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SUMMARY

Advanced age is the most important risk factor for severe disease or death from COVID-19, but a thor-

ough mechanistic understanding of the molecular and cellular underpinnings is lacking. Multi-omics anal-

ysis of 164 samples from SARS-CoV-2-infected persons aged 1 to 84 years reveals a rewiring of type I 
interferon (IFN) signaling with a gradual shift from signal transducer and activator of transcription

1 (STAT1) to STAT3 activation in monocytes, CD4 + T cells, and B cells with increasing age. Diversion 
of IFN signaling is associated with increased expression of inflammatory markers, enhanced release of 
inflammatory cytokines, and delayed contraction of infection-induced CD4 + T cells. A shift from IFN-

responsive germinal center B (GCB) cells toward CD69 high GCB and atypical B cells during aging corre-

lates with immunoglobulin (Ig)A production in children, whereas complement-fixing IgG predominates in 
adults. Our data provide a mechanistic basis for inflammation-prone responses to infections and associ-

ated pathology during aging.
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INTRODUCTION

Age is a known modulator of immune responses, highlighted 

during the COVID-19 pandemic when older adults faced higher 

risk of severe disease, while young children experienced mostly 

mild or asymptomatic courses. 1–7

Our earlier work showed stronger type I interferon (IFN) and 

interferon-stimulated gene (ISG) signatures in epithelial and 

innate immune cells of SARS-CoV-2-infected children, suggest-

ing enhanced early viral control. 8 Yet, viral loads and clearance 

kinetics appeared similar across ages. 8,9

Adaptive immunity is essential for long-term SARS-CoV-2 

control. 10 T cells aid clearance, and neutralizing antibodies 

reduce reinfection risk. 11 Most children seroconvert and develop 

specific T cells without systemic inflammation, except in rare 

multisystem inflammatory syndrome in children cases. 10,12–16 

In contrast, severe COVID-19 in older adults involves immune 

dysregulation, including myeloid cell dysfunction and hyperac-

tive cytotoxic T cells, suggesting qualitative differences in im-

mune cell activation with age. 17,18 However, the molecular basis 

of these differences remains unclear.

The pandemic created a unique opportunity to investigate 

age-dependent immune responses to a novel virus without the 

confounding effects of pre-existing immunity. 5,19,20 To explore 

this, we conducted a multi-omics analysis of children and adults 

infected early in the pandemic. The RECAST study (resilience of 

children compared to adults in SARS-CoV-2 infection) enabled 

direct comparison of immune responses within households. 5 

We also performed in vitro assays using cells from uninfected 

donors.

We found a continuous age-related shift in type I IFN signaling 

from STAT1- to STAT3-driven pathways in monocytes, T, and B 

cells. This rewiring correlated with changes in inflammatory gene 

expression across immune cells, promoting systemic inflamma-

tion in older individuals. Features included expansion of S100A8/ 

A9 + and CXCL8 + HLA-DR low monocytes, increased CCR6 + pe-

ripheral T helper cells, and CD69 + germinal center and atypical 

B cells. In children, responses were more targeted and follicular 

in nature, marked by CD38 high CXCR5 high T follicular helper cells, 

germinal center B cells, and rapid T cell contraction.

Our study offers a comprehensive age-stratified profile of 

SARS-CoV-2 immune responses, revealing a progressive shift 

from antiviral STAT1 to proinflammatory STAT3 signaling with 

age. This mechanistic insight helps explain the heightened sus-

ceptibility of older adults to severe viral disease.

RESULTS

Upregulation of HLA-DR versus CCR6 distinguishes 

infection-induced monocytes in children and adults

To study the age-dependent differences in antiviral immune cell 

responses, we established a unique cohort early in the pandemic 

consisting of SARS-CoV-2-infected children and adults 

(Figure 1A). This cohort includes patients who were enrolled in 

three observational studies. RECAST allowed us to perform a 

multi-omics-based profiling of specimens collected from in-

fected and non-infected control families spanning an age range 

from 1 to 68 years. 5 None of the infected patients experienced

severe disease. Most of the studied infected individuals (children 

and adults, 106 out of the 164) were enrolled into RECAST. How-

ever, the age range of this household study was limited (1–68 

years) and did not allow us to measure samples from patients 

older than 68 years. To extend the age range up to 84 years of 

age, and thus capture the age group most severely affected by 

COVID-19, we included additional 58 patients from the previ-

ously described PA-COVID study, which enrolled SARS-CoV-

2-infected patients who were hospitalized either for isolation or 

treatment of the infection-related symptoms. 19 Analysis of spec-

imens collected from the prospective vaccination trial EICOV/ 

COVIMMUNIZE studies enabled integration of data from older 

non-infected controls (up to 86 years). 19,20 Control patients 

were tested negative for SARS-CoV-2 and had no clinical signs 

of an infection.

We focused on samples collected within 2 weeks of symptom 

onset, or infection in asymptomatic children, to identify immune 

cell patterns linked to early age-related symptom severity (mean 

days post-symptom onset, DPSO: children 5 ± 3.3, adults 7.7 ± 

4.5). COVID-19 severity was defined according to the World 

Health Organization (WHO) ordinal scale. 17,18,21 Tables S1 and 

S2 provide patient-level data, including DPSO, comorbidities, 

and assay group compositions.

Given our prior finding that dysregulated myeloid cells are a 

hallmark of severe COVID-19, we examined monocyte and den-

dritic cell (DC) responses using mass cytometry (CyTOF) on 

whole blood (Figures 1B–1E and S1A–S1C). 17 FlowSOM clus-

tering identified plasmacytoid (CD14 − CD123 + CD11c − ) and con-

ventional DCs (CD14 − CD123 − CD11c + ); classical, intermediate, 

and non-classical monocytes; and Ki67 + hematopoietic stem 

and progenitor cells (HSPCs) from pre-gated CD45 + CD15 − 

CD3 − CD56 − CD19 − cells. SARS-CoV-2 infection shifted mono-

cyte/DC cluster composition by age: infected children had 

more plasmacytoid dendritic cells (pDCs) and classical dendritic 

cells (cDCs) (Figure S1B) and higher proportions of HLA-

DR high CD11c + CD69 + non-classical monocytes (cluster 3; 

Figures 1D, S1A, and S1B). In contrast, infected adults had 

more HLA-DR low classical monocytes expressing CD10, CD69, 

and CCR6 (cluster 9).

Overall, monocyte and DC profiles differed markedly between 

age groups. Infected children showed higher expression of HLA-

DR, CD11c, and CD123, while adults had elevated CD69, 

CD226, CD10, CXCR3, and CCR6 (Figure S1C). HLA-DR levels 

across monocytes declined with age, especially after 60 

(Figure 1E, upper), while CCR6 expression increased with age 

(Figure 1E, lower). These findings indicate that monocyte re-

sponses to SARS-CoV-2 are age dependent.

Gradual age-dependent changes in the phenotype of 

infection-induced CD4 + T and B cells

To assess whether monocyte responses were linked to T cell dif-

ferences in SARS-CoV-2-infected children and adults, we per-

formed CD4 + T cell subclustering using CyTOF data 

(Figures 2A and S2A), identifying 19 clusters grouped into naive, 

central memory (CM), effector memory (EM), and terminally 

differentiated effector memory (TEMRA) subsets based on 

CD62L and CD45RO expression. Among them, peripheral helper 

clusters with high CCR6, CD69, and CD16 expression (clusters
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11 and 15) were enriched in infected adults in accordance to our 

previous findings (Figures 2B, 2C, and S2B). 18 Infected children 

showed higher frequencies of CD38 high CXCR5 high follicular 

helper T cells (cluster 8) and CD38 + naive CD4 + T cells (cluster 

12). Accordingly, CD38 expression was elevated in children, 

while CCR6 was higher in adults (Figure S2C). These markers 

showed opposing, linear age correlations, with crossover at

∼40 years (Figure 2D). This divergence was also observed be-

tween children and their own parents (Figure S2D), arguing 

against shared genetic or environmental causes.

We next analyzed B cell phenotypes (Figures 2E and S3A), 

identifying 15 clusters classified into transitional, naive, GCB-

like, double-negative (DN), and memory B cells as well as plas-

mablasts based on immunoglobulin (Ig)D, IgM, CD27, CD10, 

CD38, and CXCR5 expression. Infected adults had increased 

CD69-expressing DN-like B cells (clusters 1 and 6) and CD69 + 

GCB-like naive B cells (cluster 14) (Figures 2F, 2G, and S3B). 22 

Clusters 1 and 6 were CD11c + DN2-like atypical B cells, while 

cluster 14 contained low IgD- and CD21-expressing follicular B 

cells. 22,23

Thus, both follicular and extrafollicular B cell responses were 

promoted in infected adults, linked with strong upregulation of 

CD69. These changes were associated with more IgM − plasma-

blasts (cluster 8).

In contrast, infected children had more transitional (cluster 3), 

naive (cluster 5), and GCB-like naive B cells (cluster 11), indi-

cating exclusive follicular responses (Figures 2G, S3B, and 

S3D). IgD expression was higher in B cells from children 

(Figure S3D). Similar to T cells, these patterns were mirrored be-

tween children and their parents (Figure S3C), with CXCR5 and 

CD21 decreasing and CD69 increasing with age (Figure 2H; 

Figure S3E).

To rule out sampling time as a confounder, we examined the 

impact of DPSO. Eleven of 58 infected children were asymp-

tomatic, making DPSO unavailable. For symptomatic cases, 

CyTOF clusters showed no consistent DPSO correlation (Men-

deley Figure 1). Later sampling time points did not reverse 

age-specific CD4 + T cell phenotypes (Figures 2I and 2J). For 

instance, child-specific clusters (e.g., 5 and 8) remained ab-

sent in adults, and adult-specific clusters (e.g., 11 and 15) 

stayed low in children. While initial CD4 + T cell activation

was comparable, children exhibited faster contraction 

(Figure 2J).

Finally, averaged marker intensities across monocytes, CD4 + 

T cells, and B cells confirmed age-related activation shifts 

(Figure S3F). CD38 and CXCR5 were higher in children’s lympho-

cytes, whereas CD69 and CCR6 were higher in adult lympho-

cytes and monocytes, supporting a system-wide age-associ-

ated immune response pattern.

Age-dependent shift from type I IFN responsive to 

inflammatory monocytes

Upregulation of HLA-DR expression (Figures 1; S1) can be 

induced by type I and II IFN signaling. 24 To investigate potential 

differences in IFN responsiveness between cells from children 

and adults, we performed single-cell RNA sequencing 

(scRNA-seq) of peripheral blood mononuclear cells (PBMC) 

samples (Figures S4A–S4C) with subsequent subclustering of 

the monocytes (Figures 3A and S4D). We identified 11 mono-

cyte clusters. The cell clusters were initially assigned to known 

differentiation states based on the established gene markers 

CD14 and FCGR3A into classical (CD14 + FCGR3A − ), intermedi-

ate (CD14 + FCGR3A + ), and non-classical (CD14 low FCGR3A + ) 

monocytes. We used top 10 differentially expressed markers 

in each cluster, like HLADR, to further annotate the populations 

(Figure 3C, only infection-induced clusters shown, complete 

cluster-specific marker list in Table S4).

HLA-DR low classical monocytes were increased in infected 

adults (clusters 2 and 4), whereas ISG + intermediate (cluster 1) 

and non-classical (cluster 7) monocytes were observed almost 

exclusively in children (Figures 3A, 3B, S4D, and S4E). Genes 

characterizing those clusters included IFI27, IFI6, and ISG15 

but also SIGLEC1, which had been previously linked with mild 

COVID-19. 25 Importantly, type I IFN serum concentrations 

were indistinguishable between children and adults, indicating 

a difference in IFN responsiveness, not production. (Figure S4G). 

Notably, ISG + non-classical monocytes were expanded pri-

marily in asymptomatic children, suggesting enhanced IFN 

responsiveness may reduce disease severity (Mendeley 

Figure 2). HLA-DR low monocyte clusters observed in adults 

aligned with our CyTOF findings (Figures 1D and 1E). Cluster 4 

also showed high transcription of proinflammatory mediators

Figure 1. Distinct age-dependent patterns of monocyte activation are characterized by opposite HLA-DR and CD11c versus CCR6 

expression

(A) Overview of the study cohort and methodological pipeline. Blood samples were collected from SARS-CoV-2-infected children and adults as well as controls 

spanning an age range from 1 to 86 years. Whole-blood mass cytometry (CyTOF) and scRNA-seq combined with VDJ (Variable, Diversity, and Joining)-seq-

based clonotype identification were used to determine age-specific alterations in the monocyte, T cell, and B cell compartment. The obtained results together 

with serum antibody profiles were used to develop hypotheses on their functional properties, inducing mechanisms and transcriptional control, which were tested 

in ex vivo cultures. Detailed information on samples included in all reported assays can be found in Table S1. Additional cohort summary is included in Table S2. 

Multiple icons are used throughout the paper to identify data from different experiments (Methods legend in the lower right corner of the figure).

(B) UMAP (Uniform Manifold Approximation and Projection), showing pre-gated monocyte and dendritic cell (DC) populations from the CyTOF dataset. 18 

clusters have been produced using a semi-supervised approach with FlowSOM algorithm.

(C) UMAPs, showing the location of cells belonging to the respective group (colored in, whereas gray identifies cells in other groups). Gray outlines indicate cluster 

regions enriched in infected children or adults.

(D) Boxplots, showing relative abundance of infection-induced clusters resulting from the FlowSOM algorithm, calculated per sample within all monocytes and 

DCs from the CyTOF data. Kruskal-Wallis + Wilcoxon p values.

(E) Scatterplots, showing mean Z score (calculated by subtracting population mean from value divided by standard deviation) normalized HLA-DR and CCR6 

expression in relationship to patient age for infected patients (linear model fitted to data and Spearman’s rank correlation coefficient in black) within monocyte and 

DC CyTOF data.
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S100A8/9/12 and chemokines CXCL8 and CXCL2 (Figures 3C 

and 3D).

Gene set enrichment analysis (GSEA) of adult monocytes 

revealed enrichment of ‘‘neutrophil-mediated immunity’’ (Figure 

S4F), consistent with elevated serum CXCL8, interleukin (IL)-

1b, IL-6, and tumor necrosis factor (TNF) in adults versus chil-

dren (Figure S4G). In contrast, children’s ISG + monocytes 

showed high STAT1/STAT2 expression, and STAT2 was broadly 

elevated across all monocytes in infected children (Figure 3D), 

confirming increased IFN responsiveness.

Molecular characterization of SARS-CoV-2 infection-

induced T cells reveals age-dependent differences in 

STAT involvement and differentiation

We next asked whether altered type I IFN responsiveness could 

also account for the age-dependent T cell phenotypes and sub-

clustered T cell receptor (TCR)αβ + T cells from the PBMC 

scRNA-seq data (Figures 4A and S5A).

Clusters were first classified by coreceptor expression as 

CD4 + , CD8 + , or CD4 + /CD8 + (Figure S5). Regulatory T cells 

(FOXP3 + IL-2RA high ) and mucosal-associated invariant T cells 

(KLRB1 high GZMK high CCR6 + RORC + ) were identified based on 

transcript profiles. Remaining T cells were grouped into naive 

(SELL high CCR7 high HOPX − ), CM (SELL high CCR7 low HOPX − ), EM 

(SELL low CCR7 low HOPX + ), and cytotoxic lymphocytes (CTLs, 

CD8A + CD8B + GZMA high GZMB high PRF1 high ), using standard 

markers (Figure S5A).

Finally, top 10 differentially expressed genes per cluster were 

used to refine annotations based on mRNA profiles, such as 

ISG expression or high STAT3 and SOCS3 levels (Figure 4C; 

Table S4). Among 21 T cell clusters, ISG + CD4 + and CD8 + clusters 

(8, 17, and 18) were enriched in children, while STAT3 high 

SOCS3 high , PD1 high , and proliferative clusters (2, 7, 12, and 15) 

were predominant in adults (Figures 4B, 4C, and S5B). 

Differential gene expression showed elevated PRDM1, BCL3, 

and SOCS3 in adult T cells (Figure 4D). PRDM1 (BLIMP-1) in-

hibits follicular helper T cell differentiation, supporting CyTOF 

findings of reduced CXCR5 and increased CCR6 in adults. 26–28

SOCS3, a STAT3-inducible inhibitor of JAK-STAT signaling, 

limits STAT1 activation. 29–31 STAT3 further amplifies its own 

transcription, forming a positive feedback loop. 29,32 In contrast, 

canonical type I IFN signaling via the ISGF3 complex induces 

STAT1, STAT2, and IRF9 expression. 30 Accordingly, child-en-

riched ISG + clusters showed high STAT1/2 expression, while 

adult-enriched clusters showed elevated STAT3, SOCS1, and 

SOCS3 (Figure 4C).

BCL3, a known STAT3 activator, was also increased in adults 

and linked to phosphorylated STAT3 (Figure 4D). 33,34 As in 

monocytes, T cells from adults showed upregulation of proin-

flammatory genes S100A8 and S100A9. GSEA confirmed the se-

lective enrichment of ISG + T cells in infected children (Figure 4E). 

Comparing infection-induced TCRab + T cells, adults exhibited 

higher average STAT3, SOCS1, and SOCS3 expression, whereas 

STAT1 and STAT2 were elevated in cells from infected children 

(Figure S5C), highlighting divergent IFN signaling with age.

Divergent molecular profiles of infection-induced B 

cells translate into different plasmablast differentiation 

programs

To understand whether the disparate B cell phenotypes could also 

be aligned to differences in type I IFN responsiveness, we analyzed 

gene transcription in CD19 + B cells in our scRNA-seq data 

(Figures 4F–4J, S5D, and S5E). We identified 13 B cell clusters, 

which we merged into 8, based on transcriptional similarity 

(Figures 4F–4H, S5D, and S5E). We first assigned the clusters to 

B cell differentiation states using established markers like transi-

tional (IGHD + IGHM + CD38 + CD24 + ), naive (IGHD + IGHM + CD38 − ), 

class-switched memory ( IGHD -IGHG + IGHA + CD27 high ), and plas-

mablasts (CD19 low MS4A1 -CD38 high IGHG + IGHA + ) (Figure S5D). 

Top 10 differentially expressed markers in each cluster, like 

CD69, were used to further subdivide them (Figures 4H; Table 

S4). Atypical B cells lacking CR2 (CD21) mRNA were annotated 

as DN (IGHD -CD27 − ) or DN-like activated (CD27 − CD69 high ) cells. 

Consistent with CyTOF data, we observed increased CD69 + B 

cells in infected adults (cluster 6; Figures 4F, 4G, S5D, and S5E). 

These cells resembled DN B cells lacking CD27 and CR2 but

Figure 2. Gradual age-dependent change in the phenotype of infection-induced CD4 + T cells and B cells

(A) UMAP, showing pre-gated CD4 + T cells from the CyTOF dataset. 19 clusters have been produced using a semi-supervised approach with FlowSOM al-

gorithm. UMAP presents all the patients that were part of the dataset and used for clustering, including follow-up measurements of some patients done 

approximately 2 weeks and 6 months after the first, acute infection phase measurement (details in Table S1).

(B) UMAPs, showing the location of cells belonging to the respective group (colored in, whereas gray identifies cells in other groups). Gray outlines indicate cluster 

regions enriched in infected children or adults.

(C) Boxplots, showing relative abundance of infection-induced clusters resulting from the FlowSOM algorithm, calculated per sample within all CD4 + T cells from 

the CyTOF data. Kruskal-Wallis + Wilcoxon p value.

(D) Scatterplots, showing mean Z score normalized CD38 and CCR6 expression in relationship to patient age for infected patients (linear model fitted to data and 

Spearman’s rank correlation coefficient in black) within CD4 + T cell CyTOF data.

(E) UMAP, showing pre-gated B cells from the CyTOF dataset. 15 clusters have been produced using a semi-supervised approach with FlowSOM algorithm.

(F) UMAPs, showing the location of cells belonging to the respective group (colored in, whereas gray identifies cells in other groups). Gray outlines indicate cluster 

regions enriched in infected children or adults.

(G) Boxplots, showing relative abundance of infection-induced clusters resulting from the FlowSOM algorithm, calculated per sample within all B cells from the 

CyTOF data. Kruskal-Wallis + Wilcoxon p values.

(H) Scatterplots, showing mean Z score normalized CXCR5 and CD69 expression in relationship to patient age for infected patients (linear model fitted to data and 

Spearman’s rank correlation coefficient in black) within B cell CyTOF data.

(I) Time-dependent stacked line graphs, displaying the relative mean cluster abundance of all activated CD4 + T cell clusters determined by CyTOF. Activated 

clusters were defined as clusters having above-average Z-scored expression of activation markers (CD25, HLA-DR, CD38, CD137, CD69, and Ki67) compared to 

other clusters. Patient group color-coded figurines on the right-hand side point out cluster accumulation patterns.

(J) Scatterplot, showing the sum of the relative abundance of all activated CD4 + T cell clusters determined by CyTOF.
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retained low IGHD and CXCR5 transcription—likely a mix of 

GCB-like and DN-like CD69 + cells seen by CyTOF (clusters 14 

and 1; Figure S3A).

CD69 expression was higher across all infection-induced B 

cells in adults (Figure 4I). In contrast, infected children showed 

increased transitional B cells (cluster 5, CD24 + MME + CD38 + 

CR2 + ) and IFN-responsive naive B cells (cluster 4, IGHD +

IGHM + CR2 + ISG + ), matching CyTOF-identified transitional and 

naive-like populations (clusters 3 and 5; Figure S3B).

Cluster 4 (ISG + , GCB-like naive) also showed high CXCR5 and 

likely included GCB-like B cells seen in CyTOF (cluster 11). An 

additional feature in children was IL3RA (CD123) expression, ab-

sent in adult B cells. Plasmablast frequencies were similar 

across age groups.

A

D

CB

Figure 3. Age-dependent shift from type I IFN responsiveness to increased inflammatory potential

(A) UMAP, showing monocyte cells, subset from the PBMC scRNA-seq data. 11 clusters have been produced using a graph-based approach as implemented in 

Seurat package (k-nearest-neighbors [KNN] graph with Louvain community detection). Some clusters share annotation due to phenotypical similarity and 

accumulation pattern and are treated as one population for abundance testing in S3E. Clusters annotated as ‘‘dropped’’ were of low quality (as concluded from 

inspecting number of features, no. of counts, and percentage of mitochondrial genes as well as other population-specific genes).

(B) UMAPs, showing the location of cells belonging to the respective group (colored in, whereas gray identifies cells in other groups). Gray outlines indicate cluster 

regions enriched in infected children or adults.

(C) Dotplot, showing scaled average expression of genes in monocyte clusters, increased with infection (1, 4, and 7) in cells belonging to infected patients. 

A horizontal line splits the dotplot in two parts; genes above the line were curated based on the presence of clusters with pronounced ISG signature and 

include other genes useful for annotation; genes below the line were found to be differentially expressed between the clusters (FindMarkers Seurat 

function).

(D) Volcano plot, showing the results of differential expression (DE) analysis of monocytes from clusters expanded with infection (1, 4, and 7) using DESeq2. 

Significantly enriched genes (baseMean counts over 50 and adjusted p value < 0.05, a total of 189 genes) are colored green, and 20 significant genes with the 

highest absolute log2 fold change are labeled. Additional significant genes, tangential to other findings, were labeled ad hoc.
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A more detailed comparison of B cells from infected children 

and adults accumulating in the clusters described earlier re-

vealed further important transcriptional differences (Figure 4H). 

First, the ISG signature of B cell cluster 4 was much more pro-

nounced in samples of infected children, whereas expression 

of lead genes (CD83, CD69, and TNFRSF13C, encoding for the 

BAFF receptor) within DN-like, activated, CD69 high B cells (clus-

ter 6) was increased in adults. Expression of CD83 and CD69 

was higher in adults compared to children when analyzing the to-

tal number of B cells contained in all infection-induced clusters 

(Figure 4I) highlighting the concordance with the CyTOF 

(Figure S3F) data. Plasmablasts from infected adults showed lit-

tle ISG15 expression but prominent SOCS3 transcription 

(Figure 4H). Those transcriptional differences between plasma-

blasts of infected children and adults could indicate diverging 

differentiation routes.

Indeed, analyzing the clonal overlap of B cell receptors be-

tween infection-induced B cell populations and plasmablasts re-

vealed that children exclusively generated plasmablasts from 

transitional and ISG + B cells, whereas both DN and DN-like, acti-

vated, CD69 high B cell populations in addition to ISG + B cells 

contributed to the plasmablast pool in infected adults 

(Figure 4J). This might explain the enhanced SOCS3 transcrip-

tion, which is known to be increased in CD21 − DN B cells due 

to STAT3 overactivation. 35

Consequences for local T cell activation and antibody 

profiles

To establish a link between the observed systemic age-depen-

dent differences and local responses, we reanalyzed T cells

from our previously published nasal swab scRNA-seq data 

from samples of infected patients and controls. 8 Subclustering 

of TCRab + T cells resulted in 8 main clusters (Figure S6A). Like 

PBMC TCRab + T cells, the cells were classified based on the 

coreceptor transcription as CD4 + or CD8 + and broadly catego-

rized using established T cell differentiation markers into naive, 

CM, EM, and CTLs (Figure S6A). The information of the top 10 

differentially expressed markers in each cluster was used to 

further annotate the populations according to their cluster-spe-

cific mRNA expression patterns (full cluster-specific marker list 

in Table S4).

From those, T cell cluster 6 was only enriched in infected chil-

dren, whereas clusters 0, 4, 5, and 7 were enriched in both in-

fected children and infected adults (Figures 5A and S6B). Clus-

ters 0 and 7 were ISG + CD8 + and CD4 + T cell clusters, 

respectively (Figures 5A and S6A). Transcription of IFN response 

genes and especially of CD38 was higher in cluster 7 T cells from 

infected children in comparison to infected adults (Figure 5A). In 

contrast, cluster 0 and 4 T cells from infected adults showed 

increased TNF gene expression. Consequently, plotting mean 

scaled expression of CD38 and TNF in infection-induced 

expanded clusters against age revealed significant correlations. 

Similar to the systemic response shown before (Figure 2D), we 

detected a negative correlation of CD38 expression in mucosal 

T cells with age, whereas proinflammatory TNF transcription 

gradually increased with age (Figure 5B).

Next, we studied whether the diverse plasmablast differentia-

tion programs were linked with age-dependent differences in 

antibody responses. Transcriptional analysis of Ig heavy-chain 

genes in plasmablasts revealed an increased relative expression

Figure 4. Molecular characterization of infection-associated TCRab + T cells and B cells indicates increased STAT3 involvement and altered 

differentiation during aging

(A) UMAP, showing TCRab + T cells, subset from the PBMC scRNA-seq data. 21 clusters have been produced using a graph-based approach as implemented in 

Seurat package (KNN graph with Louvain community detection). Clusters annotated as ‘‘dropped’’ were of low quality (as concluded from inspecting number of 

features, no. of counts, and percentage of mitochondrial genes as well as other population-specific genes) (details in Table S1).

(B) UMAPs, showing the location of cells belonging to the respective group (colored in, whereas gray identifies cells in other groups). Gray outlines indicate cluster 

regions enriched in infected children or adults.

(C) Dotplot, showing scaled average expression of genes in TCRab + T cell clusters, increased with infection (2, 7, 8, 12, 15, 16, 17, and 18) for cells of infected 

patients. A horizontal line splits the dotplot in two parts; genes above the line were curated based on the presence of clusters with pronounced ISG signature and 

include other genes useful for annotation; genes below the line were found to be differentially expressed between the clusters (FindMarkers Seurat function).

(D) Volcano plot, showing the results of differential expression (DE) analysis of TCRab + T cells from clusters expanded with infection (2, 7, 8, 12, 15, 16, 17, and 18) 

using DESeq2. Significantly enriched genes (baseMean counts over 50 and adjusted p value < 0.05, a total of 464 genes) are colored green, and 20 significant 

genes with the highest absolute log2 fold change are labeled. Additional significant genes, tangential to other findings, were labeled ad hoc.

(E) Gene set enrichment analysis (GSEA) applied to TCRab + T cells from the PBMC scRNA-seq experiment and clusters, expanded with infection (2, 7, 8, 12, 15, 

16, 17, and 18). GSEA was done using genes from the infected adults—infected children comparison with baseMean counts > 50 (total of 5,181 genes). R 

package fgsea was used with Reactome gene list R-HSA-1169410 (Table S4). Genes are shown as ticks on a bold black line and ranked by log2 fold change.

(F) UMAP, showing B cells, subset from the PBMC scRNA-seq data. 13 clusters have been produced using a graph-based approach as implemented in Seurat 

package (KNN graph with Louvain community detection). Some clusters share annotation due to phenotypical similarity and accumulation pattern and are treated 

as one population for abundance testing in S4E. Clusters annotated as ‘‘dropped’’ were of low quality (as concluded from inspecting number of features, no. of 

counts, and percentage of mitochondrial genes as well as other population-specific genes).

(G) UMAPs, showing the location of cells belonging to the respective group (colored in, whereas gray identifies cells in other groups). Gray outlines indicate cluster 

regions enriched in infected children or adults.

(H) Dotplot, showing scaled average expression of genes in B cell clusters, increased with infection (4, 5, 6, 8, and 12) for cells of infected patients. A horizontal line 

splits the dotplot in two parts; genes above the line were curated based on the presence of clusters with pronounced ISG signature and include other genes useful 

for annotation; genes below the line were found to be differentially expressed between the clusters (FindMarkers Seurat function).

(I) Volcano plot, showing the results of differential expression (DE) analysis of B cells from clusters expanded with infection (4, 5, 6, 8, and 12) using DESeq2. 

Significantly enriched genes (baseMean counts over 50 and adjusted p value < 0.05, a total of 482 genes) are colored green, and 20 significant genes with highest 

absolute log2 fold change are labeled. Additional significant genes, tangential to other findings, were labeled ad hoc.

(J) Stacked bar chart, showing proportions of cluster labels, given to the cells with callable B cell receptor (BCR) clonal identity that overlaps with at least one of the 

cells in the plasmablast population (cluster 12), calculated over all expanded B cell clusters.
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Figure 5. Consequences for local T cell responses and generated antibody profiles

(A) Dotplot, showing scaled average expression of genes in TCRab + T cells, subset from the nasal swab scRNA-seq data. 8 Clusters, increased with infection (0, 4, 

5, 6, and 7). A total of 8 clusters have been produced using a graph-based approach as implemented in Seurat package (KNN graph with Louvain community 

detection). A horizontal line splits the dotplot in two parts; genes above the line were curated based on the presence of clusters with pronounced ISG signature 

and include other genes useful for annotation; genes below the line were found to be differentially expressed between the clusters (FindMarkers Seurat function).

(B) Scatterplots showing CD38 and TNF genes transcription (average scaled expression in clusters 0, 4, 5, 6, and 7, expanded with infection) for each donor, 

plotted against donor’s age, using TCRab + T cells, subset from nasal swab scRNA-seq data. 8 Linear models fitted to the data points and Spearman’s rank 

correlation coefficients.

(C) Stacked bar chart showing relative expression strength of heavy-chain genes encoding for the different IgG and IgA isotypes in plasmablasts (B cell cluster 12, 

PBMC scRNA-seq experiment). Plasmablasts, expressing either of the heavy-chain genes, were pre-selected. Expression values for each gene were calculated 

and normalized to the total expression of all heavy-chain genes.

(D) Boxplots of S1-specific IgG (left) and IgA (right) antibody titers for the acute infection phase and follow-up measurements done approximately 2 weeks and 

6 months later. Titers for second and third time points are normalized to the first time point for each patient (fold change and ratio). Wilcoxon p values.
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of IgA isotypes in samples of children in comparison to those 

from adults, which had higher expression of IgG and especially 

complement-fixing IgG1 and IgG3 isotypes (Figure 5C). 

Studying antibody responses in serum of infected patients, 

SARS-CoV-2-infected adults showed a swift anti-S1 IgA and 

IgG antibody response during the first 2 weeks after symptom 

onset (visit 1, DPSO − 3–19; Figure 5D), which was significantly 

enhanced, compared to infected children. Although children re-

sponded with a delay, we detected a strong increase of IgA pro-

duction at later time points (visits approximately 2 weeks after 

the first, DPSO 12–30, and approximately 6 months after the first, 

and DPSO 123–208; Figure 5D).

Age-dependent immune cell activation profiles are 

independent of comorbidities and conserved in a 

hamster infection model

Different risk factors have been established for COVID-19 

severity. 36 In order to exclude comorbidities as driving factors 

of the observed age-dependent phenotypes, we tested for con-

founding effects using linear regression modeling.

Using data from the CyTOF measurements, we displayed re-

sults from the CD4 + and B cell profiling of SARS-CoV-2-infected 

patients in a scatterplot (Figure S6C). Importantly, the presence 

of comorbidities and/or obesity did not significantly alter the 

linear correlation between age and CD38 and CCR6 expression 

by CD4 + T cells or CXCR5 and CD69 expression by B cells, indi-

cating that the differences that we identified in our study are 

indeed driven by age and not a function of confounding 

comorbidities.

Importantly, patient stratification according to disease severity 

showed that, even when comparing symptomatic children to 

mildly affected adults, the age-dependent patterns of infection-

induced monocyte, CD4 + , and B cell subsets remained (see 

Mendeley Figure 2). However, the samples from the severely 

affected patients showed a more pronounced phenotype.

To further substantiate our findings, we used samples from a 

SARS-CoV-2 hamster model, which also shows age-dependent 

infection severity. 37 We analyzed bulk RNA sequencing of whole 

blood from young (6 weeks) and old (32–34 weeks) infected ham-

sters and uninfected controls. 37 We tested whether the human 

gene sets could distinguish young from old infected hamsters, 

and, indeed, they clustered separately (Figure S6D). Young ham-

sters showed elevated ISGs (Isg15, Oas3, Ifit1, and Irf7), while 

old ones had higher Il1b and S100 gene expression, closely 

resembling transcription profiles of human monocytes and 

T cells (Figures 3C, 3D, 4C, and 4D). None of these transcripts 

were present in uninfected samples. These results confirm 

age-dependent immune responses to SARS-CoV-2 in a 

controlled experimental system without comorbidity-related 

confounding.

Disturbed type I IFN responsiveness reduces formation 

of CD38 + CD4 + T cells and enhances cytokine 

production in older individuals

To test whether divergent T cell phenotypes in children and 

adults reflect different type I IFN responsiveness, we cultured 

PBMCs from uninfected donors of both age groups 

(Figure 6A). Cells were stimulated with Staphylococcal entero-

toxin B (SEB) as a TCR stimulus, with or without CpG2216—an 

oligonucleotide that activates TLR9 and induces IFNa, 

mimicking viral infection. 38,39

CpG increased CD38 expression on CD4 + T cells, but signifi-

cantly only in children (Figure 6B). This upregulation was repro-

duced by recombinant IFNa and blocked by the type I IFN decoy 

receptor B18R (Figure 6C). Notably, the effect was independent 

of naive/memory T cell proportions; both compartments in chil-

dren, but not in adults, significantly upregulated CD38 

(Figure 6D). CpG triggered similar IFNa levels in PBMCs from 

both groups, suggesting altered responsiveness rather than pro-

duction differences (Figure 6E). Thus, activated T cells in adults 

exhibit age-related resistance to type I IFN.

CD38 depletes nicotinamide adenine dinucleotide (NAD), 

limiting T cell activation. 40 Its enzymatic role boosts regulatory 

T cell (Treg) activity while suppressing cytotoxic, Th1, and 

Th17 functions. 41–43 Type I IFN also modulates T cell cytokine 

output, notably IL-17A and IL-21. 44–46 Therefore, age-related 

IFN responsiveness likely affects inflammatory cytokine 

regulation.

Figure 6. Mechanistic in vitro studies link age-dependent rewiring of type I IFN responsiveness with in vivo-detected opposite activation 

profiles

(A) Overview of the workflow used to study the responsiveness to type I IFN and IL-1b. PBMCs from uninfected children and adults were stimulated with either 

SEB or a combination of SEB, ODN CpG2216, B18R, and recombinant IFNa. In a parallel experiment series, different concentrations of IFNa as well as com-

binations of SEB, ODN CpG2216, IL-1b, and IL-1b inhibitor anakinra were tested. After 4 days of incubation, phenotypic differences in activation marker 

expression were determined by flow cytometry, while cell culture supernatants were used for cytokine and chemokine quantification. Experiments focused on 

IL-1b and anakinra influence were only measured in cytokine proteomics.

(B) Boxplot of arcsinh-transformed median CD38 fluorescence intensity in proliferating CD4 + T cells, showing influence of CpG2216-mediated activation on CD38 

expression. Wilcoxon test p values. Dropout in uninfected children group SEB condition is due to low cell number.

(C) Boxplot of arcsinh-transformed median CD38 fluorescence intensity in proliferating CD4 + T cells, showing influence of CpG2216-mediated activation and 

IFNa (30 ng/mL) on CD38 expression in children. Wilcoxon test p values. Dropouts in SEB and SEB+IFNa perturbations are due to low cell number.

(D) Boxplots of CD38 median signal intensity in proliferating CD4 + T cells, separated into CD45RA − (violet filling) memory and CD45RA + naive subpopulations, 

showing the difference in CD38 upregulation in response to CpG2216-mediated activation and IFNa release between memory and naive CD4 + T cells. Wilcoxon 

test p values. Dropout in uninfected children, SEB perturbation is due to low cell number.

(E) Boxplot of IFNa concentration measured in cell culture supernatant and normalized to values detected in SEB condition for each patient, showing the 

effectiveness of CpG2216 in provoking IFNa release as well as of B18R in reducing the concentration of soluble IFNa. Dropout in uninfected children is due to low 

cell number.

(F) Heatmap, showing scaled average log concentration of the 18 cytokines measured in co-culturing experiments for different perturbations using PBMC.

(G) Line plots, showing the dependence of IFNg, IL-21, and IL-1b concentrations on the IFNa concentration. Wilcoxon p values.

(H) Scatterplot, illustrating the correlation between donor age and IL-1b concentration in supernatant when PBMCs are stimulated with SEB and CpG.
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We tested this by stimulating PBMCs with SEB and CpG and 

profiling 18 cytokines, chemokines, and S100A8/A9, followed by 

unsupervised clustering (Figure 6F), leading to detection of four 

clusters:

In the first cluster, IL-2, IL-4, IL-23, and CXCL10 increased with 

CpG in both age groups.

In the second cluster, IL-12p70, IL-5, and IL-13 were equally 

induced by SEB but suppressed by CpG. The suppression 

was IFN dependent and could be reversed by B18R.

In the third cluster, IL-17A, IL-6, S100A8/A9, IFNg, IL-21, and 

CXCL8 were also reduced by CpG, but levels were slightly higher 

in adult cultures (IL-17A p = 0.015, IL-6 p = 0.049, S100A8/A9 p = 

0.041, IFNg p = 0.066, IL-21 p = 0.11, and CXCL8 p = 0.27). 

Notably, CpG increased IFNg and IL-21 only in adults but 

reduced S100A8/A9 and CXCL8 only in children—mirroring 

CD38 patterns (Figures 6B–6D). Dose-response analysis 

confirmed that IFNg and IL-21 were more IFNa sensitive in chil-

dren (Figure 6G).

In the fourth cluster, IL-1b, IL-1a, IL-9, and TNF were more 

abundant in adult cultures (IL-1b p = 0.006, IL-1a p = 0.012, 

IL-9 p = 0.049, and TNF p = 0.066). Even small amounts of 

IFNa significantly reduced IL-1b in children’s samples but not 

adults’ (Figure 6G). IL-1b, TNF, and IL-9 levels also positively 

correlated with age (Figure 6H; TNF R = 0.47, p = 0.032; IL-

9 R = 0.45, p = 0.038).

Type I IFN and IL-1 are known antagonists. 47,48 To test 

whether IL-1 counteracts IFN-mediated cytokine suppression, 

we added IL-1 to cultures with type I IFN (Figure 6A, lower 

cohort). IFNa alone suppressed IL-6, IL-9, and IL-17A 

(Figure S7), but co-addition of IL-1b restored their production. 

Conversely, blocking IL-1 with anakinra reduced IL-17A in 

SEB+CpG cultures, while IL-1b addition enhanced IL-6, IL-9, 

and IL-17A. No such IL-1-IFN interplay was seen for IL-5. 

Higher in vitro cytokine levels in adult PBMCs mirrored in vivo 

data showing elevated IL-1b, IL-6, CXCL8, and TNF in serum 

from infected adults (Figure S4G), upregulated S100A8/A9 in 

adult monocytes and CD4 + T cells (Figures 3D and 4D), and 

increased TNF in nasal T cells (Figure 5B).

Enhanced STAT3 activation characterizes IFNa 

signaling in T and B cells during aging

Our transcriptional analyses indicated a shift from a predominant 

STAT1 to STAT3 activity in T and B cells from SARS-CoV-2-in-

fected adults. To confirm the altered balance, we determined 

the amount of phosphorylated STAT1 (pSTAT1) and STAT3

(pSTAT3) by flow cytometry in the in vitro culture system 

(Figures 7A and 7B). SEB stimulation alone did not lead to an 

altered balance of STAT1 and STAT3 activation in CD4 + T and 

B cells from children and adults (Figure 7B). Addition of IFNa 

led to an increase in the pSTAT1 to pSTAT3 ratio in PBMC cul-

tures from children. In contrast, adult cells responded to IFNa 

stimulation with enhanced STAT3 activation maintaining a lower 

pSTAT1/pSTAT3 ratio.

Interestingly, the differences in the balance between STAT1 

and STAT3 involvement were also apparent ex vivo as we 

observed an age-dependent gradual decline in the ratio of 

STAT1/STAT3 transcription for infection-induced (expanded) 

CD4 + T cells as well as B cell populations (Figure 7C). Conse-

quently, SOCS3, as a STAT3 target gene, followed an opposite 

pattern.

To functionally validate the importance of type I IFN signaling 

for the disparate phenotypes of CD4 + T and B cells during SARS-

CoV-2 infection, we investigated samples from individuals with 

neutralizing antibodies to type I IFN (Figures 7D and 7E). Indeed, 

both CD4 + T cells and B cells from patients with autoantibodies 

to IFN showed an extreme ‘‘aged’’ phenotype, characterized by 

the highest median abundance of both adult-specific CD4 + T cell 

populations (CyTOF cluster 11 TIGIT + CD137 + HLA-DR + CCR6 + 

CM and cluster 15 Lag3 + TIGIT + CD69 + CCR6 + CD16 + TEMRA), 

lowest median abundance of GCB-like cells (CyTOF cluster 11 

IgD + CD21 + CXCR5 high ), and highest proportion of plasmablasts 

in total B cells (CyTOF cluster 8 IgM − CD27 + CD38 + Ki67 + ) among 

the infected patient samples.

In summary, the altered T and B cell phenotypes in samples 

from infected adults could be linked to a gradual loss of canon-

ical type I IFN signaling via STAT1 and a shift toward STAT3 

signaling.

DISCUSSION

Different clinical manifestations of viral respiratory infections 

across age groups are well known but poorly understood. 10 

Before SARS-CoV-2, comparing immune responses across 

ages was challenging due to pre-existing immunity in adults. Us-

ing a unique patient cohort, we systematically compared innate 

and adaptive immune responses to the same primary infection in 

children and adults. 5 Our study reveals distinct immune profiles 

and a shift from STAT1/STAT2-mediated antiviral ISG responses 

to STAT3-driven inflammatory response across immune cell 

types.

Figure 7. Altered type I IFN signaling and gradual involvement of STAT3 activation in stimulated T and B cells of older individuals

(A) Overview of the workflow studying the phosphorylation dynamics of STAT1 and STAT3 in T cells and B cells from children and adults. PBMCs from control 

children and adults were stimulated with either SEB or a combination of SEB and recombinant IFNa. After 25 min of incubation, levels of phosphorylated STAT1 

and STAT3 were determined by flow cytometry for pre-gated populations.

(B) Boxplots, showing the ratio of pSTAT1 to pSTAT3 (based on measured median fluorescence intensity) for CD4 + T cells and B cells of control children and 

adults following 25-min incubation with SEB or SEB and IFNa. Wilcoxon p value.

(C) Scatterplots of STAT1/STAT3 transcription ratio and SOCS3 transcription (average scaled expression in clusters expanded with infection) for each donor, 

plotted against donor’s age, using PBMC scRNA-seq experiment data (details in Table S1). CD4 + T cells were a subset of the total TCRab + pool using CD8A and 

CD8B genes (assigned CD4 FLAG, if cell is negative for both). Spearman’s rank coefficients.

(D) Boxplots showing relative abundance of infection-induced clusters 11 and 15 from the FlowSOM algorithm, calculated per sample within all CD4 + T cells from 

the CyTOF data. Wilcoxon p values.

(E) Boxplots, showing relative abundance of infection-induced clusters 8 and 11 resulting from the FlowSOM algorithm, calculated per sample within all B cells 

from the CyTOF data. Wilcoxon p values.
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Alongside in vitro evidence, we show an age-associated rewir-

ing of type I IFN signaling, shifting from canonical IFN responses 

to proinflammatory STAT3 signaling, most prominent after age 

55, mirroring the age-dependent risk of severe COVID-19. In chil-

dren, strong ISG induction was linked to HLA-DR high monocytes 

and follicular T/B cell responses that favored IgA-expressing 

plasmablasts. In contrast, aging led to HLA-DR low , CXCL8-

and S100A8/A9-expressing monocytes, CCR6 + CD69 + T helper 

cells, and atypical B cells, resulting in faster, complement-bind-

ing IgG-dominated responses.

We confirmed prior findings of reduced circulating pDCs with 

age but showed that IFNa production remains intact in older 

adults, suggesting altered responsiveness, rather than diminished 

production, underlies age-related immune differences. We 

explored whether IFN signaling itself was rewired. Type I IFN bind-

ing activates JAK1 and TYK2, triggering STAT1/2 phosphorylation 

and ISGF3-mediated ISG transcription. 49 However, type I IFNs 

can also activate STAT3, which may dampen canonical signaling 

by sequestering STAT1 or inducing negative regulators such as 

SOCS1 and SOCS3, thereby modulating the cell’s responsive-

ness to type I IFNs. 29–32,49–51 Thus, the balance between STAT1/ 

STAT2 versus STAT3 engagement determines the signaling 

output of type I IFN signaling. Our data show diminished STAT1 

activation and increased STAT3 engagement in older adults. 

Aging-associated effects like failure to exclude SHP-1 from 

the JAK/STAT complex to ensure sustained STAT1 signaling 

and enhanced STAT3 activation in CD8 + T cells leading to severe 

simian immunodeficiency virus infections have been previously 

described. 52,53 The central role of the aberrant STAT signaling 

in COVID-19 pathology is also a known concept. 54 We provide 

evidence that it is not limited to infected cells but that the ag-

ing-related skew toward STAT3 also applies to cell of the im-

mune system.

Extracellular modulators also matter. IFN and IL-1 counter-

regulate one another. 47 We found higher IL-1b levels in adult 

serum and PBMC cultures post-infection, correlating with age 

and promoting IL-6, IL-9, and IL-17A secretion when combined 

with IFNa. We also demonstrated a mutually negative activity 

of IFNa and IL-1b, where IL-1b enhanced secretion of proinflam-

matory cytokines IL-6, IL-9, and IL-17A.

STAT3 overactivation was linked to transcriptional changes in 

monocytes, CD4 + T cells, and B cells during aging. In line with 

our previous findings, SARS-CoV-2-induced monocytes in 

adults showed low HLA-DR expression, consistent with 

STAT3-mediated major histocompatibility complex class II 

downregulation, unlike the IFN-driven, activated HLA-DR high 

profiles seen in children. 17,30,55,56 Adult monocytes also showed 

enriched transcription of CXCL8, CXCL2, and S100A8/A9/12— 

known STAT3 targets. 57–60

Supporting this, aged hamsters with SARS-CoV-2 showed 

decreased ISG expression and increased Il1b and S100 induc-

tion, suggesting qualitative immune changes rather than simple 

expression shifts. 61 STAT1/2 vs. STAT3 engagement in CD4 + 

T cells correlated with CD38 and CCR6 expression, respectively. 

CD38, an NAD-consuming enzyme, enhances Treg activity and 

dampens Th1/Th17 responses, potentially explaining low inflam-

matory gene expression in children’s T cells and faster immune 

contraction. 40,41–43

STAT3 overactivation favors differentiation of CD21 low CCR6 + 

atypical B cells—key features of adult SARS-CoV-2 re-

sponses. 35 These extrafollicular responses, previously linked to 

disease severity, are promoted by increased peripheral T helper 

cells in adults. 23,26,62,63

Here, we link this phenomenon to age-induced IFN signaling 

deviation.

Children’s plasmablasts preferentially produced IgA isotypes, 

while adults’ primarily generated complement-fixing IgG iso-

types, enhancing immune complex formation and classical 

complement activation. 64,65 This is in line with our previous 

findings, where we showed a direct link between complement 

activation and T cell-driven immunopathology in adult COVID-

19 patients. 18

Overall, we demonstrate that age-induced IFN signaling rewir-

ing alters orchestration of immune cell activation. Children’s 

STAT1/STAT2-dominant responses are protective, while aging 

shifts the balance toward STAT3, promoting hyperinflammatory, 

pathogenic states. This signaling switch, also demonstrated 

in vitro and in animal model, appears to be a general phenome-

non. Future work should explore its impact on immunization re-

sponses and guide age-tailored regimens.

Limitations of the study

We conducted an observational cohort study comparing im-

mune responses of children and adults to acute SARS-CoV-2 

infection. While observational studies are limited by potential 

confounders and lack causal inference, we took extensive mea-

sures to minimize bias and enhance comparability. To reduce 

environmental factors, some children and adults were recruited 

from the same households. We also accounted for comorbidities 

and obesity by modeling their effects on key findings.

Beyond study design constraints, generalizability may be 

limited, as most adult infections with other viruses occur in im-

mune-experienced individuals, unlike the naive hosts stud-

ied here.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be 

directed to the lead contact, Birgit Sawitzki (birgit.sawitzki@bih-charite.de).

Materials availability

This study did not generate new unique reagents.

Data and code availability

• This study has generated data in standardized formats and custom 

code for processing and analysis of CyTOF and scRNA-seq data, which 

can be found in repositories listed in the following.

• Debarcoded, batch-corrected, and pre-gated fcs files as well as debar-

coded, non-normalized, and non-pre-gated fcs files of the CyTOF 

experiment are deposited at Figshare: https://doi.org/10.6084/m9. 

figshare.26131711.v1. Pre-processed (demultiplexed, integrated, qual-

ity-controlled, and merged with metadata) scRNA-seq data are depos-

ited in rds format at Figshare: https://doi.org/10.6084/m9.figshare. 

26131711.v1. Raw count data of the scRNA-seq experiment are 

deposited at GEO repository under the accession ID GEO: 

GSE271284 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc= 

GSE271284).
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• R-scripts to analyze the CyTOF and single-cell data are available in 

Mendeley Data: https://doi.org/10.17632/kz7cpw3bnt.1.

• Any additional information required to reanalyze the data reported in this 

work paper is available from the lead contact upon request.
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STAR★METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

89Y_CD45_Hi30 Standard BioTools Cat#3089003B, RRID:AB_2938863

103Rh_live/dead in-house N/A

104Pd_β2M_2M2 Biolegend Cat# 316302; RRID: AB_492835

106Pd_β2M_2M2 Biolegend Cat# 316302; RRID: AB_492835

108Pd_β2M_2M2 Biolegend Cat# 316302; RRID: AB_492835

110Pd_β2M_2M2 Biolegend Cat# 316302; RRID: AB_492835

113In_HLADR_L243 Biolegend BioLegend Cat# 307651, 

RRID:AB_2562826

115In_CD3E_UCHT1 Biolegend Cat# 300443, RRID:AB_2562808

141Pr_CD196 (CCR6)_G034E3 Standard BioTools Cat#3141003A, RRID:AB_2687639

142ND_CD19_HIB-19 Standard BioTools Cat#3142001B, RRID:AB_3661857

143ND_CD123 (IL-3RA)_6H6 Standard BioTools Cat#3143014B, RRID:AB_2811081

144ND_CD15 (FUT4)_W6D3 Standard BioTools Cat#3144019B, RRID:AB_2892685

145ND_CD21_HB5 Biolegend Cat#1380

146ND_CD226_REA1040 Miltenyi Cat# 130-126-485, RRID:AB_2889512

147Sm_IgD_IgD26 Biolegend Cat#330401

148ND_ICOS_C398.4A Standard BioTools Cat#3148019B, RRID:AB_2756435

149Sm_CD96_REA195 Miltenyi Cat# 130-101-039, RRID:AB_2659661

150ND_KLRG1_REA261 Miltenyi Cat# 130-103-751, RRID:AB_2652582

151Eu_TCRgd_11F2 Miltenyi Cat# 130-096-862, RRID:AB_2654074

152Sm_CD95 (FAS)_DX2 Biolegend Cat#355

153Eu_TIGIT_MBSA43 Standard BioTools Cat#3153019B, RRID:AB_2756419

153Eu_CD62L (L-Selectin)_DREG56 Biolegend Cat# 304835, RRID:AB_2563758

155Gd_CD27_L128 Standard BioTools Cat#3155001B, RRID:AB_2687645

156Gd_CXCR3_G025H7 Standard BioTools Cat#3156004B, RRID:AB_2687646

157Gd_KLRF1_REA845 Miltenyi Cat# 130-126-475, RRID:AB_2889721

158Gd_CD10_HI10a Standard BioTools Cat#3158011B, RRID:AB_2921314

160Gd_CD14_RMO52 Standard BioTools Cat# 3160006, RRID:AB_2661801

161Dy_CD28_L293 BD Cat# 348040; RRID:AB_400367

162Dy_CD69_FN50 Standard BioTools Cat#3162001B, RRID:AB_3096016

163Dy_CD294 (CRTH2)_BM16 Standard BioTools Cat#3163003B, RRID:AB_2810253

164Dy_CXCR5_51505 Standard BioTools Cat# 3164016B; RRID: AB_2687858

166Er_CD34_581 Standard BioTools Cat#3166012B, RRID:AB_2756424

167Er_CD38_HIT2 Standard BioTools Cat#3167001B, RRID:AB_2802110

168Er_MKI67_Ki-67 Standard BioTools Cat# 3168007B; RRID: AB_2800467

169Tm_CD25_2A3 Standard BioTools Cat# 3169003; RRID: AB_2661806

170Er_LAG3 (CD223) _11C3C65 Biolegend Cat# 369302; RRID: AB_2616876

171Yb_KLRB1 (CD161)_HP-3G10 Biolegend Cat# 339919; RRID: AB_2562836

172Yb_CD45RO_4G11 in house/DRFZ ID#5788

173Yb_CD137_4B4-1 Standard BioTools Cat#3173015B, RRID:AB_3675476

175Lu_PD-1_EH12.2H7 Standard BioTools Cat# 3175008; RRID: AB_2687629

176Yb_CD56 (NCAM)_NCAM16.2 Standard BioTools Cat# 3176008; RRID: AB_2661813

191Ir_DNA Standard BioTools N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

193Ir_DNA Standard BioTools N/A

194Pt_CD8A_GN11 in house/DRFZ Cat#925

195Pt_IgM_MHM-88 Biolegend Cat# 314502; RRID: AB_493003

196Pt_CD11c (ITGAX)_BU15 Biolegend Cat# 337221, RRID:AB_2562834

198Pt_β2M_2M2 Biolegend Cat# 316302; RRID: AB_492835

209Bi_CD16 (FCGR3A)_3G8 Standard BioTools Cat#3209002B, RRID:AB_2756431

CD3 - BUV496 BD Cat# 612940, RRID:AB_2870222

PD1 - BUV805 invitrogen Cat# 368-9985-82

CD8 - BV510 Biolegend Cat# 301048, RRID:AB_2561942

CD16 - BV605 Biolegend Cat# 302040, RRID:AB_2562990

CD27 - BV650 Biolegend Cat# 302828, RRID:AB_2562096

CXCR5 - BV711 Biolegend Cat# 356934, RRID:AB_2629526

HLADR - BV785 Biolegend Cat# 307642, RRID:AB_2563461

CRTH2 - PE Biolegend Cat# 350106, RRID:AB_10900060

GranzymeB - ECD in house in house

CD38 - PE cy7 Biolegend Cat# 356608, RRID:AB_2561904

ld - ZombieRed Biolegend Cat# 67685

Lag3 - PerCpef710 invitrogen Cat# 46-2231-82

CCR6 - APC Biolegend Cat# 353416, RRID:AB_10915987

CD4 APC-Fire 750 Biolegend Cat# 300560, RRID:AB_2629693

BD Phosflow TM Alexa Fluor® 488 Mouse 

Anti-Stat1 (pY701), Clone 4a

BD Biosciences Cat# 612596, RRID: AB_399879

BD Phosflow TM PE Mouse Anti-Stat3 

(pY705), Clone 4/P-STAT3

BD Biosciences Cat# 562072, RRID: AB_10893601

APC/Cyanine7 anti-human CD4 Antibody, 

Clone RPA-T4

BioLegend Cat# 300518, RRID:AB_314086

eBioscience TM Fixable Viability 

Dye eFluor TM 506

Thermo Fisher Scientific Cat# 65-0866-14

CD19 Pacific Blue BioLegend Cat# 302232, RRID:AB_2073118

BD Horizon TM BUV737 Mouse 

Anti-Human CD8, Clone SK1

BD Biosciences Cat# 612754, RRID:AB_2870085

BD Horizon TM BUV496 Mouse 

Anti-Human CD3, Clone UCHT1

BD Biosciences Cat# 612940, RRID:AB_2870222

Biological samples

Human blood Charité Berlin N/A

Chemicals, peptides, and recombinant proteins

Staphylococcal enterotoxin B (SEB) Sigma S4881-1MG

hIFN-α 2a Shenandoah 100–54

B18R R&D Systems, Biotechne 8185-BR-025

CD38 Inh_78c Tocris, Biotechne 6391

Critical commercial assays

Simoa CORPLEX TM CYTOKINE PANEL (IFN-γ, 

IL-1β, IL-4, IL-5, IL-6, IL-8, IL-10,

IL-12P70, IL-22, TNFα)

Quanterix Cat# 85-0329

Cytokine/Chemokine/Growth Factor 45-Plex 

Human ProcartaPlex TM Panel 1

Invitrogen, Thermo Fisher Scientific Cat# EPX450-12171-901

18-Plex Human ProcartaPlex TM Mix&Match panel 

(custom, IFN-γ, IL-1a, IL-1b, IL-12p70, IL-13, 

IL-17aA, IL-2, IL-21, IL-23, IL-4, IL-5, IL-6,

IL-8, IL-9, IP-10, RANTES, S100A8/A9, TNFa)

Invitrogen, Thermo Fisher Scientific Cat# EPX450-12171-901

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Chromium Next GEM Chip G Single Cell Kit 10x Genomics Cat# 1000120

Chromium Next GEM Single Cell 5 ′ Library 

and Gel Bead Kit v1.1

10x Genomics Cat# 1000167

Chromium Single Cell 5 ′ Library Construction Kit 10x Genomics Cat# 1000020

Chromium Single Cell V(D)J Enrichment Kit, 

Human B Cell

10x Genomics Cat# 1000016

Chromium Single Cell V(D)J Enrichment Kit, 

Human T cell

10x Genomics Cat# 1000005

Single Index Kit T Set A 10x Genomics Cat# 1000213

Single Index Kit N Set A 10x Genomics Cat# 1000212

Chromium Single Cell 5 ′ Feature 

Barcode Library Kit

10x Genomics Cat# 1000080

Qubit 1X dsDNA HS Assay Kit Thermo Fisher Scientific Cat# Q33231

High Sensitivity DNA Kit Agilent Cat# 5067-4626

Deposited data

WB CyTOF Monocytes & DCs This paper Figshare: https://doi.org/10.6084/ 

m9.figshare.26131711.v1

WB CyTOF CD4 + T Cells This paper Figshare: https://doi.org/10.6084/ 

m9.figshare.26131711.v1

WB CyTOF B Cells This paper Figshare: https://doi.org/10.6084/ 

m9.figshare.26131711.v1

WB CyTOF (raw) This paper Figshare: https://doi.org/10.6084/ 

m9.figshare.26131711.v1

PBMC scRNAseq (pre-processed) This paper Figshare: https://doi.org/10.6084/ 

m9.figshare.26131711.v1

PBMC scRNAseq (count tables and metadata) This paper GEO: GSE271284;

Oligonucleotides

CpG2216 Miltenyi 130-100-243

Software and algorithms

R https://cran.r-project.org/ 4.2.2 Patched

Ubuntu 20.04.5 LTS under WSL2, Windows 11 Microsoft, Canonical N/A

Visual Studio Code Microsoft N/A

omiq.ai (cloud-based) Dotmatics N/A

Custom scripts for processing 

and analysis of CyTOF

and scRNAseq data

This paper Mendeley Data:

https://doi.org/10.17632/ 

kz7cpw3bnt.1

BatchAdjust (R script) https://github.com/CUHIMSR/

CytofBatchAdjust

used as inspiration for 

proprietary implementation

cytofkit (R package) https://github.com/Jinmiao

ChenLab/cytofkit

0.99.0

uwot (R package) https://github.com/jlmelville/uwot 0.1.14

ComplexHeatmap (R package) http://bioconductor.org/packages/release/

bioc/html/ComplexHeatmap.html

2.14.0

edgeR (R package) https://bioconductor.org/packages/

release/bioc/html/edgeR.html

3.40.1

ggplot2 (R package) https://cran.r-project.org/web/packages/

ggplot2/index.html

3.4.2

cowplot https://cran.r-project.org/web/packages/

cowplot/index.html

1.1.1

ggpubr https://cran.r-project.org/web/packages/

ggpubr/index.html

0.5.0

ggrepel https://github.com/slowkow/ggrepel 0.9.2

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

ggfortify https://cran.r-project.org/web/packages/

ggfortify/index.html

0.4.15

flowCore https://bioconductor.org/packages/

release/bioc/html/flowCore.html

2.10.0

tidyverse https://cran.r-project.org/web/

packages/tidyverse/index.html

2.0.0

SeuratDisk https://github.com/mojaveazure/seurat-disk 0.0.0.9020

Seurat https://satijalab.org/seurat/ 4.3.0

stringr https://stringr.tidyverse.org/ 1.5.0

DESeq2 https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

1.38.2

GSVA https://bioconductor.org/packages/

release/bioc/html/GSVA.html

1.46.0

enrichR https://cran.r-project.org/web/packages/

enrichR/vignettes/enrichR.html

3.1

fgsea https://bioconductor.org/packages/

release/bioc/html/fgsea.html

1.24.0

quasR Doi: https://doi.org/10.1093/ 

bioinformatics/btu781

N/A

pheatmap Kolde, R. (2019). pheatmap: 

Pretty Heatmaps

N/A

class https://cran.r-project.org/web/

packages/class/index.html

7.3–22

Other

High Sensitivity D5000 ScreenTape Agilent Cat# 5067-5592

Cytofix/Cytoperm Kit BD 554714

Fixation Buffer Biolegend 420801

True-Phos TM Perm Buffer Biolegend 425401

Gibco TM HEPES (1 M) gibco 15630–056

MEM Nicht essentielle Aminosä uren-Lö sung (100×) SIGMA-ALDRICH M7145

Gibco TM GlutaMAX TM Supplement gibco 35050–038

Natriumpyruvat (100 mM) gibco 11360–039

Penicillin-Streptomycin SIGMA-ALDRICH P4333

CD45RA microbeads Miltenyi 130-045-901

Invitrogen TM eBioscience TM CFSE invitrogen 65-0850-84

eBioscience TM Cell Proliferation Dye eFluor TM 450 Thermo Fisher 88701

RPMI medium gibco 31870–025

Pierce Universal Nuclease Thermo Fisher 88702

FCS heat-inactivated Sigma S0615-500mL

Bovine Serum Albumin (BSA) Miltenyi 130 091 376

PBS - gibco 14190–094

EDTA SIGMA-ALDRICH 03690

Beriglobin CSL Behring PZN 4616123

Pierce 16% Formaldehyde (w/v), Methanol-free Thermo Fisher Cat# 28908

Maxpar PBS Standard BioTools Cat# 201058

Maxpar Cell Staining buffer Standard BioTools Cat# 201068

Maxpar X8 Multimetal Labeling Kit Standard BioTools Cat# 201300

Nuclease-Free Water Invitrogen Cat# AM9937

TotalSeq-C0251 anti-human Hashtag 1 Biolegend Cat# 394661; RRID: AB_2801031

TotalSeq-C0252 anti-human Hashtag 2 Biolegend Cat# 394663; RRID: AB_2801032 
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cohort 1/Berlin Pa-COVID-19 cohort

Pa-COVID-19 is a prospective observational cohort study assessing pathophysiology and clinical characteristics of patients with 

COVID-19 at Charité Universitä tsmedizin Berlin. 19 It is being carried out with the approval of the Institutional Review board of Charité 

(EA2/066/20). Written informed consent was provided by all patients or legal representatives for participation in the study. This cohort 

includes 50 (+8 patients with neutralizing IFN-I autoantibodies) COVID-19 infected adult patients. All COVID-19 patients were tested 

positive for SARS-CoV-2 RNA in nasopharyngeal swabs and allocated into mild (WHO 2–4) or severe (5–7) disease groups according 

to the WHO clinical ordinal scale. Please refer to Table S1 for a list of patient samples included in different experiments, including 

information about days post symptom onset, age and gender compositions of the cohort. Table S2 provides an overview of the 

most important cohort statistics.

Cohort 2/Berlin RECAST cohort

RECAST is a subproject of the Pa-COVID-19 observational study, aiming to characterize pathophysiology and SARS-CoV-2 infection 

progression primarily in patients under 18 years old. 5 Data was collected from both minors and their family members in a longitudinal 

manner at three time points - directly after the diagnosis and at follow-up visits after approximately 2 weeks and 6 months. This cohort 

includes 40 SARS-CoV-2 infected-adults, 58 infected children, 35 control adult donors and 22 non-infected pediatric controls. None 

of the infected patients were hospitalized and thus fell under the WHO clinical ordinal scale of <3. Patients with either non-variant of 

concern (VOC) or Alpha (B.1.1.7) variant of SARS-CoV-2 were included in the analysis. Please refer to Table S1 for a list of patient 

samples included in different experiments, including information about days post symptom onset, age and gender compositions 

of the cohort. Table S2 provides an overview of the most important cohort statistics.

Age-matched elderly control cohort

Whole blood and PBMC samples of control donors over 50 (n = 14), that were included in CyTOF, scRNAseq and serum proteomics 

were obtained under protocols approved by the ethics committee of Charité – Universitä tsmedizin Berlin (EA4/245/20 and EA4/244/ 

20; EICOV and COVIMMUNIZE). 20 All participants in the cohort provided written informed consent. Please refer to Table S1 for a list of 

patient samples included in different experiments, including information about days post symptom onset, age and gender compo-

sitions of the cohort. Table S2 provides an overview of the most important cohort statistics.

Control group definition

Control samples were defined as stemming from donors with a negative SARS-CoV-2 PCR test result without clinical signs of an 

ongoing infection.

METHOD DETAILS

Antibodies used for mass cytometry (cohort 1 & 2)

All anti-human antibodies pre-conjugated to metal isotopes were obtained from Standard BioTools Corporation (San Francisco, 

USA). All remaining antibodies were obtained from the indicated companies as purified antibodies and in-house conjugation was 

done using the MaxPar X8 labeling kit (Standard BioTools, USA). Antibodies are listed in the key resources table.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

TotalSeq-C0253 anti-human Hashtag 3 Biolegend Cat# 394665; RRID: AB_2801033

TotalSeq-C0254 anti-human Hashtag 4 Biolegend Cat# 394667; RRID: AB_2801034

TotalSeq-C0255 anti-human Hashtag 5 Biolegend Cat# 394669; RRID: AB_2801035

TotalSeq-C0256 anti-human Hashtag 6 Biolegend Cat# 394671; RRID: AB_2820042

TotalSeq-C0257 anti-human Hashtag 7 Biolegend Cat# 394673; RRID: AB_2820043

TotalSeq-C0258 anti-human Hashtag 8 Biolegend Cat# 394675; RRID: AB_2820044

TotalSeq-C0259 anti-human Hashtag 9 Biolegend Cat# 394677; RRID: AB_2820045

TotalSeq-C0260 anti-human Hashtag 10 Biolegend Cat# 394679; RRID: AB_2820046
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Sample processing, antigen staining, and data analysis of mass cytometry-based immune cell profiling (cohort 1 & 2) 

Sample processing, cell staining and acquisition was done as previously described. 17

500μl of heparinized whole blood was stabilized by adding 700ul of proteomic stabilizer (Smart Tube Inc., San Carlos, US) following 

the manufacturer’s protocol and stored at − 80 ◦ C until used. Blood samples were thawed using Thaw/Lyse buffer (Smart Tube Inc.). 

Antibodies targeting human beta-2 microglobulin (B2M) were conjugated in-house with metal isotopes 104Pd, 106Pd, 108Pd, 110Pd 

and 198Pt for barcoding. Up to 10 distinct samples were labeled simultaneously using Standard BioTools staining buffer with a pair of 

distinct B2M antibodies and incubated for 30 min at 4 ◦ C. After washing, cells were combined for subsequent surface and intracellular 

labeling. Cells were incubated in an antibody cocktail at 4 ◦ C for 30 min, washed with PBS and then fixed overnight with a 2% PFA 

solution prepared in PBS.

Intracellular staining involved washing cells twice in permeabilization buffer (eBioscience, San Diego, US), followed by incubation 

with intracellular antibodies diluted in permeabilization buffer at room temperature for 30 min. Cells were then washed and 

incubated with iridium intercalator solution (Standard BioTools) prepared in 2% PFA at room temperature for 20 min. Cells underwent 

an additional wash with PBS and two washes with ddH2O before storage at 4 ◦ C awaiting analysis by mass cytometry.

At minimum of 100,000 cells per sample was targeted and acquired using a Helios mass cytometer (Standard BioTools). For data 

normalization, EQ Calibration Beads (Standard BioTools) were added at a final dilution of 1:10. Immediately before acquisition, cells 

were resuspended in ddH2O, filtered using a 20-μm cell strainer (Celltrics, Sysmex), counted and diluted to achieve a concentration 

of 5-8x10 5 cells/ml. Calibration beads at 1:10 v/v were included to correct for signal drift and daily sensitivity variations. Data were 

collected at a flow rate of 300–400 events per second. The lower convolution threshold was set at 400, noise reduction mode was 

activated and cells were defined using event duration ranging from 10 to 150 pushes. The resulting FCS files underwent normalization 

and randomization via CyTOF software using default software parameters.

OMIQ.ai cloud-based cytometry analysis software was used for de-barcoding of individual samples, manual gating of singlets and 

removal of normalization beads and dead cells. Per-channel intensity ranges were aligned between batches using a reference sam-

ple - a replicate acquired across all batches, and a proprietary script, based on BatchAdjust function, to compute scaling factors at 

the event percentiles of choice on per-channel basis. 66 Populations of interest, such as T cells (defined as CD3 + CD19 − , HLA-

DR − /+ CD11c − /+ , CD14 − CD15 − cells and separated into CD4 + TCRgd − and CD8 + TCRgd − populations), B cells (defined as 

CD3 − CD19 + and CD14 − CD15 − cells) and monocyte-dendritic cell (DC) space (defined as CD3 − CD19 − , CD56 − and CD14 + HLA-

DR − /+ cells), were manually pre-gated (in an approach, similar to our previous project) and subset for further analysis in the R pro-

gramming environment. 18

The individual immune populations were then transformed using the inverse hyperbolic sine function (asinh) and Z score normal-

ized per-marker across all samples and all events.

Datasets were clustered using FlowSOM algorithm as implemented in cytokfit R package (v. 0.99.0), setting the number of resulting 

clusters k as 30 (for CD4 + T cells) and 25 (for Monocyte-DC and B-cell datasets). 67 A pre-selection of markers has been used as basis 

for clustering for each immune population subset (T cells: CD62L, CD45RO, CD27, CD28, CD226, ICOS, PD1, Lag3, TIGIT, CD96, 

CD25, CD38, CD56, CD69, CD137, HLADR, Ki67, CXCR3, CXCR5, CCR6, CRTH2, CD161, KLRG1, KLRF1, CD10, CD11c, CD123, 

CD16, CD95, CD34; B cells: IgD, IgM, CD10, CD21, HLADR, CXCR5, CD27, CD38, CD25, CXCR3, CD69, Ki67, CD95, CD11c, 

CD137, CCR6, CRTH2, CD62L, CD226, ICOS, PD1, Lag3, TIGIT, CD96, CD123, KLRG1, KLRF1, CD16, CD28, CD45RO, CD56, 

CD161, CD34; monocytes and DCs: CD14, CD16, HLADR, CD11c, CD123, CD8, CD10, CD69, CD38, CD62L, CD25, Ki67, 

CD226, CD95, CCR6, CRTH2, CXCR3, CXCR5, ICOS, PD1, Lag3, TIGIT, CD96, CD56, KLRG1, KLRF1, CD27, CD28, CD45RO, 

CD137, CD161, CD34).

The resulting clusters were then manually merged in a pairwise manner, based on their similarity in z-normalized marker expressions, 

to correct overclustering. For CD4 + T cells, measurement timepoints beyond acute infection were included (approximately two weeks 

and six months after the first visit). As these samples were added post-hoc, KNN classification algorithm was used to assign new cells 

to the existing cluster classes, using clustering of acute samples as training set (R package ‘‘class’’ v.7.3–22, function knn, default pa-

rameters). UMAPs were calculated on the same pre-selected markers, using the R package ‘‘uwot’’ (version 0.1.14, n_neighbors = 20, 

min_dist = 0.1, Euclidean distance). 68 The frequency of each cluster was calculated as the percentage of cells in each cluster for each 

patient and for each immune cell compartment. Statistical testing for the difference in the frequency of each cluster across severity 

groups was calculated with the adjusted Wilcox test (Benjamini-Hochberg) for clusters with significant Kruskal-Wallis test (adjusted 

p-value (Benjamini-Hochberg) < 0.05, adjusted across all clusters in each immune cell compartment). For cluster abundance-age 

and average signal-age scatterplots, a linear model was fitted using ‘‘geom_smooth’’ function (ggplot2 package, version 3.4.0). For 

some analyses, activated T cell clusters were pre-selected, defined as clusters having above average z-scored expression of activation 

markers (CD25, HLA-DR, CD38, CD137, CD69, and Ki67). For scatterplots and boxplots showing per-patient average marker expres-

sion inside a population of interest, values have been Z score standardized inside the population of interest.

Isolation of blood cells for scRNA-seq (cohort 1 & 2)

Human peripheral blood mononuclear cells (PBMCs) were isolated from heparinized whole blood by density gradient centrifugation 

over Pancoll (density: 1,077g/ml, PAN-Biotech, Germany). Subsequently, the cells were counted, frozen and stored in liquid nitrogen. 

On the day of the experiment, the frozen PBMCs were thawed in pre-warmed thawing medium (RPMI 1640, Gibco; 2% FCS, Sigma; 

0.01% Pierce Universal Nuclease, Thermo Fisher, USA).
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10x genomics chromium single-cell RNA-seq (cohort 1 & 2)

PBMCs were resuspended in staining buffer (DPBS, Gibco; 0.5% BSA, Miltenyi Biotec, Germany; 2 mM EDTA, Gibco, Thermo Fisher 

Scientific, USA) and hashtagged with 0.5 μg Total-Seq-C Hashtag antibodies for 30 min at 4 ◦ C. After the incubation, the PBMCs were 

washed three times, resuspended in DPBS, filtered through a 40 μm mesh (Flowmi Cell Strainer, Merck, Germany) and counted using 

the C-Chip hemocytometer (NanoEntek, South Korea). Subsequently, up to seven different samples were pooled equally.

The cell suspension was super-loaded with 40000–50000 cells per lane, in the Chromium Controller for partitioning single-cells into 

nanoliter-scale Gel Bead-In-Emulsions (GEMs).

In order to achieve a high enough cell number for each population on interest, the process above was repeated twice for each 

PBMC pool and additionally, B cells were enriched using untouched human B cell Isolation Kit II (Miltenyi Biotec, Germany) and 

loaded separately with approximately 20000 cells per lane.

The Chromium Next GEM Single Cell 5 ′ v.2 Dual Index kit was used for reverse transcription, cDNA amplification and library con-

struction of the gene expression libraries (10x Genomics, USA). For additional VDJ and hashtag libraries the Chromium Single Cell V 

(D)J Enrichment Kit, Human T cell and Human B cell (10x Genomics, USA), as well as the Chromium Single Cell 5 ′ Feature Barcode 

Library Kit (10x Genomics, USA) were used. All libraries were prepared following the detailed protocols provided by 10x Genomics, 

quantified by Qubit Flex Fluorometer (Thermo Fisher, USA) and quality was checked using 4150 TapeStation automated electropho-

resis system (Agilent, USA). Sequencing was performed in paired-end mode with an S1 and S2 flow cell using NovaSeq 6000 

sequencer (Illumina, USA).

Human nasal swab scRNA-seq and pre-processed data treatment

Nasal swab data stems from a publication and is freely available. 8 We, however, asked the authors to share a version of the dataset 

with non-normalized counts, suitable for pseudo bulk-based differential expression analysis. Please refer to the original publication 

for a detailed description of the experimental process, raw data pre-processing, quality control and integration. 8

Integrated expression data were normalized by total UMI count per cell (log10(TP10k+1)) and scaled using Seurat (version 4.3.0) R 

package. 69 Subsequently, immune cell populations of interest (T and plasmacytoid dendritic cells (pDCs)) were subset using cluster 

annotation from the original publication and treated separately. Principal component analysis (PCA) was performed on top 3000 var-

iable genes and the first 15 PCs were used to construct a KNN graph and cluster the cells using Eucledian distance and Louvain 

algorithm (FindVariableFeatures, RunPCA, FindNeighbors and FindClusters functions, in that order) with the resolution of 0.5. This 

process has resulted in 14 and 8 clusters for T lymphocytes and pDCs, respectively. UMAP dimension reduction was also computed 

with the first 15 PCs in both cases using the default parameters. Further analysis was done using the same pipeline for both the nasal 

swab dataset and the PBMC dataset, please refer to the corresponding sections of the methods.

Pre-processing and integration of 10x genomics chromium PBMC scRNA-seq data (cohort 1 & 2)

Raw sequencing data were processed with CellRanger’s (v5) multi workflow and aligned against the GRCh38 reference, including 

TotalSeq C hashtag barcodes and VDJ data.

Cells from pooled samples were demultiplexed using a combination of HTODemux implemented in Seurat (v.4.3.0) and vireo 

(v0.5.6) after scoring common variants from the 1000Genomes project with cellsnp-lite (v1.2.0). 70,71 Events classified as ‘‘Negative’’ 

and ‘‘Doublet’’ by the HTODemux algorithm were assigned an ID via vireo classification.

Demultiplexed batches of measurements were loaded into the environment and normalized separately, where gene expression values 

were normalized by total UMI counts per cell, multiplied by 10,000 (TP10K) and then log transformed by log10(TP10k+1) with 

NormalizeData Seurat function. Top 2000 variable features per batch were then selected and used to rank features for integration 

(FindVariableFeatures and SelectIntegrationFeatures functions). After per-batch scaling of gene expression and calculation of 50 PCs, 

integration was done using FindIntegrationAnchors and IntegrateData functions with reduction = ‘‘rpca’’ and dims = 1:50 parameters.

ScRNA-seq data analysis of 10x chromium dataset (cohort 1 & 2)

Data quality control

Subsequent to integration, cells were filtered by number of features (over 200 and less than 5000), percent mitochondrial genes 

(<10% mitochondrial UMIs) and number of counts per cell (<20000) to exclude debris and doublets.

Definition of the immune population spaces

Now integrated data were scaled and the first 15 of the newly computed PCs were used for clustering (resolution = 0.8) and UMAP 

calculation. Resulting 25 clusters were annotated based on their feature expression levels into non-granular subsets of main immune 

populations (T and B lymphocytes, NK cells, Monocytes, DCs) and subset into separate Seurat objects to be analyzed independently. 

Clusters that were either a mix of different immune cell lineages or did not have a high enough PTPRC gene expression were anno-

tated as ‘‘drop’’ and excluded from further analysis.

Refining of separate immune populations and subclustering

To refine the data subsets, we filtered out cells, expressing genes exclusive to other populations. We made sure to clean T lympho-

cytes of gamma-delta T cells (defined as TRGC1>0 OR TRGC2>0); B lymphocytes of T cells, NK cells and monocytes (by removing
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CD3E > 0 OR CD3G > 0 OR CD3D > 0 OR NKG7>0 OR CD14 > 0 cells); Monocyte subset was refined through removing NK cells, B 

lymphocytes and T lymphocytes (NKG7>0 OR CD19 > 0 OR CD3E > 0 cells).

Following this, integrated data slot was used to rescale data and recalculate PCA values. The number of PCs to use for UMAP and 

clustering computation was selected by analyzing an elbow plot and it varied for different subsets: 15 for T cells, 14 for B cells, 15 for 

DCs and 17 for monocytes. NK cells were not analyzed, as mass cytometry did not show many clear patterns in this immune space. 

Subclustering was calculated with a resolution of 1 for T cells and 0.5 for all other subsets. UMAP was calculated with default pa-

rameters for all subsets. Same as previously, scaling, PCA, UMAP and clustering calculation was done using Seurat R pack-

age (v.4.3.0).

Cluster annotation and statistical testing

Subclustering of separate immune populations has netted 21 clusters (of which 2 were dropped) for T cells, 13 clusters (of which 1 

was dropped) for B cells, 11 clusters (of which 1 was dropped) for Monocytes and 11 clusters (of which 1 was dropped) for DCs. 

Annotation of clusters has been done using a combination of manually pre-selected marker genes and automatically detected clus-

ter-specific genes (using FindAllMarkers function, showing top 10 significantly enriched genes, detected in at least 25% of events 

and having a log-fold-change of at least 0.25). Manual labels were assigned to each cluster. In some cases, if clusters were highly 

similar, the same label was assigned, merging the cluster for further analysis.

Annotated cluster abundances were compared between the respective groups and the statistical significance was calculated 

using the adjusted Wilcox test (Benjamini-Hochberg) for clusters with significant Kruskal-Wallis test (adjusted p-value (Benjamini-

Hochberg) < 0.05, adjusted across all annotated clusters in each immune cell compartment). Adult patients with anti-IFN-a autoan-

tibodies were removed from infected adults - infected children comparison to keep the comparison more representative of the gen-

eral population.

Analysis of cluster frequencies has allowed us to pre-select annotated clusters expanded in acute SARS-CoV-2 infection, thus 

making further analysis more informative through isolation of infection-specific effects. If not specifically stated otherwise, differential 

gene expression (DE) analysis and analyses based on its output were done using cells from expanded clusters.

For T lymphocyte space, CD8 + T lymphocytes were defined as CD8A AND CD8B expressing cells, with CD4 + identity being 

assigned to the rest of the cells.

Differential expression (DE) and gene ontology (GO) enrichment analysis

For the identification of differentially expressed genes between disease groups, we used pseudobulk gene expression, defined 

as the sum of the raw counts from all cells of each patient among selected clusters of interest. The pseudobulk samples were 

then normalized and modeled according to the DESeq2 pipeline (v. 1.38.2). 72 Normalization was done using DESeq2’s median-

of-ratios method, the DESeq2 function DESeq() was used to estimate size factors, dispersion, and to fit a generalized linear 

model for each gene. Patient group was included as a sole factor. Differential expression was assessed using the Wald test 

for each gene. p-values were adjusted for multiple testing using the Benjamini-Hochberg method to control the false discovery 

rate (FDR).

For further enrichment analysis, we selected differentially expressed genes with high enough counts (‘‘baseMean’’ > 50) and 

p-value lower than 0.05. GO enrichment analysis was performed with the R package ‘‘enrichR’’ (v.3.1) and "GO_Biological_ 

Process_2018" database. 73

Gene set enrichment analysis (GSEA)

The log2-fold change of differentially expressed genes from DESeq2 was used to define the ranked gene list used for GSEA. We 

tested different annotated gene lists for different immune populations (Table S3). GSEA was performed with the R package ‘‘fgsea’’ 

(v. 1.24.0) with 1000 permutations for statistical testing. 74

Clonal composition analysis

Our experimental design included VDJ region sequencing to enable clonal composition analysis. We used an R package called scRe-

pertoire (v. 1.8.0) to do that. 75 scRepertouire interacts with the Seurat object to combine gene expression data and clonotype infor-

mation that can be called from the VDJC gene or the sequence of the CD3R region. In our case we mostly use the ‘‘strict’’ option for 

calling the clonotype, which uses both the gene and the nucleotide. Clonal overlap proportions between plasmablasts and other 

expanded clusters have been calculated via ‘‘clonalNetwork’’ function and used as the basis for the stacked barchart plot, with 

the clone calling method being set to ‘‘gene’’ in order to increase sensitivity.

Data visualization

All the graphical visualization of the data was performed in R with the ggplot2 package apart from the heatmaps, which were dis-

played using the ComplexHeatmap (v. 2.14.0) and pheatmap (v. 1.0.12) packages. 76

Boxplots:

Boxplots are calculated in the style of Tukey, shortly, the center of the box represents the median of the values, the hinges the 25th 

and 75th percentile and the whiskers are extended no further than the 1.5 * IQR (interquartile range).
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Heatmap

The heatmap shows the mean value of the z-scaled expression of each marker (or abundance, cytokine concentration) in each cluster 

or patient group.

Dot plot

The dot plot of the signature genes shown was calculated according to the Dotplot Seurat function scaling the expression values 

by gene.

Detection of SARS-CoV-2-specific IgG and IgA antibodies

For the detection of IgG and IgA to the S1 domain of the SARS-COV-2 spike (S) protein, anti-SARS-CoV-2 assay was used according 

to the manufacturer’s instructions (Euroimmun, Lü beck, Germany). Serum samples were tested at a 1:101 dilution using the fully 

EUROIMMUN Analyzer. Optical density (OD) ratios were calculated by dividing the OD at 450 nm by the OD of the calibrator included 

in the kit. The calculated OD ratios can be used as a relative measure for the concentration of antibodies in the serum. 77

Ex vivo functional analyses of T cells

Cell purification

Frozen PBMCs of control donors were thawed and washed with a Benzonase-containing medium (RPMI, 2% FCS, Pierce Universal 

Nuclease, 250U/mL), transferred to MACS buffer (PBS, 0.5% BSA, 2mM EDTA) and counted. Cells were split into CD45RA + and 

CD45RA − fractions using magnetic separation with CD45RA MicroBeads (Miltenyi Biotec) according to the manufacturer‘s protocol. 

CD45RA-fraction was labeled with eF450 proliferation dye in PBS- for 10 min at room temperature (10μM final eF450 concentration). 

Labeling was stopped by adding 4 volumes of cold complete medium (containing 10% FCS) and cells were incubated on ice for 5 min 

followed by two washing steps with RPMI/5%FCS. CD45RA + fraction was labeled with CFSE proliferation dye in RPMI for 7 min at 

room temperature (5uM final CFSE concentration) and washed thrice with RPMI/5%FCS, after which cells rested on ice for 30 min. 

Labeled cells were then pooled for each donor and volume was adjusted to 2000 cells/ul in complete medium (filtrated 

RPMI +glutamine, 10% (V/V) heat inactivated FCS, 1% HEPES, 1% NEAA, 1% GlutaMAX, 1% sodium pyruvate, 1% Pen. Strep.).

Stimulation approach

A 96-well, rounded bottom plate was used for the culture, to accommodate all the challenge conditions and donor groups per batch. 

If the cell number was high enough, two replicates of each condition per donor were included. Reagents were diluted in 100ul of com-

plete medium to a final concentration of 0.324μM ODN CpG2216, 100ng/ml SEB, 0.5ng/ml or 30ng/ml recombinant IFNa, 1ug/ml 

B18R, 20mg/ml recombinant IL-1b and 10 μg/ml Anakinra (‘‘Kineret’’) in following combinations: SEB, SEB+CpG2216, SEB+ 

CpG2216 + B18R, SEB+CpG2216+IL-1b, SEB+CpG2216+Anakinra, SEB+rec. IFNa and SEB+rec. IFNa+IL-1b and placed into 

respective wells. Following this, 100ul of cell suspension per well have been mixed into the reagent containing medium, thus 

achieving the equal amount of 200000 cells per well. Cells were then cultured for 96 h at 37 ◦ C and 5% CO2.

Full-spectrum flow cytometry measurement and analysis

After 96 h, cell culture supernatant was harvested and frozen at − 80 ◦ C. Cells were washed with MACS buffer and resuspended in 

either 50ul (for pooled duplicates) or 30ul (for single wells) of freshly prepared surface staining antibody mix, including a live-dead 

marker (see key resources table) and incubated for 30 min at 4 ◦ C in the dark. Marker panel has been designed, based on the results 

detected in CyTOF and scRNAseq experiments. Subsequently, cells were washed twice with cold MACS buffer and fixed in either 

100ul Cytofix/Cytoperm buffer (BD Biosciences, USA, for pooled duplicates) or 50ul Cytofix/Cytoperm buffer (for single wells). After a 

20 min incubation at 4 ◦ C in the dark, cells were washed twice with Cytoperm wash buffer and resuspended in freshly prepared intra-

cellular staining antibody mix (antibodies were diluted in Cytoperm wash buffer to keep cells permeabilized). Cells were incubated for 

30 min at 4 ◦ C in the dark, washed once with Cytoperm wash buffer, once with MACS buffer, transferred to plastic FACS tubes, re-

suspended in 150ul of MACS buffer and immediately measured. Cytek Aurora (Cytek Biosciences, USA) full-spectrum flow cytom-

eter was used to acquire all the samples. SpectroFlo (Cytek Biosciences, USA) software was used for spectral unmixing (compen-

sation) of fluorophore signals using SEB+CpG2216-activated unstained reference samples of adult donors, measured with every 

batch. Single-stained references were prepared either with compensation beads (CompBeads, BD Biosciences, USA) or SEB+ 

CpG2216-activated adult donors‘ cells, depending on the marker expression level and fluorophore intensity. Compensated data 

was uploaded to OMIQ.ai cloud-based cytometry analysis software for gating and export of population abundances and median 

signal intensities. Exported data was imported into R programming environment, where it was aggregated and analyzed.

Quantification of cytokines, chemokines

Plates with frozen cell culture supernatants were thawed on ice and centrifuged at 1000xg at 4 ◦ C for 10 min to remove particulates. 

Cytokine/Chemokine/Growth Factor 45-Plex Human ProcartaPlex Panel 1 kit (ThermoFischer Scientific, USA) and a custom 18-Plex 

Human ProcartaPlex Mix&Match panel (ThermoFischer Scientific, USA) were used in combination with Luminex xMAP technology-

based Bio-Plex 200 system (Bio-Rad Laboratories, Inc., USA) according to manufacturer‘s protocols. Resulting dataset was im-

ported into R programming environment for analysis. Custom panel specifics can be found in the resources table.
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Blood serum cytokine and chemokine quantification

Blood serum samples of patients and control donors have been measured using CorPlex Human Cytokine 10-plex panel 1 assay 

(Quanterix Corp., USA) on Simoa SP-X (Quanterix Corp., USA) system and IFN-a assay (Quanterix Corp., USA) on Simoa HD-X 

(Quanterix Corp., USA) system, respectively. Serum samples were thawed on ice and centrifuged at 10000xg for 5 min at 4 ◦ C to re-

move particulates and clarify the sample, after which the assays were performed following the detailed protocols provided by the 

manufacturer. Resulting data has been imported into R programming environment, where it was aggregated and analyzed.

Ex vivo STAT1 and STAT3 phosphorylation assay

Cell purification

Frozen PBMCs of control donors were thawed and washed with a Benzonase-containing medium (RPMI, 2% FCS, Pierce Universal 

Nuclease, 250U/mL). Volume was adjusted for each donor sample to achieve the concentration of 2000 cells/ul in complete medium 

(filtrated RPMI +glutamine, 10% (V/V) heat inactivated FCS, 1% Pen. Strep.).

Stimulation approach

A 96-well, rounded bottom plate was used for the culture, to accommodate all the challenge conditions and donor groups per batch. 

If the cell number was high enough, two replicates of each condition per donor were included. Reagents were diluted in 100ul of com-

plete medium to a final concentration of 100ng/ml SEB and 30ng/ml recombinant IFNa in following combinations: SEB, SEB+rec. 

IFNa and placed into respective wells. Following this, 100ul of cell suspension per well have been mixed into the reagent containing 

medium, thus achieving the equal amount of 200000 cells per well. Cells were then incubated for 25 min at 37 ◦ C and 5% CO2. 

10 min before the end of the incubation period, a live-dead staining agent was added (eF506, at 1:100 dilution).

Flow cytometry measurement and analysis

After 25 min of incubation, duplicate wells were pooled in total volume of 200ul, washed in FACS buffer (two rounds, 300xg, 5 min, at 

room temperature) and immediately fixated using pre-warmed (37 ◦ C) commercially available fixation buffer, according to manufac-

turer‘s protocol (BioLegend Cat 420801). After 15 min of fixation at 37 ◦ C, cells were washed in FACS buffer (2 times, 500xg, 5 min, at 

room temperature) and subjected to Beriglobin blocking (in 25ul for duplicate wells, 20 min at 4 ◦ C, 160mg/ml stock, used in 1:50). 

After a single wash step (500xg, 5 min, RT), cells were resuspended in 50ul (for pooled wells) of freshly prepared surface staining 

solution and incubated for 30 min at 4 ◦ C in the dark n (see key resources table for details on cytometry panels). Two washing steps 

(FACS buffer, 500xg, 5 min, RT) were followed by permeabilization using 200ul True-Phos perm buffer per well, pre-chilled to − 20 ◦ C 

according to the manufacturer‘s protocol (BioLegend Cat 425401). After the required 1 h incubation at − 20 ◦ C in the dark, permea-

bilized cells were washed twice in FACS buffer (1000xg, 5 min, RT), resuspended in 100ul of freshly prepared intracellular staining 

solution (see key resources table for details on cytometry panels) and incubated for 30 min in the dark at room temperature. Cells 

were subsequently washed twice (FACS buffer, 1000xg, 5 min, RT), resuspended in 100ul FACS buffer per well and stored at 4 ◦ C 

in the dark until measurement next day.

BD FACSymphony A5 Cell Analyzer was (BD Biosciences, USA) used to acquire all the samples. FACSDiva software was used for 

acquisition and compensation of samples. Single-stained references were prepared either with compensation beads (CompBeads, 

BD Biosciences, USA) or SEB+IFNa-activated adult donors‘ cells, depending on the marker expression level and fluorophore 

intensity.

Compensated data was uploaded to OMIQ.ai cloud-based cytometry analysis software for gating and export of population abun-

dances and median signal intensities. Exported data was imported into R programming environment, where it was aggregated and 

analyzed.

Bulk RNAseq of whole blood of SARS-CoV-2-infected hamsters

Details about the animal experiment itself can be found in the original publication. 37 As stated in the original publication, the animal 

experiments were approved by the Landesamt fü r Gesundheit und Soziales in Berlin, Germany (approval number 0086/20). 37

To extract RNA from whole hamster blood, previously frozen samples were diluted 1:1 with PBS, added to TrizolLS (Invitrogen) 

reagent at the manufacturer recommended proportion of 1:3 (sample:TrizolLS) and vortexed. After 20min of inactivation, samples 

were transferred from the BSL3 to a BSL2 facility. RNA extraction was continued according to the manufacturers protocol. RNA 

was eluted in RNAse free water and stored at − 80 ◦ C until sequencing.

For RNA extraction from hamster tissue, 50–100 mg of lung tissue was homogenized using a bead mill (Analytic Jena) for 30s, then 

1mL of Trizol reagent (Invitrogen) was added to the tubes. After an additional homogenisation step (30s) samples were transferred to 

fresh tubes and incubated for 20min to ensure inactivation before moving them to the BSL2 facility. RNA was then extracted accord-

ing to the manufacturers instructions, eluted in RNAse free water and stored at − 80 ◦ C.

Sequencing libraries were generated using the the QuantSeq 3 ′ mRNA-Seq V2 Library Prep Kit FWD (Lexogen, cat# 193.384) ac-

cording the manufacturer’s instruction, and sequenced on a Novaseq X device (Illumina) on a 25B flowcell to a depth of about 20–30 

million reads per sample. Read 1 of length 151 nucleotides was aligned to the MesAur 2.0 genome assembly (https://www.ncbi.nlm. 

nih.gov/genome/11998?genome_assembly_id=1585474). The GTF file used for gene counting was described previously. 78 For data 

analysis, the R packages quasR, dplyr and and pheatmap (Kolde, R. (2019). pheatmap: Pretty Heatmaps) were used. 79

e10 Cell Reports Medicine 6, 102285, August 19, 2025

Article
ll

OPEN ACCESS

https://www.ncbi.nlm.nih.gov/genome/11998?genome_assembly_id=1585474
https://www.ncbi.nlm.nih.gov/genome/11998?genome_assembly_id=1585474


All work involving live SARS-CoV-2 virus was conducted under appropriate biosafety conditions in the BSL-3 facility at Institut fü r 

Virologie, Freie Universitä t Berlin, Germany. All animal experimentation was approved by the competent state authority (Landesamt 

fü r Gesundheit und Soziales in Berlin, Germany, permit number 0086/20) and performed in compliance with all relevant national and 

international guidelines for care and humane use of animals.

QUANTIFICATION AND STATISTICAL ANALYSIS

The software used for statistical analysis is stated in the paragraphs describing the respective experimental procedures in the section 

‘‘methods details.’’ For statistical details please refer to the figure legends and the respective experimental procedures in the section 

‘‘methods details.’’

The study was not blinded, and the sample size was calculated empirically, prioritizing the inclusion of the highest number of 

COVID-19 samples and matching controls.

One ’’n’’ represents the results of one experiment conducted with specimens of one individual at one time point. In the case of 

sequential analysis i.e., visit 1 versus visit 2, it refers to specimens from identical donors at two different time points.

If no absolute p value is shown in the comparison: *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001.

Additional resources

Pa-COVID-19 clinical trial registered with German Clinical Trials Register: DRKS00021688.

RECAST clinical trial registered with German Clinical Trials Register: DRKS00025715.

EICOV/COVIMMUNIZE (COVIM) clinical trial registered with EU Clinical Trials Register: EudraCT number 2021-001512-28.
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