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Abstract

The carotid body (CB) chemoreceptors mediate rapid cardiorespiratory reflexes to hypoxia,
which mature peri-natally and are vital for fetal hypoxia tolerance and post-natal ventilatory
control. This maturation is associated with an increase in the sensitivity of the CB
electrophysiological response to hypoxia (chemosensitivity): a process that is incompletely
understood but critical to systemic oxygen homeostasis. Hypothesizing that perinatal CB
gene expression changes would reveal candidate mechanisms for oxygen chemosensitivity,
we studied the CB transcriptome in sheep, where peri-natal CB physiology is well-
characterised. CB-mediated cardiovascular reflexes are detectable at fetal day 120, and
robust by term (day 145), while hypoxic ventilatory responses are established by post-natal
day 15. We performed RNA sequencing on sheep CBs at each of these stages, and adults,
along with the superior cervical ganglion (SCG) as an oxygen-insensitive control. This
allowed us to define tissue-specific changes in the CB transcriptome correlating with
chemosensitivity maturation. Striking, progressive CB enrichment is observed in genes
implicated in murine CB chemosensitivity, including potassium channels (KCNK9),
mitochondrial complex IV regulators (NDUFA4L2, HIGD1C), and HIF-20. (EPAS1). Genes
with this expression pattern are also enriched for regulators of diacylglycerol (DAG),
particularly the DAG kinase DGKH: one of the most abundant CB transcripts increasing in
parallel with chemosensitivity. Across developmental stages, the CB also exhibits marked

down-regulation of metabolic pathways and ATP/GTP consuming processes, potentially
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providing a state permissive to metabolic signal detection. Together, this builds a detailed
picture of the CB transcriptional signature, with core features established in fetal life and

conserved across species.
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Key points
e The carotid body (CB) chemoreceptors mediate rapid cardiorespiratory responses to
hypoxia, which maintain systemic oxygen homeostasis, but CB dysfunction is also
implicated in pathologies including hypertension, heart failure and sudden infant
death.

e CB-mediated chemoreflexes mature during the peri-natal period, with increasing

sensitivity of the oxygen chemosensory response.

o We performed RNA-seq of CBs from sheep across 3 peri-natal stages and adults,

enabling us to identify gene expression changes that correlate with functional state.

e We describe a CB transcriptomic signature that is conserved across species,
established in fetal life, and correlates with maturation. This includes features of a
unique metabolic phenotype, and up-regulation of genes encoding the extracellular
matrix and diacylglycerol signalling. The top transcription factor correlating with

functional maturation is EPAS1/ HIF-2q..

e We anticipate that this data set will be a valuable resource in generating novel
hypotheses on mechanisms of oxygen chemosensory function, development and
CB-associated pathologies.

Introduction

The carotid body arterial chemoreceptors play a crucial role in systemic oxygen
homeostasis, mediating rapid cardiorespiratory reflexes in response to hypoxia that serve to
maintain arterial oxygen levels (Kumar & Prabhakar, 2012). Chemoreceptor reflexes
undergo complex developmental changes during the peri-natal period with the transition to
airbreathing life and the associated increase in oxygen uptake and delivery. During this time,
carotid body (CB) function is essential both for fetal hypoxia tolerance, through regulation of

a cardiovascular chemoreflex (Giussani et al., 1993; Giussani, 2016), and for establishing
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stable ventilatory control in the neonate (Carroll, 2002; Carroll & Agarwal, 2010). While being
critical in the maintenance of physiological defences against acute hypoxaemia during the
peri-natal period, the CB must simultaneously adapt to the dramatic increase in oxygen
availability at birth by adjusting the chemosensory activation setpoint to match the newly
elevated normalcy for arterial oxygen. This involves an increase in the sensitivity of the
chemosensory response to hypoxia, which has been demonstrated at the level of
cardiorespiratory reflexes, CB afferent nerve activity, and electrophysiological responses of
individual CB cells (reviewed in Carroll & Kim, 2013). Understanding these important
adaptations in chemosensory function may provide insights into the pathophysiology of
stillbirth, neonatal apnoea and sudden infant death syndrome, which are associated with
peri-natal hypoxia and CB pathology (MacFarlane et al., 2013; Neary & Breckenridge, 2013;
Porzionato et al., 2018; Pacora et al., 2019; Lear et al., 2024). Studying this developmental
functional maturation may also shed light on normal CB physiology and the mechanisms

underlying oxygen chemosensitivity, which remain incompletely understood.

CB chemosensory cells are neuroendocrine cells, known as type | or glomus cells, which
exhibit a rapid neurosecretory response to hypoxia. This is proposed to involve
depolarisation of the plasma membrane through closure of potassium channels (TASK1/3,
maxi-K), and activation of voltage-gated calcium channels with the resulting calcium influx
triggering neurosecretion (LOpez-Barneo et al., 1988; Buckler & Vaughan-Jones, 1994;
Buckler, 1997, reviewed in Lépez-Barneo et al., 2016). The mitochondria also appear to be
important for the chemosensory response as inhibitors of the electron transport chain are
potent stimulators of CB type | cell activity (Mulligan et al., 1981; Mulligan & Labhiri, 1982;
Wyatt & Buckler, 2004; Turner & Buckler, 2013), and type | cell mitochondria, specifically
mitochondrial complex IV, are particularly sensitive to moderate hypoxia (Mills & Jobsis,
1970, 1972; Nair et al., 1986; Duchen & Biscoe, 1992a, 1992b; Buckler & Turner, 2013).
Studies of CB gene expression have been highly informative in developing our
understanding of CB type I cell biology and have highlighted overexpression of certain
unusual isoforms of genes contributing to the function of complex IV (COX412, NDUF4AL?2,
HIGD1C) and the vertebrate-specific isoform of Hypoxia-inducible factor alpha (EPAS1/ HIF-
20) (Chang et al., 2015; Zhou et al., 2016; Gao et al., 2017). The high absolute and relative
expression levels of these genes in CB tissue suggests a causative role in oxygen
chemosensitivity, which in some cases is supported by functional studies with genetic or
pharmacological interventions (Hodson et al., 2016; Fielding et al., 2018; Cheng et al., 2020;
Moreno-Dominguez et al., 2020; Timon-Gomez et al., 2022; Prange-Barczynska et al., 2023,
reviewed in Gao et al., 2025). However, there are outstanding questions with respect to how

changes in oxygen concentration are detected and how the signal is communicated to ion
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channels at the plasma membrane. There are also some limitations to the existing literature,
the large majority of which concerns small rodents, so may repeatedly highlight species-

specific gene expression patterns.

To focus gene expression studies on those most likely to have a fundamental role in CB
function, we have studied the change in CB gene expression from fetal to adult life, across a
period corresponding to an increase in oxygen chemosensitivity in experimental animals
studied. We have used the sheep as a physiological model, as it offers several substantive
advantages. First, sheep and humans share similar milestones in fetal cardiovascular
development, therefore fetal studies using sheep are of high human translational value
(Morrison et al., 2018). Second, there is comprehensive background physiological data on
the maturation of CB functions during the progression from fetal to adult life in sheep,
allowing us to compare different developmental stages that have been well characterised
with respect to oxygen chemosensitivity. Third, the ovine CB is much larger than that of the
small rodents used in most studies to date, enabling high depth RNA-sequencing analyses
to be conducted on individual CB organs (as opposed to pooled samples), even at fetal
stages, which have not been included in previous RNA-sequencing studies. Finally, using
the sheep enabled us to refine the list of genes showing conserved association with

chemosensitivity across species.

To facilitate comparison of gene expression data with functional studies we chose to analyse

the following four time points (Figure 1A):

(a) Fetal day 120, which is the earliest stage when CB-mediated reflexes are well
characterised, with hypoxic stimulation leading to bradycardia and peripheral
vasoconstriction, part of the fetal brain sparing circulatory response to acute hypoxia
(Bartelds et al., 1993; Giussani et al., 1993, 2001);

(b) Fetal day 145, which is full term in the breed of sheep we used (Brain et al., 2019). Near
term, the CB-mediated fetal brain sparing circulatory to hypoxia response becomes more
robust; increasing in magnitude (Fletcher et al., 2006). Recordings of CB afferent nerve
activity suggest that this is, at least in part, due to intrinsic gains in CB oxygen sensitivity
(Blanco et al., 1984);

(c) Post-natal day 15 lambs, when stable respiratory control is established with robust CB-
mediated hypoxic ventilatory responses. Prior to this, the immediate neonatal period is
associated with respiratory instability and poor hypoxic ventilatory responses, principally due
to a weak CB chemoreceptor response (Bureau & Begin, 1982; Mayock et al., 1983; Blanco
et al., 1984; Bureau et al., 1985b, 1985a; Canet et al., 1996). At birth, the CB is relatively
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guiescent, with a threshold for activation still corresponding to the hypoxic fetal circulation
(Blanco et al., 1984). As arterial oxygen levels rise following transition from placental to
pulmonary gas transfer, CB activation shifts to a higher oxygen setpoint during the first 2
weeks of post-natal life. This involves a CB cell intrinsic gain in oxygen sensitivity; as shown
by calcium and potassium channel responses in isolated type | cells, and carotid sinus nerve
recordings (Bamford et al., 1999; Wasicko et al., 1999, 2006; Kim et al., 2011);

(d) Adult sheep, when post-natal growth and CB maturation are complete.

In parallel, we wished to compare CB gene expression changes to those in a tissue that
does not acquire oxygen chemo-sensitivity and hence focus on genes that show both tissue-
specific and developmentally regulated changes in expression. We chose the superior
cervical (sympathetic) ganglion (SCG), which has physiological and ontological features in
common with the CB but does not manifest oxygen chemosensitivity. The SCG has been
used as a control tissue in previous studies of CB gene expression (Chang et al., 2015; Gao

et al., 2017), facilitating the integration of our data with that work.

Results

The sheep CB is found at the origin of the occipital artery and can be readily identified as a
defined golden oval/lobular structure at the intersection of the artery with the
ganglioglomerular and carotid sinus nerves, which respectively form the efferent and afferent
CB innervation. CB identity was confirmed by histology, showing the classic nested
“zellballen” morphology of type | cells staining positive for tyrosine hydroxylase (TH) and
chromogranin A, with signal intensity increasing with maturation (Figure 1B, C). The SCG is
located at the opposite end of the (sympathetic) ganglioglomerular nerve and comprises
sympathetic neuronal cell bodies that stain positive for TH, as these cells also produce

catecholamines, but not the neuroendocrine marker chromogranin A (Figure 1C).

RNA was extracted from three samples from each tissue and time point for RNA sequencing.
One SCG sample (d145) was excluded due to poor RNA quality and limited expression of
sympathetic markers. All other samples were included in the analysis, and we provide this

dataset in full as a resource available on Github (see Methods).

Comparative analysis of carotid body-specific gene expression

We first sought to define genes that show the most striking contrast in expression levels

between the sheep CB and SCG, with an initial focus on samples from the adult stage,
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developmentally the most distinct from the adult data, and novel as there are no previous

studies of this type incorporating the fetal CB transcriptome.

Our analysis identified 9,335 genes in the adult and 6,555 genes from fetal day 120 with

significant differential expression between the CB and SCG (P<0.01). Genes showing the

greatest fold change either up (CB-enriched) or down-regulated (SCG-enriched) are shown

in Table 1A-D.
Table 1A: up-regulated in adult CB vs SCG
Gene name Description log2FC P value
FGF19 Fibroblast growth factor 19 15.2 *
INSM1 Insulinoma-Associated Protein 1 14.2 *
HIGD1C HIG1 Hypoxia Inducible Domain Family Member 1C 13.2 *
GPR139 G Protein-Coupled Receptor 139 11.6 *
NEUROD4 Neuronal Differentiation 4 11.4 2.6E-18
EPYC Epiphycan 11.3 2.5E-09
HMX3 H6 Family Homeobox 3 104 *
DLX6 Distal-Less Homeobox 6 10.2 *
KCNK9 Potassium Two Pore Domain Channel Subfamily K 10.2 *
Member 9
ACSM1 Acyl-CoA Synthetase Medium Chain Family Member 1 9.9 2.3E-14
NTS Neurotensin 9.9 2.9E-14
SLC26A4 Pendrin (Chloride transporter) 9.5 *
GRIN2B Glutamate lonotropic Receptor NMDA Type Subunit 2B 9.5 1.8E-15
NXPH4 Neurexophilin 4 9.5 *
GLRA1 Glycine Receptor Alpha 1 9.3 *
NOTUM Notum, Palmitoleoyl-Protein Carboxylesterase 9.1 *
RSPO1 R-Spondin 1 8.9 1.8E-11
HMX2 H6 Family Homeobox 2 8.6 2.4E-14
B3GAT2 Beta-1,3-Glucuronyltransferase 2 8.6 *
CA4 Carbonic Anhydrase 4 8.5 4 5E-18
Table 1B: down-regulated in adult CB vs SCG
Gene name Description log2FC P value
GPX2 Glutathione Peroxidase 2 -16 *
ECEL1L Endothelin Converting Enzyme Like 1 -12 3.1E-15
HMX1 H6 Family Homeobox 1 -12 *
NTRK1 Neurotrophic Receptor Tyrosine Kinase 1 -11 *
CHRNA4 Cholinergic Receptor Nicotinic Alpha 4 Subunit -11 1.0E-18
GRP Gastrin Releasing Peptide -11 *
HTR3A 5-Hydroxytryptamine Receptor 3A -10 1.3E-11
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CPAG6 Carboxypeptidase A6 -10 2.5E-16
FSTL5 Follistatin Like 5 -10 1.1E-06
DRGX Dorsal Root Ganglia Homeobox -10 1.6E-13
AMER3 APC Membrane Recruitment Protein 3 -9.8 *
PDZK1IP1 PDZKZ1 Interacting Protein 1 -9.7 7.0E-20
DBH Dopamine Beta-Hydroxylase 95 *
CALB2 Calbindin 2 -9.5 *
SLC51B SLC51 Subunit Beta -94 2.4E-12
RHBG Rh Family B Glycoprotein -9.3 3.1E-15
HTR3B 5-Hydroxytryptamine Receptor 3B -9.3 1.8E-10
CACNGS8 Calcium Voltage-Gated Channel Auxiliary Subunit -9.2 3.8E-10
Gamma 8
CRHR2 Corticotropin Releasing Hormone Receptor 2 9.1 *
IGSF5 Immunoglobulin Superfamily Member 5 -8.9 8.0E-12
Table 1C: up-regulated in fetal CB vs SCG
Gene name Description log2FC P value
GPR139 G Protein-Coupled Receptor 139 13 *
FGF19 Fibroblast growth factor 19 13 *
NTS Neurotensin 12 5.4E-20
LOC105603737 uncharacterised 10 1.9E-06
HMX2 H6 Family Homeobox 2 10 2.1E-15
DLX6 Distal-Less Homeobox 6 10 *
CATHL1 Cathelicidin-1 9.9 8.2E-04
AGTR2 Angiotensin Il Receptor Type 2 9.8 5.0E-12
CA4 Carbonic Anhydrase 4 9.7 *
HIGD1C HIG1 Hypoxia Inducible Domain Family Member 1C 9.3 1.1E-15
HMX3 H6 Family Homeobox 3 9.2 *
TPH1 Tryptophan Hydroxylase 1 9.1 *
NOTUM Notum, Palmitoleoyl-Protein Carboxylesterase 9.0 *
ACSM1 Acyl-CoA Synthetase Medium Chain Family Member 1 8.8 2.8E-08
CPS1 Carbamoyl-Phosphate Synthase 1 8.8 *
IGFBP1 Insulin Like Growth Factor Binding Protein 1 8.7 9.7E-09
NMUR2 Neuromedin U Receptor 2 8.5 1.7E-11
GJD2 Gap Junction Protein Delta 2 8.4 3.1E-09
CATHL3 Cathelicidin-3 8.4 6.5E-07
NXPH4 Neurexophilin 4 8.2 *
Table 1D: down-regulated in fetal CB vs SCG
Gene name Description Log2FC P Value
GPX2 Glutathione Peroxidase 2 -12 1.4E-21
ECEL1 Endothelin Converting Enzyme Like 1 -11 *
NTRK1 Neurotrophic Receptor Tyrosine Kinase 1 -11 *
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CHRNA4 Cholinergic Receptor Nicotinic Alpha 4 Subunit -9.4 *
NAAS8O N-Alpha-Acetyltransferase 80, NatH Catalytic Subunit -9.2 7.1E-12
CCDC105 Tektin-like protein 1 -9.0 1.1E-11
PKD1L2 Polycystin-1-like protein 2 -8.9 *
TMEM275 Transmembrane protein 275 -8.9 3.0E-11
NTSR1 Neurotensin receptor type 1 -8.8 1.1E-19
HEPHL1 Hephaestin-like protein 1 -8.8 3.3E-11
PRSS56 Serine protease 56 -8.6 6.5E-11
HMX1 Homeobox protein HMX1 -8.4 1.8E-11
DBH Dopamine Beta-Hydroxylase -8.3 *
LOC101119944 elongation factor 1-alpha 2-like -8.2 3.0E-09
TRHR Thyrotropin-releasing hormone receptor -8.1 4.8E-08
NPSR1 Neuropeptide S receptor -8.0 7.6E-08
SGPP2 Sphingosine-1-phosphate phosphatase 2 -8.0 2.4E-15
SERTM2 Serine-rich and transmembrane domain-containing 2 -7.9 *
SLC6A2 Norepinephrine Transporter -7.8 *
TMASF4 Transmembrane 4 L6 family member 4 -7.7 3.3E-14

Table 1: Genes with the greatest differential expression between CB and SCG in the adult and
fetal d120 sheep. (A-B) The top 20 genes most up-regulated (A) and down-regulated (B) in the adult
sheep CB versus SCG. (C-D) The top 20 genes most up-regulated (C) and down-regulated (D) in the
fetal day 120 sheep CB versus SCG. Genes are ranked by log2 fold change (log2FC). *P value less

than 1E-20. All values shown to two significant figures.

Several previous studies, principally in mice, have examined CB gene expression with
respect to control tissues (Chang et al., 2015; Zhou et al., 2016; Gao et al., 2017) and the
present study provides a parallel dataset in a species distinct from small rodents. Genes that
show tissue-specific expression patterns conserved between species are likely to be
enriched for those with critical functional roles, including chemosensitivity. We therefore
examined the concordance between the most highly CB-enriched genes identified in the
sheep and those defined in earlier studies on small rodents. To collate comparable mouse
datasets, we identified published studies describing transcriptomic data in the mouse CB
with respect to at least one control tissue. We combined data from an RNA sequencing
analysis comparing mouse CB and adrenal medulla (Chang et al., 2015); a microarray
analysis comparing mouse CB and SCG (Gao et al., 2017); and a single cell RNAseq
analysis of mouse CB type | cells compared to a range of control cell types (Zhou et al.,
2016). Combining the lists of top-ranked CB-enriched genes in each study, we compiled a
list of genes highly enriched in the mouse CB (n=168, Figure 2A-a-d) and used this to form a
gualitative comparison with the top 160 most up-regulated genes in the adult (Figure 2A-b-d-

e-g) and fetal sheep CB (Figure 2A-c-d-e-f).
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The top-ranked gene lists from the different mouse studies showed relatively modest
overlap, perhaps reflecting the different control tissues used. However, the sheep CB gene
list showed good concordance with the combined mouse data, with 28 genes common to
mouse and either of the sheep top gene lists (Figure 2A-b-c-d). Of these, 15 were top hits in
the mouse, and both adult and fetal sheep (Figure 2A-d). Extending the analysis to any gene
with significant up-regulation in the sheep CB vs SCG (P<0.05) extended the overlap:
77/168 mouse CB genes were significantly upregulated in the adult sheep CB, and 86/168
were significantly upregulated in the fetal sheep CB, with 96/168 mouse genes being
significantly upregulated in at least one sheep dataset (Figure 2B and 2A-a-d — genes in
bold).

Volcano plots of differential gene expression between sheep CB and SCG in adults (Figure
3B) and the day 120 fetus (Figure 3A) illustrate the genes with the most striking CB-
enriched expression, highlighting those that are also among the most up-regulated genes in
the mouse CB (Figure 3, pink annotation) and others that are among the most significantly
up-regulated transcripts in the sheep CB, but were not highlighted in mouse studies (Figure
3, blue annotation). The common gene expression profile, detected in both species, includes
genes with proposed roles in oxygen chemosensitivity (eg HIGD1C, NDUFA4L2, COX4l2,
EPAS1/HIF-2, KCNK9), and genes highly expressed in other tissues that appear to support
oxygen chemosensitivity-like responses (RGS5, DGKH) (Hanemaaijer et al., 2021,
Akkuratova et al., 2022). The CB-specific expression of these genes that we independently
identify in sheep further enhances the evidence for functional relevance of these genes,
which together form a CB gene expression signature that is established in fetal life. In
contrast, there are several genes highlighted in mouse studies that we do not find to be
upregulated in the sheep CB, including OIfr78/OR51E2 and other olfactory receptors, for
which some, but not all studies have proposed a functional role in the mouse CB (Chang et
al., 2015; Torres-Torrelo et al., 2018; Peng et al., 2020; Colinas et al., 2024).

Features of tissue-specific gene expression identified in the sheep CB

We hypothesized that the greater sequencing depth and power of the sheep dataset, which
allows analysis of biological replicates, might reveal additional genes with functionally
significant CB-specific expression that were not clearly apparent in previous analyses of
pooled mouse tissue. To pursue this, we deepened our examination of genes enriched in the
sheep CB by analysis of gene ontology for genes differentially expressed between the CB
versus SCG in adult and fetal d120 sheep (Table 2A-D). Considerable similarities between

the adult and fetal gene expression were evident between genes up-regulated (table 2A,C)
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and down-regulated in the CB (table 2B,D). Highly enriched genes up-regulated in both the

adult and fetal CB relate to receptor tyrosine kinase/growth factor signalling, along with

genes encoding components of the extracellular matrix, which may be related through

regulation of growth factor activity. These expression data contrast with features of mouse

CB gene expression, where high expression of G protein signalling pathways is observed

(Zhou et al., 2016; Gao et al., 2017), although there are also prominent examples of G

protein coupled receptors among the most CB-enriched genes in the sheep (GPR139,
OPRD1, AGTR2, PTGERS3) (Figure 2A-e-g, Figure 3, Table 1C).

Table 2A: up-regulated in adult CB vs SCG

Term ID Pathway Analysis P value
KEGG:03083 Polycomb repressive complex 7.0E-05
KEGG:05202 Transcriptional misregulation in cancer 5.1E-04
KEGG:04350 TGF-beta signaling pathway 6.6E-04

REAC:R-HSA-74160 Gene expression (Transcription) 2.9E-08
REAC:R-HSA- Chromatin organization 9.6E-05

4839726
REAC:R-HSA- Extracellular matrix organization 5.5E-04

1474244

Term ID GO molecular function Fold P-value

Enrichment
Extracellular matrix

(G0O:0005201) extracellular matrix structural constituent 4.7 *

(G0O:0005539) glycosaminoglycan binding 3.0 4.0E-15
(G0O:0008201) heparin binding 3.1 5.5E-12
(G0O:0001968) fibronectin binding 5.3 2.4E-07
(G0O:0005518) collagen binding 3.2 3.8E-06
(G0O:0050698) proteoglycan sulfotransferase activity 4.3 4.6E-05

Growth factor signalling
(G0:0019838) growth factor binding 4.2 3.6E-18
(GO:0004713) protein tyrosine kinase activity 3.1 5.8E-10
(G0O:0050431) transforming growth factor beta binding 6.1 9.9E-08
(G0:0005520) insulin-like growth factor binding 5.8 7.4E-06
(G0O:0005161) platelet-derived growth factor receptor binding 6.1 5.2E-05
(G0O:0005003) ephrin receptor activity 4.5 5.3E-04
(G0O:0032051) vascular endothelial growth factor receptor activity 6.9 1.3E-03
Wnt signalling
(G0:0008013) beta-catenin binding 3.06 1.04E-07
(G0O:0005109) frizzled binding 4.55 2.84E-07
(G0O:0017147) Whnt-protein binding 3.52 6.49E-04
G protein signalling
(G0O:0004953) eicosanoid receptor activity 6.48 7.91E-06
(G0O:0008528) G protein-coupled peptide receptor activity 2.45 2.30E-05
(G0O:0004954) prostanoid receptor activity 6.62 9.94E-05
Cell signalling

(G0O:0004517) nitric-oxide synthase activity 12.14 5.58E-04
(G0:0022824) transmitter-gated monoatomic ion channel activity 2.7 5.00E-04
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(G0:0042562) \ hormone binding 2.68 | 2.41E-05
Transcriptional regulation
(G0:0001216) DNA-binding transcription activator activity 2.19 1.58E-11
(G0O:0001223) transcription coactivator binding 3.57 9.47E-06
(G0O:0004879) nuclear receptor activity 3.09 6.32E-05
lon channel activity
(G0O:0015267) channel activity 1.85 1.15E-07
(G0O:0005249) voltage-gated potassium channel activity 2.97 9.42E-07
(G0O:0005262) calcium channel activity 2.09 9.43E-04
Metabolism
(G0O:0120515) \ fatty acid-CoA ligase activity 3.89 | 6.30E-04
Table 2B: down-regulated in adult CB vs SCG
Term ID Pathway Analysis P value
KEGG:05012 Parkinsons Disease 5.0E-20
KEGG:01100 Metabolic pathways 2.9E-17
KEGG:04728 Dopaminergic synapse 3.0E-02
REAC:R-HSA- Aerobic respiration and respiratory electron 9.4E-19
1428517 transport
REAC:R-HSA- Metabolism 5.9E-16
1430728
REAC:R-HSA-199991 Membrane Trafficking 1.4E-13
REAC:R-HSA- Vesicle-mediated transport 2.4E-12
5653656
Term ID GO molecular function Fold P-value
Enrichment
Transmembrane transport
(G0O:0022857) transmembrane transporter activity 2.0 *
(G0O:0008324) monoatomic cation transmembrane transporter 2.4 *
activity
(G0O:0046943) carboxylic acid transmembrane transporter 1.9 4.3E-04
activity
Active transport
(G0:0022804) \ active transmembrane transporter activity 2.0 | 2.0E-09
cytoskeleton & trafficking
(G0O:0008092) cytoskeletal protein binding 2.0 *
(G0:0000149) SNARE binding 3.1 1.1E-08
(G0O:0017075) syntaxin-1 binding 5.3 1.4E-05
(G0:0140312) cargo adaptor activity 4.3 2.8E-04
(G0O:0032051) clathrin light chain binding 6.4 1.8E-03
lon channel activity
(G0O:0005216) monoatomic ion channel activity 2.4 2.0E-15
(G0:0022832) voltage-gated channel activity 2.8 5.0E-10
(G0:0015079) potassium ion transmembrane transporter activity 2.8 1.4E-09
Purine binding
(GO:0017076) purine nucleotide binding 1.6 4.9E-15
(GO:0030554) adenyl nucleotide binding 1.6 8.7E-14
(G0O:0005524) ATP binding 1.6 1.0E-03
(G0O:0019001) guanyl nucleotide binding 15 1.5E-03

ATPase/GTPase
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(G0:0019829) ATPase-coupled monoatomic cation 5.0 5.5E-12
transmembrane transporter activity
(G0:0042626) ATPase-coupled transmembrane transporter 3.5 2.5E-10
activity
(G0O:0046961) proton-transporting ATPase activity, rotational 5.6 2.4E-07
mechanism
Lipid binding
(G0:0008289) lipid binding 1.6 3.1E-08
(G0O:0005543) phospholipid binding 1.8 2.7E-07
Table 2C: up-regulated in fetal CB vs SCG
Term ID Pathway Analysis P value
KEGG:05202 Transcriptional misregulation in cancer 5.4E-08
KEGG:04512 ECM-receptor interaction 3.5E-07
KEGG:04110 Cell cycle 9.0E-07
KEGG:04350 TGF-beta signaling pathway 2.4E-05
REAC:R-HSA- Extracellular matrix organization 5.3E-16
1474244
REAC:R-HSA-162582 Signal Transduction 4.1E-11
Term ID GO molecular function Fold P-value
Enrichment
Extracellular matrix
(G0O:0005201) extracellular matrix structural constituent 5.8 *
(G0:0005539) glycosaminoglycan binding 3.5 *
(G0:0008201) heparin binding 3.5 8.5E-16
(G0:0005518) collagen binding 4.9 3.7E-14
(GO:0070051) fibrinogen binding 8.3 8.4E-05
(G0O:0019798) procollagen-proline dioxygenase activity 7.3 2.1E-04
Growth factor signalling
(G0:0019838) growth factor binding 5.1 *
(G0:0019199) transmembrane receptor protein kinase activity 5.2 2.6E-17
(G0:0005520) insulin-like growth factor binding 7.3 4.4E-09
(G0O:0005160) transforming growth factor beta receptor binding 4.5 3.1E-05
(GO:0005003) ephrin receptor activity 5.5 1.0E-05
(GO:0070700) BMP receptor binding 6.3 3.6E-05
(G0O:0005017) platelet-derived growth factor receptor activity 11 6.3E-04
Cell signalling
(G0O:0004953) eicosanoid receptor activity 7.0 7.6E-07
(G0O:0005080) protein kinase C binding 3.5 1.2E-05
(G0O:0008528) G protein-coupled peptide receptor activity 2.3 1.4E-04
(G0:0004517) nitric-oxide synthase activity 12 6.3E-04
Transcriptional regulation
(G0O:0003700) DNA-binding transcription factor activity 1.5 3.7E-07
(G0:0001223) transcription coactivator binding 3.7 3.2E-06
(G0:0004879) nuclear receptor activity 3.4 5.8E-06
Wnt signalling
(G0O:0008013) beta-catenin binding 2.5 3.1E-05
(G0O:0005109) frizzled binding 3.5 8.8E-05
(G0:0042813) Wnt receptor activity 4.7 1.0E-03

lon channel activity
(G0O:0005216) | monoatomic ion channel activity \ 1.8 | 4.7E-06
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| (GO:0015459) | potassium channel regulator activity \ 2.6 | 7.5E-04 |
Table 2D: down-regulated in fetal CB vs SCG
Term ID Pathway Analysis P value
KEGG:01100 Metabolic pathways 5.3E-11
KEGG:05012 Parkinson disease 1.0E-06
KEGG:04721 Synaptic vesicle cycle 2.2E-05
KEGG:00190 Oxidative phosphorylation 1.2E-04
REAC:R-HSA-112315 Transmission across Chemical Synapses 5.1E-10
REAC:R-HSA- Metabolism 4.0E-08
1430728
REAC:R-HSA-199991 Membrane Trafficking 2.5E-05
. Fold
Term ID GO molecular function ; P-value
Enrichment
Transmembrane transport
(G0:0022857) transmembrane transporter activity 2.1 *
(G0O:0008324) monoatomic cation transmembrane transporter 2.5 *
activity
(G0O:0015171) amino acid transmembrane transporter activity 2.6 8.5E-06
(G0O:0046943) carboxylic acid transmembrane transporter 2.0 1.7E-04
activity
Active transport
(G0O:0015291) secondary active transmembrane transporter 1.9 6.1E-06
activity
(G0:0015399) primary active transmembrane transporter activity 2.1 8.0E-05
cyoskeleton & trafficking
(G0O:0008092) cytoskeletal protein binding 2.2 *
(G0O:0017075) syntaxin-1 binding 7.1 7.0E-09
(G0:0000149) SNARE binding 3.1 1.2E-08
(G0O:0030276) clathrin binding 2.9 6.8E-04
lon channel activity
(G0:0015267) channel activity 2.6 3.9E-21
(G0O:0005249) voltage-gated potassium channel activity 3.3 4.4E-09
(G0O:0005248) voltage-gated sodium channel activity 6.9 2.3E-09
(G0O:0005254) chloride channel activity 2.6 8.9E-05
Purine binding
(G0:0032555) purine ribonucleotide binding 1.5 7.3E-13
(G0:0032559) adenyl ribonucleotide binding 1.5 1.7E-10
(G0:0032561) guanyl ribonucleotide binding 1.6 1.0E-03
Neurotransmission
(G0:0022835) transmitter-gated channel activity 4.4 4.5E-11
(G0:0098918) structural constituent of synapse 4.6 3.1E-06
kinase activity
(G0:0016301) kinase activity 1.5 1.2E-05
(G0:0106310) protein serine kinase activity 1.7 5.4E-05
ATPase/GTPase
(G0:0042625) ATPase-coupled ion transmembrane transporter 4.2 1.4E-04
activity
(G0O:0046961) proton-transporting ATPase activity, rotational 4.2 1.4E-04
mechanism
(G0:0003924) GTPase activity 1.7 3.0E-04
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Table 2: Gene ontology analysis for the most differentially expressed genes in the CB
versus SCG of adult and fetal d120 sheep. Tables A-D show the top-ranked biological
pathways (KEGG, Reactome) and gene ontology (GO):molecular function terms for the top
2,000 genes showing the greatest up (A) and down-regulation (B) in the CB versus SCG of
adult sheep, and genes showing the greatest up (C) and down-regulation (D) in the CB
versus SCG of fetal d120 sheep. Terms are shown in order of significance (P value) and
organized by category, with similar and redundant terms omitted for clarity. *P value less than
1E-20. All values shown to two significant figures.

Genes enriched in the control tissue, hence relatively down-regulated in the CB, also show
features common to adult and fetal CB. Gene ontology analysis of the CB down-regulated
genes highlights purine-binding molecules and ATP/GTP-consuming processes such as
active transport ATPases, small GTPases, and cellular trafficking (Table 2B,D), suggesting
generally low energy turnover. Metabolic pathways are also down-regulated in the CB vs
SCG. However, the most CB-enriched genes at each stage include some specific metabolic
genes, such as the variant complex IV isoforms (as above), alcohol dehydrogenase
(ADH1C, ADHS®), fatty acid metabolism (ACSM1) and other aspects of mitochondrial function

(ATP5MK, APOL3) (Figure 2A-e-g, Table 1A,C).

Together, the gene expression analysis demonstrates considerable overlap between CB-
enriched genes identified in mice and sheep, which is evident even at fetal stages. Analysis
of the sheep CB also identifies novel features of CB gene expression, present across
developmental stages, including high expression of genes encoding RTK signalling and
ECM components. The expression data also provide further evidence of a specific metabolic
phenotype in the CB, with down-regulation of genes involved in ATP synthesis and

consumption.

Developmentally regulated genes

We next examined gene expression changes across all time points course studied, during
which the CB undergoes significant developmental changes and functional maturation
associated with increasing oxygen chemaosensitivity. Principal component analysis shows
clear separation of the CB and SCG, together with a progressive change in gene expression
with time that is evident in both tissues but most marked in the CB (Figure 4A-a).

This monotonic change in overall gene expression profile most likely reflects multiple
underlying processes associated with potentially complex gene expression patterns that
increase or decrease over time. To study this in more detail we performed a hierarchical
clustering analysis across all time points, incorporating genes that showed significant
differential gene expression between tissues at any time point (see Methods). This yielded 6
clusters: three comprising genes that are CB-enriched (C1, C2, C3) and three with SCG-
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enriched genes (S1, S2, S3). Cluster C1 and S1 genes are predominantly enriched at
early/fetal time points, while C3 and S3 genes increase with development and maturation.
Genes in clusters C2 and S2 show more complex, intermediate temporal patterns of
expression (Figure 4A-b).

To evaluate the results of the clustering analysis, we fist examined the cluster allocation of
known marker genes for each tissue. Neuronal markers (PRPH) and genes related to
sympathetic neurotransmitters (noradrenaline and neuropeptide Y) mapped to SCG-
enriched cluster, specifically cluster S3 (Figure 4B-a). Tyrosine hydroxylase (TH), catalysing
dopamine biosynthesis, is highly expressed in both tissues (as also seen at the protein level
(Figure 1C)) but correlates more with sympathetic development (cluster S3). Other CB
markers, including chromogranin secretory proteins, signalling neuropeptides, and genes
related to serotonin production, were all highly up-regulated in the sheep CB and map to CB-
enriched clusters C1 (GAL, TPH1), C2 (ADM), or C3 (CHGA, CHGB, SLC6A4) (Figure 4B-
b).

We next examined temporal changes in expression of genes already implicated in the
oxygen chemosensitivity of chemosensory cells (KCNK3/9, COX412, NDUFA4L2, HIGD1C,
EPAS1/HIF2). In addition to the high CB-specific expression of these genes (Figure 2A-d,
Figure 3B, 4C-a-c), we also see striking ontogenic changes in expression. Most of the
selected “chemosensitivity genes” show progressive CB-enrichment, mapping to cluster C3.
This includes TASK1/3 potassium channels (KCNK3/9, Figure 4C-e) and variant isoforms of
proteins contributing to complex IV function (NDUF4AL2, HIGD1C), except for COX412,
which peaks in fetal stages (cluster C1) so may be important during pre-natal development
(Figure 4 C-d). COX8B, which is up-regulated in the mouse CB, does not show significant
differential expression in the sheep CB (data not shown). The HIF pathway has significant
roles in regulating CB development and function and, as in mice, we find specific enrichment
of the HIF-2a isoform (EPASL1) in sheep CB, which increases with development (cluster C3,
Figure 4C-f).

Together, the clustering analysis supports the hypothesis that the expression of genes
mediating the oxygen chemosensitivity response correlates with the time course of the
physiological maturation of this response and are enriched in the CB-maturation cluster (C3).
Hence, we wished to examine this cluster of genes more closely. There are some individual
genes in C3 that are interesting examples due to potential clinical links with pharmacological
and pathological variation in CB function. The delta opioid receptor (OPRD1) is one of the

most up-regulated genes in the adult CB (Figure 2A-e, Figure 3B) and shows


https://doi.org/10.1101/2025.08.21.671502
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.08.21.671502; this version posted August 25, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

developmentally increasing expression, in contrast to other opioid receptors which are not
CB-enriched (Figure 5A). Opioid receptor agonists cause respiratory depression, in part
through suppression of CB chemoreceptor-mediated hypoxic ventilatory response. These
data indicate that this is likely to be predominantly through the delta receptor isoform,
consistent with findings from pharmacological studies in cats (Kirby & McQueen, 1986) .
Natriuretic peptide receptor 1 (NPR1) is one of the most CB-enriched genes in adult and
fetal CB (Figure 3B), with a developmentally increasing expression pattern (C3), in contrast
to related isoforms of this receptor (Figure 5B). This is interesting given evidence from both
clinical and pre-clinical studies for CB hyperactivity and associated sympathetic activation in
heart failure (Schultz et al., 2013), a condition in which circulating natriuretic peptides are
pathologically elevated. The mechanism of CB sensitisation in heart failure is unknown, but
these gene expression data show the potential for direct action of natriuretic peptides on CB
cells, which may have a physiological function that is dysregulated by pathological excess of

natriuretic peptides.

G proteins and Diacylglycerol metabolism

Gene ontology analysis of C3 genes shows enrichment of glycosaminoglycan metabolism,
potassium channels, and diacylglycerol (DAG) and IP3 signalling (Figure 6). In the mouse
CB, DAG signalling was found to be enriched in the context of genes encoding Gq proteins
and Gqg-coupled receptors (Zhou et al., 2016; Gao et al., 2017). However, we do not find CB-
enrichment of the Gq class of G proteins (GNAQ, GNA11), nor several other G protein
signalling genes that are strikingly highly expressed in mouse CB (GNAS, RGS4) (Figure
7A-a). An exception to this is RGS5, which is one of the most highly expressed genes in the
C3 cluster (Table 3), showing marked up-regulation in the CB that is progressive with time
(Figure 7A-a-b). Of the primary phospholipase C enzymes (generating DAG and IP3 from
membrane phospholipids), only the gamma isoform (PLCG1), mediating receptor tyrosine
kinase signalling, is CB-enriched, mapping to cluster C3, while the isoforms linked to G
protein coupled receptors (GPCR) do not show significant differential expression (Figure 7A-
¢). The most striking DAG/IP3 related gene in C3 is diacylglycerol kinase eta (DGKH), which
is one of the most highly expressed genes in this cluster (Table 3). Dgkh is also highly
expressed in the mouse CB, together with Dgkk and Dgkg, but DGKH is the only
diacylglycerol kinase significantly enriched in the sheep CB (Figure 6B-a). We have
confirmed this high expression at the protein level (Figure 7B-c), along with a clear pattern of
developmentally progressive transcript expression (Figure 7B-b). Interestingly, PLPPR3 and
PLPPRS5, encoding phosphatidic acid phosphatases (PAP) that generate DAG, are also in

cluster C3. Analysing the clusters of other PAP genes identifies four in CB-enriched clusters:
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PLPP3, PLPPR1, PLPPR3 and PLPPR5. However, only PLPPR5 shows a clear pattern of
developmentally increased expression (Figure 7C-a-b), while PLPPR1 and PLPP3 cluster in

C1, and PLPPR3 only increases relative to decreasing SCG-expression (data not shown).

Table 3
Gene name Description exp?rveesr:i%erzl C(:t?)m)

CHGB Chromogranin B/ Secretogranin B 4168
RGS5 Regulator of G protein signalling 5 2527
EPAS1 Endothelial PAS Domain Protein 1/ HIF-2. 1327
H3F3A H3.3 Histone A 1088
NDUFA4L2 NDUFA4 Mitochondrial Complex Associated Like 2 880
CHGA Chromogranin A 825
LOC114112700 Translation initiation factor IF-2-like. 788
HSPA1A Heat Shock Protein Family A (Hsp70) Member 1A 642
DGKH Diacylglycerol Kinase Eta 625
TAC3 Tachykinin Precursor 3 603
HIGD1C HIG1 Hypoxia Inducible Domain Family Member 1C 547
SCG2 Secretogranin 503
BEX2 BEX2, Brain Expressed X-Linked 2 478
VEGFA Vascular Endothelial Growth Factor A 377
FAM162B Family With Sequence Similarity 162 Member B 318
ADCYAP1R1 Adenylate Cyclase sgci\é;:ionrg_rl;gleyglaeptide 1 (Pituitary) 308
INSM1 Insulinoma-Associated Protein 1 298
CA4 Carbonic Anhydrase 4 276
HSPA1B Heat shock 70 kDa protein 1B 266
TMT1A Thiol Methyltransferase 1A 249

Table 3: Cluster C3 genes with the highest mean CB expression. The top 20 genes in the CB
maturation cluster (C3), ranked by absolute expression (tpm) averaged across CB samples from all
stages (fetal d120, fetal d145, post-natal d15, and adult).

Multiple metabolic pathways can generate phosphatidic acid and diacylglycerol, including the

glycerol-3-phosphate pathway, fatty acid, and phosphatidyl choline metabolism. Genes

encoding metabolic enzymes in each of these pathways map to CB-enriched expression

clusters (Figure 7D), suggesting multiple contributions to the DAG pool that may vary by

developmental stage.
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Taken together, this suggests that a key, conserved feature of mature CB gene expression
centres on the regulation of diacylglycerol, with tissue-specific, developmentally increased
expression of genes catalysing the generation of diacylglycerol (PLCG1, PLPPR5) and its
conversion to phosphatidic acid (DGKH). The nature of upstream regulators/ receptors that
feed into this pathway may vary between species, with GPCR being dominant in mouse,

while receptor tyrosine kinases are more highly expressed in the sheep CB.

Energy metabolism

While our primary focus is on genes showing CB-enriched expression, genes that that are
down-regulated in a tissue specific manner may also be important for generating cellular
phenotypes. Strikingly, genes regulating many aspects of bioenergetic metabolism, including
the core metabolic pathways of glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative
phosphorylation, are consistently down-regulated in CB samples but are progressively
enriched in the SCG with maturation (cluster S3, Figure 6), with the differential expression of
these genes being most marked in the adult (Table 3B). Gene set enrichment analysis
confirms these effects (Figure 8A), also showing down-regulation of the pentose phosphate
pathway and fatty acid metabolism in the CB, but relative sparing of amino acid metabolism.
The magnitude of these effects at the level of individual genes is illustrated by volcano plots
of gene sets for glycolysis, TCA cycle, and oxidative phosphorylation (Figure 8B), which also
highlight a small number of genes that defy this trend. As previously noted, these include the
variant isoforms of complex IV (NDUFA4AL2, COX412), and pyruvate carboxylase (PC),
which is also up-regulated in the mouse CB, possibly mediating anaplerotic fuelling of the
TCA cycle (Gao et al., 2017). In addition, we found CB-enrichment of PCK1
(phosphoenolpyruvate carboxykinase 1), which may also contribute to anaplerosis, and
SUCLG2, the isoform of Succinate-CoA Ligase that specifically generates GTP. Expression
of the ATP-specific SUCLAZ2 is suppressed in the CB (data not shown). However, the
broader picture suggests that both forms of molecular energy currency (ATP/ GTP) are likely
to be produced at lower levels in the context of widespread metabolic suppression in the CB.
Interestingly, this occurs in parallel with down-regulation of ATP/GTP binding proteins and
energy consuming processes, as highlighted in the differential expression analysis of the
adult and fetal CB vs SCG (Table 3B,D). Together, this builds a picture of a bioenergetic
phenotype that extends beyond the previously established specific variations in CB

metabolism, such as atypical complex IV.

Extracellular matrix
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Genes encoding extracellular matrix (ECM) components are consistently a dominant feature
of CB gene expression in the sheep, being amongst the most highly enriched genes in both
the adult and day 120 fetal CB (Table 3A,C). Of genes encoding structural components of
the ECM, including the fibrous proteins collagen, elastin, and fibronectin, and the
proteoglycans (total n=87), 40 genes are in cluster C1, and, overall 58/87 ECM genes map
to a CB-enriched cluster (C1, C2, C3 — Figure 9A). The cluster analysis indicates that ECM
genes predominantly exhibit a fetal-enriched expression pattern (C1), as illustrated by genes
encoding type | collagen and elastin (Figure 9B-a-b). The pattern is observed widely across
ECM genes, but most striking for genes encoding collagens, with 23 of 41 annotated
collagen genes found in cluster C1. At the protein level, Masson Trichrome staining confirms
a high density of collagen surrounding the nested glomeruli of CB type | cells, in contrast to
the far less prominent ECM background of the SCG (Figure 9C). This dense CB ECM does
not appear significantly different in the adult versus the fetal CB, so may be established early
with relatively little turnover. Interestingly, enzymes regulating biosynthesis and metabolism
of heparan sulphate/ glycosaminoglycans (not included in Figure 8A) are significantly
enriched in cluster C3 (Figure 5). These exhibit a developmentally increasing expression
pattern, as illustrated by B3GAT2 and HS6ST2 (Figure 9B-c-d), so the ECM composition

may evolve with CB maturation.

Transcription factors

Having identified clusters of developmentally regulated gene expression patterns we were
interested in which transcription factors might mediate these programs, with associated roles
in CB development and maturation of chemosensitivity. We identified the transcription
factors in each of the tissue-time gene expression clusters and examined the temporal

expression pattern for individual examples (Figure 10A).

Overall, transcription factors are more frequent in CB-enriched clusters (Figure 10A), many
with complex temporal expression patterns. The HIF transcription factors have interesting
developmental expression dynamics, with different subunits and isoforms showing distinct
profiles: HIF1A (HIF-1c) and ARNT (HIF-1B) are CB-enriched, predominantly at fetal/peri-
natal stages, while HIF3A (HIF-30) and ARNT2 (an alternative isoform of HIF-1B) are
enriched in the fetal SCG. EPAS1 (HIF-20) has the most striking expression pattern, being
the most highly expressed transcription factor across all sheep CB samples and one of the
most abundant transcripts overall in cluster C3 (Table 3). This parallels the data from mice,

which also identified HIF-2a/EPAS1 as one of the most abundant transcripts in mouse CB


https://doi.org/10.1101/2025.08.21.671502
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.08.21.671502; this version posted August 25, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

(Zhou et al., 2016; Gao et al., 2017; Prange-Barczynska et al., 2023). However, our data
also reveals that HIF-2¢ expression increases with CB maturation, in particular manifesting

a step increase post-natally (Figure 4C-f, Figure 10-C3).

The next most highly expressed transcription factor in C3 is INSM1 (Insulinoma 1); one of
the most highly enriched genes in the adult CB that also shows developmentally increasing
expression (Table 1A, Table 3, Figure 10A). INSML1 is highly expressed in many
neuroendocrine tissues and used as a marker of neuroendocrine tumours (Méller et al.,
2024) . We confirmed high INSM1 expression at the protein level in the sheep CB (Figure
10B), showing that it behaves as a CB marker in this species. Like HIF-2¢, INSM1 manifests
a marked increase in expression post-natally. Other C3 genes encoding transcription factors,
such as TCF4 and RORA, show a more progressive increase with development, so may
regulate different functions. Interestingly, MYCN shows a striking peak in expression at post-

natal day 15 but is otherwise expressed at relatively low levels (Figure 10A-C3).

Some transcription factors in other clusters also show progressive increases in CB
expression with more complex patterns of differential expression between tissues. PHOX2B
is overall more highly expressed in the SCG but shows a greater increase in expression over
time in the CB, peaking in adulthood (fig 10A -S2). A similar pattern is seen with PHOX2A,
although this remains most highly expressed in the SCG (Figure 10A-S3). PHOX2A/B are
important for autonomic nervous system development, along with other transcription factor
genes in SCG-enriched clusters, including those known to mediate key stages of
sympathoadrenal development. These mostly peak at fetal stages (e.g. SOX10, ISL1,
GATA2, GATA3 (S1)) but some peak post-natally (e.g. HAND1 (S3)).

Transcription factors with CB-enriched expression at fetal stages include others implicated in
developmental processes, such as regulation of retinoic acid signalling (NR2F2, RARA)
(Figure 10A- C1), and organ maturation via thyroid hormone signalling (THRB) (Figure 10A-
C2) and glucocorticoid signalling (NR3C1 — glucocorticoid receptor) (Figure 10A-C1). In
addition to the fetal peak in NR3C1 expression, gene set enrichment analysis shows
progressive CB enrichment for glucocorticoid target genes, which becomes significant by

adult stages (Figure 11).

Discussion
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We present an extensive, in-depth data-set on CB gene expression, incorporating the first
description of the CB transcriptome in fetal life, and the first CB RNA sequencing analysis in
a non-rodent species. We find many features of the CB gene expression signature to be
conserved across species and already established in fetal life from the earliest stages when
oxygen-sensitive chemoreflexes can be reliably measured. By examining how expression of
these genes changes with development we have further refined a set of CB-enriched genes
that correlate with physiological changes in chemosensitivity. At the core of this gene
expression profile, the most over-expressed genes encode variant isoforms of HIFo subunits
(EPAS1/HIF-20), regulators of complex IV (NDUFA4L2, HIGD1C), and regulators of cell
signalling (RGS5, DGKH).

It is worth noting that these exceptional levels of transcript expression may correlate with
functional significance, but also mechanisms of regulation. HIF-2a. is subject to oxygen-
dependent degradation, regulated by the oxygen-sensitive PHD enzymes (Kaelin & Ratcliffe,
2008) , so the high EPASL1 transcript expression may reflect high turnover enabling rapid,
dynamic regulation of HIF-2-dependent responses. This may be true of other oxygen-labile
products, such as RGS5, which is also one of the most abundant transcripts in CB samples.
RGS?5 is regulated by the oxygen sensitive cysteine dioxygenase ADO and hence targeted
for oxygen-dependent degradation via the N-degron pathway (Masson et al., 2019) , so may

also be subject to rapid turnover.

Mechanisms have been proposed for how HIF-2 and the variant isoforms of complex IV
could contribute to oxygen chemosensitivity, supported by some experimental data, and our
gene expression data further enhances this evidence. Our data also emphasizes the striking
CB-enriched expression of certain signalling secondary messengers, particularly RGS5 and
DGKH, which are not just highly expressed but increase in parallel with gains in
chemosensitivity. Although the significance of these signalling pathways in CB cells has yet
to be defined, secondary messenger molecules are of interest as they may be well placed to
link metabolic sensing to events at the plasma membrane. Of note, diacylglycerol (DAG) has
been shown to directly inhibit TASK-1 and TASK-3 conductance, with similar effects
produced by DAG analogues and inhibition of DAG kinases (Wilke et al., 2014). DGK activity
requires ATP, so it is possible, depending on the dynamics of ATP binding, that this could be
sensitive to metabolic flux and facilitate hypoxic signal transduction. For example, if ATP
binding by DGKH is sufficiently weak, then acutely reduced cellular ATP could impair DGKH
activity, allowing accumulation of DAG that inhibits TASK channels to cause membrane

depolarisation. We also find similar CB-enriched gene expression profiles for enzymes
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catalysing the generation DAG, including phosphatidic acid phosphatases, which could
support a high turnover and rapidly responsive changes in DAG levels. Such a mechanism
would provide a specific link between the oxygen-sensitive mitochondrial and membrane
responses characteristic of CB type | cells. It would also be consistent with the extensive
metabolic phenotype we observe at the gene expression level, which would be predicted to
result in a low basal metabolic rate, low oxygen consumption, and low flux of ATP/GTP,
potentially facilitating the signalling of oxygen levels independently of changes in metabolic

demand.

A further aim of this work was to identify factors regulating the development of CB cells and
maturation of chemosensory function. These could be used to develop protocols for the
differentiation of oxygen chemosensory cells in vitro, for instance, from embryonic or induced
pluripotent stem cells, or other permissive cell types. We identify a diverse range of CB gene
expression characteristics that provide insights into the developmental cues and maturation
factors these cells are likely to experience. One of the most consistent features is high
relative expression of genes for the organisation of the extracellular matrix. This could have
a mechanical role, maintaining CB tissue structure in the pulsatile, peri-arterial niche. It may
also provide biochemical signals either directly, for example through the hippo signalling
pathway which responds to mechanical cues and is CB-enriched (Figure 6-C1), or indirectly
through effects on growth factor signalling. Features of CB transcription factor profiles
indicate other potential signals, with nuclear receptors for ligands including retinoic acid and
vitamin D3, which may be important for directing differentiation. Other pathways may be
more cell intrinsic, for example, circadian rhythms exert variation on ventilatory control and
chemoreflexes, and we find several CB-enriched transcription factors with circadian clock
functions (RORA, BHLHE41- C3, NR1D1- cluster C2 (Figure 10)).

Our focus on transcription factors that show progressive, high CB expression (mostly cluster
C3) identifies several factors with plausible roles in CB development: INSM1, while not
previously studied in the CB, is necessary for normal development of adrenal chromaffin
cells (Wildner et al., 2008). These adrenal cells have some functional features and
ontological origins in common with CB type | cells, including evidence of oxygen
chemosensitivity during fetal/neonatal life. TCF4 is mutated in Pitt Hopkins syndrome,
causing clinical features including abnormalities of ventilatory control and apnoea (Amiel et
al., 2007; Zweier et al., 2007), which could reflect abnormalities of CB chemoreceptor
development. Together with previous work showing that HIF-2« is necessary for perinatal
survival of CB type | cells (Macias et al., 2018), this suggests that the C3 cluster is likely to

be enriched for transcription factors regulating the development and/or maintenance of


https://doi.org/10.1101/2025.08.21.671502
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.08.21.671502; this version posted August 25, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

chemosensitive CB cells. PHOX2B is essential for normal development of ventilatory control
pathways, with human mutations causing congenital hypoventilation syndrome (Ondine’s
curse). It regulates development of both the SCG and CB, with genetic Phox2b knock-out
causing agenesis of the SCG and involution of the CB in late gestation (Dauger et al., 2003).
We find that PHOX2B, while predominantly SCG-enriched, shows a marked increase in
expression in the post-natal and adult CB, raising the possibility that it contributes to both

organogenesis and late CB survival and maturation.

In normal peri-natal physiology, a late gestation surge in fetal plasma glucocorticoids
mediates maturation of multiple organ systems, for example, lung surfactant production, and
antenatal glucocorticoid therapy is used clinically to accelerate these processes prior to
threatened pre-term delivery (Fowden et al., 1998; Jellyman et al., 2020). We identify up-
regulation of glucocorticoid receptor (NR3C1) expression in the fetal CB, along with
progressive enrichment of glucocorticoid target genes with CB maturation. Previous
experiments on pregnant sheep have shown that exogenous corticosteroid treatment
enhances fetal CB chemoreflexes, such as the fetal brain-sparing circulatory response
(Fletcher et al., 2003; Jellyman et al., 2005). Together with the data reported here, this
suggests that the physiological glucocorticoid surge in the fetal circulation contributes to
normal CB functional maturation towards term. Interestingly, we also observe that the thyroid
hormone receptor (THRB) is up-regulated in the CB during the peri-natal period. While this
has not been tested as a modulator of CB function, it has established roles in the maturation
of other organ systems (Chattergoon et al., 2012) and could serve to enhance perinatal

chemoreflexes.

We also sought to understand the factors that contribute to CB dysfunction in pathologies
including neonatal apnoea and sudden infant death syndrome (SIDS). SIDS is a
heterogenous syndrome comprising multiple aetiologies, but most cases remain
unexplained. Genetic association studies have identified likely heritable cardiac and
metabolic causes in approximately 20-30% of SIDS cases (Hertz et al., 2016; Neubauer et
al., 2017) building the case for post-mortem genetic testing. Ventilatory control has been a
focus of SIDS research, with abnormalities of ventilatory patterning (Schechtman et al.,
1996), apnoea (Kahn et al., 1992) and CB morphology observed in SIDS cases (reviewed in
Porzionato et al., 2018). Focussed screening of genome wide exome data from a cohort of
155 SIDS cases (Neubauer et al., 2017) specifically examined 11 genes implicated in central
and peripheral chemoreception. In 3% cases, this identified potential pathogenic variants in
chemoreceptor genes, including KCNJ16 (inward rectifying potassium channel 5.1), KCNMA
(maxi-K channel), OR51E2 (olfactory receptor) and PHOX2B (Neubauer et al., 2022), which


https://doi.org/10.1101/2025.08.21.671502
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.08.21.671502; this version posted August 25, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

could impact peripheral and/or central chemoreception. This yield from such a small gene
panel, including only 5 genes implicated in CB function, suggests that genetic abnormalities
of ventilatory control in SIDS merits further study. Expanding the chemoreceptor gene list to
include those we find to correlate with chemoreceptor maturation could enhance the genetic
analysis of SIDS and further develop insights into SIDS aetiology and ventilatory control.
Interestingly, SIDS-related genes were identified in gene ontology of the S1 (early SCG-
enriched) cluster, which may reflect the broader importance of the autonomic nervous

system in SIDS pathophysiology.

Going forward, we envisage that this dataset will provide a valuable resource for generating
and evaluating hypotheses on carotid body function and development, with respect to
normal physiology and pathology, and to inform the rational design of stem cell differentiation

protocols and cellular models of oxygen chemosensitivity.

Methods

Ethics statement

All procedures were performed under the Home Office Project Licence PC6CEFE5S9 under
the Animals (Scientific Procedures) Act 1986 Amendment Regulations 2012, following
ethical review by the University of Cambridge Animal Welfare and Ethical Review Board
(AWERB).

Post-mortem tissue sampling

Ewes and their fetuses (gestational age day 120 or day 145) were humanely killed by
overdose of sodium pentobarbitone (0.4 ml.kg™ IV Pentoject; Animal Ltd, York, UK),
administered by injection of the maternal jugular vein and the fetus exteriorized by
Caesarean section. The umbilical vessels were cut and fetal dissection commenced after
confirmation of death. Post-natal lambs similarly underwent euthanasia with a lethal
overdose of sodium pentobarbital (200 mi/kg IV Pentoject; Animalcare Ltd., York, UK)
administered by injection of the jugular vein. Adult sheep (age ~10-12 months) were sourced
from an abattoir, where the animals were slaughtered by the standard method and the heads
immediately removed for dissection. Neck dissection and identification of the CB location at
the occipital branch of the carotid artery was performed using previously described
approaches (Appleton & Waites, 1957). The origin of the occipital artery, together with the

carotid sinus nerve, ganglioglomerular nerve and SCG were removed and transferred on ice
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cold PBS to a dissecting microscope, where the CB and SCG were identified and dissected
free of surrounding tissue. These samples were snap frozen in liquid nitrogen for later

processing.

Sample preparation and RNA sequencing

The frozen samples were lysed in RNA lysis buffer (Qiagen) and refined to a fine suspension
using a hand-held motorised homogeniser with a 5 mm probe (Pro-Scientific). RNA
extraction was performed using the RNA Clean & Concentrator-5 kit (Zymo) and tested by
Bioanalyser, with all samples used in the final analysis having RIN values of 6.1-8.0.
Libraries were prepared using the Kapa RNA hyperprep kit with Riboerase (Roche) and
sequenced by NovaSeq with paired end read lengths 100 and 30-50 million reads per

sample.

We did not independently analyse gene expression by sex due to the number of pregnancies
that would be required to match male and female subjects at each time point. In each case
we selected samples from 2 female and one male, with the exception of fetal day 145 which
used two males and one female. 3 biological replicates were used per time point, although at

the time of analysis one sample (fetal day 145 SCG) was excluded.

Code availability
The scripts that were used to analyse the RNA-Seq data are available on GitHub
(https://github.com/YoichiroSugimoto/20250110_Sheep_CB).

RNA-Seq data analysis

From the RNA-Seq data, the transcript abundance was estimated using Salmon (version
1.4.0)(Patro et al., 2017) with the following parameters: --validateMappings, --seqBias, --
gcBias, and --posBias. The reference transcript data of Ovis aries (sheep) genome
assembly: ARS-UI_Ramb_v2.0 (NCBI RefSeq assembly GCF_016772045.1) were used.

For the principal component analysis, the transcript abundances were transformed using the
variant stabilisation transformation function of DESeq?2 (version 1.42.1) (Love et al., 2014) .
The top 500 genes in terms of the variance of the transformed values between samples
were incorporated in the analysis. The DESeq function of DESeg2 was used to calculate the
fold change, the moderated fold change, and statistical significance of the differential gene

expression between the two conditions using the Wald test (Zhu et al., 2018) .
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To define the functional class of sheep genes, orthologous genes were mapped between
sheep and human genes using the g:Orth function of g:Profiler (Kolberg et al., 2023). The
classification of human gene orthologs, which are better annotated, were used in gene
ontology analysis. Further analysis of molecular pathways was performed using the Gene
Ontology consortium GO Enrichment Analysis tool (Ashburner et al., 2000; Thomas et al.,
2022) (version 10.5281/zenodo.15066566, release date 2025-03-16). Identification of genes
encoding transcription factors was performed using the functional annotations on the
PANTHER database (PANTHER19.0). For Fig. 9A, functional class of genes involved in
metabolic pathways was defined by KEGG orthology, as described previously (Sugimoto &
Ratcliffe, 2022) . Volcano plots (Fig. 9B) were plotted using gene lists for Mitochondrial
respiratory chain complexes (HGNC gene group 639), Glycolysis (PANTHER accession
P00024), and the TCA cycle (KEGG M3985). Glucocorticoid receptor target genes were
defined by the Human Gene Set of GRE_C from the Molecular Signature Database
(Subramanian et al., 2005) .

Hierarchical clustering of genes was performed for genes that showed significant (FDR < 0.1
and absolute value of moderated log2 fold change > 1) differential expression between CB
and SCG samples at any time point. The heatmap illustrates the Z-score of

MRNA abundance (normalized as transcripts per million) of each gene relative to all
replicates, tissues and time points. For clustering, the distance between genes was
calculated using Spearman's rank correlation and the Wald criterion was used as the
clustering method. The number of gene cluster groups was determined by minimizing the
Kelley-Gardner-Sutcliffe penalty calculated using the maptree package. A csv file of gene
expression levels (tpm) and cluster ID for each gene (where applicable) is available here
10.25418/crick.29958284.

Immunohistochemistry
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Carotid bodies and super cervical sympathetic ganglia were fixed overnight in 10% neutral
buffered formalin then washed in 70% ethanol prior to processing for paraffin embedding.
Paraffin blocks were cut in 4 uM sections, heated to 60° for 1h, pre-treated with hydrogen
peroxide block, then boiled in target retrieval solution (citrate, pH 6, Dako/Agilent). Sections
were blocked with horse serum then incubated with primary antibody overnight at 4°C (TH
(NB300-109, Novus Biologicals), Chromogranin A (SP-1, Immunostar), DGKH (13873-1-AP,
Proteintech/ThermoFisher). The sections were washed, then incubated with species-
appropriate HRP-coupled secondary IgG polymer (Vector Immpress MP-7401/7402)
prior to signal detection with DAB subtrate (Vector laboratories) and mounting in DPX
(Sigma-Aldrich). For Masson Trichrome staining, sections were fixed in Bouin’s
solution, washed in water, then sequentially stained with Weigert's iron hematoxylin, Biebrich
scarlet-acid fuchsin, phosphomolybdic/phosphotungstic acid, and aniline blue. Stained
sections were imaged using the 20x/0.8 UPLXAPO objective on an Olympus Slideview
VS200 in a standard configuration, and the images analysed and processed using

OMERO (online microscopy environment (Allan et al., 2012)).
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Figure 1. Experimental outline and identification of carotid body and superior cervical ganglion.

(A) Timeline of developmental stages sampled. (B) Immunostaining for chromogranin A (CgA) on sheep
CB from each developmental stage shown in (A). (C) Immunostaining for tyrosine hydroxylase (TH) and
chromogranin A (CgA) on carotid body (CB) and super cervical ganglion (SCG) tissues from adult sheep.

Scale bar=200 uM (upper panels) and 20 uM (lower panels).
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Figure 2. Overlap between the most up-regulated genes in mouse and sheep reveals a conserved

CB gene expression signature

(A) Overlap between lists of the top-ranked genes up-regulated in the mouse or sheep CB: a-d (pink box)
compiled list of the most up-regulated genes in mouse CB, relative to various control tissues (see text);
b,d,e,g (blue box) the top 160 most up-regulated genes in the adult sheep CB versus SCG; c,d,e,f (yellow
box) the top 160 most upregulated genes in the fetal d120 sheep CB versus SCG. (b-d) shows genes

common to the mouse list and the fetal and/or adult sheep list. (B) Venn diagram showing the number of
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genes in the combined mouse list P8R WSS 8igrfit 4t e aisBal 46885 the adult and/or fetal sheep
CB (total n=96). These genes are highlighted in bold in (A).
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Figure 3. Differential gene expression in CB and SCG from the adult sheep and d120 fetus.
Volcano plots of the differential expression of genes in the CB versus SCG in fetal day 120 (A) and adult

sheep (B). In A and B, the lower panel shows the highlighted area (log fold change in expression >0 i.e. up-
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most up-regulated genes in both sheep and mouse CB gene expression datasets, while genes annotated
in blue are among the most highly up-regulated genes in the respective sheep CB but are not listed in the

top-ranked CB-enriched genes in mouse.
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Figure 4. Changes in tissue-specific CB gene expression over developmental time.
(A-a) Principal component analysis of gene expression profiles of each sample, including CB (triangle)
and SCG (circles) from fetal day 120 (blue), fetal day 145 (pink), post-natal day 15 (green), and adult

(vellow). (A-b) Heat map illustrating the hierarchical clustering analysis on all genes showing significant
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differential expression at any time P8IRPHYEEGRGCTRE SRS BI08/§8238 indicates the z score for
relative expression of a given gene scaled across each tissue and developmental time point.
(B) Expression of tissue specific markers (indicated by gene names) for SCG (blue) and CB (orange),
normalized to expression levels in the fetal day 120 CB (a) or SCG (b). Note that, as expression in the
reference tissue changes over time, the mean may not equal to 1. (C) Expression of genes implicated in
oxygen chemosensing (a- subunits and regulators of complex IV; b- TASK1 (KCNK3) and TASK3 (KCNK?9)
potassium channels; c-HIF-aisoforms) in CB and SCG samples, normalized to the fetal day 120 SCG. (d-
f) Mean expression of these genes in CB samples at each time point, normalized to fetal d120 CB. Bar

charts show mean expression (+/- SEM) with dots showing values for individual samples. Graphs

depicting time courses show mean expression of the specified gene (+/-SEM) at each time point.
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Figure 5. Genes encoding opioid and natriuretic peptide receptors exhibit CB-enriched expression
that correlates with CB maturation.

Expression of opioid receptors (A) and natriuretic peptide receptors (B), showing absolute expression
levels (tpm) in SCG (blue) and CB (yellow) samples (A-a, B-a) and mean expression in CB samples at each
time point (A-b, B-b), normalized to fetal d120 CB. Bar charts show mean expression (+/- SEM) with dots

showing values for individual samples. Graphs depicting time courses show mean expression of the

specified gene (+/-SEM) at each time point.
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Figure 6. Biological pathways enriched in tissue-specific developmental clusters of CB

gene expression

The most significantly enriched biological pathways in each of the four main gene expression

clusters that are predominantly up-regulated in the CB (C1, C3) or SCG (S1, S3) at fetal (C1, S1),

or post-natal stages (C3, S3). Pathway analysis by KEGG, Reactome (REAC), or Wikipathways

(WP), with the listed pathways ordered by significance and selected to reduce redundant or

related terms.
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Figure 7. Expression of genes regulating diacylglycerol signalling during CB maturation.

(A)(a-b) Relative expression of selected G proteins and regulators of G protein signalling: (a) mean
expression in SCG (blue) and CB (yellow) samples normalized to fetal d120 SCG; (b) mean expression in
CB samples at each time point normalized to CB fetal d120. (c) Relative expression of phospholipase C
isoforms, showing mean expression each gene in SCG (blue) and CB (yellow) samples normalized to fetal
d120 SCG. (B) Relative expression of diacylglycerol kinase isoforms, showing (a) mean expression in SCG
(blue) and CB (yellow) samples normalized to fetal d120 SCG and (b) mean expression in CB samples at

each time point normalized to fetal d120 CB. (c) Immunostaining for DGKH in adult SCG and CB (scale
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bar= 30 um). (C) Relative expressi@PSRIR UM SGHE S &8 PHESHIashkeERSEforms, showing (a) mean
expression in SCG (blue) and CB (yellow) samples normalized to fetal d120 SCG and (b) mean expression
in CB samples at each time point normalized to fetal d120 CB. Bar charts show mean expression (+/-
SEM) with dots indicating values for individual samples. Graphs depicting time courses show mean
expression of the specified gene (+/-SEM) at each time point. (D) Schematic diagram of diacylglyerol
metabolism including: membrane phospholipid metabolism regulated by G protein couple receptors
(GPCR) or receptor tyrosine kinases (RTK); fatty acid metabolism via triacylglycerol (TAG) or
monoacylglycerol (MAG); the glycerol-3-phosphate (G-3-P) pathway; and phosphatidyl choline (PC)
metabolism. Enzymes/receptors in each pathway are indicated by the gene names in boxes highlighted by

tissue/time gene expression cluster (pink=CB-enriched, red border = cluster C3, dark blue=SCG-

enriched, light blue=no cluster). Diagram created using Biorender.
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Figure 8. Down-regulation of genes encoding bioenergetic pathways in the CB versus SCG

(A) Gene set enrichment analysis for metabolic pathways in CB (red) vs SCG (blue) at each time point,
expression z score for each developmental stage (+/-interquartile range (boxes) and full range). (B)
Volcano plots of differential expression in adult CB versus SCG for glycolysis (a), tricarboxylic acid cycle

(b) and oxidative phosphorylation genes (c). The annotated genes are upregulated in CB versus SCG.
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Figure 9. Extracellular matrix gene expression in the CB versus SCG

(A) Developmental gene expression cluster of extracellular matrix components (n=87 genes), including
collagens, elastin, laminins, tenascin, fibronectin, and the proteoglycans. Genes that did not meet the
criteria for cluster analysis are shown in grey (no cluster). Note, most of 87 genes map to cluster C1, but
none map to cluster S3, hence this is not shown. (B) Expression of extracellular matrix genes (collagen A1
(a) and elastin (b)) and enzymes for glycosaminoglycan biosynthesis (Beta-1,3-Glucuronyltransferase 2 (c)
and Heparan Sulfate 6-O-Sulfotransferase 2 (d) showing mean expression in CB (orange) or SCG samples
(blue) at each time point (mean expression (tpm) +/- SEM). (C) Masson Trichrome staining of CB and SCG

sections from fetal day 120 and adult sheep. Collagen is stained blue, scale baris 100 uM.
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Figure 10. Transcription factors with distinct temporal and tissue-specific expression patterns
(A) Transcription factors in each gene expression cluster. For each cluster, the top 21 most highly

expressed (where n>21) are listed in order of average expression in the fetal d120 CB (C1), adult CB (C3),
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all CB samples (C2), fetal d120 SCREAPI SBAE 8ECHS S/ WPSINSERE IR (S2) (in each case aiming to
list in order of maximal expression). Also shown are individual heat maps for a selection of transcription
factors illustrating interesting patterns of developmental expression. The graded colour scale indicates
relative expression of a given gene scaled across each tissue and developmental time point. Each square
represents mean expression in that tissue and time point. The arrows marked “time” indicate the
progression from fetal d120, to fetal d145, post-natal d15, and adult. (B) Immunostaining for INSM1 in CB
and SCG from fetal d120 and adult sheep. Scale bar = 50 um
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Figure 11. Glucocorticoid receptor target gene expression

Gene set enrichment analysis for glucocorticoid receptor/ response element target genes in CB vs SCG

samples at each time point.
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