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A Calculating moments of the first passage time

distribution

An analytic solution for the moments of the first passage time distribution with Np=1

in the form of a sum of matrix products has been worked out in Falcke and Friedhoff [1].

We show here that the case Np > 1 can be also transformed into a system of first order

difference equations for which this solution holds (Fig 2, main text).

We start with the Master Equation for the state probabilities Pk

dP0(t)

dt
= δP1(t)−Ψ0,1(t)P0(t), (A.1)

dPk(t)

dt
= Ψk−1,k(t)Pk−1(t) + (k + 1)δPk+1(t)− (Ψk,k+1(t) + kδ)Pk(t), (A.2)

with k = 1, . . . , Nt − 1. The Ψk,k+1 are polynomials in e−λt

Ψk,k+1 =

Np∑
j=0

ψ
(j)
k,k+1e

−jλt. (A.3)

The number of states to be included in the Master Equation depends on the specific

problem considered (first passage, splitting probability). We denote this number by M .
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To reach a matrix notation we define coefficient matrices

D
(0)
k+1,k = ψ

(0)
k−1,k, (A.4)

D
(0)
k,k+1 = kδ, (A.5)

D
(0)
k,k = −

(
ψ
(0)
k−1,k + (k − 1)δ

)
, (A.6)

D
(j)
k+1,k = −ψ(j)

k−1,k, (A.7)

D
(j)
k,k = ψ

(j)
k−1,k, (A.8)

and all other matrix elements vanish. Note that the index of the matrix elements starts

with 1, and the index of the transition probabilities with 0.

The initial state is defines the vector r with ris = 1, rk = 0, k ̸= is. The Laplace

transform of the Master equation allows for a comfortable calculation of moments of the

first-passage times. The Laplace transform of Eq (A.1) is the system of linear difference

equations [1]

sP̃k(s)− rk =

M∑
m=1

D
(0)
k,mP̃m(s) +

Np∑
j=1

M∑
m=1

D
(j)
k,mP̃(j−1)∗M+m(s+ λ). (A.9)

P̃ (s)j∗M+k(s) = P̃ (s)(j−1)∗M+k(s+ λ), j = 1, . . . , Np − 1. (A.10)

We define the matrices

E(s) =

 1s−D(0) 0

0 1

 (A.11)

D =

 D(1) . . . D(Np)

1 0

 (A.12)

B(s) = E(s)−1D (A.13)

with dimension MNp ×MNp, and obtain [1]

P̃ (s) = E−1r +

∞∑
k=1

k−1∏
j=0

B(s+ jλ)E(s+ kλ)−1r (A.14)

as the solution of Eqs (A.9), (A.10). Note that if we also allowed the left-going
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transitions in the state chain (Fig 2, main text) to be polynomials in e−λt, only the

definitions of E and D would change. However, the solution Eq A.14 would still apply.

The same applies to more general state schemes than a linear one.

If we consider the first passage from state 0 to Nt, the vector r is r0 = 1,

rk = 0, k ̸= 0, and we set PNt
(t) = 0 or equivalently ΨNt,Nt−1 = 0. Nt is then an

absorbing state, i.e., the transition probability out of this state is 0. The first passage

time (tf ) distribution F0,Nt
(tf ) is given by the probability flux out of the state range

from 0 to Nt − 1:

F0,Nt(tf ) = − d

dt

Nt−1∑
k=0

Pk(t)

∣∣∣∣∣
t=tf

= ΨNt−1,NtPNt−1. (A.15)

The Laplace transform of the first-passage-time distribution is [1]

F̃0,Nt(s) =

Np∑
j=0

ψ
(j)
Nt−1,Nt

P̃Nt−1(s+ jλ), (A.16)

The moments of the first-passage-time distribution are given by [2]

⟨t i
f ⟩ = (−1)i

∂i

∂si
F̃0,Nt

(s)

∣∣∣∣
s=0

. (A.17)

We calculate the moments of the ISI distribution as the moments of the FPT

distribution from state 0 to state ksp. The equations apply for this calculation with Nt

replaced by ksp. We use Eqs 4 and 13 applying to the recovery phase to determine

ψ
(j)
k,k+1 for ISI calculations.

The distribution PA of the amplitude A is calculated from splitting probabilities.

The initial state is is the minimum number of open clusters to be considered a spike ksp.

State 0 is an absorbing state. Transition probabilities out of absorbing states are 0, that

is, P0(t) = 0 or equivalently ψ
(j)
0,1 = 0, j = 0, . . . Np. We consider all states a,

is < a ≤ Nt in sequential calculations also as absorbing states, that is we set Pa(t) = 0

or equivalently Ψa,a−1 = 0. The matrices E(s) and D for this splitting probability

problem also obey Eqs A.4-A.8, A.11, A.12 with the transition probabilities out of the

absorbing state 0. We use Eqs 5 and 14 applying during the spike to determine the

ψ
(j)
k,k+1 for amplitude calculations. The solution of the splitting probability problem is
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then given by Eq A.14. The Laplace transformation of the distribution of the time till

absorption in either 0 or a is

F̃is,0,a(s) = δP̃1(s) +

Np∑
j=0

ψ
(j)
a−1,aP̃a−1(s+ jλ). (A.18)

The probability to be absorbed by state a is

F̃is,a(0) =

Np∑
j=0

ψ
(j)
a−1,aP̃a−1(jλ), is < a ≤ Nt. (A.19)

and by state 0 is

F̃is,0(0) = δP̃1(0). (A.20)

F̃is,a(0), which is also the probability that the amplitude A is larger than a− 1. The

probability PA that the amplitude is equal to A is

PA = F̃is,A(0)− F̃is,A+1(0), F̃is,Nt+1(0) ≡ 0. (A.21)

B Numerical methods

B.1 Evaluation of Eq A.14

If N is large and the ratio between the fastest state transition rate and the relaxation

rate λ is large, high precision of the numerical calculations is required for the use of

Eq (A.14). A priori known values like F̃0,Nt
(s = 0) = 1 can be used to monitor the

convergence of the calculations. The matrix products become very large at intermediate

values of jλ during the summation in Eq (A.14) and their sign alternates such that two

consecutive summands nearly cancel. Intermediate summands are of order larger than

1017 and thus we face a loss of significant figures even with the numerical floating-point

number format long double. We used Arb, a C numerical library for arbitrary-precision

interval arithmetic [3], to circumvent this problem. It allows for arbitrary precision in

calculations with Eq (A.14). The software is available in the supplemental material of

Friedhoff et al. [4]. Computational speed is the only limitation with this library and has
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determined the parameter range for which we established analytical results. We were

able to go to a time-scale separation of ≈ 10−6 using this library. We calculated

moments with a relative precision of 4 · 10−4. Arbitrary precision computations with

Arb take between 1 s and 10 days, heavily dependent on the matrix dimensions set by

the index of the absorbing state. See Falcke and Friedhoff [1] for more detail.

B.2 Simulation method

We also simulated the state chain stochastically using a Gillespie algorithm in C++ to

verify our analytical results. We used the algorithm for time-dependent propensities by

Alfonsi et al. [5]. Typically 105 trajectories were simulated to determine distributions

for one parameter set.

C Comments on the CICR-factor rn

The large range of Hill coefficients measured in experiments (cited in the main text)

does not allow a definite statement on the number of activating Ca2+-binding sites that

need to be occupied to reach a channel state with high open probability. Recent

research has shown that IP3R tetramere has (at least) 4 activating Ca2+binding sites

but also describes this stoichiometric question as not resolved yet [6]. Given the

situation, we consider it to be the most reasonable to start from simple mechanistic

ideas when deriving rate expressions for Ca2+ -dependent activation of IP3R. We

assume that activating Ca2+-binding is faster than inhibitory Ca2+-binding and that

the activating binding site has a higher affinity than the inhibitory one. Therefore,

inhibition can be neglected at low [Ca2+]. We also assume identical Ca2+-binding sites.

Note that we do not require cooperativity.

We call the probability that i Ca2+-binding sites are occupied Pb(i) as in the main
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text. Its Master Equation is

dPb(0)

dt
= k−Pb(1)− 4k̄+Pb(0)

dPb(1)

dt
= 4k̄+Pb(0) + 2k−Pb(2)− (k− + 3k̄+)Pb(1)

dPb(2)

dt
= 3k̄+Pb(1) + 3k−Pb(3)− (2k− + 2k̄+)Pb(2)

dPb(3)

dt
= 2k̄+Pb(2) + 4k−Pb(4)− (3k− + k̄+)Pb(3)

dPb(4)

dt
= k̄+Pb(3)− 4k−Pb(4)

The stationary states P 0
b (i) are

M(c) = c4 + 4Kpc
3 + 6K2

pc
2 + 4K3

pc+K4
p

P 0
b (0) =

K4
p

M(c)

P 0
b (1) =

4K3
pc

M(c)

P 0
b (2) =

6Kpc
2

M(c)

P 0
b (3) =

4Kpc
3

M(c)
(C.1)

P 0
b (4) =

c4

M(c)
(C.2)

Kp has been defined in the context of Eq. 6 in the main text. If IP3R needs to bind at

least 3 Ca2+ ions to reach a channel state with high open probability, the stationary

open probability is proportional to P 0
b (3) + P 0

b (4).

The relation of the open probability to [Ca2+] measured in experiments has often

been fit to Hill equations cnh/(Knh

h + cnh) in the range of small c. We illustrate in

Fig. C.1 that such fits may result in nh values smaller than the number of binding sites

occupied at high open probability.

We provide some intermediate steps of the calculation that lead to the expression for
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Fig C.1. Fitting P 0
b (3) + P 0

b (4) (see Eqs C.1, C.2) by a Hill function

xnh/
((

Kh

Kp

)nh

+ xnh

)
, with x = c

Kp
. We obtain a good fit by nh=1.6885 and

Kh = 1.61318Kp. The fit has been done with the fitting tool of the plotting software
xmgrace.

r3. The Laplace transform with the Laplace variable s of the first passage problem is

(s+ 4k̄+)P̃b(0)− k−P̃b(1) = 1

(s+ k− + 3k̄+)P̃b(1)− 4k̄+P̃b(0)− 2k−P̃b(2) = 0

(s+ 2(k− + k̄+))P̃b(2)− 3k̄+P̃b(1) = 0.

Solving for P̃b(2) results in

2k̄+P̃b(2) =
24k̄+3

(s+ 4k̄+)
[
(s+ k− + 3k̄+)(s+ 2(k− + k̄+))− 6k−k̄+

]
− 4k−k̄+(s+ 2(k− + k̄+))

.

The rate r3 is then

r3 = −

[
2k̄+

dP̃b(2)

ds

∣∣∣∣∣
s=0

]−1

. (C.3)

D Comments on determining stationary ISI

sequences

An important aspect to take into account for spike analysis, evident by looking at

traces, is how, during prolonged constant stimulation, the spiking frequency of cells is

not always stable: typically, a higher spike frequency is observed at the beginning of the

recording, followed by a reduced rate over time - it has to be considered that over hours,

prolonged exposure to stimulant can induce subtype-specific effects on the regulation of
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Fig D.1. (A) Panel A of Fig. 2 replotted. (B) ISI values (◦) of the sequences of ISI
selected in A. (C) The ISI sequences after removing a linear trend to reduce
contributions to the standard deviation not caused by the stochastic process. In (B)
and (C), blue corresponds to sequence 1, red to sequence 2, full line is average ISI,
dashed lines are average ± 2·SD.
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muscarinic receptors [7, 8], causing changes in average ISIs. As previously described [9],

our analysis of moments of ISI sequences is meaningful only for stationary sequences;

therefore, when a spike train clearly displays more than one frequency, we do not

analyse it in its entirety, but select stationary sequences.

The identification of stationary ISI sequences uses their averages and standard

deviations (SDs) to distinguish them. It was guided by the criteria:

1. The average ISI of a given stationary sequence must be clearly different from

neighbouring sequences. We required that it is outside the interval average ISI ±

2·SD of neighboring ISI sequences (see Fig. D.1),

2. ISI sequences should be as long as possible.

However, these criteria can narrow the range of the boundary location between

sequences down to a few ISIs, but cannot identify the exact location of the sequence

boundary down to a single ISI. The first criterion involves the SD converging like N
− 1

2

I

with the number of ISIs in a sequence N
− 1

2

I . Identification of a specific ISI (to be

added) as the last or first one in a sequence requires a precision of N1
I . Hence, the

required precision increases faster than the SD converges and we cannot expect a stable

algorithm from the criterion.

Therefore, we selected the final location of the boundary by visual inspection. In

most cases, we considered the range of ISI values, where the boundary could be placed

according to criterion 1 and chose the middle. Some cells required time to adjust to a

new rate; as a consequence, the distinction between intervals was ambiguous over

several ISIs, and we omitted some of them to account for this transitory state. In some

other cases, spikes were included in a spike frequency group even when alternatives

could have been justified; here, we considered the surrounding ISI values and placed the

interval boundary at the point where the ISIs began to cross the calculated threshold.
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