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Abstract
Mathematical theory that accounts for the stochastic character of spike sequences of
IP3-induced Ca2+ signalling calculates the probability distributions of the features of the
[Ca2+]i time course, their moments and correlations. Including slow feedback from [Ca2+]i
to components of the pathway poses a challenge to stochastic modelling. Here, we
present a stochastic model that takes this feedback into account, allows for a non-linear
dependency of the open probability of the Inositol 1,4,5-trisphosphate receptor channel
(IP3R ) on the feedback variable and the inclusion of more than one feedback with differ-
ent relaxation time scales. We use this novel modelling approach to describe the effect of
ER depletion by non-linear rate expressions for Ca2+-induced Ca2+ release (CICR) and
the measured non-linear IP3-dependency of the open probability as part of the dynamic
feedback. Our theory can calculate spike amplitude distributions, correlation coefficients
(Cc) of interspike intervals (ISIs) and amplitudes, simulate ISI distributions and calculate
their moments. We apply it to experiments with HEK293 cells. We find very good agree-
ment between theoretical ISI distributions and their moments with experimental results.
Many measured Ccs show positive values in accordance with the ideas formulated by
our theory. Surprisingly, most ISI-amplitude correlations are weak despite the decay of
negative feedback during the ISI, which affects spike probability. We even find negative
values of Ccs, which indicate feedback that decreases the open probability of IP3R with
increasing ISI. The components of the pathway causing this anticorrelation have not yet
been identified. Our data suggest that they involve components that are subject to cell
variability.

Author summary
Ca2+ is a versatile second messenger. Ca2+ signals show stochastic spike timing and
large cell variability despite their signal transmission function. Spike train properties,
which are not subject to cell variability and thus define the system, are related to noise.
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Hence, the first step in theoretical comprehension must be a stochastic theory. This study
reports on progress in developing that theory and on experimental results. The applica-
tion to Ca2+ signals in HEK293 cells meets basic expectations and, in part, explains the
surprising results on ISI-amplitude correlations. The measured anticorrelation requires
us to expand our ideas on feedback during spiking and the corresponding stochastic
theory. Once we understand the role of fluctuations, we may also derive deterministic
approximations for simulating averages.

Introduction
IP3-induced Ca2+ signalling transmits information that arrives in the form of an agonist con-
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centration at the cell plasma membrane to intracellular targets through changes in cytosolic
[Ca2+]i [6–11]. We introduce the pathway and some terms and definitions in Fig 1. Intra-
cellular Ca2+ signals may be local/subcellular (puffs), sequences of [Ca2+]i spikes (see Fig 1),
or a long-lasting increase in [Ca2+]i (overstimulation) [8,12]. The variability of the Ca2+ sig-
nals and of the average interspike interval (Tav) among cells stimulated with the same con-
centration of agonist is large [9,13]. Furthermore, the interpuff interval (IPI) and the inter-
spike interval (ISI) are random [9,13,14]. This randomness and variability in the response
to an identical stimulation (identical initial signal) in an information-transmitting system
raises several basic questions, most notably how such a system can transmit information at all.

Fig 1. (A) Inositol 1,4,5-trisphosphate (IP3) pathway of Ca2+ signaling. Binding of an agonist to one of a large family of G-protein coupled receptors (GPCR) acti-
vates phospholipase C (PLC), which produces IP3 from phosphatidylinositol-4,5-bisphosphate (PIP2). IP3 sensitises IP3 receptor channels (IP3R) in the endoplasmic
reticulum (ER) membrane to binding of Ca2+, such that Ca2+ released from the ER through open channels increases the open probability of closed channels by Ca2+-
induced Ca2+-release (CICR). PLC activates additional feedback to the IP3R open probability via diacylglycerol (DAG). (B) The interspike interval (ISI) comprises the
spike duration, the refractory period, and the stochastic part tsto. The sum of spike duration and refractory period is Tmin. It is a parameter of the theory and constant
throughout a spike train. The sum of Tmin and a realisation of tsto (Tmin + tsto) is a realisation of an ISI. The average ISI is denoted Tav and the average of tsto is Tsto.
Tav=Tmin+Tsto holds. Tav and the standard deviation (SD) of ISI 𝜎 are linearly related with slope 𝛼. (C) IP3-induced Ca2+ signalling is hierarchical with channels (com-
prising a tetramer of IP3R proteins) on the lowest structural level, channel clusters as intermediate structure and cluster arrays on the cell level. Each structural level
has its typical time scale and signal (see [1–5] for local currents and concentrations). The state of the IP3R is determined by IP3 and Ca2+ binding to the IP3R tetramer.
Channel clusters are the elementary units of cellular dynamics. Their release events are Ca2+ puffs generated by CICR. CICR entails excitability. Clusters cooperate by
CICR in generating cellular Ca2+ spikes as global events. This study considers the dynamics of spike generation by clusters under global feedback that acts on all clusters.

https://doi.org/10.1371/journal.pcbi.1013322.g001
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This question has found a partial answer: The average frequency of a spike sequence is the
inverse of the average ISI. Agonist concentration steps induce changes in the average of the
stochastic part of ISI in all cells by the same factor [9]. This can be likened to a melody which
is a sequence of sound frequency ratios. Since a sequence of agonist concentration steps elicits
the same sequence of frequency ratios in all cells, all cells play the same melody. However, due
to the large variability of the average ISI between cells, each cell plays at its own pitch [9]. We
still do not know how the cell-to-cell variability of the pitch can be reconciled with the signal
transmission function of the system.

Concerning biophysical modelling, the conceptual questions to be addressed are: 1) what
should be modelled given the lack of a unique response, 2) how can models be parameterised
given variability and randomness, 3) which general rules can models reveal despite variability
and randomness. The cumulant relation between the standard deviation (SD) of ISI and the
average ISI introduced one general rule, which states that its slope 𝛼 is conserved within cell
variability and is specific to a cell type and agonist [9,13,15–17]. The concentration-response
relationship of the average ISI (mentioned above) revealed that the average ISI depends expo-
nentially on the concentration of the agonist. The agonist sensitivity 𝛾 is the same for all indi-
vidual cells stimulated with the same agonist. Cell variability affects only the exponential pref-
actor [9]. Both conserved properties relate to stochastic aspects of Ca2+ spiking. Although
obvious for 𝛼, it also applies to 𝛾, as stimulation controls the stochastic part of the ISI [9]. Sev-
eral theoretical studies on stochastic aspects of Ca2+ signalling have been published to address
the questions related to this system [17–31]. Here, we report progress in developing a theory
that focuses on the calculation of ISI and amplitude statistics.

The [Ca2+]i signal can be induced either by Ca2+ entry from the extracellular space
through plasma membrane channels, or by Ca2+ release from intracellular storage compart-
ments, primarily located in the endoplasmic reticulum (ER). In the following, we will focus
on IP3-induced Ca2+ release from ER, which is the predominant Ca2+ release mechanism in
many cell types (see Fig 1) [32].

The released Ca2+ is removed from the cytosol primarily by sequestration into the ER by
sarco-endoplasmic reticulum Ca2+ ATPases (SERCAs) and to a lesser extent by extrusion by
plasma membrane Ca2+ ATPases out of the cell.

IP3Rs are spatially organised into clusters with a variable number of channels from 1 to
about 15 [33–37]. By including single channels in our cluster definition, we anticipate that
the formulated theory will also be applicable to channel populations that do not cluster, as
suggested by Lock et al. [37]. The clusters are scattered on the ER membrane with distances
reported of 1 to 7 µm [38–42]. CICR and Ca2+ diffusion then couple the state dynamics of the
channels and clusters. The coupling between channels in a cluster is much stronger than the
coupling between adjacent clusters [1].

The structural hierarchy of IP3R arrangement from single channels to clusters and cel-
lular cluster arrays is also reflected by the dynamic responses of the intracellular Ca2+ con-
centration, as revealed by fluorescence microscopy and simulations [20,38,43–45]. Random
openings of single IP3Rs (blips) may trigger collective openings of IP3Rs within a cluster
(puffs), while Ca2+ diffusing from a puff site can then activate neighbouring clusters, eventu-
ally leading to a global, i.e., cell-wide, Ca2+ spike [20,42,44–46]. Recent studies suggest that
clusters generating puffs are preferentially located close to the plasma membrane and single
IP3Rs dominate in the bulk of cells [37,47–49]. The timing of blips, puffs and spikes is random
[9,13–17,22,25,26,45,50–52].

The typical spiking time scale is the average Tav of ISIs. We learn about processes that gen-
erate this time scale by considering the different structural levels. The local dynamics of Ca2+

signalling is the dynamics of isolated clusters. Their average interpuff intervals are 1-2 orders
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of magnitude shorter than Tav [53]. Interestingly, long sequences of puffs from isolated sin-
gle puff sites do not exhibit slow modulations of the interpuff interval or puff amplitude on the
Tav time scale [53]. However, interacting puff sites can form spikes; thus, the Tav time scale is
an emerging property of cell-level dynamics. Once global, these dynamics elicit the negative
feedback that terminates spikes. The balance between [IP3] and the recovery from the nega-
tive feedback which terminates spikes determines the length of the stochastic part tsto of ISI.
Upon maximal [IP3], a global elevation of [Ca2+]i is induced that does not oscillate until the
system overcomes its refractoriness.

Stimulation of cells by agonist binding to plasma membrane G protein-coupled recep-
tors (GPCRs) (see Fig 1) activates pathways beyond IP3 production with receptor-specific
feedback to IP3 levels and Ca2+ release [10,32,54–58]. These pathways also affect the nega-
tive feedback mechanisms that terminate release spikes. Recovery from this global negative
feedback causes the slow increase in open probability during tsto. It may also cause an abso-
lute refractory period immediately after the spike preceding tsto (see Fig 1B) [9]. The negative
feedback that determines the time scale of ISIs is different from the feedback that contributes
to interpuff intervals (IPIs) and requires global release events.

In our experimental system, binding of carbachol (CCh) to muscarinic GPCRs leads to
their activation and stimulation of downstream pathways involving PLC𝛽 isoforms and
Protein Kinase C (PKC) [59,60]. PLC catalyses the hydrolysis of phosphatidylinositol 4,5-
bisphosphate (PIP2) into IP3 and diacylglycerol (DAG) (Fig 1) [59,60]. Several studies report
that PKC exerts negative feedback to IP3-induced Ca2+ release [61–64]. PKC activation
requires binding of Ca2+ and DAG [64]: IP3 produced by PLC starts Ca2+ release in the
cytosol, facilitating PKC translocation to the plasma membrane, where it can interact with
DAG [64]. PKC phosphorylates and inhibits PLC𝛽, thereby reducing IP3 production and
exerting its negative feedback on Ca2+ release [59,64]. Corrêa-Velloso et al. report an increase
in average ISI upon acute inhibition of PKC with ADP-stimulated hepatocytes, while observ-
ing no effect of PKC inhibition on average ISI in UTP-stimulated hepatocytes [65]. The
authors also describe more complex PKC-mediated feedback affecting spike width.

Our theory exploits the hierarchical structure of Ca2+ signalling from single IP3Rs to clus-
ters and cluster arrays at the cell level. We perceive spike generation as beginning with the
opening of a first cluster. We define a cluster as open, if 1 or more of its channels are open.
That first opening sequentially recruits more clusters by CICR until almost all available chan-
nel clusters are open, forming a global spike. This stochastic process progresses while the cell
recovers from the negative feedback that terminated the previous spike. It can be mapped to
a random walk with time-dependent transition probabilities on a linear state scheme indexed
by the number of open clusters. The ISI distribution is the first passage time distribution from
all clusters closed to almost all clusters open shifted by Tmin. The moments of this distribu-
tion can be determined analytically from the solution of a system of difference equations in
Laplace space [66]. A proof-of-principle study demonstrated that this theoretical approach is
capable of reproducing the basic general properties of Ca2+ spiking [67]. However, the theory
was limited to the linear dependence of the transition probabilities on the inhibitory variable I
that mediates the termination of the spikes by negative feedback.

We generalise the theory to non-linear dependencies on I in this study. This allows for
much more realistic rate expressions and offers rules on how to turn biological ideas into
stochastic theory. We illustrate this with a newly derived expression for the contribution of
CICR to the transition rates and by implementing the dependence of the single-cluster puff
rate on [IP3] measured by Dickinson et al. [35] into our theory. We introduce the calcula-
tion of spike amplitude distributions and the joint probability of ISI and spike amplitude.
We parameterise our theory with data from HEK293 cells on the SD-Tav relation, amplitude
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variability, and ISI-amplitude correlation. Powell et al. suggested that ISIs of HEK293 cells
obey a Γ-distribution [14]. We show that a Γ-distribution very well approximates our theoreti-
cal results.

Results
Mathematical model
Global dynamics of intracellular [Ca2+]i arise from the collective behaviour of individual
channels, spatially arranged in clusters, that cooperate via CICR to generate spikes, as shown
in the experimental records in Fig 2.

Our stochastic model tracks the state of the cluster array over time, describing its state
by the number of open clusters (see Fig 3). The probability that the cluster array has k open
clusters is denoted by Pk. The dynamics of these state probabilities are given by the Master
Equation

dPk
dt
=Ψk–1,kPk–1 + (k + 1)𝛿Pk+1 – (Ψk,k+1 + k𝛿)Pk, (1)

with k = 0,… ,Nt, Ψ–1,0 =ΨNt ,Nt+1 = 0 and PNt+1 = 0. Open clusters close with rate 𝛿. Clus-
ters open with the rate Ψk,k+1 (Fig 3), which depends on [IP3] ip and [Ca2+] c. [IP3] is part of

Fig 2. Example recordings of [Ca2+]i spike trains of HEK293 cells, obtained as described in Sect Materials and meth-
ods. Panels A-C are spike trains of three different cells from the same experiment, illustrating cell variability. Panel D
displays a cell spike train from a separate experiment with the same conditions as in A-C. All cells were stimulated with
15 µM carbachol (CCh) starting at 900 s. The onset of stimulation triggered an immediate [Ca2+]i spike, the characteris-
tics of which may depend on the initial Ca2+ store state. Colored segments exhibit approximately stationary spiking (see
text and Sect D in the S1 Text) and were analysed individually. Tav value for A, segment 2 is 111.5 s; B, segment 1 is 54.5 s
and segment 3 is 187.5 s; Panel D, segment 1 is 76.2 s and segment 2 is 134.2 s. See also Table 1 for information on other
segments.

https://doi.org/10.1371/journal.pcbi.1013322.g002
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Fig 3. Schematic of cluster array dynamics. (Top) Open clusters are visualised as small orange spheres. A spike occurs when (almost) all Nt clusters are open. There are
Npath paths of cluster openings and closing from 0 to Nt open clusters. (Bottom) Averaging over all paths leads to a state scheme indexed by the number of open clusters.
See text for more explanations.

https://doi.org/10.1371/journal.pcbi.1013322.g003

dynamic feedback and varies with time t. The same applies to [Ca2+] which additionally is
affected by the number of open clusters k:

Ψk,k+1 (ip, c, t) = g (ip(t)) ⋅ (Nt – k) ⋅ rn(c(k, t)). (2)

Nt is the total number of clusters in the cell. The factor g (ip) describes the dependency of
the single cluster puff rate on [IP3]. Nt – k is the number of closed clusters, and rn(c) is the rate
factor resulting from CICR. The subscript n denotes the number of Ca2+ ions required to bind
to the IP3R to be in a state with high open probability.

The time dependence of Ψk,k+1 arises from the recovery of the cell from the negative feed-
back that terminated the previous spike with rate 𝜆. It aggravates the solving of Eq 1 substan-
tially. Fortunately, the Laplace transform P̃k(s) contains most of the information we are inter-
ested in. The Laplace transform of Eq 1 is a system of difference equations in Laplace space
that can be solved analytically [66,67]. For the analytic solution to be applicable, we had to
restrict the transition probabilities to linear dependencies on e–𝜆t, which imposed constraints
on the modelling of feedback. Here, we generalise the solution to arbitrary polynomial depen-
dencies of the Ψk,k+1 on e–𝜆t. The details are given in S1 Text, Sect A. The dependencies of the
transition probabilities on e–j𝜆t, j = 1,… ,Np turn the system of first-order difference equations
into a system of Npth order difference equations. We can reduce it to a system of first-order
difference equations by the introduction of new variables P̃(s)jNt+k(s) = P̃(s)(j–1)Nt+k(s+𝜆),
j = 1,… ,Np –1, and we can solve this system of first-order difference equations by the solution
given in [66,67] and Eqs A.8-A.13 in S1 Text. The moments of the ISI distribution are deter-
mined by Eqs A.16, A.17. The amplitude distribution is determined by Eqs A.18, A.19. We
also simulated trajectories and compared their statistics to the analytical calculations.

The Taylor series illustrates that any function can be approximated by a polynomial. Hence,
we can deal with any dependency of the transition probabilities on e–𝜆t now, which we use
in this study to introduce more realistic feedback and two concomitant feedback. The Tay-
lor series is usually not the best approximating polynomial for a given polynomial degree
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Np, since its convergence is guaranteed for Np →∞ only. We will see below that excellent
approximations can be found with a different choice of polynomial coefficients.

The relation between the single cluster puff rate and [IP3]. Dickinson et al. measured a
linear relationship between puff frequency and the number of channels in a cluster [35]. This
strongly suggests that channels within a closed cluster behave independently and identically
to a very good approximation, and thus the cluster opening probability is proportional to the
single channel opening probability.

We now specify the factors on the rhs of Eq 2. The relationship between the single cluster
puff rate and a scaled [IP3] has been measured by Dickinson et al. [35]. [IP3] has been con-
trolled intracellularly by photo-liberation of IP3 from an inactive caged precursor in these
experiments, and is thus known except for an unknown scaling factor. Consequently, we also
use a scaled form ip of [IP3], which is scaled with the concentration that saturates the single
cluster puff rate. The puff rate measured by Dickinson et al. in SHSY-5Y neuroblastoma cells
can be well approximated by

g (ip) = g0 (4.816ip – 9.413i2p + 8.379i3p – 2.782i4p) (3)

as shown in Fig 4A. It saturates at g =0.937s–1 as in SHSY-5Y cells [35] with these coef-
ficients of the polynomial and g0=1 s–1. The saturation value might be up to 5 times larger
in HEK293 cells than in SHSY-5Y cells [53]. [IP3] is controlled by stimulation with agonist
concentration [A]. It might also be controlled by the negative feedback that ends the spike,
making [IP3] a dynamic variable. Therefore, we describe ip during the recovery from negative
feedback like

ip = imax
p ([A]) (1 – e–𝜆t) , 0≤ imax

p ([A])≤ 1. (4)

Time t = 0 is the end of the absolute refractory period of the previous spike in this equa-
tion. At this moment ip = 0 and then recovers to an asymptotic value imax

p set by stimulation
with [A].

A spike occurs at the time tsto after the end of the absolute refractory period of the previ-
ous spike. Upon onset of the spike, IP3-targeting negative feedback decreases [IP3] during the
spike and we describe it as follows:

ip = imax
p ([A]) re–𝜆st. (5)

The second factor r describes the state of recovery of ip at the end of the ISI preceding the
spike. The cell has recovered to the degree

r = 1 – e–𝜆tsto (6)

during the ISI preceding the spike. We call r the recovery variable. The last factor is the
exponential decrease of ip with the rate 𝜆s since the onset of the spike at t = 0. This negative
feedback to [IP3] contributes to the termination of the spike.

The rate factor describing CICR. CICR increases the rate of cluster opening, and we
derive a corresponding expression for the rate rn in this section. We focus on the dependency
of rn(c(k, t)) on c and k and neglect all factors that can finally be subsumed into a common
factor of Ψk,k+1 like g0 in Eq 3.

We consider the stationary fraction of open channels dependent on [Ca2+] to define ideas
about how [Ca2+] affects the channel opening rate. That fraction increases like [Ca2+]n before
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Fig 4. (A) Relation between the single cluster puff rate and [IP3]. Data points from Dickinson et al. [35] are marked by
×. They show a non-vanishing puff rate without uncaging of IP3 , which might indicate a resting [IP3]. We shifted the data
by this resting concentration. The line is Eq 3. As a remark, c0(1 – e–c1 ip) with appropriate values for c0 and c1 provides
also excellent fits [67] but is not suitable for our analytical calculations. (B) The rate factor describing CICR Eq 10 and
Eq 13 fully recovered (t =∞). (C)Ψk,k+1 (Eq 2) in dependency on e–𝜆t with constant [IP3] (ip = 1) and recovering CICR
(Eq 13). (D)Ψk,k+1 (Eq 2) in dependency on e–𝜆t with recovering ip (Eq 4) and recovering CICR (Eq 13). (C, D) The fits by
fourth-order polynomials for each k are indistinguishable from the exact relation. (B-D) Δ = 0.95, Kp = 18, sp = 2, g0 = 1 s–1,
Nt = 30.

https://doi.org/10.1371/journal.pcbi.1013322.g004

reaching a maximum according to a variety of studies [68–73], with reported values for n
from 1.0 to 4.0 (1.0–2.7 [71], 2.7 [68], 1.6 our fit to data from [72], up to 4.0 [70]). That sug-
gests that IP3R has at least 3 Ca2+ ions bound in the state with a high open probability.

Assuming mass action kinetics of Ca2+ binding, we can write down a Master Equation for
the probabilities Pb(i) that the (tetrameric) IP3R has i= 0, 1, 2 Ca2+ ions bound. We use this
Master Equation to calculate the average first passage time (FPT) of the bare receptor to the
state with 3 Ca2+ ions bound. A standard method of calculating FPT distributions starts with
solving the Master Equation with the condition Pb(3) = 0 [74]:

dPb(0)
dt

= k–Pb(1) – 4 ̄k+Pb(0)
dPb(1)

dt
= 4 ̄k+Pb(0) + 2k–Pb(2) – (k– + 3 ̄k+)Pb(1) (7)

dPb(2)
dt

= 3 ̄k+Pb(1) – 2(k– + ̄k+)Pb(2)
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The binding rate constant of Ca2+ ions is k+, and thus ̄k+ = k+[Ca2+]. The dissociation rate
is k–. The Laplace transform of this system of differential equations provides expressions for
the Laplace transforms P̃b(i) of Pb(i). The average FPT can then be determined from the
derivative of 2 ̄k+P̃b(2) as described in S1 Text, Eq C.2. We take the inverse of the average FPT
as the rate of reaching the state with 3 Ca2+ ions bound:

r3(c) =
12k+[Ca2+]rc3

13c2 + 5Kpc +K2
p
, c = [Ca2+]

[Ca2+]r
, Kp =

k–

k+[Ca2+]r
. (8)

[Ca2+]r is the resting [Ca2+]i. Kp is the ratio of the dissociation constant of the receptor
Ca2+ binding site k–

k+ to [Ca2+]r. If 4 Ca2+ ions need to bind to reach the state with high open
probability, we obtain:

r4(c) =
12k+[Ca2+]rc4

25c3 + 18Kpc2 + 13K2
pc + 3K3

p
. (9)

Another factor of rn comes from the picture of spike generation as wave nucleation [46,75–
78]. We describe it in a very naive approach. The closed clusters near the expanding wave
experience high [Ca2+] and dominate cluster opening. Their number increases as the surface
of the volume is engulfed by the wave. The number of open clusters k determines that volume.
Neglecting the factors subsumed into g0 we reach the expression:

r3(c) =
c3 (1 + k)

2
3

c2 + 5
13Kpc + 1

13K
2
p
. (10)

r4(c) =
c4 (1 + k)

2
3

c3 + 18
25Kpc2 + 13

25K
2
pc + 3

25K
3
p
. (11)

We choose a simple linear relation between scaled [Ca2+] c and the number of open clus-
ters by assuming quasi-stationary profiles of the cytosolic concentration. They reach their
shape in the cytosol quickly upon opening or closing of clusters, but the dynamics of slow
variables determining the cytosolic profiles, e.g. the ER filling state, slowly change the cytoso-
lic concentration even with a constant configuration of open clusters [1,2,79].

The model [Ca2+] concentration variable c is the concentration in units of the resting con-
centration (Eq 8). It is an increasing and saturating function of the number of open clus-
ters [1,2,79,80]. We set c = 1+kSp(t). Sp(t) quantifies how much a single open cluster increases
c (in units of [Ca2+]r). If many but not all clusters are open, [Ca2+] is high at most closed
clusters. The opening of more clusters will not increase [Ca2+] further for most closed clus-
ters, since they are most likely not proximally localised to those that are opening. Hence, we
describe saturation by limiting c to values reached at the number ks of open clusters

c(k, t) = { 1 + kSp(t) , k≤ ks
1 + ksSp(t) , k≥ ks

. (12)

The upper bound ks applies also to the factor (1+k) 2
3 in Eqs 10, 11 and thus in the end fixes

an upper bound to rn(c) (Fig 4).
Sp(t) picks up the slow dynamics. We exemplify our ideas with ER depletion. The ER

is (partially) depleted at the end of a spike, the release currents are reduced, and thus Sp is
decreased. Furthermore, the luminal Ca2+ controls the IP3R gating [81]. We describe deple-
tion by a factor 1 – Δ, 0≤Δ≤ 1. The degree of depletion may be minor, causing little decrease
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in release rates and Sp (Δ≪ 1) or may cause a substantial decrease of Sp (Δ≈1). The ER slowly
refills after the spike, i.e. the depletion factor approaches 1: Sp(t) = sp (1 –Δe–𝜆t). That leads to
an expression for c during recovery from depletion like

c(k, t) = 1 + ksp (1 –Δe–𝜆t) . (13)

The ER depletes during a spike, and thus we get

c(k, t) = 1 + ksp (1 –Δ (1 – re–𝜆st)) . (14)

with t = 0 being the time of onset of the spike.
The time dependent c (Eq 13 or 14) enters rn(c) (Eq 10 or 11) and thus causes a depen-

dency of the Ψk,k+1 (Eq 2) on e–𝜆t: Ψk,k+1 (ip, c (k, e–𝜆t) , k). That dependency is shown in
Fig 4C. It can be very well approximated by a fourth-order polynomial in e–𝜆t.

Combining negative feedback to [IP3] and ER depletion. Since each spike partially
depletes the ER, this negative feedback is always present. Therefore, negative feedback to [IP3]
always occurs in combination with ER depletion, and the Ψk,k+1 depend on e–𝜆t via c (Eqs 10,
11 and 13, 14) and ip (Eq 3 and Eqs 4, 5): Ψk,k+1 (ip (e–𝜆t) , c (k, e–𝜆t) , k). This complex depen-
dency on e–𝜆t can also be well approximated by a fourth-order polynomial, as Fig 4D shows.
The reasons for the high quality of these fits are that e–𝜆t only varies between 0 and 1, that the
functions we deal with are smooth, and that we fit up to the saturating argument value, but
not far into the saturated range.

In summary, we can find polynomial expressions capturing the time dependency of feed-
back for all the cases we considered, and thus we can broadly apply our analytic theory. This
allows for a much larger variety of models than before [67]. We used the combined feedback
throughout this study.

The ISI distribution and its moments
The first step in determining the ISI distribution is to define what a spike is. Some cells exhibit
release events larger than puffs, but still much smaller than spikes: the number of open clus-
ters here is too small, and CICR has not yet reached the strength necessary to convert those
events into global spikes. If the number of open clusters is large enough, CICR opens clus-
ters in a fast sequence during the rising phase of the spike. We call a release event a spike if it
is of size ksp, which is large enough to cause this fast rise. Since the upstroke is fast, the distri-
butions of FPTs tf to numbers of open clusters k larger than ksp are very similar. Thus, we can
determine ksp as the smallest k in a sequence of ks with similar tf-distributions. We consider
as a spike all release events with at least ksp open clusters. The results in Fig 5A and 5B suggest
ksp = 7 to meet the definition. The distribution of tsto is the distribution of FPTs from 0 to ksp
open clusters with this definition of a spike.

We show several examples of simulated ISI distributions with a varying Ca2+ dissocia-
tion constant of IP3R in Fig 5C. The larger the dissociation constant Kp the less likely it is
that the receptor has 3 Ca2+ ions bound at a given [Ca2+]i, and the larger [Ca2+]i transients
are required to generate a spike. It takes larger opening probability Φk,k+1 to generate these
transients, which occurs later in the recovery process than the one required with small Kp.
Thus, the average ISI Tav increases with increasing Kp. The Ca2+ sensitivity is regulated by
ATP [71,82–85]. The IP3R-subtype 1 is about 3 times more sensitive in elevated [ATP] than in
low [ATP], and the subtype 3 is about 10 times more sensitive. Our results suggest that a lack
of ATP and a consequential decrease in the Ca2+ sensitivity increase the average ISI. This is
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Fig 5. (A)The distributions of the FPT tf from 0 to k open clusters. They are very similar for k = 6-10. (B) The average
of the FPT tf from 0 to k open clusters. The value of tf at k = 7 (110.5 s) deviates by about 1% from the values wit k≥15
(111.6 s). Based on that criterion, we will use ksp = 7 in our calculations of spike characteristics. (C) ISI distributions with
varying Ca2+ dissociation constant Kp of the IP3R. CV is the coefficient of variation of the stochastic part of the ISI. The
Tav values with increasing Kp are 77 s, 110 s, 135 s, 164 s and 217 s. (D) ISI distributions can be very well approximated
by Γ-distributions if the CV is sufficiently small. We find an excellent or good approximation for CV≤ 0.43, but not for
CV= 0.614. MSD is the mean root of the squared deviation relative to the maximum of the Gamma distribution. (A, B, D)
Δ= 0.95, Nt = 30, sp = 2, ks = 15, Kp = 18, g0 = 1.0 s–1, imax

p = 0.1, 𝜆 = 0.01 s–1, (D) parameter values different from the com-
mon set: black g0 = 0.6 s–1, red g0 = 0.2 s–1, imax

p = 0.75, 𝜆 = 0.02 s–1, blue g0 = 0.3 s–1, 𝜆 = 0.02 s–1, green Kp = 32, g0 = 0.6 s–1,
𝜆 = 0.02 s–1.

https://doi.org/10.1371/journal.pcbi.1013322.g005

in agreement with experiments by Betzenhauser et al. in DT40 cells investigating the proper-
ties of IP3R II [85]. They observed an increase in ISI and a decrease in spike amplitude upon
mutating the relevant ATP-binding site on IP3R. Thus, cell-to-cell differences of [ATP] may
be another parameter causing cell variability of the average ISI Tav besides parameters includ-
ing number of clusters, specific geometry of the cluster array, density of plasma membrane
receptors, SERCA density and more (see [67,86] for detailed discussions).

Powell et al. found that the experimentally determined ISIs of HEK293 cells obey Γ-
distributions [14]. Therefore, we compare our simulated distributions with Γ-distributions
with the same average and SD (Fig 5D) and find very good agreement.

We can relate the experimental results to the theoretical ISI distributions via moments,
cumulants, their relationships and the coefficient of variation CV (CV= SD/average). The
CV of the stochastic part of the ISI is well approximated by the slope of the cumulant relation
between the average of the ISI Tav and the ISI SD 𝜎

𝜎 = 𝛼 (Tav – Tmin) . (15)
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It is of particular interest, as we found that it is conserved despite the large variability in
Tav and 𝜎 between cells under identical conditions and also in a variety of experimental situa-
tions [9,13]. That robustness is important since the smaller the value of 𝛼, the larger the infor-
mation content transmitted by a spike sequence measured either as Kullback entropy with a
Poisson distribution as reference [87,88] or mutual information between stimulating agonist
concentration and Tav [89]. The Γ-distributions describing the HEK293 ISI statistics are two-
parameter distributions with a shape and a rate parameter. The shape parameter is equal to
CV–2 and is consequently as conserved as 𝛼 and the same for all individual HEK293 cells in
many different experimental situations [9,13].

There are two experimental observations related to 𝛼 - its value for ISI in the range of
Tav ≈ 𝜆–1, and the robustness of this value against cell variability. Both require some reflec-
tion. Recovery from negative feedback during the first passage process of spike generation is
the reason why 𝛼 has a value smaller than 1.0. The absence of recovery or very fast recovery,
that is, 𝜆≫Tav

–1, entails 𝛼 = 1.0 [74,87,88]. From these considerations, it is clear that the rate
of recovery from negative feedback 𝜆 sets the slope 𝛼 of the cumulant relation Eq 15 [67,90].

If Tav is very large, i.e. Tav≫𝜆–1, recovery is fast compared to Tav and 𝛼 has values close
to 1. Consequently, the Tav range through which we measure a typical value of 𝛼 is another
characteristic of the pathway. That defines the robustness requirements. The value of 𝛼 should
be approximately constant throughout the range of observed average ISI, and experiments
suggest that this range is much larger than the smallest ISI [9,13].

We are now in a position to assess our theoretical results and relate them to experimental
observations. We show the results of calculations for the CV of the stochastic part for a range
of Kp values for average ISI up to 400 s (Fig 6A). CV is moderately affected by Kp. It shows
a much stronger dependency on Tav with 𝜆 = 0.01 s–1 than with 𝜆 = 0.005 s–1. Therefore, we
used 𝜆 = 0.005 s–1 in fits of our HEK293 data to capture the Tav-range with approximately
constant CV. Interestingly, CV exhibits a minimum in relation to Tav both in theoretical and
experimental results.

We measured [Ca2+]i spike trains in HEK293 stimulated with Carbachol (CCh) as
described in Materials and methods. Stationary segments of spike trains as shown in Fig 2
were analysed with regard to ISI and amplitude sequences, from which we calculated averages
and SDs.

We obtain a value of 𝛼 from our experimental data by fitting it to the population data
(Fig 6B). The plot of individual ISI SD- and Tav-data points of all cells reproduces the cumu-
lant relation Eq 15. Fitting the linear function across the whole Tav range provides 𝛼 = 0.231.
Restricting the fit to ranges of small, intermediate and large values of Tav as specified in the
caption of Fig 6B shows that we find a minimal 𝛼 in the experimental data, which is consis-
tent with our theoretical results (Fig 6A). We measured values of 𝛼 in the range from 0.2 to
0.26 for HEK293 cells in an earlier study [9]. Here, we find values between 0.219 and 0.280, in
agreement with the earlier results.

The amplitude distribution
The spike amplitude is the maximum of open clusters reached during a spike. It is at least
ksp due to the definition of a spike. The distribution P(A|r) of amplitude A is affected by the
degree of recovery r (Eq 6) at the spike time. We calculate P(A|r) from the probabilities that
given a spike (initial state k= ksp), the process reaches A> ksp before reaching 0. These split-
ting probabilities are determined by setting both 0 and A as absorbing states. Sect A of S1 Text
explains the details. P(A|r) is the difference between the sequential splitting probabilities for
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Fig 6. (A)The relationship between the CV of the stochastic part of the ISI 𝛼 and Tav for a variety of Kp- values. The
range of Tav-values of the data is caused by varying imax

p from 0.025 to 1.0. 𝛼 stays within the measured range of HEK cells
with 𝜆 = 0.005 s–1. Parameter values Δ= 0.95, Nt = 30, sp = 2, ks = 15, g0 = 1.0 s–1, 𝜆 = 0.01 s–1 if not indicated otherwise.
Eq 10 has been used for CICR. (B) The cumulant relation Eq 15 was measured with HEK293 cells. Each data point rep-
resents results from one spike train. The slope 𝛼 of the cumulant relation approximates the CV of the stochastic part of
the ISI. The full line is a fit of a linear function to all data points with the indicated 𝛼-value. Fitting linear functions to the
ranges 0≤Tav ≤ 70 s, 70 s≤Tav ≤ 160 s and 160 s≤Tav ≤ 400 s provides slopes of 0.262. 0.219 and 0.280, i.e. we find a similar
non-monotonic behaviour as in theory.

https://doi.org/10.1371/journal.pcbi.1013322.g006

reaching A. We verify this method of calculating the amplitude distributions by simulations in
Fig 7A. Simulations and analytical calculations are indistinguishable.

If a spike occurs shortly after the previous one, the cell has only slightly recovered from
the negative feedback that terminated the previous spike. The cluster open probability is small
and the probability that the amplitude is larger than ksp is negligible. Conversely, with almost
complete recovery (r≈1), the cluster open probability is large and the probability of observing
small amplitudes becomes insignificant. The dependency of P(A|r) on r connects P(A|r) to the
ISI distribution P(ISI).

Once the spike has started, the negative feedback, which will terminate it, starts to grow
with rate 𝜆s (Eqs 5, 14). That rate has a moderate effect on the amplitude distribution (Fig 7B).
The slower the negative feedback grows, the larger the spike amplitude. Since typical spike

Fig 7. Amplitude distributions. We show the probability P(A|r) that A open clusters are reached during a spike given that
ksp = 7 clusters are initially open, i.e. given the release event is a spike. A is a discrete variable; the lines are only a guide for
the eye. (A) P(A|r) is affected by the degree of recovery r from negative feedback at the time of the occurrence of the spike.
(B) The rate of growth of the negative feedback during the spike also affects P(A|r) (Eqs 5, 14). (A, B) Δ= 0.95, Kp = 18,
sp = 2, Nt = 30, imax

p = 0.1, (A) ks = 10, g0 = 1 s–1, 𝜆s = 0.05 s–1, (B) ks = 15, g0 = 0.6 s–1.

https://doi.org/10.1371/journal.pcbi.1013322.g007
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durations are in the range of 20 s, we use 𝜆s = 0.05 s–1 in this study. In a future study, a
detailed investigation of the role of 𝜆s will be carried out in the context of spike modelling.

The joint ISI-amplitude distribution P(A,ISI)
We calculate the probability of a spike with amplitude Ai+ 1 following the ith ISIi in this
section. We can transform P(A|r) by r = 1– e–𝜆tsto and ISI = Tmin +tsto into P(A|ISI). The joint
probability is P(A,ISI) = P(A|ISI)P(ISI). We drop the indices of A and ISI in the distribu-
tion arguments for convenience of notation. Fig 8 shows examples of P(A,ISI). We calculated
P(A|ISI) (see S1 Text, Eqs A.18, A.19 and A.21) and the moments of the ISI distribution (see
S1 Text, Eq A.16 and A.17) analytically and then used Γ-distributions for P(ISI). We see distri-
butions with high correlation between ISIi and Ai+1 (Fig 8A) and weak correlation (Fig 8D).
We get maximum-amplitude spikes across almost the whole ISI range in the case of weak cor-
relation. Correlated spike trains show small-amplitude spikes at short ISI and large amplitudes
at long ISI.

We cannot directly verify the joint probability distribution with experimental data since
that would require extremely long spike sequences. We therefore examine the correlation
between ISIi and subsequent amplitude Ai+1, instead. Fig 9A shows Ai+1 plotted against ISIi

Fig 8. The joint ISI-amplitude distribution P(A,ISI) is the probability of observing a spike with amplitude A when the
time ISI has passed since the onset of the previous spike. The number of open clusters ks at which the CICR factor satu-
rates has been increased from (A) to (D) to obtain distributions with different values of the correlation coefficient Cc (see
Eq 12). Small amplitude spikes occur with some probability at small ks early in the ISI (A). Essentially all-or-none spikes
occur at large ks values, only (D). Panel A shows a distribution typical for high correlation Cc = ⟨ISIi|Ai+1⟩ between ISIi and
subsequent amplitude Ai+1. Panel D is typical of low correlation. (A) ks = 6, Cc = 0.755, (B) ks = 10, Cc = 0.589, (C) ks = 15,
Cc = 0.396, (D) ks > Nt, Cc = 0.213, (A-D) Δ= 0.95, Kp = 18, sp = 2, g0 = 1 s–1, Nt = 30, imax

p = 0.1, 𝜆 = 0.01 s–1. Eq 10 has been
used for CICR.

https://doi.org/10.1371/journal.pcbi.1013322.g008
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Fig 9. The relation of the ith ISIi and the subsequent spike amplitude Ai+1. (A) Ai+1 versus ISIi for typical spike trains
with negative, positive, and vanishing Pearson correlation coefficient Cc. All three of them exhibit weak or no correla-
tion. (B) Pearson correlation coefficient Cc versus the coefficient of variation of the amplitude CVA from theory with 136
parameter value sets and for all (36) measured spike trains with at least 15 ISIs. Each black and red data point represents a
measured or simulated spike train, respectively. The Cc of encircled experimental data points has a p-value <0.05. Our the-
ory provides only positive values of Cc. The parameter values for the simulations and calculations are Δ= 0.95, g0 = 40 s–1
𝜆 = 0.005 s–1, all other parameter values have been varied, Eq 9 has been used.

https://doi.org/10.1371/journal.pcbi.1013322.g009

for HEK293 spike trains with negative, positive, and vanishing correlation coefficients. These
plots suggest a lack of a well-defined relationship between ISIi and Ai+1.

Panel B of Fig 9 provides a more comprehensive analysis. It shows the Pearson correla-
tion coefficients Cc = ⟨ISIi|Ai+1⟩ and the coefficient of variation of the amplitude CVA for
spike trains measured with more than 15 spikes and theoretical results. The measured spike
trains exhibit positive and negative Cc with absolute values ranging from 0.034 to 0.615. The
p-values of most of the correlation coefficients are larger than 0.05. We encircled those with
p-values smaller than 0.05, among which we find values close to 0.6, -0.6, and 0.22, i.e. corre-
lation between ISIi and Ai+1, anticorrelation, and lack of correlation. Fig 9B shows that theory
reproduces the range of positive values.

Our theory formulates the idea that the recovery from the negative feedback that termi-
nated the previous spike increases the IP3R open probability or spike amplitude with increas-
ing ISI. Consequently, it produces only positive Cc for ISIi and Ai+1. We find both correla-
tion (Cc ≈0.6) and lack of correlation (Cc < 0.25) in our calculations and experiments. Hence,
contrary to our expectations, recovery from negative feedback does not necessarily cause a
correlation between ISIi and Ai+1.

There are experimental spike trains that exhibit vanishing Cc in a wide range of CVA and
Tav. Theoretical Ccs vanish only at small values of CVA or at very large Tav (Tav≫𝜆–1, see the
black circle at CV≈0.2 and Cc≈0 in Fig 9B). This observation, together with the negative cor-
relation coefficients found in our experiments, is a strong indication of processes affecting the
correlation between ISIs and amplitudes, which are not included in our theory, yet.

Remarks on quantifying parameter values in the face of large cell
variability
IP3-induced Ca2+ spiking shows characteristics that are not subject to cell variability, such
as 𝛼 and the agonist sensitivity 𝛾 of the concentration-response relation of Tav [9], and spike
train properties like Tav, the ISI SD 𝜎, amplitudes and Cc with large cell variability. This entails
a corresponding set of parameter values that most affect variable properties (Nt, sp, ks, Kp)
and thus quantify cell variability and another set of parameters relating to ’conserved’ values.
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The latter are 𝜆 and g0 in our theory, due to the properties of 𝛼. Note that the value of 𝛾 is not
restricted by the current level of theory and therefore can always be met.

The purpose of theory is to reproduce both the values of the conserved properties and the
value ranges of the variable properties, and thus to provide a quantitatively consistent for-
mulation of a mechanistic hypothesis of spike generation including both. Theory should also
be able to reproduce results for a specific set of variable properties of a given cell by specify-
ing the values of parameters that describe cell variability. Table 1 shows three examples that
we can also fit individual cells. Those example cells have been chosen to have more than 15
spikes, positive Cc, and to represent short, intermediate and long Tav. We specify all parame-
ter values for the three cells in the table. We used the value of 𝛼, its robustness properties, and
the Tav range to specify 𝜆, g0 and the range of Kp. We used Tav- and Cc-values to quantify the
parameters describing cell variability. It was easier to fit the robustness properties of 𝛼 and the
properties of the specific cells in Table 1 when we used Eq 11 instead of Eq 10.

Discussion
We present a stochastic model of IP3-induced Ca2+ spiking in HEK293 cells and parame-
terise it through experiments. The model takes into account the slow deterministic behaviour
of globally averaged feedback variables. Transition probabilities depend non-linearly on the
feedback variables. Analytical theory required to find a method to solve the correspond-
ing time-dependent Master Equation. We generalised a linear method [66] to a polyno-
mial dependency by reducing a system of higher-order difference equations to a system of
first-order difference equations. The generalisation now allows for a very broad spectrum
of dependencies of transition probabilities on the state of the system and dynamic feedback
variables.

We calculate the first and second moments of the ISI distribution analytically. Since simu-
lated ISI-distributions with 𝛼-values applying to HEK293 cells are very well approximated by
Γ distributions in agreement with experimental results [14], we can completely determine ISI
statistics analytically. The same applies to the amplitude statistics. That puts us in the position
to calculate ISI-amplitude correlations analytically, which we can also determine from mea-
sured spike sequences. Hence, our approach substantially expands the possibilities to relate
analytical calculations to experimental results.

We derived transition rate expressions for CICR and sensitisation of IP3Rs by [IP3]. The
dependency of the puff rate on [IP3] has been measured by Dickinson et al. [35] and we used

Table 1. Fits for three example spike trains from Fig 2. Parameter values: Fig 2A, segment 1: Kp = 23, ks = 10,
sp = 2.75, imax

p = 1.0; Fig 2B, segment 2: Kp = 22, ks = 13, sp = 1.19, imax
p = 0.73; Fig 2C: Kp = 18, ks = 14, sp = 0.61,

imax
p = 0.118.The parameter values common to all three cells are Nt = 30, 𝚫= 0.95, g0 = 40 s–1 𝝀= 0.005 s–1. Eq 11
has been used for CICR.The units of Tav and Tmin are seconds.The values for Tmin are estimates from the exper-
imental records.The theoretical Tmin-values are parameters and not results of calculations. Experimental values
of 𝜶 of individual cells cannot be determined since we do not know individual Tmin-values. Nsp is the number of
spikes. Theoretical results are moments of distributions which do not have Nsp as parameter (n.a.).

Fig 2A, segment 1 Fig 2B, segment 2 Fig 2C
exp. theo. exp. theo. exp. theo.

Tav 56.7 56.5 97.9 97.6 238.9 236.4
Cc 0.271 0.276 0.215 0.206 0.296 0.287
CVA 0.060 0.049 0.093 0.096 0.129 0.143
𝛼 0.222 0.193 0.185
Nsp 57 n.a. 19 n.a. 20 n.a.
Tmin 15 15 20 20 20 20

https://doi.org/10.1371/journal.pcbi.1013322.t001
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their results (Eq 3). The CICR factor has been derived as the inverse of the first passage time
from the bare receptor to the state with either 3 or 4 Ca2+ ions bound (Eqs 10, 11). Further-
more, we can now simultaneously include several time-dependent feedback. Each feedback
may have its own relaxation rate, as long as the ratio of rates is a rational number.

That implicates progress toward a theory closer to the experiment. The parameter values,
which we obtain as part of the results of the theory, now correspond more to expectations
based on average ISIs. For example, the rate of recovery from negative feedback 𝜆 sets the
slope 𝛼 of the cumulant relation Eq 15 [67,90]. The fit of earlier experimental data with our
previous models resulted in 𝜆 = 1.44 s–3 [67]. Such a recovery time of about 700 s was required
to meet the robustness properties, but it appears rather long compared to average ISIs. In
those earlier models, we used a simple power function dependency of the CICR factor on the
number of open clusters. With time-dependent [Ca2+]i and our current description of CICR
by Eqs 10 and 11, the new parameter Kp is part of the description of CICR. It also affects 𝛼.
This additional degree of freedom in fixing 𝛼 allows more realistic values of 𝜆 (Fig 6A). The
measured 𝛼-values in this study agree very well with earlier measurements [9]. That confirms
our conclusion that the slope of the cumulant relation is a characteristic feature of spike trains
elicited via a specific GPCR in a given cell type, that 𝛼 is robust against many perturbations
and is not subject to cell variability.

We found better agreement of 𝛼 robustness properties and correlation coefficients with the
expression of the CICR factor assuming binding of 4 Ca2+ ions to reach high open probability
(Eq 11) than with binding of 3 ions. Both expressions, Eq 10 and Eq 11, are essentially linear
for large [Ca2+]. Interpretation of this result needs to take into account that CICR may include
Ca2+ dependencies in addition to the mass action kinetics we included here as, for example,
the IP3R modelling study by Siekmann et al. illustrates [72]. The assumption that 4 ions need
to bind entails a very small transition probability at small [Ca2+], which then rises quickly
with increasing [Ca2+]. It thus entails a sharper threshold of spike initiation compared to the
binding of 3 ions. Our results suggest highly non-linear rate expressions with sharp thresh-
olds to correspond to experimental observations. However, this highly non-linear behaviour
of cells might not be due to mass action kinetics alone.

The experimental and theoretical results for the Pearson correlation coefficient Cc are, to
some degree, unexpected. Expectations are shaped by the ideas on feedback during a spike
sequence, which defines our theory. Upon onset of a spike, negative feedback is initiated,
e.g. by ER depletion or diminution of IP3 production, and finally terminates the spike. After-
wards, the cell recovers from it, which causes a continuous increase of the spike probability
up to some saturation value. This suggests a correlation between an ISI and the amplitude of
the subsequent spike. Some spike trains exhibit such a correlation (Cc ≥ 0.4). However, many
more show weak correlation (0.25 ≤ Cc ≤ 0.4), no correlation (|Cc| ≤ 0.25), or even anticor-
relation (Cc ≤ –0.25). These correlation properties are subject to cell variability, i.e. HEK293
cells stimulated identically can exhibit any of the four cases. This suggests that correlation is
not only a characteristic of feedback triggered by muscarinic receptor activation, but is also
strongly affected by cell-specific properties, which are subject to cell variability.

A negative ISI-amplitude correlation could be explained by decreasing IP3R open proba-
bility at large ISI due to a very slowly decaying positive feedback component during the spike.
However, that would substantially increase 𝛼 in Eq 15 away from measured values [88]. The
challenge, therefore, is to find feedback mechanisms providing both Cc < 0 and 𝛼≪ 1. The
analytical stochastic theory presented in this study, will be of value for testing hypotheses on
the pathway components that cause this anticorrelation since it can include a large variety of
positive and negative feedback mechanisms.
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In general, mathematical theory is a formulation of our mechanistic and quantitative
hypotheses on the system under consideration. Here, we parametrise the model using both
general statistical properties and robustness properties. In addition, we specified it to spike
trains from three representative cells. However, the resulting parameter sets for the specific
spike trains in Table 1 may not be unique. Identifiability in such systems requires at least as
many independent single-cell experiments as there are parameters to estimate, each yielding
sufficiently long spike trains for robust moment statistics. This is not practically achievable, as
the cell state does not remain constant over such a long time (see Fig 2), thereby limiting the
ability to formulate a complete hypothesis.

These constraints raise a broader question: What can be inferred about a stochastic, highly
variable biological system, and what level of resolution is necessary for functional under-
standing? While a complete quantitative theory tailored to individual cells could offer detailed
insights, its utility is constrained by the high degree of cell variability. In contrast, the robust-
ness of function across heterogeneous cells suggests that essential system behaviours are
governed by invariant properties rather than cell-specific parameters.

Theoretical frameworks that incorporate stochasticity and biological variability - while
remaining faithful to function and the general statistical features of the system - may not be
fully predictive at the single-cell level. However, they can still elucidate the core design prin-
ciples that ensure functional robustness. Such an approach may help distinguish biological
systems from engineered technological systems, the former being characterised by resilience
to parameter variability, the latter requiring precise composition. In the long term, incomplete
yet principled models of this nature may provide critical insights into the architectural logic of
living systems.

Materials and methods
Materials
Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 4.5 g/L D-glucose and L-
glutamine, and FluoroBrite DMEM were from Thermo Fisher Scientific. Calbryte™ 520 AM
was purchased from AAT Bioquest, and carbamoylcholine (carbachol; CCh) was sourced
from Merck (Sigma-Aldrich). 35 mm glass-bottom dishes for imaging were from ibidi GmbH.

Single-cell imaging of [Ca2+]i in HEK293 cells
HEK293 cells were cultured in DMEM supplemented with 10% fetal bovine serum (FBS). For
imaging experiments, the cells were plated onto 35-mm glass-bottom petri dishes; loaded with
CalBryte™ 520 AM (2.5 μM) for 30 minutes at 37 ○C , washed with fresh DMEM, and incu-
bated again for an additional 30 minutes before imaging to allow for de-esterification of the
indicator. Single-cell fluorescence measurements were performed at 30 ○C under humidity
and 5% CO2 control in conditioned FluoroBrite DMEM supplemented with 10% FBS and 4
mM L-glutamine to better preserve cell viability during the extended acquisition. CCh was
added to the cells by pipette 15 minutes after the recording started at varying concentrations
(3 µM , 5 µM , 10 µM , and 15 µM ) across different experiments. Cells were imaged using a
Nikon inverted microscope equipped with a spinning disk unit (ANDOR CSU-W1) featuring
a 50 µm fixed-size pinhole. A Plan Fluor 20x Mimm DIC N2 objective (NA 0.75) was used for
image acquisition. Detection was carried out using an Andor iXon DU-888 EMCCD camera
(1024x1024 pixels) with a 525/45 nm emission filter, an EM gain of 300, no binning, a 30 ms
exposure time, and readout mode (EM Gain) set to 30 MHz at 16-bit. Excitation was achieved
using a 488 nm solid-state laser at 5% of its maximum power (0.1 mW at the objective). This
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setup allowed for a sufficient contrast while limiting phototoxicity. Images were acquired at
1-second intervals. Recordings lasted between 105 and 150 minutes to maximise Ca2+ spike
detection per cell. Examples of recorded spike trains are shown in Fig 2.

Analysis of [Ca2+]i spike trains
Time-lapse image series were analysed with Nikon’s NIS-Elements AR software (version
5.21.03) [91], which was used to define regions of interest (ROIs) and extract fluorescence
intensity measurements. ROIs were drawn following the contours of the cells and their shape
was adjusted over time using the ’Edit ROIs in Time’ tool to match cell rearrangements dur-
ing acquisition. We performed baseline correction of the spike trains using the PeakUtils
Python package [92] and then normalised the intensities to the average corrected baseline
(F0). Ca2+ spikes were detected and characterised using the PyCaSig software [93]. This GUI-
based Python program automates the processing of [Ca2+]i time series data and computes
measures of spike properties. As previously described [9], only the stationary components of
spike sequences were considered for ISI analysis.

In our experiments, HEK293 cells are subjected to prolonged CCh stimulation, which
can cause receptor desensitisation and other slow processes that lead to changes in the aver-
age ISIs throughout the duration of a spike train [94,95]. Slow trends on the time scale of a
few times the average ISI entail contributions, especially to higher moments and cumulants,
which are not related to the stochastic aspects of spike generation. We applied two measures
to avoid these contributions: if a spike train exhibits segments comprising several ISIs with
different average ISIs, we analysed those segments separately as further explained in S1 Text,
Sect D. Such segments are marked in Fig 2A, 2B and 2D. Furthermore, residual linear trends
within these segments were removed before the calculation of the standard deviation and
correlation coefficients. The removal of trends did not change the average (S1 Text, Sect D).
Only stationary sequences of spike trains with at least 11 recorded spikes were included in the
analysis of average ISI and with at least 15 spikes in the analysis of SD and correlations.

Supporting information
S1 Text. Section A. Calculating moments of the first passage time distribution. Section B.
Numerical methods. Section C. Comments on the CICR-factor rn. Section D. Comments on
determining stationary ISI sequences.
(PDF)
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