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Abstract

Dysfunctional mitochondria are a hallmark of T cell ageing and
contribute to organismal ageing. This arises from the accumulation
of reactive oxygen species (ROS), impaired mitochondrial dynam-
ics, and inefficient removal of dysfunctional mitochondria. Both
cell-intrinsic and cell-extrinsic mechanisms for removing mito-
chondria and their byproducts have been identified in T cells. In this
review, we explore how T cells manage mitochondrial damage
through changes in mitochondrial metabolism, mitophagy, asym-
metric mitochondrial inheritance, and mitochondrial transfer,
highlighting the impact of these mechanisms on T cell ageing and
overall organismal ageing. We also discuss current therapeutic
strategies aimed at removing dysfunctional mitochondria and their
byproducts and propose potential new therapeutic targets that may
reverse immune ageing or organismal ageing.

Keywords T Cell Ageing; Mitochondrial Metabolism; Mitophagy;
Asymmetric Cell Division; Mitochondrial Transfer

Subject Categories Immunology; Molecular Biology of Disease; Organelles
https://doi.org/10.1038/s44319-025-00536-z

Received 20 December 2024; Revised 10 June 2025;

Accepted 16 July 2025

Published online: 29 August 2025

Introduction

The ageing population is increasing at an unprecedented rate, with
the population of over 60-year-olds projected to reach 2.3 billion by
2050 (WHO). Ageing is a significant risk factor for multiple
morbidities, including diabetes, cardiovascular conditions, neuro-
logical deficits, autoimmune diseases and susceptibility to infection
and cancer (Ellison-Hughes, 2020). This has given rise to research
into an array of therapeutics targeting the fundamental ageing
process. Ageing affects all biological systems, and the impaired
function of the immune system has been recognised as one of its
principal features (Yousefzadeh et al, 2021). Emerging evidence
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suggests that an aged immune system contributes to cellular
senescence and the ageing of solid organs (Yousefzadeh et al, 2021;
Lépez-Otin et al, 2023). Dysfunctional cell and tissue metabolism,
in particular, has been identified as a key factor expanding the
hallmark of both immune decline and ageing (Lépez-Otin et al,
2023). Despite ongoing research, our understanding of the aged
immune system, the mechanisms driving its dysfunction, and its
role in age-related diseases remains incomplete.

During ageing, the immune system becomes less effective at
combating infections and cancer. Age-related alterations in the
immune system are usually characterised by a decline of function
among immune cells and changes including lower naive/memory T
cell ratio, thymus atrophy resulting in less naive T cell output, and
decreased avidity of antibody response (Pawelec and Solana, 1997;
Chen et al, 2022; Walford, 1964). Aged immune cells share a common
senescent phenotype encompassing increased cyclin-dependent kinase
inhibitor (CDKN) expression, including p16 and p21 and senescence-
associated secretory phenotype (SASP) that includes the release of
inflammatory cytokines and chemokines (Callender et al, 2018). A
further attribute of an aged immune system is defined by chronic and
systemic inflammation, known as inflammageing (Jin et al, 2023).
Counterintuitively, inflammageing challenges the limited capacity of
an aged immune system to resolve infection. For example,
cytomegalovirus (CMV) infection, typically asymptomatic, becomes
symptomatic in older women due to high levels of inflammatory
cytokines that activate the replication of cytomegalovirus (Schmaltz
et al, 2005). The release of pro-inflammatory cytokines also supports
tumour growth and metastasis, resulting in higher susceptibility to
cancers (Tato-Costa et al, 2016; Coppé et al, 2008). These features are
used to define the interdisciplinary concept of immune senescence,
which perpetuates cellular and environmental ageing, ultimately
leading to organismal decline.

Amongst the array of cells in the immune system, T
lymphocytes generate specific and diverse immune responses
towards antigens, playing a central role in defending the body
against both infections and cancer. Together with B lymphocytes,
they form immunological memory following encounter with an
antigen to arm the body for re-exposure to the same antigen. A
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decline in immunological memory formation has been acknowl-
edged as a key change during immune ageing (Haynes et al, 2003).
Both cytotoxic T cell (CD8+) and T helper cell subsets (CD4+)
emerge from the thymus as naive cells. Cytotoxic CD8+ T cells
recognise antigens presented by major histocompatibility complex
(MHC) molecules I on the surface of infected or cancerous cells,
which are then targeted for killing through effector molecules.
CD4+ T helper cells recognise antigen through MHC class II and
support the activation and persistence of CD8+ T cells, enhance
antigen presentation by dendritic cells, and recruit other immune
effector cells to the infection site or the tumour microenvironment.
This coordinated response is also a fundamental component of the
immune system’s cancer surveillance mechanisms, although
tumour antigens are more difficult to target due to their immune
evasion and suppression potentials (Sun et al, 2023; Cornel et al,
2020). After T cells’ first encounter with antigen, they become
effector cells and memory precursors, the latter giving rise to long-
lived memory cells (Sun et al, 2023).

Existing evidence substantiates the role of metabolic adaptation
during T cell activation, survival, and differentiation to fuel their
functional demands (Raynor and Chi, 2024; Chapman et al, 2020).
Naive T cells rely on oxidative phosphorylation (OXPHOS) to
maintain their quiescence with efficient ATP production. Effector
cells rely primarily on aerobic glycolysis for rapid metabolic
mobilisation, while memory T cells rely on fatty acid oxidation
(FAO) to reserve their metabolic capacity (Gubser et al, 2013;
Corrado and Pearce, 2022; O’Sullivan et al, 2014).

Metabolic imbalance is a key driver contributing to the anergy of T
cell function during ageing (Zheng et al, 2009; Powell and Delgoftfe,
2010; Desdin-Mico et al, 2020; Callender et al, 2020). These metabolic
changes are closely related to mitochondrial dysfunction, which
disrupts their multifaceted role in maintaining T cell homeostasis. Cell
homeostasis relies on the tight quality control of energy sensing/
production and metabolism regulation by mitochondria. Mitochon-
dria are highly dynamic organelles that serve not only as the primary
producers of cellular energy, but also as metabolic hubs that rewire
nutrient sensing and metabolic pathways, including aerobic glycolysis,
glutaminolysis, pentose-phosphate pathway (PPP) activity, and one-
carbon metabolism (Han et al, 2023). They generate the key
metabolites to build functional molecules (proteins, membranes and
nucleic acids) and energy (adenosine triphosphate (ATP)), which is
coupled with reactive oxygen species (ROS)(O,~ and H,0,) produc-
tion. In many cell types or model organisms, accumulation of
dysfunctional mitochondria induces an ageing phenotype (Wang et al,
2021; Desdin-Mico et al, 2020; Callender et al, 2020; Picca et al, 2023).
In T cells, an important consequence of the age-associated
mitochondrial dysfunction is the metabolic switch from the
tricarboxylic acid (TCA) cycle to glycolysis, which affects their
stemness and effector function. Notably, CD8+ T cells show greater
age-related decline than CD4+ T cells, with significant depletion of the
naive compartment due to severe mitochondrial dysfunction. These
defects lead to reduced metabolic flexibility, impaired electron
transport, and elevated ROS, propagating oxidative stress across
cellular compartments. The elevated ROS production and oxidative
stress by damaged mitochondria hinder T cell differentiation and
activation (Wertheimer et al, 2014; Czesnikiewicz-Guzik et al, 2008). A
multimorbidity phenotype is observed after genetic knockout of
mitochondrial transcription factor A (Tfam) in T cells with reduced
life expectancy, systemic dysfunction and immune incompetency in
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mice (Desdin-Mic6 et al, 2020), highlighting that impaired function of
T cells alone could predispose older organism to infections, cancer
progression or accumulation of senescent cells (Desdin-Micé et al,
2020; Escrig-Larena et al, 2023) (Fig. 1).

Collectively, this suggests a mitochondria-centred role of T cell
ageing with an impact on systemic ageing. In this review, we will
present how ageing T cells cope with mitochondrial damage by (1)
responding to aberrant mitochondrial metabolism and ROS
production, (2) mitochondrial degradation, (3) asymmetric mito-
chondrial inheritance and (4) mitochondrial transfer between cells.
Where it's known, we will discuss how these partly still
controversial cellular processes impact T cell ageing, hoping to
provide new perspectives for anti-ageing or rejuvenation therapies.

Mitochondrial metabolism during
T cell ageing

Age-related changes in T cell phenotypes are closely linked to
dysregulation of mitochondrial function. These mitochondrial
alterations result in reduced inter-organelle communication,
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Figure 1. Mitochondrial failure as a central driver of T cell ageing.

Ageing impairs mitochondrial function by disrupting biogenesis, genome
integrity, protein translation, and quality control mechanisms. As a result,
dysfunctional mitochondria accumulate, accelerating both T cell decline of
function and organismal ageing. Age-related T cell dysfunction is characterised
by diminished immune responses and increased systemic senescence,
contributing to inflammageing. T cell senescence is marked by the expression of
key regulators such as p16 and p21, as well as the senescence-associated
secretory phenotype (SASP), a pro-inflammatory profile that can further impair
immune function.
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impaired organelle turnover, and a loss of metabolic plasticity and
mitochondrial dynamics. In a recent review, the molecular
mechanisms underlying dysfunctional mitochondria during T cell
ageing have been summarised, including alterations in mitochon-
drial DNA (mtDNA) genome stability, mitochondrial dynamics,
Ca’" homeostasis, mitochondrial biogenesis and degradation and
oxidative stress (Escrig-Larena et al, 2023). Here, we will first
discuss the role of mitochondrial ROS and mitochondrial
biogenesis during T cell ageing.

Mitochondrial ROS and biogenesis signalling

The accumulation of dysfunctional mitochondria is acknowl-
edged as one of the hallmarks of ageing (Lopez-Otin et al, 2023).
ROS production is typically regarded as a byproduct of mitochon-
drial respiration during ATP production. Both mitochondrial ATP
production and ROS generation are closely tied to the availability of
oxygen, which is the final electron acceptor within the mitochon-
drial electron transport chain (ETC). This relies on mitochondrial
complexes (I-IV) that help transfer electrons and pump protons
across the mitochondrial membrane, creating an energy gradient.
The energy gradient is used to synthesize ATP from ADP
(adenosine diphosphate) by ATP synthase. During ETC, ROS
escapes from the inner mitochondrial membrane, resulting in
downstream signalling events and mitochondrial damage (Quinlan
et al, 2013), which may trigger permeabilisation of the mitochon-
drial membrane and oxidative damage, causing inflammaton and
cell death (Amorim et al, 2022). However, while ROS-driven
signalling has been studied as a pathological factor, ROS as a
signalling molecule is as essential as ATP production (Palma et al,
2024).

Besides excessive oxidative stress, alterations in mitochondrial
translation and a decline in mitochondrial biogenesis are observed
during ageing (Gill et al, 2019; Souder et al, 2023). Maintaining a
precise balance between mitochondrial translation and mitochon-
drial proteostasis is essential for optimal OXPHOS function
(Uoselis et al, 2023; Soto et al, 2022). Peroxisome proliferator-
activated receptor gamma (PPAR) coactivator-1 alpha (PGC-1a) is
a master transcription factor that controls mitochondrial biogen-
esis. Under conditions of energy deprivation, energy and nutrient-
sensing signals such as AMP-activated protein kinase (AMPK) and
Sirtuin 1 (SIRT1) are activated, which both directly trigger PGC-1a
function by its phosphorylation and deacetylation. When PGC-1a
is activated, TFAM helps transporting both SIRT1 and PGC-la
into the mitochondria to regulate mtDNA replication and
transcription. SIRT1 is a NAD+ dependent protein deacetylase.
As NAD+- levels decline during ageing, the resulting loss of NAD+-
impairs SIRT1 activity, which in turn reduces the deacetylation of
key regulators such as AMPK, forkhead box O (FOXO) proteins,
and PGC-1a. This disruption leads to dysregulated mitochondrial
biogenesis and metabolism, as well as decreased antioxidant activity
of mitochondrial superoxide dismutase (SOD2), which converts
superoxide (O,") into hydrogen peroxide (H,0O,). This dysfunction
ultimately contributes to increased mitochondrial ROS production
(Salminen et al, 2013; Xu et al, 2020). Thus, by lacking SIRT1
activity, ageing results in a scenario where AMPK is activated due
to energy-scarce conditions, but this results in mitotic arrest
through phosphorylation of p53 and increasing pl6 expression
(Wiley et al, 2016). As one of the major features of cellular
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senescence, mitotic arrest indirectly helps enhance mitochondrial
biogenesis: When cells are arrested in mitosis, they shift focus from
cell division to repairing damaged organelles, helping to restore
mitochondrial function. However, extended mitotic arrest can lead
to a decline in mitochondrial membrane potential, triggering both
mitophagy and cell death in senescent cells (Hao et al, 2022; Pefia-
Blanco et al, 2020). This reflects the context-dependent regulation
of mitochondrial biogenesis, where nutrient-rich and nutrient-
deprived conditions trigger distinct signalling pathways with
varying effects.

Mitochondrial alterations in aged naive and
memory T cells

Although a comprehensive characterisation and understanding of T
cell ageing remains to be explored, it is known that T cell subsets
are impacted by their metabolism during ageing (Renkema et al,
2014; Wertheimer et al, 2014; Ron-Harel et al, 2018). For instance,
aged naive CD4+ T cells are not only reduced in number but also
display dysfunctional one-carbon metabolism, the most induced
metabolic pathway during the early stage of T cell activation.
Interrupted one-carbon metabolism in naive T cells leads to
impaired proliferation and activation (Ron-Harel et al, 2016, 2018).
In contrast, the activation of naive CD8-+ T cells has been shown to
rely on mitochondrial biogenesis during early activation to generate
effector cells and cytokines, demonstrated using both pharmaco-
logical and genetic tools that inhibit mitochondrial translation
(Fischer et al, 2018; Lisci et al, 2021). Although evidence of the
changes in mitochondrial translation in naive T cells during ageing
is lacking, increased mitochondrial oxidative stress and decreased
mitochondrial membrane potential imply their dysfunctional status
(Fischer et al, 2018). In fact, suboptimal proliferation and the
development of apoptosis-prone phenotype in naive CD8+T cells
in the context of ageing have already been reported by others. These
changes are associated with excessive fatty acid uptake and lipid
storage, resulting in dysfunctional fatty acid oxidation during the
activation of naive T cells. The molecular drivers and correlation to
mitochondrial dysfunction remain unclear (Nicoli et al, 2022).
Like naive T cells, metabolic reprogramming is also affected in
memory T cells during ageing. In humans over 65 years of age,
higher OXPHOS, ROS production, and ATP production are
observed in CD4+ T memory cells compared to young (<35 years
of age) individuals. This is accompanied by upregulated carnitine
palmitoyltransferase 1A (CPT1la), which catalyses the transfer of
the long-chain acyl group in acyl-CoA ester to carnitine, thus
allowing fatty acids to enter the mitochondrial matrix for oxidation,
resulting in higher fatty acid oxidation. This may affect the lipid
storage needed for their long-term survival (Yanes et al, 2019).
Although fatty acid metabolism has also been shown to support
CD8+ T memory development (O’Sullivan et al, 2014), it remains
unclear whether CD8+T memory cells share similar mitochondrial
alterations. Metabolomic profiling of plasma from young and older
healthy donors revealed distinct baseline metabolic signatures in
response to influenza vaccination. Notably, young high responders
(HRs) exhibited increased levels of upstream tryptophan metabo-
lites such as L-tryptophan, 5-hydroxy-L-tryptophan (5-HTP), and
indoleacetic acid at 28 days post-vaccination, a pattern absent in
older subjects. This observation aligns with established evidence
that shunting of tryptophan metabolism suppresses T cell responses
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(Seo and Kwon, 2023). The preservation of immunomodulatory
upstream tryptophan metabolites in young HRs suggests main-
tained tryptophan bioavailability, potentially supporting T cell
responses driven by antigen presentation and interferon signalling.
In contrast, older adults exhibit elevated triacylglycerols (TAGs)
consumption, which are related to T memory and regulatory T cell
(Treg) responses, suggesting older adults may rely on more T
memory and Treg responses during influenza vaccination (Chou
et al, 2022).

Mitochondrial alterations in age-related T cell subsets

The ageing immune system undergoes profound changes beyond
the decline of naive and memory T cell function. As thymic output
wanes and the naive T cell pool diminishes, the body must
compensate for both this loss and the constant immune challenges
posed by lifelong antigen exposure. Simultaneously, inflammageing
creates a hostile microenvironment, prompting the immune system
to adapt by generating specialised T cell subsets like T virtual
memory cells (TVM), terminally differentiated effector-memory
cells that re-express CD45RA (TEMRA), and T ageing-associated
(Taa) cells (Moller et al, 2022). TVM cells emerge due to
homoeostatic proliferation and exhibit features of memory
T cells, yet are antigen-naive (Hussain and Quinn, 2019). Unlike
conventional naive T cells, aged CD8+ TVM cells exhibit marked
functional decline, adopting a SASP phenotype and accumulating
DNA damage markers like yH2AX (Quinn et al, 2018). Intrigu-
ingly, these cells preserve metabolic flexibility, maintaining
glycolytic activity and spare respiratory capacity (SRC) — a critical
reserve of mitochondrial ATP production during energy surges — at
levels comparable to young naive T cells (Borsa et al, 2021; Quinn
et al, 2020). This suggests that TVM cells may represent an adaptive
concession to sustain immune function in ageing. However, this
adaptation comes with compromises. Aged TVM cells display
excessive mitochondrial fusion, impairing organelle turnover and
reducing metabolic plasticity. Paradoxically, they also upregulate
ETC activity and SRC, likely driven by elevated Pgc-la and
suppressed mitophagy (1 Atgl01, | Ulkl) (Quinn et al, 2018, 2020).
This imbalance, where mitochondrial biogenesis outpaces degrada-
tion, may explain their dual phenotype: energetically competent but
functionally senescent.

Another senescent/exhausted subset, TEMRA, arises under
repeated antigen exposure and chronic infections in humans (Jain
et al, 2023). These cells are characterised by reduced proliferative
capacity and diminished mitochondrial function while maintaining
their cytotoxicity. Higher ROS production and reduced mitochon-
drial membrane potential are observed in TEMRAs compared to
other subsets of CD8+ T cells (Henson et al, 2014). CD4+
TEMRAS, on the other hand, accumulate less with age, perhaps due
to their higher mitochondrial mass; the mechanisms remain
unclear (Strickland et al, 2023; Callender et al, 2020). Recent
discovery of the Taa population further completes the T cell ageing
picture. Taa cells become prevalent in older people and are
characterised by the expression of granzyme K (GZMK), exhaus-
tion marker-programmed cell death protein 1 (PD-1) and the
transcription factor TOX (Mogilenko et al, 2021). While the origin
of Taa is not fully understood, it has been shown that Taa can
influence systemic ageing by inducing a SASP phenotype in aged
fibroblasts, correlating with raised inflammatory cytokines
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interleukin 6 (IL-6), interleukin 8 (IL-8), and tumour necrosis
factor-alpha (TNF-a) in the plasma. Furthermore, a similar
phenotype is observed when Tfam is genetically deleted in murine
T cells, where impaired mitochondrial function in this cellular
compartment results in systemic organismal ageing (Desdin-Mic6
et al, 2020). These findings reveal a feedback loop in ageing
immunity: as T cells lose their functional integrity, their metabolic
dysregulation and inflammatory signals exacerbate tissue deteriora-
tion, which in turn puts further strain on the immune system. The
key problem seems to be dysfunctional mitochondria, which
different T cell subsets accumulate to a variable degree, yet they
are universally disruptive. Deciphering how mitochondrial path-
ways govern T cell behaviours could unlock targeted strategies to
break this loop, potentially restoring immune resilience and
mitigating age-related decline.

Drugs and interventions that target
mitochondrial products

As mitochondrial health is closely linked to ROS production, multiple
antioxidant strategies have been investigated. The antioxidant drug N-
acetylcysteine (NAC) and vitamin C were given to aged mice
during vaccination and resulted in improved long-lived immune
memory formation (Meryk et al, 2020). This builds on existing
evidence that in vitro use of NAC can reduce ROS production
and reverse telomere length reduction in primary T cells from aged
donors (Sanderson and Simon, 2017). These findings have now
been adapted in a phase I clinical trial together with chimeric
antigen receptor T cell (CAR-T) therapy for the treatment of non-
Hodgkin’s lymphoma (NCT05081479). In response to the rapid
ROS rise following T cell activation, an endogenous antioxidant
response is triggered, marked by glutathione (GSH) production, a
major detoxification agent that scavenges ROS (Mak et al, 2017).
Endogenous GSH levels are reduced during terminal differentiation of
T cells, which conversely could be prevented by antioxidants
that preserve a T stem cell memory phenotype with better
adoptive transfer and killing potential (Pilipow et al, 2018). Other
quinone-based antioxidants, for example, co-enzyme A, and co-
enzyme Qs, were also shown to be important in maintaining T cell
anti-tumour functions (St. Paul et al, 2021; Reina-Campos et al, 2023;
Hidalgo-Gutiérrez et al, 2021).

Mitochondrial biogenesis, aimed at improving mitochondrial
health, has been explored in preclinical and clinical settings (Kurmi
et al, 2023). One promising strategy involves boosting NAD+--
dependent sirtuins, particularly SIRT1, which declines in aged T cells
and other tissues (Jeng et al, 2018; Xu et al, 2020). NAD+ precursors
like nicotinamide riboside (NR) reverse inflammatory and ageing
phenotypes in T cell-specific TFAM-knockout mice (Desdin-Micd
et al, 2020). Furthermore, genetic disruption of de novo NAD+
synthesis (e.g. via the kynurenine pathway) impairs anti-tumour T cell
responses (Wan et al, 2023), although there is limited evidence on
whether this increases cancer susceptibility during ageing. Clinically,
NR and NMN (Nicotinamide mononucleotide) supplementation are
being tested for metabolic and ageing-related disorders (Akasaka et al,
2023; Dollerup et al, 2018). It is also noteworthy that metabolic
dysfunction in CD8+ T cells, driven by the immunosuppressive
microenvironment of chronic lymphocytic leukaemia (CLL), con-
tributes to CAR-T therapy resistance (Van Bruggen et al, 2019). By co-
expressing an inhibition-resistant PGC-la variant with anti-EGFR
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Reactive oxygen species (ROS) are generated and scavenged during mitochondrial metabolism as part of ATP production. At basal levels, ROS play a physiological role in
promoting mitochondrial biogenesis and signalling. However, with ageing, ROS levels can exceed a critical threshold, leading to oxidative damage and impaired
mitochondrial function. This contributes to less efficient mitochondrial biogenesis and dysfunctional energy metabolism in T cells. Both increased ROS and impaired
biogenesis represent potential therapeutic targets, which may be addressed using antioxidants and NAD+ precursors, respectively. Green arrows or inhibition marks with

solid line represent drug effects supported by experimental evidence.

CARs, T cell metabolic fitness and tumour control are enhanced
(Lontos et al, 2023), revealing a promising strategy to synergise
metabolic reprogramming with adoptive cell therapy (Fig. 2).

Mitochondrial translation influences T cell function in a number
of ways. For example, experimentally induced fever enhances
mitochondrial translation in CD8+ T cells, boosting their anti-
tumour responses, which is inhibited by the translation inhibitor
tigecycline (O’Sullivan et al, 2021). Similarly, genetic deletion of the
deubiquitinase USP30 or pharmacological inhibition of mitochon-
drial translation (e.g. with doxycycline or chloramphenicol) impairs
cytotoxic granule formation and T cell killing (Lisci et al, 2021).
However, how mitochondrial translation behaves during ageing in
T cells requires more investigation.

In summary, managing mitochondrial byproducts such as ROS,
and enhancing mitochondrial biogenesis hold promise with the
goal to improve aged T cell functions and promote systemic health.
In the following sections, we will focus on how different cell
biological pathways can promote mitochondrial homoeostasis, are
regulated by T cell ageing and whether their therapeutic modula-
tion can counteract immunosenescence.

© The Author(s)

Mitophagy to delay ageing

One way to remove unwanted mitochondria is by delivering the
mitochondria to the lysosomes via autophagy, a process called
mitophagy (Ganley and Simonsen, 2022). Before mitochondria can
be taken up by autophagosomes, they are thought to require
fragmentation. Piecemeal mitophagy is the removal of damaged
macromolecules, where dysfunctional mitochondrial macromole-
cules are shuffled into a specific area, enabling the autophagosome
to pinch off this portion (Ganley and Simonsen, 2022). Accumula-
tion of dysfunctional mitochondria is thought to be a consequence
of an age-related decline in mitophagy, but to date, little is known
about this process in ageing T cells (Chen et al, 2020). Outside the
context of ageing, depolarised mitochondria have been shown to
accumulate as a result of decreased mitophagy activity in tumour-
infiltrating T lymphocytes. Consequently, these cells display the
functional, transcriptomic and epigenetic characteristics of termin-
ally exhausted T cells (Yu et al, 2020).

Mitophagy shares its molecular machinery with autophagy
(Ganley and Simonsen, 2022). However, what differentiates
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mitophagy from autophagy at the molecular level are the receptors
that enable the autophagosomal machinery to recognise damaged
or unwanted mitochondria. Over the last two decades, several
receptors have been described in mammalian cells. Here, we will
focus on the three main mitophagy pathways. The best described is
the Pink-Parkin pathway, in which Pinkl senses mitochondrial
transmembrane potential loss and recruits Parkin, an E3 ubiquitin
ligase, to the damaged mitochondria (Narendra and Youle, 2024).
This pathway is engaged upon starvation or when mitochondria are
damaged. The PINK1/Parkin pathway is found not to be functional
in human peripheral mononuclear cells, of which T lymphocytes
are one subset. The mitophagy receptors used in the PINK1/Parkin
pathway are NDP52, OPTN and TAX1BP1 (Narendra and Youle,
2024). Hypoxia-induced mitophagy operates through the FUN14
domain-containing protein 1 (FUNDcl) pathway. FUNDcl also
serves as a mitophagy receptor when mitochondria are uncoupled,
or when paternal mitochondria are removed in C. elegans (Chen
et al, 2020). FUNDcI is an outer mitochondrial membrane protein
with an LC3-interacting domain (LIR). One of the earliest
mitochondrial receptors that were discovered are BNIP3 and
NIX. NIX was shown to remove mitochondria from red blood cells
during their differentiation (Schweers et al, 2007; Sandoval et al,
2008) and has possible roles in cancer, in heart myocytes and in
macrophages (Chen et al, 2020).

Mitophagy during ageing

There is some evidence that adequate and timely removal of
mitochondria by mitophagy is key to a long healthspan and
lifespan. This evidence is primarily based on C. elegans, where
knocking out mitophagy receptors, recapitulates the effect of
ageing on mitochondrial mass or shortens their lifespan when all
three worm homologues of Pink, Parkin and Nix are knocked out
(Palikaras et al, 2015). However, studies using mammalian cells
during ageing show contradictory results (Bakula and Scheibye-
Knudsen, 2020). Indeed, a recent study reported no obvious
decline in mitophagy in mice across all brain tissues with age, but
rather region-specific dynamics (Rappe et al, 2024). Another study
reports that while autophagy levels decline, mitophagy levels
remain stable in several tissues analysed (Jimenez-Loygorri et al,
2024). This field requires more evidence from other tissues and
better quantitative in vivo tools. For instance, the detection of
mitochondrial proteins in the autophagic cargo of aged cells would
provide direct evidence of mitophagy’s role in healthy ageing,
which is still lacking despite the development of novel tools to
identify autophagosomal cargo (Zhou et al, 2022; Zellner et al,
2021).

Mitophagy impacts T cells and T cell ageing

Numerous studies show that T cells must undergo mitophagy
during their differentiation, upon activation or to ensure survival.
The earliest studies using knock-out mice of key autophagy genes
targeted to T cells showed an excess of mitochondria in T cells (Pua
et al, 2009; Mortensen et al, 2010). Similarly, memory T cells are
not maintained in a model of Atg7 deletion specifically in T cells
and accumulate damaged mitochondria (Puleston et al, 2014). A
complementary study found a similar defect in memory CD8+
T cells when mice were knocked out for Atg5 in effector T cells,
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accompanied by a change in lipid metabolism (Xu et al, 2014). Loss
of Atg5 has also been reported to promote increased CD8+ T cell
anti-tumour activity, which the authors suggest might be caused by
their biased differentiation towards an effector-memory phenotype.
Although evidence of enhanced effector functions in Atg5-deficient
cells is compelling, which is accompanied by increased glucose
metabolism and epigenetic regulation of effector and metabolic
target genes, the role of autophagy and mitophagy was not directly
addressed, neither was the distinction of short-lived effector cells
and effector-memory T cells. Indeed, this work provides further
evidence on the key role of autophagy in the long-term
maintenance of stem-like quiescent T cells (Devorkin et al, 2019).
Deletion of Atg5 in T regulatory (Treg) cells shows enhanced DNA
damage, excessive mtDNA, and reduced survival of Tregs (Alissafi
et al, 2020). Many other studies link dysfunctional mitochondria
and reduced mitophagy with cell death. For example, activation-
induced cell death (AICD) can only go ahead when general
macroautophagy is inhibited (Corrado et al, 2016). Autophagy-
defective human naive CD4+ T cells were susceptible to apoptosis,
and here, while mitophagy was not quantified, ULKI-deficient
CD4+ T cells were refractory to cell death when intracellular
ROS could be reduced (Watanabe et al, 2014). In 2010, Macian
and colleagues used electron microscopy to convincingly demon-
strate that mitochondria are excluded from autophagosomes in
effector T cells (Hubbard et al, 2010). Aside from this study, a
general drawback of early research was the initial challenge of
studying mitophagy isolated from general autophagy. One could
speculate that the deletion of key autophagy genes could indirectly
lead to changes in mitochondria, for example, via increased
mitochondrial biogenesis or preferential survival of cells that retain
mitochondria and may not directly stem from deleterious
degradation.

Once the first mitophagy receptors were identified, its
significance in T cells could be clarified in a more definitive
manner. For example, when the mitophagy receptor NIX was
specifically knocked out in T cells, a defect in the formation and
maintenance of memory T cells was found, recapitulating the
earlier studies with Atg5 or Atg7 and confirming that NIX is a key
mitophagy receptor in T cells (Gupta et al, 2019). It would be
interesting to monitor these mice for a longer period to observe
how their phenotype evolves with age. Other mitophagy receptors
revealed controversial results. Pink and Parkin are upregulated in
memory T cells: Parkin suppressed VDAC-1-dependent apoptosis
and NIX counteracts ferroptosis resulting from impaired mito-
phagy (Franco et al, 2023). While in one study the PINK1/Parkin
system was found not to be functional in human peripheral blood
mononuclear cells (Bradshaw et al, 2021), another study found that
the knockout of Pink rather promotes the differentiation into
Thl cells in mice (Mei et al, 2023). Another study compared
mitophagy levels using a mitophagy dye and found that naive
CD4+ T cells had the highest level of mitophagy followed by
memory CD4+ cells and Tregs; however CD8+ T cells altogether
showed very low levels of mitophagy. This reveals that these T cell
subsets are very different (Liang et al, 2022). A comparison between
young and old mice would have been a great addition to this study.

Very few studies show that a decline in mitophagy contributes to
the ageing of T cells. One study measured mitophagy in human
CD4+ T cells. They found a significantly higher number of
autophagosomes with many containing undegraded mitochondria
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Figure 3. Mitochondrial degradation and its therapeutic potentials.

EMBO reports

Urolithin A,
ceramide
P (PARKIN 3@38
D
P |PINK | &—

Mitochondrial clearance occurs primarily through macroautophagy, mediated by key mitophagy signals: the PINK1/Parkin pathway, mitophagy receptors: FUNDc1, NIX and
BNIP3. Enhancing autophagy via pharmacological interventions or lifestyle modifications represents a promising therapeutic approach to restore mitochondrial
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potential.

in older adults as compared to younger, suggesting defective
mitochondrial turnover by autophagy (Bektas et al, 2019). Whether
this causes an aged phenotype is difficult to discern, without
reversing the ageing phenotype with an autophagy/mitophagy-
inducing compound.

Drugs and interventions that target mitophagy

Several studies focusing on mitophagy as a therapeutic
target already exist. While many have been conducted in young
organisms, some have also included the aged. One study performed
in young mice used the mitophagy-inducing compound Urolithin
A to improve T memory stem cell formation by inducing Pink1-
dependent mitophagy (Denk et al, 2022). We treated old mice with
spermidine and found that it can recover T cell memory responses,
an effect that is not observed in the absence of autophagy (Puleston
et al, 2014). Together with the studies showing a surplus of
mitochondria in Atg7 knockout CD8+ T cells (Puleston et al,
2014), this suggests that spermidine may have an effect on
mitophagy. Alternatively, spermidine may turn on mitochondrial
translation, as shown in macrophages (Puleston et al, 2019).
Similarly, another study found that NMN might act via mitophagy
to prevent senescence by promoting mitochondrial homoeostasis in
tumour-infiltrating CD8+ T cells (Ye et al, 2024). In contrast,
inhibiting ceramide-dependent mitophagy can improve the age-
related dysfunction of anti-tumour T cells; however, they did not
measure levels of mitophagy/autophagy in the presence of flux
inhibitors (Vaena et al, 2021).

© The Author(s)

Lifestyle interventions such as long-term exercise and calorie
restriction have shown promise in alleviating the phenotype of
ageing in other tissue types, but clinical trials demonstrating an
effect on mitophagy in humans are still lacking. However, clinical
trials with a USP30 inhibitor, or modulators of the NRF2/KEAP
pathway — a pathway that regulates cellular response to oxidative
stress, metformin or other AMPK activating compounds are
underway, as is the screening for more specific mitophagy-
inducing drugs (Picca et al, 2023). This is a promising area which
will bring us closer to the rejuvenation of T cell responses (Fig. 3).

Asymmetric inheritance of mitochondria

Another way for long-lived T cells to remove mitochondria is by
passing them on to the shorter-lived daughter cells during division
(segregation), which is achieved by asymmetric cell division (ACD).
Although this is a conserved mechanism observed across different
species and cell types, its physiological relevance is still a field of
much debate. And certainly, when it comes to mitochondria, the
consequences of asymmetric distribution in terms of health and cell
function remain unclear.

The asymmetric inheritance of cell cargoes during mitosis is
amongst the mechanisms that contribute to early fate decision
during CD8+ T cell differentiation (Chang et al, 2007). In T cells,
ACD is particularly important for the formation and maintenance
of long-lived memory (Chang et al, 2007, 2011; Borsa et al, 2019).
ACD relies on high-affinity TCR stimulation in the context of an
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immune synapse. Weak TCR-binding due to low-affinity antigen
presentation or the absence of integrins that stabilise the
interaction between the T cell and the antigen-presenting cell
(APC) results in poor antigen-specific memory in vivo (Grabnitz
et al, 2023; King et al, 2012). A mother cell undergoing ACD gives
rise to two daughter cells that inherit distinct cellular content,
which is represented by several layers of asymmetry, including the
differential expression of surface markers, transcription factors and
divergent metabolic activity and translation profiles (Chang et al,
2011; Pollizzi et al, 2016; Verbist et al, 2016). First-daughter cells
following CD8+ T cell mitoses already exhibit divergent tran-
scriptomes, which further contributes to their fate bias (Borsa et al,
2019; Quezada et al, 2023; Metz et al, 2015; Liedmann et al, 2022).
Similar to other cell types that rely on ACD to maintain stemness,
such as haematopoietic stem cells (Loeffler et al, 2019), whose
ability to divide asymmetrically is compromised with ageing
(Florian et al, 2018), naive CD8+ T cells from older mice also lose
this ability. This jeopardises their maintenance as quiescent and
long-lived cells (Borsa et al, 2021). Cells that retain their ability to
undergo ACD during ageing, such as TVM, also maintain their
potential to generate diverse progenies containing both memory
cells and effector cells. Thus, ACD seems to be sufficient to preserve
stemness even in scenarios where cell-extrinsic features, such as an
ageing environment, would not favour that fate.

Mitochondria as drivers of asymmetric fates

The asymmetric layers observed during ACD, root from early
synaptic events, as the immune synapse between the T cell and the
APC functions as an anchor point for the establishment of a
polarisation axis that is maintained throughout cell division.
Interestingly, mitochondria are amongst the cell cargoes polarised
towards the synapse. There, mitochondria are important in
regulating calcium signalling and impact on immune synapse
architecture (Quintana et al, 2007; Baixauli et al, 2011; Quintana
et al, 2011). Cytotoxic CD8+ T cells (CTLs) lacking mitochondria
exhibit dysfunctional immune synapses and impaired T cell killing
(Lisci et al, 2021). However, it is not yet clear whether early
polarisation events occurring at the immune synapse have a direct
impact on the (post-)mitotic inheritance of heterogeneous mito-
chondrial pools by T cell progenies.

Mitochondria have their own DNA and ribosomes, and the total
pool of mitochondria in a cell mostly results from a balance of
mitochondrial biogenesis and mitophagy. Upon proliferation, cells
can also partition their mitochondrial content between daughter
cells, which allows mitochondria segregation and the inheritance of
heterogeneous organelle pools. From the perspective of ACD
(segregation), different reports investigating whether mitochondria
are asymmetrically inherited during mitosis generated conflicting
results (Pollizzi et al, 2016; Verbist et al, 2016; Adams et al, 2016;
Emurla et al, 2021). Human mammary epithelial cells (hMECs) can
asymmetrically apportion old mitochondria during cell division.
The progeny inheriting old mitochondria undergoes terminal
differentiation and loses the potential to self-renew, while the
progeny that does not inherit old organelles remains stem-like
(Katajisto et al, 2015). Fate divergence results from distinct
metabolic programmes driven by old and young mitochondrial
compartments. Old mitochondria are sites of oxidative phosphor-
ylation, which drives hMECs differentiation, while young
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mitochondria have high PPP, which supports cell stemness by
promoting de novo purine biosynthesis and redox balance (Dohla
et al, 2022). In CD8+ T cells, several reports demonstrated that
daughter cells are endowed with distinct metabolic profiles
following ACD: the daughter cell that is proximal to TCR signalling
exhibits higher uptake of nutrients, mTOR activity and cMyc
expression, which fuels glycolysis and differentiation into effector
cells (Pollizzi et al, 2016; Verbist et al, 2016; Liedmann et al, 2022).
As mitochondria are central to T cell metabolism, it remained to be
investigated whether these functional differences stemmed from
mitochondrial diversity.

Asymmetric inheritance of mitochondria in T cells

We have recently addressed the aforementioned open question and
reported that unequal inheritance of different pools of mitochondria in
CD8+ T cells results in asymmetric fates. We took advantage of a
mouse model that shares the technology of sequential labelling of
mitochondrial structures and their discrimination by chronological age,
used to study hMECs, but now allowing the investigation of primary
cells directly isolated from living tissue. We demonstrate that cells
capable of high mitochondrial turnover, thus not accumulating old/
damaged organelles, can maintain quiescence. Furthermore, when used
in adoptive cell transfer experiments, these cells exhibit better survival
and re-expansion potential. In contrast, cells that maintain old
mitochondria for longer periods are more likely to become effector
cells and strongly rely on glycolysis and 1C metabolism to meet their
metabolic demands. Interestingly, autophagy is required for the
emergence of cells devoid of old mitochondria by impacting not just
degradation but also the unequal segregation of these organelles. In
autophagy-deficient cells, aged mitochondria are inherited symmetri-
cally. Thus, one can speculate that in T cells from aged individuals,
when autophagy is impaired, asymmetric segregation of mitochondria
would also be negatively impacted, which would contribute to less
diverse progenies and diminished memory potential. Nevertheless, this
evidence suggests that fate commitment is impacted by early events of
mitochondrial inheritance that shape T cell metabolism (Borsa et al,
2024). It remains unclear whether the distinct metabolic profiles
observed may drive epigenetic changes that might sustain divergent
fate trajectories. Furthermore, as mitochondria superoxide is expressed
in older mitochondria domains and ROS has been associated with
telomere shortening, it remains to be addressed whether the long-term
replicative capacity of daughter cells is determined by early events of
mitochondrial inheritance.

Drugs and interventions that target asymmetric
cell division

ACD in both young and old T cells can be boosted by short-term
mTOR inhibition (Borsa et al, 2021, 2019). Low-dose and transient
rapamycin treatment after T cell activation but prior to T cell
division can increase ACD rates and restore this ability in
progenitor exhausted CD8+ T cells (TCF1+) and naive CD8+
T cells from aged individuals. This leads to T cell rejuvenation and
improved memory potential. Mechanistically, rapamycin has been
shown to strengthen diffusion barriers that are formed in the
endoplasmic reticulum (ER) of mitotic CD8+ T cells and that are
required to maintain asymmetries during cell division. It remains to
be investigated whether the segregation of cellular components not
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attached to ER membranes is also modulated by transient mTOR
inhibition (Emurla et al, 2021).

Autophagy in T cells can also be induced pharmacologically by
spermidine and is linked to better T cell immune responses in the
elderly. As autophagy is required to promote ACD in CD8+ T cells,
it is possible that autophagy modulation could impact the
asymmetric inheritance of different mitochondrial pools. It is also
plausible to speculate that the selective partitioning of mitochon-
drial populations relies on their architecture and/or the expression
of adaptors required by their cytoskeleton-dependent transport. A
recent report showed that ACD can also be important in the
context of CAR-T cells to promote the generation of diverse
progenies (Lee et al, 2024). As ACD modulation can be successfully
done in CD8+ T cells isolated from human PBMCs (Borsa et al,
2019), modulation of mitochondrial inheritance emerges as a
potential tool to improve the outcomes of adoptive cell transfer
therapies by promoting the maintenance of long-lived cells while
not compromising their needed effector functions (Fig. 4).

Mitochondrial transfer

The role of mitochondria in sustaining cellular and tissue health is
crucial, as they function as central signalling hubs that link

Asymmetric inheritance of mitochondria during mitosis
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Therapeutic strategies and perspective
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Figure 4. Asymmetric inheritance of mitochondria and its therapeutic
potentials.

Following activation by antigen-presenting cells (APCs), T cells form polarity
and undergo mitosis with a proximal and distal side depending on the contact
with APCs. During this process, mitochondria can be inherited through
asymmetric cell division (ACD). Selective mitochondrial inheritance through
ACD offers a potential mechanism for clearing damaged mitochondria.
Transient rapamycin treatment enhances ACD efficiency. Improving ACD also
holds promise for improving CAR-T cell therapy and vaccination response.
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molecular systems within individual cells all the way to commu-
nication networks across diverse cell types. This connectivity
underscores the inherently social nature of mitochondria. By being
transferred from one cell to another or parts thereof, mitochondria
mediate extracellular and intercellular communication. The con-
cept of horizontal mitochondrial transfer — where whole
functional mitochondria are exchanged between cells — was long
seen as theoretical until recent breakthroughs provided in vivo
evidence (Brestoff et al, 2025). For example, transmissible cancer
models in dogs showed host-cancer cell mitochondrial transfer,
providing the first experimental proof of intercellular mitochon-
drial exchange (Rebbeck et al, 2011). Mitochondrial transfer has
since been observed in a variety of settings, including mouse
models of neuroinflammation (Peruzzotti-Jametti et al, 2021;
English et al, 2020), cancer (An et al, 2015), lung diseases (Li
et al, 2014), as well as in systems such as adipocytes transferring
mitochondria to heart cells (Crewe et al, 2021), in lymphocytes
(Court et al, 2020; Harada et al, 2022), and platelets exchanging
mitochondria with cells in the blood vessel wall (Levoux et al,
2021). Tracking mitochondrial transfer in humans has proven
challenging, with limited studies available. Bulk and single-cell
RNA sequencing in a study of cancer patients identified
mitochondrial mutations and gene expression signatures consistent
with the exchange of mitochondria from T cells to cancer cells.
Predicted mitochondrial recipient cells exhibited specific markers
associated with energy generation and markers related to
cytoskeleton regulation (Zhang et al, 2023).

Mechanisms of mitochondrial transfer

Mitochondrial transfer primarily occurs through two mechanisms:
(i) the release of vesicles containing mitochondrial components like
mtDNA, proteins, or metabolites and (i) direct cell-to-cell
mitochondrial transfer. For the latter, mitochondria can be
exchanged between cells through various mechanisms such as cell
fusion (Qiao et al, 2024), GAP junctions (Li et al, 2019; Islam et al,
2012; Fahey et al, 2022) and tunnelling nanotubes (TNTs).
Mitochondrial transfer has been found between neural stem cells
and ischaemic neurons (Capobianco et al, 2024), fibroblasts or
T cells to cancer cells (Saha et al, 2022; Qiao et al, 2024), and
mesenchymal stem cells to epithelial cells (Yao et al, 2018). For the
first, transfer occurs through non-contact mechanisms such as cell-
free mitochondria (Stephens et al, 2020; Nicolas-Avila et al, 2020;
Boudreau et al, 2014) and extracellular vesicles, including exosomes
and mitochondrial-derived vesicles (MDVs), which are taken up
through caveolae-mediated endocytosis (Torralba et al, 2018;
Hayakawa et al, 2016; Crewe et al, 2021). In immune cells,
mechanisms like trogocytosis may also actively facilitate mitochon-
drial exchange (Joly and Hudrisier, 2003). Mitochondrial dynamics
within donor cells and their energy production capacities are
believed to influence their transfer. Cytoskeletal support also plays
a critical role in mitochondrial trafficking. When mitochondria are
damaged, recipient cells often degrade them through transmito-
phagy as observed in retinal ganglion cells and cardiac tissue (Davis
et al, 2014; Melentijevic et al, 2017). By contrast, functional
mitochondria appear essential for effective exchange and integra-
tion (Levoux et al, 2021), suggesting that exogenous mitochondria
can either fuse with or be degraded by recipient cells, depending on
their status.
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Mitochondrial transfer from and to T cells

Unidirectional transfer has been observed from T cells to cancer cells,
as well as from bone marrow stromal cells (BMSCs) and CD8+ T cells,
facilitated by TNTs (Saha et al, 2022; Baldwin et al, 2024). In this
process, a single nanotube extending from a cancer cell can connect to
multiple immune cells in a chain, forming several contact sites along
the lymphocyte’s cell membrane. This mechanism is similar to the
intercellular mitochondrial transfer previously reported from
mesenchymal stem cells (MSCs) to epithelial cells (Ahmad et al,
2014). During mitochondrial exchange from MSCs to CD4+ T cells,
neither TNTs, gap junctions, macropinocytosis, nor hemi-channels
were found to be important for the process. Only the inhibition of
extracellular vesicles (EVs) effectively blocked mitochondrial transfer
(Court et al, 2020). However, limitations exist; these transferred
mitochondria from murine cells into human T cells trigger a signalling
cascade but are likely degraded due to incompatibilities in species-
specific mitochondrial DNA replication machinery (Court et al, 2020).
In summary, the precise molecular mechanisms controlling mito-
chondrial release and uptake remain elusive, likely differing across cell
types and specific cellular contexts. It remains unclear whether
mitochondrial transfer plays a role in alleviating cellular ageing
physiologically, and its potential for therapeutic use remains to be
addressed fully.

Mitochondrial transfer in T cell function and
therapeutic potential

In vivo mitochondrial delivery has shown promise in restoring
cellular functions in various conditions, including hepatic,
pulmonary, renal, and cardiovascular pathologies (Shi et al, 2017;
Nakai et al, 2024; Shi et al, 2018; Sun et al, 2015; Cowan et al, 2016),
with tools like FluidFM (Gébelein et al, 2022) enabling precise
manipulation of mitochondria for their extraction and injection
into living cells. However, challenges remain, particularly regarding
potential immune responses triggered by allogeneic mitochondrial
transplantation, which may activate mitophagy due to species
incompatibilities and the immune system due to antigen presenta-
tion of foreign mitochondrial peptides (Ramirez-Barbieri et al,
2019; Pollara et al, 2018; Lin et al, 2019). Beyond functional
recovery, mitochondrial transfer may influence cell reprogram-
ming. For instance, platelets can drive metabolic remodelling in
mesenchymal stem cells through mitochondrial transfer, enhancing
their regenerative capacity (Levoux et al, 2021). Although
limitations remain, especially in understanding the role of
transferred mitochondria in differentiated cells, these advance-
ments hold immense potential for sustainable cell therapies.

T cell-based therapies that strengthen immune responses
through metabolic reprogramming are rapidly advancing in the
field. Various techniques target mitochondrial pathways to boost T
cell expansion, cytotoxic activity, and longevity in therapeutic
contexts (Guo et al, 2021; Yang et al, 2016). Among these, CAR-T
cell therapies stand out; while metabolic interventions have
enhanced CAR-T cell function in the short term, maintaining
these benefits over the long term remains challenging (Fultang et al,
2020; Pilipow et al, 2018). Mitochondrial transfer — whether
through whole organelles or mitochondrial components — holds
transformative potential for addressing mitochondrial dysfunction
and metabolic deficiencies within T cells. This process can notably
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enhance the metabolic flexibility of T cells, which is crucial for their
activation, persistence, and function. It has previously been
reported that mitochondrial transfer influences the functionality
of T cell subsets. For instance, murine MSC-derived mitochondria,
when transferred to human CD4+ T cells, have been shown to
induce Treg differentiation (Court et al, 2020). A 2D tissue culture
with a co-culture transwell system has recently emerged as an
effective platform for intercellular mitochondrial transfer from
bone marrow stromal cells (BMSCs) to CD8+ T cells (Baldwin
et al, 2024). This mitochondrial exchange enhances the anti-
tumour immunity of CD8+ T cells by promoting their survival,
expansion, and cytotoxic functions within the tumour microenvir-
onment. Mechanistically, CD8+ T cells receiving exogenous
mitochondria display increased protein synthesis, reduced expres-
sion of exhaustion markers (PD-1, LAG3), and lower rates of
apoptotic death (Baldwin et al, 2024). Antigen-activated aged
T cells and anti-tumour T cells share notable dysfunctions: both
display metabolic issues, decreased mitochondrial function, and
increased expression of inhibitory receptors such as PD-1 and
cytotoxic T-lymphocyte antigen 4 (CTLA-4), further diminishing
immune activity (Zhang et al, 2020). In aged CD4+ T cells, the
introduction of mitochondria from younger cells activates the
expression of mitochondrial respiratory complexes, enhancing both
mitochondrial respiration and glycolysis (though with a lower
glycolytic reserve) to boost ATP production (Headley et al, 2024).
This approach ultimately activates TCR signalling, leading to
increased CD4+4 T cell proliferation ex vivo and enhanced
protection against infections in murine models (Headley et al,
2024).

It is essential to further explore the outcomes of the horizontal
transfer of mitochondria. The transfer of mitochondria from
mesenchymal stem cells (MSCs) to activated CD4+ T cells induces
immunosuppression through the downregulation of the key Thl
transcription factor T-bet in the context of autoimmunity (Akhter
et al, 2023). In contrast, the transfer of mitochondria from BMSCs
to CD8+ T cells enhances the anti-tumour immune response
(Baldwin et al, 2024). Additionally, cancer cells in the tumour
microenvironment transfer mutated mitochondria to tumour-
infiltrating lymphocytes (TILs), impairing their immune response
by inhibiting mitophagy and inducing metabolic impairment and
senescence (Ikeda et al, 2025). This discrepancy suggests either the
cellular origin of mitochondria, or the activation/metabolic state of
the recipient cell influences the reprogramming capabilities.
Further development of in vitro and in vivo models is essential to
evaluate mitochondrial transfer’s long-term effects and ensure
mitochondrial functionality post-transfer, facilitating exploration of
the therapeutic benefits of this phenomenon in aged T cells (Fig. 5).

Conclusions and perspectives

The maintenance of mitochondrial homoeostasis is considered
central to cellular health and prevents ageing. Accordingly, the age-
related changes occurring in T cells are closely associated with
metabolic health, with a well-recognised direct link to mitochon-
drial health. Within the heterogeneity of the immune system,
T cells have emerged as pivotal to organismal health. However,
T cells are not the only cell type to have this effect. Other cell types
that are well distributed throughout the body, can trigger similar
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Figure 5. Mitochondrial transfer and its therapeutic potentials.

Mitochondria can be transferred between cells as another approach to give
away mitochondria via multiple pathways, including gap junctions, cell fusion,
extracellular vesicles and tunnelling nanotubes. T cells can act as both donors
and recipients of mitochondria with such transfers, enhancing metabolic fitness,
anti-tumour immunity and cellular rejuvenation. Green arrow with dashed lines
indicates proposed therapeutic potential.

pronounced organismal ageing when manipulated to adopt an
unhealthy state. One such example are mice with a deletion of the
DNA repair factor (Erccl) in hematopoietic cells only (Yousefzadeh
et al, 2021). Another example are mice with endothelial cells
lacking the vascular endothelial growth factor (Vegf) (Grunewald
et al, 2021). Both mouse models develop a systemically aged
phenotype.

Targeting mitochondrial function and degradation through
mitophagy are undoubtedly crucial for preserving mitochondrial
health. However, there are still significant questions that are
awaiting answers (see Box 1). The in vivo and physiological
significance of the other two mitochondrial removal mechanisms
described in this review (ACD and transfer of mitochondria) is yet
to be demonstrated. For both processes, we know little about the
machinery that is involved. How does the cell recognise different
mitochondrial signatures within the cytoplasm? How are specific
mitochondria pulled to one side during asymmetric cell division or
being transferred to another cell? How are the mitochondria
selected and recognised by the respective machineries? How long
does a pool of dysfunctional mitochondria need to be maintained to
permanently change the fate of a T cell? What are the signalling
molecules involved in this? Does it involve nucleo-mitochondrial
communication and epigenetic changes?
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Box 1 In need of answers

e What molecular mechanisms are involved in the selective targeting
of mitochondria for transfer or asymmetric partitioning?

e Is mitochondrial diversity within individual T cells linked to
different functions, and how can we identify and target these
distinct mitochondrial types?

e |s it enough to target dysfunctional mitochondria to rejuvenate
T cells and organismal ageing, considering the detrimental ageing
microenvironment?

e How can we convert the knowledge of mitochondrial quality control
into translational medicine and improve current therapeutics?

We already know that mitochondrial ROS production increases
with age, and given the inefficiency of autophagy with age,
mitophagy is likely to decline in most cell types, and asymmetric
cell division follows a similar trajectory. The efficiency of
mitochondrial transfer remains low (less than 10%) in T cells,
even in young organisms, whether this efficiency is further
compromised during ageing requires additional investigation.
Perhaps the mechanisms to remove mitochondria decline with
age because these processes are energy-consuming. ATP becomes
scarce with age, with cells relying primarily on glycolysis to meet
their metabolic demands, and these processes may be down-
regulated as mitochondria no longer need to be so functional.

Although the diminished function of mechanisms that promote
mitochondrial recycling can result in higher levels of mitochondrial
heterogeneity, with accumulation of mitochondria exhibiting
mutated mtDNA, mitochondrial function becomes more homo-
geneous with ageing, as they exhibit lower functional activity. This
loss of mitochondrial selection results in a more homogeneous pool
of cells, reducing their adaptability to life-threatening environ-
mental changes that occur during the ageing process, such as
infection, cancer, and other stressors.

If we were able to modulate these processes genetically or
pharmacologically, we would be in a position to determine what
roles they play during ageing and other pathological processes like
cancer and autoimmune diseases. Advances in precision gene-
editing tools now allow for the integration of mitochondrial
therapeutics with conventional treatments — for instance, enhan-
cing the metabolic fitness of CAR-T cells (Van Bruggen et al, 2019).
A recent breakthrough demonstrated targeted mtDNA-editing in
human cells by co-delivering a DNA end-joining system and site-
specific mitochondrial nucleases, opening new possibilities for
direct mitochondrial genome engineering (Fu et al, 2025).
Alternative strategies, such as selectively degrading mitochondrial
proteins via Degron or PROTAC technologies, could further dissect
the functional contributions of specific mitochondrial components
and fine-tune mitochondrial activity. Additionally, improved tools
are required to monitor mitochondrial function after therapeutic
interventions in both preclinical and clinical settings. For example,
the fate of transferred exogenous mitochondria varies depending on
the donor cells, making them targets of mitophagy (Lin et al, 2024),
or not (Ikeda et al, 2025) in the recipient cells. Given the
heterogeneous environments in which immune cells can be
found, there is also a big demand to study the single-cell
metabolism of immune cells during ageing, especially in the
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context of tissue biology. Emerging spatial single-cell metabolomics
techniques (Hu et al, 2023; Saunders et al, 2023) and high-
throughput flow cytometry approaches like SCENITH now enable
such investigations (Argiello et al, 2020). As these methodologies
advance, we will unravel the intricate relationship between
mitochondrial health and immune cell function in ageing, enabling
the creation of context-dependent strategies to manipulate T cell
function, rejuvenate T cells and delay organismal ageing.
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