. In essence, GeneSys allows 

researchers to encode developmental constraints directly into the learning process of latent features, 

thereby reconstructing the transcriptomic landscape of the system in a biologically informed 

manner. 

 

In this study, we demonstrate the utility of GeneSys using scRNA-seq datasets from Arabidopsis 

thaliana roots12 and a mouse embryo developmental time series13, where carefully curated 

annotations for both the cell types and temporal information are available. The Arabidopsis root 

serves as a simple and tractable developmental system due to its spatial organization, where cell 

types are arranged in concentric layers on the radial axis and developmental progression from stem 

cells to differentiated tissue is present along the longitudinal axis12, 14. This spatial-temporal 

alignment reflects developmental pathways for each cell type and enables pseudotime inference 

from a single snapshot of scRNA-seq data, minimizing batch effects and eliminating the need for 

true time-series sampling. The availability of extensive resources, including validated markers and 

bulk expression profiles, provides high-quality annotations that support both training and 

validation of GeneSys. 

 

To further evaluate generalizability of GeneSys, we applied it to study a representative time-series 

dataset of mouse embryo development, which provides comprehensive annotations and a relatively 

well-established cell lineage blueprint. Unlike the root system, mouse embryogenesis involves 

many cell types that do not emerge until later stages, requiring extensive encoding of 

developmental pathways into the lineage blueprint based on domain knowledge or hypothesis. 

Together, these two systems illustrate the broad applicability of GeneSys across diverse biological 

contexts.  

 

 

 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2025. ; https://doi.org/10.1101/2025.08.20.671385doi: bioRxiv preprint 

https://doi.org/10.1101/2025.08.20.671385
http://creativecommons.org/licenses/by/4.0/


Results 

 

The GeneSys model 

  

GeneSys comprises two major neural network components: a temporal difference variational auto-

encoder (TD-VAE)15 structured upon a bi-directional LSTM (Long Short-Term Memory) 

network,16, 17 and a multi-label classifier (cell type classifier)18 (Figure 1A; Figure S1). The LSTM 

network here is designed to process time-series data, with each LSTM cell (computational cell) 

representing a time step. The interconnected LSTM cells enable the learning of features associated 

with order dependency, making the LSTM network suitable for simulating a developmental system 

with continuous developmental trajectories. 

  

In the GeneSys model, a user-defined cell lineage blueprint determines the architecture of the 

LSTM network, the output dimensions of the cell type classifier, and the sampling strategy used 

to construct training batches. Each LSTM cell corresponds to either a discrete time point (in time-

series data) or a defined developmental stage, and the classifier’s output dimensions are 

determined by the number of distinct cell types in the training data. 

Conceptually, GeneSys models developmental trajectories by leveraging the cell lineage blueprint, 

which describes how specific cell types emerge over time. For instance, in a system where cell 

type C arises from B, and B derives from A, the developmental trajectory of cell type C reflects 

this lineage: beginning with A, transitioning through B, and culminating in C. This lineage-based 

framework allows GeneSys to learn biologically grounded patterns of gene expression progression 

across developmental stages (Figure 1B). In cases where developmental lineages are not fully 

known, users can encode their best hypotheses or assumptions, with the understanding that the 

trained model will simulate trajectories under those specified conditions. 

Training batches are assembled according to the specified cell lineage blueprint (see Materials and 

Methods), and are then fed into the LSTM network, where each time step corresponds to a 

developmental stage. As hidden states propagate through the TD-VAE, the model learns to 

generate transcriptomic profiles time steps ahead (including current time step) based on prior steps. 

Simultaneously, these hidden states are passed to the cell type classifier, enabling the model to 

predict the corresponding cell type for each trajectory. Training proceeds iteratively on such 

batches until the combined loss from the TD-VAE and the classifier converges (Figure S2). The 

resulting model generates transcriptomic profiles that, consistent with the properties of a 

variational autoencoder8, 15, are expected to be regularized, robust and representative of the cell 

type at each stage given the developmental relationships encoded in the lineage blueprint. 

GeneSys reconstructs root developmental trajectories in silico       
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We first applied GeneSys to scRNA-seq data from the Arabidopsis root atlas described by Shahan 

and Hsu et al. (2022)12. The transcriptomes from the root atlas were partitioned into three subsets: 

a training set (64% of cells) for model training, a validation set (16%) for tuning model parameters 

during training, and a test set (20%) for evaluating model performance. Cell type annotations and 

inferred pseudotime data were used to define developmental trajectories composed of eleven time 

bins. The root cell lineage blueprint includes ten major cell types and spans the eleven pseudotime 

bins, with quiescent center (QC) cells designated as the first time bin (t0) (Figure S3A). 

 

Each cell of the root atlas was profiled for 17513 genes, allowing a single developmental trajectory 

to be represented as a matrix of shape (11, 17513), corresponding to eleven pseudotime bins. Given 

that the atlas includes ten major cell types, the training batches of shape (10, 11, 17513) are 

assembled, one trajectory per cell type with corresponding single cell transcriptomes randomly 

sampled from the training set according to the defined cell lineage blueprint (Figure S3A). During 

training, GeneSys’s LSTM network operates over a sequence length of 11, with each LSTM cell 

corresponding to one time bin (Figure 1B). The hidden states produced by the LSTM are passed 

to both a multi-label classifier (to learn cell type specificity) and a TD-VAE (to model temporal 

maturation dynamics). 

 

After training, GeneSys was used to generate simulated transcriptomes from test batches spanning 

complete developmental trajectories (Figure 2A). The fidelity of these simulations was validated 

by the presence of known marker genes—such as GL219 (atrichoblast), COBL920 (trichoblast), 

CORTEX/AED321 (cortex), MYB3622 (endodermis), APL23 (phloem), and VND7/NAC03024 

(xylem) in the generated trajectories, which closely resembled those in the root atlas (Figure 2B). 

Compared to the original test batch inputs, the model-generated transcriptomes exhibited smoother 

and more continuous trajectories, with dense and regularized gene expression profiles (Figure 2A, 

2C; Figure S4). 

 

To probe the developmental representations learned by GeneSys, we assessed how many time bins 

could be masked from test inputs while still allowing the model to accurately reconstruct complete 

developmental trajectories. To quantify this, we introduced a metric termed recreation accuracy 

(see Materials and Methods), which measures the model’s ability to recover cell identities and 

generate representative transcriptomes for future time bins based on partially masked inputs. Using 

previously unseen wild-type single-cell data, we found that GeneSys achieved recreation 

accuracies of 0.75 and 0.88 when provided with only two or three input time bins, respectively 

(Figure S5A). The first two bins (t0 and t1) correspond to the proliferation domain of the root 

meristem, while the third (t2) represents the early transition domain25 (Figure S5B). These results 

suggest that GeneSys effectively models the processes of cell type specification and maturation 

during root development, but requires at least one to two early time point transitions as priming 

clues to accurately reconstruct full trajectories. 
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GeneSys reveals fate-associated gene expression programs through gene set masking and 

augmentation 

 

When supplied with all time bins, the trained GeneSys model functions as a virtual developmental 

system, enabling in silico testing of the impact of specific genes or gene sets on cell fate outcomes. 

For example, given the expression profiles of selected genes, one can estimate their contributions 

to cell fate using a metric that we devised, termed the cell type recovery rate, which reflects how 

accurately GeneSys can predict terminal cell identities using only those genes in masked test 

batches. 

 

To evaluate the model's dependency on the scale of gene expression input, we examined how the 

cell type recovery rate changed with decreasing numbers of genes. Remarkably, GeneSys achieved 

a perfect average recovery rate (1.0) even when using only 10% of randomly selected genes (1751 

genes, averaged over 10 trials), comparable to the performance when all genes were used (Figure 

3). This finding highlights the redundancy of gene expression information, likely due to co-

expression of genes in functional modules. As randomly selected input gene counts dropped to 5%, 

3%, and 1% (876, 525, and 175 genes, respectively), average recovery rates declined to 0.94, 0.71, 

and 0.17. These results indicate that just 5-10% of the transcriptome, randomly sampled, is 

sufficient to recapitulate the developmental landscape of the Arabidopsis root. 

 

Based on this observation, we hypothesized that GeneSys may implicitly encode gene expression 

programs (GEPs), conceptually related to clusters of co-expressed genes or functional gene 

modules, that represent the developmental knowledge captured by the model.26-28 To explore this, 

we applied consensus non-negative matrix factorization (cNMF)26 to identify 30 GEPs in the root 

atlas, each comprising a set of genes exhibiting coordinated behavior across cells or conditions 

(Figure S6). We annotated each GEP by assessing its expression specificity across cell types and 

developmental stages, supplemented by gene ontology predictions. This analysis revealed two 

broad GEP categories: (1) cell type-specific programs likely involved in fate determination, and 

(2) broadly expressed programs likely reflecting core biological processes such as biotic and 

abiotic stress responses, cell cycle phases, and active translation (Table S1, Figure S7-9). 

 

To quantify the functional relevance of each GEP, we calculated cell type recovery rates using 

only the top 30 representative genes (genes with the highest gene-by-factor loadings) from each 

GEP as model input. As a negative control, we masked all gene expression inputs, which resulted 

in an average recovery rate of 0.1, with all outputs predicted as trichoblasts (1.0 for trichoblast; 0 

for all other cell types; Figure 3A, 3B). Against this baseline, several GEPs achieved recovery 

rates exceeding 0.7 for specific cell types, underscoring their critical roles in fate specification 

(Figure 3C). These results were well aligned with GEP annotations based on cell type specific 

expression and ontology. 
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Notably, both GEP17 and GEP20 were annotated as trichoblast-associated based on the gene 

ontology analysis and expression specificity. However, their roles in trichoblast fate specification 

could not be directly verified using cell type recovery rate alone, due to the negative control bias 

where all cells defaulted to trichoblast. To address this, we performed a leave-one-out experiment: 

we first included all fate-associated GEPs except GEP17 and GEP20, which resulted in cell fate 

recovery for all cell types except trichoblast. Reintroducing either GEP17 or GEP20 restored 

trichoblast recovery to high levels, suggesting they are important in trichoblast fate determination 

(Figure 3D). 

 

In summary, the trained GeneSys model, combined with cell type recovery rate estimation, 

enhances both the resolution and annotation quality of the identified GEPs. It robustly 

characterizes 17 cell fate-associated GEPs with high cell type specificity, offering a valuable 

reference for future efforts in GEP engineering.  

 

TF prioritization efficiency is enhanced with GeneSys-generated profiles over scRNA-seq 

data  

    

Since GEPs represent clusters of gene modules with shared biological functions, identifying the 

regulators that orchestrate each GEP is critical for understanding and potentially controlling 

developmental and physiological processes. Transcription factors (TFs) often serve this role by 

activating or repressing GEPs that govern cell fate decisions and tissue-specific functions. As such, 

identifying key TFs, or revealing novel roles for known ones, is a central goal in many single-cell 

studies. 

 

To support this, a robust and accurate gene prioritization strategy is essential for guiding functional 

validation. We evaluated two main approaches: 1) Differential expression (DE) analysis, which 

ranks genes by fold-change, difference in expression proportions, or statistical significance across 

cell types or stages. 2) Network-based centrality analysis, which prioritizes TFs based on their 

influence within a given gene network. Centrality metrics, including in-degree, out-degree, 

betweenness centrality, and eigenvector centrality, provide complementary insights into regulatory 

importance by capturing network connectivity and information flow. 

With a generative model such as GeneSys, gene to gene relationships can be inferred directly from 

transitions between cell-by-gene expression matrices. To capture this, we computed Linear 

Interaction Matrices (LIMAs) (see Materials and Methods), which model how changes in gene 

expression in one state linearly influence those in which it is about to become. These matrices can 

be converted into directed gene interaction networks, enabling TF prioritization based on 

interaction strength and directionality. 

We evaluated three categories of TF prioritization strategies: (1) differential expression (DE) 

analysis, (2) centrality scores derived from LIMAs, and (3) centrality scores from GRNs inferred 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2025. ; https://doi.org/10.1101/2025.08.20.671385doi: bioRxiv preprint 

https://doi.org/10.1101/2025.08.20.671385
http://creativecommons.org/licenses/by/4.0/


using CellOracle5, 25. Each strategy was applied to both the annotated root atlas scRNA-seq data 

and GeneSys-generated transcriptomes. Performance was assessed using a gold-standard set of 

140 TFs, including tissue- and cell-type–specific subsets (see Materials and Methods). 

Effectiveness was quantified using the R50 metric29, which measures the rank at which 50% of 

true positive TFs (TFs in the gold standard) appear in the prioritized list (a given gene ranking). 

Lower R50 values indicate better performance of the ranking scheme, as relevant TFs are ranked 

higher in the gold standard. 

We tested twelve strategies: two based on DE, five using LIMA-derived centrality metrics (degree, 

in-degree, out-degree, betweenness, eigenvector), and five using the same metrics from 

CellOracle-inferred GRNs. A random permutation of expressed TFs served as a negative control. 

GeneSys-simulated profiles consistently outperformed unregularized scRNA-seq data across all 

methods (Figure 4A, 4B). DE-based strategies demonstrated the strongest and most consistent 

performance, surpassing network-based approaches across all data sources tested. Importantly, 

across all metrics examined, including tissue- and cell-type–specific analyses, GeneSys-enhanced 

prioritization yielded superior results, underscoring the model’s utility for regulatory inference and 

TF discovery (Figure 4C).         

Characterizing transcriptomic changes during state transitions  

 

In addition to prioritizing transcription factors based on transcriptomic differences across tissues 

and cell types, GeneSys enables the characterization and comparison of subtle changes during state 

transitions through its temporal modeling component, TD-VAE. Leveraging the generative nature 

of the model, GeneSys can produce cell-by-gene expression matrices for any specified state and 

of any sample size, making it straightforward to derive LIMAs between any two states. These 

LIMAs represent the linear transcriptomic changes that coincide with a transition from one state 

to another. By generating LIMAs for all transitions of interest, we can comprehensively map the 

spatiotemporal transcriptomic dynamics of any gene within a defined developmental system. 

 

Using the root system as an example, we identified five biologically representative and relevant 

state transitions (Figure S5B, see Materials and Methods): stem cell to proliferation domain (t0–

t1), proliferation domain to transition domain (t1–t3), transition domain to early elongation zone 

(t3–t5), early to late elongation zone (t5–t7), and late elongation zone to maturation zone (t7–t9). 

For each transition, we derived ten LIMAs, each representing a major root cell type, resulting in a 

total of 50 LIMAs that together provide a comprehensive landscape of spatiotemporal state 

transitions in the root. 

 

We then examined the centrality scores of genes of interest across all 50 LIMAs to depict their 

spatiotemporal transcriptomic dynamics. For example, we observed the well-characterized TF 
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SHORTROOT (SHR), known for its crucial role in endodermis cell fate.30 The centrality scores 

revealed that SHR is involved in the earliest transitions within both the stele and endodermis, and 

continues to play roles in later transitions affecting the pericycle, xylem, and procambium (Figure 

5A). These results highlight SHR's importance in the establishment of endodermis and stele 

identities, consistent with findings from single-cell profiling of the shr mutant, where endodermis 

and several stele cell types are compromised12. 

 

Similarly, we analyzed WEREWOLF (WER), a TF crucial for epidermis cell fate31. WER’s 

centrality scores across LIMAs showed strong involvement in all epidermal cell types (atrichoblast, 

trichoblast, lateral root cap, and columella) (Figure 5B). Intriguingly, WER also appeared to 

participate in early transitions in the ground tissue layers (cortex and endodermis) and the 

outermost stele layer (pericycle), suggesting that WER may coordinate with other TFs critical to 

these lineages. These observations, however, should be interpreted with caution. They may reflect 

previously unrecognized roles of WER, but could also represent artifacts stemming from 

uncertainty in cell type annotations, since GeneSys depends on both the provided annotations and 

the cell lineage blueprint to perform data imputation. Follow-up experimental validation will be 

essential to confirm these predictions. 

 

Beyond identifying TFs with cross-tissue activity, LIMA-derived centrality profiles also 

highlighted transcription factors with strong cell type-specific roles. To quantify specificity, we 

calculated the proportion of each TF’s total centrality, defined as the sum of betweenness, in-

degree, and out-degree scores, contributed by each cell type across all LIMAs. A TF was classified 

as cell type-specific if over 50% of its total centrality was concentrated in a single cell type. 

Notable examples include MYB3622, SCR32, and BLJ33, all critical for endodermis development 

(Figure S10A, S10B), as well as GL234 (atrichoblast), RHD635 (trichoblast), JKD36 (cortex), APL23 

(phloem), and VND family TFs24 (xylem), consistent with their established roles in root cell fate 

specification. 

Using combined centrality scores, we also identified candidate TFs with potential roles in 

underexplored cell types or novel developmental functions, offering promising targets for future 

validation (Figure 5, Figure S10, Table S3). 

In summary, by consulting known TFs using GeneSys-derived LIMAs, we gain higher resolution 

and deeper insights into cross-tissue transcriptomic dynamics throughout temporal developmental 

progression, offering a powerful framework for hypothesis generation and a deeper understanding 

of how gene interaction networks unfold within the spatiotemporal landscape of a developmental 

system. 

 

GeneSys simulation for the time-series data of mouse embryo development 
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In contrast to the relatively stable and lineage-committed structure of the Arabidopsis root, mouse 

embryogenesis presents a highly dynamic and heterogeneous developmental landscape.  

 

To test the robustness and cross-species applicability of GeneSys, we trained the model on one of 

the largest time-series scRNA-seq datasets to date13, comprising 11.4 million nuclei from 74 

embryos spanning embryonic day 8 (E8) to postnatal day 0 (P0). Snapshots were collected at 2-6 

hour intervals, resulting in 43 temporally resolved stages. 

 

To define major developmental windows, we performed hierarchical clustering of pseudobulk 

transcriptomes across all time points, identifying eleven distinct developmental stage clusters. 

After excluding transient (e.g., primitive erythroid) and extremely rare (e.g., testis, adrenal) cell 

types, we focused on twenty-four major cell types. Together with the eleven stage clusters, these 

defined the cell type trajectories used for GeneSys training (Figure S3B, S5D). 

 

Despite the large sample size, the data were considerably sparser than the Arabidopsis atlas. After 

filtering low-quality nuclei (< 2500 genes or UMI counts), we retained ~1.5 million high-quality 

profiles. We further downsampled to a maximum of 500 nuclei per cell type–stage combination, 

yielding a balanced set of ~100 k cells. As with the Arabidopsis dataset, data were split into training 

(64%), validation (16%), and test (20%) sets. Each cell expressed 24552 genes, and training 

batches were assembled into a tensor of shape (24, 11, 24552), sampled based on a predefined cell 

lineage blueprint. 

 

Unlike in roots, many mouse cell types emerge later in development, often without clearly 

annotated precursors. In such cases, e.g., definitive erythroid cells or white blood cells, early stages 

were represented by zero-filled expression vectors. The lineage blueprint (Figure S3B) encoded 

relationships such as neuroectoderm giving rise to neurons and glia, mesoderm to muscle and 

adipocytes, and epithelial cells to lung and airway lineages. 

 

Following training, GeneSys-generated transcriptomes exhibited greater continuity than the 

original test data. While real test batches often contained sparse and disjointed profiles, the model-

generated trajectories were regularized and interconnected (Figure 6). Critically, the simulated 

developmental paths recapitulated known cell type-specific marker gene expression patterns13. For 

example, Pax1 (mesoderm), Gad1 (CNS neurons), Cspg4 (oligodendrocytes), Myf5 (muscle cells), 

and Alb (hepatocytes) were all robustly expressed in the appropriate model-derived lineages, 

consistent with established developmental markers in the mouse embryo (Figure S11). 

 

Recreation accuracy based on masked test inputs revealed that GeneSys requires input from at 

least 6-7 time points to achieve satisfactory accuracy (≥0.8) (Figure S5C). This reflects the inherent 

complexity of mouse embryogenesis, where many cell types are absent in early stages and only 

differentiate later. At earlier time points, the lack of definitive lineage identity limits the model's 
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ability to accurately classify or predict future states. The requirement for multiple temporal inputs 

underscores the intricate and dynamic nature of mammalian development and highlights the 

capacity of GeneSys to capture gradual cell fate transitions. 

 

Despite the contrasting complexity, GeneSys successfully reconstructed developmental 

trajectories in both Arabidopsis root and mouse embryo, demonstrating its generalizability across 

diverse biological systems.   

   

Discussion 

We introduce GeneSys, a generative model designed to simulate single-cell transcriptomic 

landscapes in developmental systems. Its primary goal is to create a noise-reduced and robust 

virtual biological system by incorporating prior knowledge of cell lineage blueprints, providing an 

in-silico platform for hypothesis generation and resource prioritization. 

Unlike unsupervised autoencoder models that focus on single-cell data denoising and imputation7, 

8, GeneSys emphasizes temporal modeling while encoding domain knowledge of developmental 

constraints as prior knowledge. By learning representative transcriptomic dynamics along 

developmental trajectories, GeneSys captures both cell type specification and maturation processes, 

critical for understanding tissue formation and organismal development. Because GeneSys 

incorporates external information, specifically, biological structure in the form of cell lineage 

blueprints, during model training, it also helps mitigate the circularity issues often associated with 

imputation-based models, which can artificially inflate gene to cell correlations and introduce 

false-positive in downstream analysis9. 

Applications in Arabidopsis and mouse embryos demonstrate the ability of GeneSys to reconstruct 

robust developmental trajectories, generate biologically meaningful profiles, and facilitate gene 

discovery. Through gene masking and augmentation, we show that GEPs encode core functional 

and developmental logic and can serve as interpretable units for downstream analysis. 

While GeneSys does not directly identify regulatory drivers of GEP activity, it enables 

prioritization of candidate regulators, particularly TFs within relevant GEPs, for experimental 

validation (Table S1). Once key TFs are identified, their interactions across multiple GEPs can be 

systematically investigated to uncover higher-order regulatory coordination. 

To support such exploration, the trained GeneSys model functions as a flexible platform for testing 

combinations of GEP perturbations. By simulating co-activation or inhibition of GEPs, GeneSys 

allows researchers to generate and refine hypotheses, accelerating the discovery of developmental 

regulatory mechanisms. 

As a temporal model, GeneSys supports detailed analysis of state transitions. It can generate 

representative cell-by-gene expression matrices for any developmental state and sample size. 
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LIMAs derived from paired expression matrices approximate gene-gene relationships during state 

transitions, enabling the construction of dynamic gene networks. These networks can be analyzed 

using graph-based centrality metrics to identify regulatory hubs, providing spatiotemporal insight 

into transcriptomic shifts. 

With the rapid expansion of single-cell datasets, there is growing demand for computational 

frameworks and technique that can integrate high-dimensional, heterogeneous data and uncover 

both associative and causal relationships. Future extensions of GeneSys could incorporate multi-

omic modalities (e.g., ATAC-seq, proteomics) and simulate treatment responses through advanced 

network modeling. As a neural network-based generative model, GeneSys is inherently modular 

and extensible. Its core strategy, learning latent structure from high-resolution data and interpreting 

developmental logic via derived gene networks, positions it as a powerful tool for studying 

developmental systems. GeneSys can be applied to diverse systems and schemes with annotated 

cell types and time points, for example, time series dataset with multiple mutants and conditions, 

making it broadly useful for elucidating gene interaction dynamics underlying cell fate decisions, 

developmental progression and responses to biotic and abiotic stimuli. 
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 Main Figures 

 

 
  

Figure 1. GeneSys model architecture  

(A) Schematic of the GeneSys model. A bi-directional LSTM network is connected to both a multi-

label cell type classifier and a temporal difference variational autoencoder (TD-VAE), enabling 

the model to learn cell type specificity and temporal developmental dynamics, respectively. 

Notation: X - single-cell transcriptomes; U - neural network layers; c - LSTM cell state; h - LSTM 
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hidden state; V - cell type classifier; O - predicted cell type labels; P - predicted single-cell 

transcriptomes; t - specific LSTM time step; T - any LSTM time step. (B) Illustration of the 

relationship among training batches, the GeneSys LSTM, and the simulated transcriptomes. Each 

training batch is assembled based on a cell lineage blueprint, with single-cell transcriptomes 

randomly sampled from the corresponding cell types and time bins to form a training tensor. 

During training, transcriptomes from the same time bin share the same LSTM computational cell. 

The TD-VAE module of the trained model then generates a tensor of simulated transcriptomes that 

recapitulates the lineage blueprint. 

 

 

 

 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2025. ; https://doi.org/10.1101/2025.08.20.671385doi: bioRxiv preprint 

https://doi.org/10.1101/2025.08.20.671385
http://creativecommons.org/licenses/by/4.0/


 
  

Figure 2. The trained GeneSys model accurately simulates the root atlas and generates 

dense, regularized single-cell transcriptomes    

(A) UMAP embeddings of the original root atlas, a representative training batch X, and the 

GeneSys-simulated root atlas P. The training batch X and the simulated data P contain the same 

number of cells. (B) UMAPs showing the expression of known marker genes in the original and 

simulated root atlas, highlighting the preservation of cell type-specific expression patterns. (C) 

Scaled expression heatmaps of non-redundant differentially expressed (DE) genes across eleven 

pseudotime bins for cortex and endodermis. Comparisons are shown between the training input X 

and the simulated output P. 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2025. ; https://doi.org/10.1101/2025.08.20.671385doi: bioRxiv preprint 

https://doi.org/10.1101/2025.08.20.671385
http://creativecommons.org/licenses/by/4.0/


 

 
 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2025. ; https://doi.org/10.1101/2025.08.20.671385doi: bioRxiv preprint 

https://doi.org/10.1101/2025.08.20.671385
http://creativecommons.org/licenses/by/4.0/


Figure 3. GeneSys-predicted developmental outcomes of gene masking and gene expression 

programs (GEPs) in the root  

(A) UMAPs of GeneSys-simulated transcriptomes generated with varying percentages of 

randomly masked input genes. (B) Cell type recovery rates predicted by the trained GeneSys model 

under increasing levels of random gene masking. When all genes are masked, trichoblast 

consistently emerges as the default predicted cell type, serving as a negative control or baseline 

for assessing the developmental impact of specific gene sets. (C) Cell type recovery rates based on 

the top 30 representative genes from each of the 31 gene expression programs (GEPs) identified 

in the root atlas. GEPs shaded in red indicate those associated with cell fate, as determined by 

elevated recovery rates of non-trichoblast cell types. (D) Leave-one-out validation for GEPs 

suspected to be associated with trichoblast fate. Recovery rates are compared before and after 

reintroducing the candidate GEPs. 
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Figure 4. Evaluation of gene prioritization methods using a gold-standard transcription 

factor (TF) list associated with root development and biology 

The R50 metric is defined as the rank position in a gene prioritization list at which half of the genes 

in the gold-standard TF set appear above that rank. Lower R50 values indicate better prioritization 

performance. “GeneSys” denotes prioritization schemes applied to GeneSys-simulated root 

transcriptomes, while “scRNA-seq” refers to schemes applied to the original root atlas data. Three 

gene prioritization strategies were evaluated: DE : based on differential expression analysis, 

LIMA : based on linear interaction matrices capturing transcriptomic changes during state 

transitions, CellOracle : based on gene regulatory networks (GRNs) inferred by CellOracle5. A 

permutation-based control was also included, calculated as the mean R50 from 1,000 random 
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permutations of all expressed TFs. (A) Summary of benchmarking results across all methods at 

the system-wide level. (B) Performance comparison of individual prioritization schemes using 

specific ranking or centrality metrics. DE avg diff rank : genes ranked by the log fold-change of 

average expression between the target and background groups. DE myAUC rank : genes ranked 

by the area under the ROC curve (AUC), where an AUC of 1.0 indicates perfect separation of the 

two groups by gene expression alone. Betweenness centrality measures the extent to which a 

node lies on the shortest paths between other nodes. Out-degree centrality and in-degree 

centrality refer to the unweighted number of out-going and in-coming edges a node has in a 

network. Degree centrality is the sum of out-degree and in-degree centrality. Eigenvector 

centrality measures the extent to which a node that are not only well-connected but also connected 

to other well-connected nodes. (C) Benchmarking summary at the tissue level. (D) Benchmarking 

summary at the cell type level. 

 

 

 

 
 

Figure 5. Mapping spatiotemporal gene activity during state transitions using linear 

interaction matrices (LIMAs) 

(A-B) Betweenness, out-degree, and in-degree centrality scores across all cell types and transitions 

for two key cell fate regulators: SHR (SHORTROOT) and WER (WEREWOLF). These 

transcription factors are predicted to exhibit broad, cross-tissue regulatory activity during 

developmental transitions. 
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Figure 6. The trained GeneSys model accurately simulates the mouse embryo development 

time-series and generates dense, regularized single-cell transcriptomes    

UMAP embeddings of a representative training batch X, and the GeneSys-simulated mouse 

embryo development time-series P. The training batch X and the simulated data P contain the same 

number of cells. (B) UMAPs showing the expression of known marker genes in the original and 

simulated mouse embryo development time-series, highlighting the preservation of cell type-

specific expression patterns. 
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Supplementary Figures 

 

 
 

Figure S1. Detailed GeneSys model architecture  
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(A) Overview of the GeneSys architecture. A bi-directional LSTM network is connected to both a 

multi-label cell type classifier and a TD-VAE, enabling the model to learn cell type specificity and 

temporal developmental dynamics, respectively. Notation: X - single-cell transcriptomes; U - 

neural network layers; c - LSTM cell state; h - LSTM hidden state; V - cell type classifier; O - 

predicted cell type labels; P - predicted single-cell transcriptomes; t - specific LSTM time step; T 

- any LSTM time step. (B) Layer configuration of the multi-label cell type classifier. Each layer is 

annotated with its input and output dimensions in the format (input, output). (C) Architecture of 

the TD-VAE15. N - neural network components; b - belief state, computed as the concatenation of 

LSTM cell state and hidden state; z - latent state; KL – Kullback-Leibler divergence. 
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Figure S2. Training logs of GeneSys models  

Total training loss and validation accuracy recorded across epochs for (A) the root atlas and (B) 

the mouse embryo time-series datasets.  
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 Figure S3. Examples of cell lineage blueprints 

Cell lineage blueprints used for (A) the root atlas and (B) the mouse embryo time-series. Each tile 

indicates the specific cell type transcriptomes from which the model samples during training. 

Columns correspond to time bins (root) or developmental stage clusters (mouse). Tiles labeled 

“NA” represent non-existent cell states at that stage, for which zero-filled profiles were used in 

place of transcriptomic data. 
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Figure S4. Heatmaps of differentially expressed (DE) genes along developmental 

trajectories in the root atlas and GeneSys-simulated data  

Scaled expression of non-redundant DE genes across eleven pseudotime bins for (A) stele, (B) 

epidermal tissue, and (C) columella. Warmer colors indicate higher expression levels. Although 

thousands of DE genes were identified across pseudotime, only the most strongly differentially 

expressed genes for each of the eleven pseudotime bins are shown for clarity. 
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Figure S5. Recreation accuracy and temporal annotations of developmental time 

bins/clusters 

(A, C) Recreation accuracy of GeneSys in the Arabidopsis root (A) and mouse embryo (C) time-

series datasets, based on progressively increasing numbers of preceding time bins provided as 

input (x-axis, starting from t₀). Recreation accuracy (y-axis) quantifies the model’s ability to 

reconstruct developmental trajectories from partial input. (B) Cosine similarity among 

transcriptomes across time points in the root atlas. Five clusters were identified, corresponding to 

the proliferation domain (t₀–t₁), transition domain (t₂–t₃), early elongation zone (t₄–t₅), late 

elongation zone (t₆–t₇), and maturation zone (t₈–t₁₀). (D) Cosine similarity among transcriptomes 

across developmental stages in the mouse embryo time-series. Hierarchical clustering revealed 

eleven distinct stage clusters. 
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Figure S6. Gene expression programs (GEPs) identified in the WT root atlas12 

Thirty GEPs were identified in the root atlas (Shahan and Hsu et al., 2022)12 using consensus 

non-negative matrix factorization (cNMF). After matrix factorization, the cell-by-gene matrix is 

decomposed into two matrices: a cell-by-factor matrix and a factor-by-gene matrix. Here, each 

factor corresponds to an identified GEP. The factor-by-gene matrix captures the relationship 

between each gene and each GEP, while the cell-by-factor matrix contains the loadings/weights 

of each GEP in individual cells. In this work, we refer to these loadings as GEP usage. (A) 

Scanning for optimal K with the highest stability beyond tissue/cell type level information (K <= 

10). (B) To refine gene assignments, Euclidean distances among genes were computed, and 

genes with a mean distance to their k nearest neighbors below 0.1 were excluded. 
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Figure S7. Gene expression programs (GEPs) usage on the UMAP of the root atlas12 
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Figure S8. GEP averaged usage across annotated cell cycle phases37 

Only “Proliferation Domain”, “Proximal Lateral Root Cap”, “Proximal Columella” cells where 

active cell cycle is present are included for the calculation 

 

 
Figure S9. Gene expression programs (GEPs) averaged usage across annotated cell types, 

developmental stages12, 25  
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Figure S10. Ranking gene importance during spatiotemporal state transitions with linear 

interaction gene networks and centrality measurements 

(A-B) Transcription factors were ranked using a combined centrality score, calculated as the sum 

of betweenness, out-degree, and in-degree centrality across all transitions, based on GeneSys-

derived LIMAs. (A) Rankings of transcription factors at both tissue and cell type levels. (B) 

Centrality profiles across all transitions for top-ranked transcription factors associated with 

endodermis fate, shown as an example. 
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Figure S11. Known marker gene expression patterns on GeneSys-simulated mouse embryo 

time-series13   
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Materials and Methods 

 

Lineage-blueprint-guided trajectory construction and training strategy for GeneSys  

To model temporal dynamics across developmental lineages, training batches were constructed 

based on a predefined cell lineage blueprint. For a hypothetical system comprising three cell types, 

A, B, and C, progressing through six developmental stages, each training batch was formatted as 

a tensor of shape (3, 6, n), where n is the number of genes profiled. For each cell type, 

transcriptomes were sampled according to their lineage-defined origin. For example, the trajectory 

of cell type C was constructed by sampling transcriptomes from cell type A at stages 1 and 2, cell 

type B at stages 3 and 4, and cell type C at stages 5 and 6, reflecting the progression from A to B 

to C across development. The same approach was applied to cell types A and B using their 

respective lineage paths. These assembled trajectories were used as input to the GeneSys model 

(Figure 1B). 

 

Root data preparation for GeneSys training and evaluation 

 

Seurat38-40 v4.1.0 objects for the root atlas and individual samples were downloaded from GEO 

(accession: GSE152766). The input for GeneSys consisted of single-cell transcriptomes, cell type 

annotations, and inferred pseudotime values for each annotated cell. The Seurat objects (.rds) were 

converted into Scanpy-compatible AnnData objects (.h5ad) using Seurat (v4.1.1.9001) and 

SeuratDisk (v0.0.0.9020)39. 

 

For model input, batch-corrected and scaled expression values from the integrated assay of the 

Seurat objects were used as the primary representation of single-cell transcriptomes. Separately, 

scaled SCTransform-normalized values (SCT assay) were also evaluated and shown to produce 

comparable results when used for training. Expression values were floored at zero and normalized 

to the [0, 1] range. The resulting normalized cell-by-gene matrices were split into three subsets: 

Training set (65%) used for model training; Validation set (15%) used for parameter tuning during 

training; Test set (20%) used to evaluate the performance of the model, including the accuracy of 

the cell type classifier on generated single-cell transcriptomes. 

 

Annotations for eleven major cell types: Quiescent Center, Endodermis, Cortex, Atrichoblast, 

Trichoblast, Xylem, Phloem, Pericycle, Procambium, Columella, and Lateral Root Cap, were 

extracted directly from the Seurat objects. The Quiescent Center (QC) was designated as the root 

system’s stem cell population and assigned to time bin zero. For the remaining cell types, 

pseudotime trajectories were divided into ten equal-sized time bins using the 'consensus 

pseudotime' values provided in the atlas and the qcut function from the pandas package (v1.2.4). 
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For evaluation on unseen data, i.e., samples not used during training, annotations for wild-type 

samples sc_20 and sc_21 (GSE152766) were transferred from the root atlas following Seurat’s 

label transfer workflow38, 40. Pseudotime inference for these samples was performed using 

CytoTRACE v0.1.041, and binning was applied as described above. 

Each cell in the root atlas was profiled for 17513 genes. To construct model inputs, developmental 

trajectories were represented as matrices of shape (11, 17513), where the eleven time steps 

correspond to pseudotime bins along the differentiation and maturation axis. Given the presence 

of ten major cell types in the atlas (excluding quiescent center, QC), an initial batch was defined 

as one trajectory per cell type, resulting in a tensor of shape (10, 11, 17513). 

During training, single-cell transcriptomes were sampled according to a predefined cell lineage 

blueprint (Figure S3A), ensuring balanced representation across both cell types and pseudotime 

bins. To assemble a training batch, trajectories were randomly sampled from the training set, with 

each trajectory replicated approximately 51 times to match a predefined batch size of 512. This 

yielded a final training batch of shape (512, 11, 17513): 512 trajectories per batch, each spanning 

11 pseudotime steps and 17513 gene expression features. 

The GeneSys model employed a Long Short-Term Memory (LSTM) network, operating over 

sequences of length 11, with each LSTM cell corresponding to a specific pseudotime bin. The 

hidden states generated by the LSTM were passed to two downstream components: a multi-label 

classifier to learn cell type specificity, and a temporal difference variational autoencoder (TD-

VAE) to capture maturation dynamics across pseudotime (Figure 1B). 

Detailed code for preparing the root data and executing GeneSys training and evaluation is 

provided in Jupyter Notebooks 0-4, available via the GitHub repository (see Code Availability 

section). 

 

 

Mouse embryo data preparation for GeneSys training and evaluation 

 

Mouse embryo time-series dataset was downloaded from 

https://omg.gs.washington.edu/jax/public/download.html, along with the accompanying cell type 

annotations. Cells with fewer than 2500 unique molecular identifier (UMI) counts or fewer than 

2500 detected genes were filtered out to ensure data quality. 

 

To define key developmental windows, we computed pairwise correlations among pseudobulk 

transcriptomes across all 43 developmental stages and performed hierarchical clustering. This 

analysis identified 11 distinct time clusters, representing major stages of mouse embryonic 

development. We excluded primitive erythroid cells (a transient early cell type), as well as testis 

and adrenal cells (rare populations), resulting in a curated set of 24 major cell types. These 24 cell 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2025. ; https://doi.org/10.1101/2025.08.20.671385doi: bioRxiv preprint 

https://doi.org/10.1101/2025.08.20.671385
http://creativecommons.org/licenses/by/4.0/


types, in combination with the 11 time clusters, define the cell type trajectories used for training 

GeneSys (see Figure S3B and Figure S5D). 

 

To balance the dataset and reduce computational cost, we downsampled the data so that each 

unique state (i.e., a specific cell type and time cluster combination) contained a maximum of 500 

cells. States with fewer than 20 cells were excluded and treated as missing. Expression values were 

scaled and floored at zero and normalized to the [0, 1] range. The resulting normalized cell-by-

gene expression matrices were then divided into three subsets: Training set (65%) used for model 

training; Validation set (15%) used for parameter tuning during training; Test set (20%) used to 

evaluate model performance, including cell type classification accuracy on simulated single-cell 

transcriptomes. 

 

During training, single-cell transcriptomes were sampled according to a predefined cell lineage 

blueprint (Figure S3B) to form input training batches. Each batch was assembled into a tensor of 

dimensions (512, 11, 24552): 512 cells sampled across the 24 major cell types; 11 time steps 

representing developmental stage clusters; 24552 genes used for training. For cell state with 

missing data, cells were sampled from adjacent states for imputation. 

 

Detailed code for preparing the mouse embryo dataset and executing GeneSys training and 

evaluation is provided in Jupyter Notebook 5-6, available via the GitHub repository (see Code 

Availability section). 

  

GeneSys model 

  

The GeneSys model was formulated, trained, validated, and tested using functions from the Python 

package PyTorch (v1.13.0). Each input, representing a single-cell transcriptome, had a 

dimensionality equal to the number of genes/features in the system (denoted X in Figure 1A). 

These inputs were first passed through an embedding layer (U in Figure 1A), consisting of the 

following components: A linear layer: (number of genes/features, 256), A dropout layer with a 

dropout probability of 0.2: (256, 256), and a Gaussian noise regularizer with σ = 0.2: (256, 256). 

The resulting 256-dimensional embeddings were then fed into a bi-directional LSTM network with 

hidden layers of size 256 and a dropout probability of 0.2. The hidden states of each LSTM cell (h 

in Figure 1A) were branched into two parallel paths: one for a multi-label cell type classifier, and 

the other for a temporal difference variational autoencoder (TD-VAE). 

 

Within the LSTM network, the cell state functions as a memory bank, traversing the LSTM cell 

chain while selectively retaining or discarding information through internal gating mechanisms. In 

contrast, the hidden state, derived from the cell state, contains information deemed pertinent for 

passing to the next time step. It undergoes further processing, including activation functions and 
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output gating, before being output from the LSTM cell for subsequent tasks or propagation to 

downstream layers (classifier and TD-VAE) in the neural network. 

 

The multi-label classifier (V in Figure 1A) had the following architecture (Figure S1B): A dropout 

layer (p = 0.2): (256, 256), A ReLU activation layer: (256, 256), Two linear layers, each followed 

by ReLU layer: (256, 256), A final linear layer: (256, number of cell types/fates), and a Softmax 

activation layer to output predicted probabilities for each cell type (O in Figure 1A). 

 

The TD-VAE followed the architecture described in Gregor et al. (2019) (Figure S1C), with all 

latent layers having input and output dimensions of 256. The decoder of the TD-VAE had 

dimensions (256, number of genes/features) and was used to generate predicted single-cell 

transcriptomes for the next time steps (P in Figure 1A). 

 

Model training used the AdamW optimizer42 with an initial learning rate of 0.001. A learning rate 

scheduler (ReduceLROnPlateau) was implemented with parameters factor = 0.5, patience = 10, 

threshold = 0.05 to decrease the learning rate when improvement in the GeneSys loss plateaued. 

The overall GeneSys loss combined the negative log-likelihood (NLL) loss from the classifier and 

the TD-VAE loss. 

 

During each training epoch, a random time bin (between t₁ and t₉) was selected for loss 

computation and backpropagation. Either the NLL loss or the TD-VAE loss was randomly chosen 

to update network weights. For every 100 epochs, the learning rate was reset to 0.001 to prevent 

premature convergence and potential local minimum trap. 

 

The model was trained using a 32 GB Tesla V100 SXM2 GPU until convergence was achieved, 

defined as no further decrease in total loss over a rolling window of 100 epochs. The model weights 

corresponding to the lowest total loss across all epochs were saved and used for downstream 

evaluation. 

 

Detailed instructions and code for configuring and training the GeneSys model are provided in 

Jupyter Notebook 1-3 and 5-6, available in the GitHub repository (see Code Availability section). 

  

Generation and evaluation of simulated developmental trajectories 

  

The trained GeneSys model was used to generate simulated developmental trajectories for all cell 

types. Input tensors were constructed by sampling transcriptomes from the test set, and the batch 

size, the first dimension of the input tensor, determined the total number of simulated single-cell 

transcriptomic trajectories generated. The output transcriptomes were processed and visualized 

using Scanpy v1.9.143. The processing pipeline included the following steps: Scaling: 

scanpy.pp.scale with max_value = 10. Principal Component Analysis (PCA): scanpy.tl.pca with 
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svd_solver = 'arpack'. Neighborhood graph construction: scanpy.pp.neighbors with n_neighbors = 

30. Clustering: scanpy.tl.leiden with default parameters. Coarse-grained connectivity mapping: 

scanpy.tl.paga with default parameters. Dimensionality reduction: scanpy.tl.umap with init_pos = 

'paga'. Following preprocessing, marker gene expression was visualized using scanpy.pl.umap. 

  

Recreation accuracy 

  

Recreation accuracy is a metric used to evaluate the model's ability to reconstruct developmental 

trajectories. It quantifies the proportion of correct predictions made by the cell type classifier on 

the generated single-cell transcriptomes, given input from earlier time steps. For example, if the 

model is provided with transcriptomes from cell type A at time bins 0 and 1, with masked time 

bins of the rest, it is expected to generate representative transcriptomes of cell type A at time bin 

2. Recreation accuracy reflects how closely the model’s output matches this expected outcome. 

 

A high recreation accuracy (approaching 1.0) indicates robust reconstruction of developmental 

trajectories, while a low accuracy (approaching 0) suggests poor model performance. 

 

Detailed code for generating and evaluating GeneSys-predicted transcriptomes, including 

calculation of the cell type recreation accuracy, is provided in Jupyter Notebook 4, available in the 

GitHub repository (see Code Availability section). 

 

Gene expression programs 

Gene expression programs (GEPs) in the root atlas were identified using consensus Non-negative 

Matrix Factorization tool cNMF (v1.3.1)26. The analysis was performed on the raw UMI count 

matrix using the tool’s default preprocessing steps and parameters. We screened K values ranging 

from 2 to 50 and selected K = 30, which produced the most stable factorization. cNMF outputs 

spectra scores for each gene across the 30 GEPs, indicating the strength of association between 

each gene and each program. In addition, cNMF estimates GEP usage for each cell, quantifying 

the contribution of each GEP to the cell’s expression profile (Table S1). 

Gene ontology (GO) analysis was performed on each GEP using the top 200 genes ranked by 

spectra score. Enrichment analysis was conducted using gprofiler2 (v0.2.2) and DAVID 

(https://davidbioinformatics.nih.gov/) with default parameters. 

Detail code related to running cNMF and GEP-associated plotting are provided in Jupyter 

Notebook 8-9, available in the GitHub repository (see Code Availability section). 

 

Cell type recovery rate 
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Cell type recovery rate is a metric used to evaluate the influence of specific genes or gene sets on 

developmental outcomes predicted by GeneSys. It measures the proportion of correctly predicted 

terminal cell fates based on simulated single-cell transcriptomes generated from an input tensor 

with masked gene expression, i.e., only the genes of interest retain their expression values, while 

all other genes are set to zero. 

 

Detail codes related to gene masking, augmentation and cell type recovery rate is provided in 

Jupyter Notebook 10-11, available in the GitHub repository (see Code Availability section). 

 

Gold-standard transcription factor list for gene prioritization benchmarking 

  

The gold-standard transcription factor (TF) list used for benchmarking gene prioritization schemes 

consists of 140 TFs, derived from the intersection of two curated datasets: 1) The MINI-EX list29, 

a published set of 143 TFs experimentally validated to play pivotal roles in root development. 2) 

A custom StringDB-based list44, comprising 209 TFs identified through functional annotations 

associated with root biology (Table S2). 

 

The StringDB-based TF list was generated by querying the STRING database (https://string-

db.org/) for TFs whose gene descriptions or Gene Ontology (GO) terms contained specific root-

related keywords. The following keywords were used: root, xylem, phloem, procambium, 

pericycle, vascular, vasculature, stele, tracheary, sieve, trichoblast, atrichoblast, root hair, 

epidermis, epidermal tissue, trichome, lateral root cap, cortex, endodermis, ground tissue, 

columella, quiescent center. 

 

From this list, tissue- and cell type–specific gold-standard subsets were created using more 

targeted keyword filters: Stele (vascular tissue)-specific: xylem, phloem, procambium. Epidermis-

specific: atrichoblast, trichoblast, root hair, trichome, lateral root cap, epidermal tissue. Xylem-

specific: xylem, tracheary. Trichoblast-specific: trichoblast, root hair, trichome 

 

CellOracle and differential expression (DE) analysis for benchmarking 

 

To run the CellOracle pipeline (v0.7.0)5, a base gene regulatory network (GRN) was first 

constructed to represent a comprehensive collection of plausible TF-target interactions. To identify 

regions of open chromatin, publicly available scATAC-seq data from Arabidopsis roots 

(GSE155304: GSM4698760)45 was processed using Cell Ranger ATAC (v1.2.0) to generate a 

peak-by-cell matrix. Cicero (v1.11.1)46 was then used to infer a co-accessibility map of chromatin 

regions. Transcription start sites (TSS) were annotated using the TAIR10 genome assembly. Peaks 

with low co-accessibility scores were filtered according to CellOracle’s guidelines 

(https://morrislab.github.io/CellOracle.documentation/tutorials/base_grn.html). 
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To enrich the base GRN, we incorporated TF-target interactions from both DAP-seq (DNA affinity 

purification sequencing)47 and a previously established integrative gene regulatory network 

(iGRN)48. The resulting base GRN included a total of 11.7 million interactions, involving 1601 

transcription factors and 31019 target genes. 

 

GRNs were then inferred for each of the 36 combinations of cell types and developmental stages 

present in the wild-type root atlas12. The base GRN was restricted to genes that showed dynamic 

expression along pseudotime in each cell type, along with their associated TFs49. Each cell type-

specific GRN was constructed using default parameters as recommended in the CellOracle 

documentation. 

 

To filter GRN edges, the filter_links function was applied, retaining the top 20000 edges with p-

values ≤ 0.01 for each subnetwork. Network centrality measures were then computed using 

CellOracle’s built-in functions. For benchmarking purposes, centrality scores were aggregated 

across all developmental stages for each gene. 

 

The differentially expressed analysis was performed with Seurat v4 (v4.1.1.9001)39 with ROC 

methods and the following parameters: logfc.threshold = log(2), min.diff.pct = 0.25, 

max.cells.per.ident = 10000, only.pos = T. 

 

Detailed code for running CellOracle on the wild-type root atlas is available in the GitHub 

repository associated with our Brassinosteroid GRN publication25.  

  

GeneSys-derived linear interaction matrix (LIMA) 

 

To gain insights into the temporal transcriptomic dynamics learned by GeneSys, we computed 

Linear Interaction Matrices (LIMAs) that capture gene-gene relationships during state transitions. 

First, we used the trained GeneSys model to generate representative single-cell transcriptomes, 

resulting in cell-by-gene (c × g) matrices for specific states (specific cell type and developmental 

stage/time point). Given two such states, A and B, represented by matrices of gene expression 

levels across cells, we computed a transformation matrix W (g × g), termed the Linear Interaction 

MAtrix (LIMA), which describes how gene expression in state A must change to match that in 

state B. 

 

This relationship is modeled by the linear equation AW = B, where A and B are cell-by-gene 

expression matrices from the two states. The transformation matrix W is solved as W=A−1B. Each 

entry Wij in the resulting LIMA quantifies the influence of gene j on gene i during the transition: 

Positive Wij indicates upregulation, negative Wij suggests downregulation, zero indicates no direct 

interaction, and diagonal entries (Wii) represent self-regulation. 
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The magnitude of each entry reflects the interaction strength. The matrix can be interpreted as a 

directed, weighted gene interaction network, enabling discovery of key regulators and pathways 

active during developmental transitions. 

 

LIMA construction and application for root development 

 

For the Arabidopsis root system, we annotated each pseudotime bin with known developmental 

stages (Figure S5B) and selected five biologically representative state transitions: Stem cell → 

Proliferation domain (t₀ → t₁). Proliferation domain → Transition domain (t₁ → t₃). Transition 

domain → Early elongation zone (t₃ → t₅). Early elongation → Late elongation zone (t₅ → t₇). 

Late elongation zone → Maturation zone (t₇ → t₉). 

 

For each of these five transitions, we derived 10 LIMAs, one for each major cell type, resulting in 

a total of 50 LIMAs that collectively map the spatiotemporal transcriptional dynamics of the root 

system. These matrices serve as a foundation for analyzing gene interactions underlying cell fate 

decisions and developmental progression. 

 

To generate LIMAs, we simulated 2000 cell trajectories, yielding 22k cell transcriptomes across 

11 time steps (2000 × 11 = 22k) from an input tensor of shape (2000, 11, 17513), assembled by 

sampling transcriptomes from the test set. For each transition of interest, we extracted two (200, 

17513) matrices representing gene expression in the initial and subsequent states. From these, a 

(17513 × 17513) LIMA was computed for each cell type and transition. Because the simulation 

process is stochastic, we repeated it 10 times, generating 10 replicate LIMAs for each transition. 

To reduce noise and remove outliers, we computed a z-score for each matrix entry across the 10 

replicates. Only entries with |z-score| > 3 were retained. For these, the mean value across replicates 

was used to construct a denoised final LIMA. These denoised LIMAs were then used for gene 

prioritization benchmarking. 

  

Detailed codes demonstrating how to derive GRNs from GeneSys-generated single-cell 

transcriptomes and subsequently perform denoising procedures can be found in the Jupyter 

Notebook number 12 deposited in the GitHub repository (See Codes availability section). 

 

Network centrality measurements 

  

Network centrality metrics were calculated using the Python package NetworkX v3.1. For each 

cell state transition, Linear interaction matrices (LIMAs) and CellOracle-inferred gene regulatory 

networks (GRNs) were analyzed. The following centrality measures were computed for each 

transcription factor (TF): 1) Betweenness centrality, 2) Eigenvector centrality, 3) Out-degree 

centrality, 4) In-degree centrality, 5) Total degree (sum of in-degree and out-degree). 
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To identify candidate tissue- and cell type-specific TFs with elevated activity during state 

transitions in the root, we applied a gene prioritization strategy based on the combined centrality 

score, defined as the sum of a TF's betweenness, out-degree, and in-degree centrality scores. This 

score was computed across 50 LIMAs, each representing a biologically meaningful state transition. 

 

To evaluate tissue or cell type specificity, we further examined whether the combined centrality 

score for a particular tissue or cell type contributed more than 50% of the TF’s total centrality 

score across all transitions. Transcription factors meeting this criterion were considered tissue- or 

cell type–specific regulators. The resulting candidate TF lists are provided in Table S3. 

 

Detailed code for calculating centrality scores and ranking transcription factors is available in 

Jupyter Notebooks 12-13 accessible through the GitHub repository (see Code Availability section). 

  

Codes availability 

  

All source codes, instructions for installation, tutorials, supplementary data and jupyter notebooks 

documenting the entire analytical processes presented in this study are available at the following 

GitHub repository: https://github.com/Hsu-Che-Wei/GeneSys 
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