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Decision Letter:

6th May 2024

Dear Simon,

Your Article, "Ultra-high scale cytometry-based cellular interaction mapping", has now been seen by 3 reviewers. As you will
see from their comments below, although the reviewers find your work of considerable potential interest, they have raised a
number of concerns. We are interested in the possibility of publishing your paper in Nature Methods, but would like to consider
your response to these concerns before we reach a final decision on publication. We therefore invite you to revise your
manuscript to fully address these concerns.

Generally speaking, we thought the concerns raised by the referees were reasonable. While revising, we ask that you focus on
benchmarking, validating that these interactions are real cell-cell interactions and that the data biologically meaningful and
also testing the sensitivity of the method. Please make sure the code is accessible and easily followed.

| am sure you understand that we cannot promise to send the paper back to reviewers until we've seen the new data.

We are committed to providing a fair and constructive peer-review process. Do not hesitate to contact us if there are specific
requests from the reviewers that you believe are technically impossible or unlikely to yield a meaningful outcome.

When revising your paper:

* include a point-by-point response to the reviewers and to any editorial suggestions

* please underline/highlight any additions to the text or areas with other significant changes to facilitate review of the revised
manuscript

* address the points listed described below to conform to our open science requirements
* ensure it complies with our general format requirements as set out in our guide to authors at www.nature.com/naturemethods

* resubmit all the necessary files electronically by using the link below to access your home page

Link Redacted

Note: This URL links to your confidential home page and associated information about manuscripts you may have submitted,
or that you are reviewing for us. If you wish to forward this email to co-authors, please delete the link to your homepage.

We hope to receive your revised paper within 8 weeks. If you cannot send it within this time, please let us know. In this event,
we will still be happy to reconsider your paper at a later date so long as nothing similar has been accepted for publication at
Nature Methods or published elsewhere.



OPEN SCIENCE REQUIREMENTS

REPORTING SUMMARY AND EDITORIAL POLICY CHECKLISTS
When revising your manuscript, please update your reporting summary and editorial policy checklists.

Reporting summary: https:/www.nature.com/documents/nr-reporting-summary.zip
Editorial policy checklist: https:/www.nature.com/documents/nr-editorial-policy-checklist.zip

If your paper includes custom software, we also ask you to complete a supplemental reporting summary.
Software supplement: https:/www.nature.com/documents/nr-software-policy.pdf

Please submit these with your revised manuscript. They will be available to reviewers to aid in their evaluation if the paper is
re-reviewed. If you have any questions about the checklist, please see http://www.nature.com/authors/policies/availability.html
or contact me.

Please note that these forms are dynamic ‘smart pdfs’ and must therefore be downloaded and completed in Adobe Reader. We
will then flatten them for ease of use by the reviewers. If you would like to reference the guidance text as you complete the
template, please access these flattened versions at http:/www.nature.com/authors/policies/availability.html.

DATA AVAILABILITY

We strongly encourage you to deposit all new data associated with the paper in a persistent repository where they can be
freely and enduringly accessed. We recommend submitting the data to discipline-specific and community-recognized
repositories; a list of repositories is provided here: http:/www.nature.com/sdata/policies/repositories

All novel DNA and RNA sequencing data, protein sequences, genetic polymorphisms, linked genotype and phenotype data,
gene expression data, macromolecular structures, and proteomics data must be deposited in a publicly accessible database,
and accession codes and associated hyperlinks must be provided in the “Data Availability” section.

Refer to our data policies here: https://www.nature.com/nature-research/editorial-policies/reporting-standards#availability-of-
data

To further increase transparency, we encourage you to provide, in tabular form, the data underlying the graphical
representations used in your figures. This is in addition to our data-deposition policy for specific types of experiments and large
datasets. For readers, the source data will be made accessible directly from the figure legend. Spreadsheets can be submitted
in .xls, .xIsx or .csv formats. Only one (1) file per figure is permitted: thus if there is a multi-paneled figure the source data for
each panel should be clearly labeled in the csv/Excel file; alternately the data for a figure can be included in multiple, clearly
labeled sheets in an Excel file. File sizes of up to 30 MB are permitted. When submitting source data files with your manuscript
please select the Source Data file type and use the Title field in the File Description tab to indicate which figure the source data
pertains to.

Please include a “Data availability” subsection in the Online Methods. This section should inform readers about the availability
of the data used to support the conclusions of your study, including accession codes to public repositories, references to
source data that may be published alongside the paper, unique identifiers such as URLs to data repository entries, or data set
DOls, and any other statement about data availability. At a minimum, you should include the following statement: “The data that
support the findings of this study are available from the corresponding author upon request”, describing which data is available
upon request and mentioning any restrictions on availability. If DOIls are provided, please include these in the Reference list
(authors, title, publisher (repository name), identifier, year). For more guidance on how to write this section please see:
http://www.nature.com/authors/policies/data/data-availability-statements-data-citations.pdf

CODE AVAILABILITY

Please include a “Code Availability” subsection in the Online Methods which details how your custom code is made available.
Only in rare cases (where code is not central to the main conclusions of the paper) is the statement “available upon request”
allowed (and reasons should be specified).

We request that you deposit code in a DOI-minting repository such as Zenodo, Gigantum or Code Ocean and cite the DOI in
the Reference list. We also request that you use code versioning and provide a license.

For more information on our code sharing policy and requirements, please see:
https://www.nature.com/nature-research/editorial-policies/reporting-standards#availability-of-computer-code

MATERIALS AVAILABILITY
As a condition of publication in Nature Methods, authors are required to make unique materials promptly available to others
without undue qualifications.

Authors reporting new chemical compounds must provide chemical structure, synthesis and characterization details. Authors
reporting mutant strains and cell lines are strongly encouraged to use established public repositories.



More details about our materials availability policy can be found at https:/www.nature.com/nature-portfolio/editorial-
policies/reporting-standards#availability-of-materials

SUPPLEMENTARY PROTOCOL

To help facilitate reproducibility and uptake of your method, we ask you to prepare a step-by-step Supplementary Protocol for
the method described in this paper. We <a href="https://www.nature.com/nature-research/editorial-policies/reporting-
standards#protocols" target="new">encourage authors to share their step-by-step experimental protocols</a> on a protocol
sharing platform of their choice and report the protocol DOI in the reference list. Nature Portfolio 's Protocol Exchange is a free-
to-use and open resource for protocols; protocols deposited in Protocol Exchange are citable and can be linked from the
published article. More details can found at <a href="https:/www.nature.com/protocolexchange/about"
target="new">www.nature.com/protocolexchange/about</a>.

ORCID

Nature Methods is committed to improving transparency in authorship. As part of our efforts in this direction, we are now
requesting that all authors identified as ‘corresponding author’ on published papers create and link their Open Researcher and
Contributor Identifier (ORCID) with their account on the Manuscript Tracking System (MTS), prior to acceptance. This applies
to primary research papers only. ORCID helps the scientific community achieve unambiguous attribution of all scholarly
contributions. You can create and link your ORCID from the home page of the MTS by clicking on ‘Modify my Springer Nature
account’. For more information please visit please visit <a
href="http://www.springernature.com/orcid">www.springernature.com/orcid</a>.

Please do not hesitate to contact me if you have any questions or would like to discuss these revisions further. We look forward
to seeing the revised manuscript and thank you for the opportunity to consider your work.

Sincerely,
Madhura

Madhura Mukhopadhyay, PhD
Senior Editor
Nature Methods

Reviewers' Comments:

Reviewer #1:

Remarks to the Author:

In the manuscript, Vonficht et al describe a method to use standard cytometry to map changes in interaction between cell types.
They apply the method to different tasks for studying the

immune system - an artificially induced interaction using an engineered antibody, a murine CAR-T cell activity model and an
ex-vivo experiment using a therapeutic antibody that crosslinks leukemic cells and T-cells, and viral infection in a mouse
model.  am not an immunologist, but from my horizon the experiments are impressive and could potentially be developed
further into individual projects, if proper validation experiments and further experimentation to understand mechanistic details
were included. The biology here is not my area of expertise, and | leave this to the other reviewers.

However, the methodological innovation is somewhat less clear to me. The method consists of 1. Cytometry of cells stained
with cell-type specific markers. 2. Dimensionality reduction based on all measured parameters, followed by classification to
create clusters of cells (each hopefully representing either a single cell type or a specific combination of cells). 3. Supervised
classification of each cluster to establish which cell type or combination of cell types constitutes it. Duplet detection is still done
based on FSC area/width, but data points in a cluster “votes” for classifying the whole cluster rather than just affecting their own
classification into single or doublet.

Using double/multi-positive cytometry events to identify specific interactions is not new. The novel step of this method is point
2:aninitial classification of cells in a pre-processing step, to enable downstream work to be done on the level of clusters
instead of single events (singlets/multiplets). Therefore, a lot is riding on the assumption that this step is important for the
quality of inferences, and that it is robust enough to be used broadly.

The major issue is that the methodological choices are not well motivated, alternatives not explored and the limits/drawbacks
of the method not quantified. This is the major issue precluding publication, and the authors have to significantly strengthen
this part of the manuscript. Below are some specific points that have to be addressed. However, it is not an exhaustive list: the
manuscript would greatly benefit from a more thorough treatment of the methodology in general.

The authors start with a simple experiment where they obtain a microscopy-based ground-truth of the number of cells along
with the other cytometric measurements. Based on this, they do three analyses: 1. Split the data into singlets/doublets based



on “FSC ratio”, where the threshold is determined based on minimizing variance in the two groups (“Otsu’s thresholding”). 2.
Classify cells in singlets and doublets using a random forest classifier. 3. Leiden-classification based on all marker data. Per-
cell thresholded FSC ratio is compared to per-cluster classification and since the latter has better precision/recall the authors
use this approach.

Other options need to be explored. For example, how well does a random forest classifier trained on the FSC/SSC parameters
perform? Or some other ML approach trained on the non-marker measurements? Using markers to identify doublet clusters
and then use the same markers to determine which combination interacted could theoretically create artifacts where a double-
positive cell population is confused with doublets of two single-positives. This cannot happen if only signal shape is used to
determine doublets. Due to the large amounts of data involved, | am not convinced that optimizing precision/recall is critical
here, and that avoiding potential systematic errors might be more important. This area needs to be fully explored.

How sensitive is the method to systematic technical artifacts? The problem is mentioned, but needs to be quantified. This
should be done with a fully analyzed experiment to determine if actual inferences are materially different. Could possibly be
done with simulated data, although a real experiment would be much more convincing.

How well does the proposed FSC thresholding work compared to alternative strategies? For conventional cytometry, one
would create a “singlet” and a “doublet” box/ellipse/polygon gate rather than a single threshold, and typically double-gate
based on both FSC-H vs FSC-W and FSH-area vs FSC-W. Such an approach removes borderline doublet events from the
analysis. How does this conventional approach compare to an unsupervised threshold?

How well does the method perform when the markers do not perfectly mark all the cell types in the data? For exploratory
research this will often be the case - especially if non-immune cells are analyzed, since specific markers are often not
available. Experiments can be done in silico based on existing experiments, by removing the data for progressively more
markers and determining if results are corrupted.

Clustering is such a critical part of this method that better guidance is needed. The potential for issues is well demonstrated
when comparing Fig. S1A, which shows the 14 unsupervised clusters to Fig 1D, which shows the expert-curated 5 clusters.
The only clusters that remain untouched are the three doublet/triplet clusters. How were the parameters for the initial clustering
selected? Did you already know the expected doublet clusters and adjusted based on this?

“Singlet” clusters seem to often contain around 10% doublets (by FSC), considerably higher than | would expect if they were
homotypic interactions (See Fig. S5D). Also in the ground-truth experiment Fig 1E, there seems to be ~5-10% of singlets in the
doublet classes. In Fig S1B it does not look like there is a threshold that separates the two populations, but rather a continuum.
Are these issues experiment-specific? Is it a side-effect of the sketching procedure (i.e selecting rare events)?

Minor issues

Line 38: “Saliva”, not “Salvia”

Line 41-43: “These technologies mostly focus on interaction of pre-defined cell types...”. It is not relevant what the majority of
methods do; both Andrews and Boisset papers allow analysis of non-pre-defined cell types and are cited here. The difference
in throughput and price is a major advantage, and of course highly relevant. However, these differences are similar to
differences in price between any mRNA and cytometry based method, and the drawbacks are also the same: cytometry-based
methods operate only on cell types with known markers whereas mMRNA-based methods are hypothesis-free. It is not
appropriate to compare such vastly different methods mainly on price per cell.

Fig 1H: How many data points constitute the boxplots? Boxplots show a distribution and are only suitable if the number of
observations is high. Please indicate n= and plot individual points instead of boxplots if n is low.

Fig 2D: This figure is confusing - what does the color shading mean? What does the thickness mean? It looks like the left/right
side were one plot that was later separated, which makes the plot look a little bit awkward (lines originate at random positions
within fields) - maybe better to keep them together and indicate -/+CytoStim with color?

Fig 3E: Here n is clearly too low for drawing boxplots. Please just show the individual observations instead.

Fig 6F-1: Same thing, no boxplots with low n.

Fig S4 J,K: Same issue with boxplots.

Fig S1 F and G. These figures are meant to show that cell concentration does not have a strong effect on doublet formation in
PBMCs, but the ranges are too different - the lowest spleen concentration is higher than the highest PBMC concentration.

Line 710-718: Should be rewritten to precisely describe the algorithm, or if this is not possible removed and simply replaced by
the reference (Hao et al?). Currently it just reads as word-salad and does not aid understanding.

Line 721-722: What is “the maximum number of dimensions in the data”? Do you mean the actual dimensionality of the dataset
(eg. the number of measured values per cytometry event? In that case reducing this to n-1 seems strangely redundant - the
data is (almost) the same size, so why the dimensionality reduction? How have different n been evaluated to arrive at n-1 as
the optimum?

Line 726-: Clustering is clearly critical to obtaining accurate results using this method, so some guidelines would be in order
here.

Line 735-737: This cannot be universally true. Each cluster has a fraction of cells with FSC ratio > threshold, and the top 15-
20% of the clusters are classified as doublets. But in Fig. 1 three out of seven clusters are doublet/riplet clusters, which is
>40%. Even if you mean the initial 14 clusters, it amounts to >20% of the clusters. This part of the method has to be better
described!

Line 749-751: This section (“Annotation of physically interacting cells”) describes a different method for determining interacting
cell clusters “The key criterion for identification of interacting cell clusters was a high FSC-ratio and the presence of more than



one cell type-specific marker.” Which one is correct? Or has different heuristics been applied to different parts of the
manuscript?

Reviewer #2:

Remarks to the Author:

The paper proposes a new method for detecting and studying physical cell-cell interactions using flow cytometry. The task is
very important and there's great interest and progress recently in developing methods for solving it. The proposed method has
potential advantages as compared with existing methods, e.g. in cell throughput, potential ease of use, and applicability e.g. to
human samples because no genetic engineering is required. The method relies on using parameters measured in flow
cytometry that are demonstrated to work well in discriminating single cells from cell doublets and multiplets. The results of
application of the method in several contexts are reasonable and actually very interesting, especially in analysis of
immunotherapy response. The paper is well written. The software can be run and the results can be reproduced (but see
below). However, | have questions about robustness, precision and recall of the approach with respect to true phiological cell
interactions in vivo, which may affect applicability and interpretability of the method.

More specific comments:

- While | am not an expert in technical aspects of flow cytometry, it is convincing that the method can detect and report some
cell interactions. However, it is unclear how physiologically relevant these detected cell interactions are, and how
representative they are of all interactions in vivo. How many and which of the detected cell interactions form as a result of
sample manipulations? In principle some cells (e.g. DCs and T cells) may be "sticky" and may form interactions in a
suspension as a result or byproduct of some technical manipulations with samples, but not in vivo. But does it really happen,
and if yes, does it happen in a biased manner, more so for some cell types and cell states than others? Also, which of the cell
interactions happening in vivo in physiological contexts are actually preserved in all sample preparation and sample handling
and then detected with this method? Is it for the strongest interactions? or only interactions of some specific types? or some
random ones?

The method is interesting, new and worthy, and some limitations are OK and expected but then should be stated and
acknowledged clearly. The above questions may be hard to address fully, but should probably be addressed at least
somewhat. E.g. how the results of the method will change after varying some parameters of sample preparation or tissue
dissociation? Or some additional experimental manipulations with the sample, to varying degree, in the attempt to break more
of the cell-cell interactions, or to create more of artifical ones?

The CytoStim or the antigen experiments address these questions but | think only very partially.

- A related but different question is which of the detected cell-cell interactions are functional and which are just by random
chance because the cells were next to each other even if in vivo (e.g. in a tissue)?

- The core of the method is application of their software PICtR to compensated and transformed FACS data. It is unclear if the
software can detect physical cell interactions in any such previously published data from other experiments and other labs (if
yes, it should be demonstrated), or some specific experimental details are important to make it work successfully (then these

details should be clearly stated).

- In the viral infection experiment, why aren't T cell-DC interactions found? Is it possible that the flow panel doesn't allow to
distinguish between DCs and monocytes and macrophages? Also, | can see cDC2 annotation in Fig 5B, but not cDC1, though
cDC1 are mentioned in Fig 5C.

- Not sure if reporting relative frequencies of cell interacitons (e.g. in Fig 5C) is relevant. Shouldn't it be normalized by
frequencies of individual cell types which are probably also changing between time points?

- The exact Zenodo link to the software provided in the submission actually leads to an older version of the software, v2 dated
Feb 2014. We tried to run this but it is not well documented and returns an error. However, there's v5 from Feb 27, 2024, which
we tried to use to reproduce some analysis in the manuscript, specifically the results for LCMV experiment. It worked quite well.
However, it was unclear how exactly subsampling (or sketching?) works, because following the instructions to the best of our
ability resulted in 5000 cell analysis, but Fig 5 reports much larger numbers of cells. This Zenodo link to v5 includes the file
PICtR-manual.pdf, which is indeed a manual of the R package. But it will be helpful to include some examples of running the
analysis to reproduce at least some figures in the paper exactly, and walk the users through all steps (a notebook and step-by-
step instructions, or what sometimes is called "vignette" for R packages).

Reviewer #3:

Remarks to the Author:

In this study, the authors developed Interactomics, which is a cytometry-based workflow that can detect multiplet interactions. In
principle, it does fill an open niche in the investigation of immune cell interactions in high-dimensional space with high
throughput. However, it is not deployed to its full potential in this manuscript at present. One could imagine performing a lower
throughput or more time consuming approach such as PIC-seq or LIPSTIC that yields more information than using
Interactomics. | find several key weaknesses with the manuscript at present: 1) A lack of mechanistic depth in any conclusions



that are generated; 2) Concerns about the ab initio classification of the interactions detectable by the method; and 3) The long-
term utility and flexibility of the method to detect more specific (and probably more valuable) interactions among more narrowly
defined cell subsets. The strengths of the study are the authors' development of a creative platform that could be widely
adopted, demonstration of proof-of-concept data across multiple mouse and human systems, and well-designed studies across
time and stimulation. In general, if the authors can address the above concerns, | believe it could be a valuable tool. Additional
points are listed below:

1. The advantages over pre-existing approaches to study immune cell interactions are not clear. For example, "Interactomics”
is entirely descriptive, while LIPSTIC and PIC-seq gain mechanistic information. Investigation and validation of the findings by
Interactomics is needed in mouse and human systems.

2. Additional validation of the functional implications of the interactions detected is needed on the level of intracellular
signaling. Even if cell types are interacting, no mechanistic data are included in the manuscript to define that the interactions
are controlling cellular physiology using this method. Many findings reported in the manuscript could be discerned using other
approaches.

3. One main limitation of the study is the focus on CytoStim as an inducer of "ground truth" cellular interactions. This approach
would primarily label memory lymphocytes and APCs. The argument for developing this method is that it is more high
throughput and generalizable than current approaches, but the training dataset undermines this. Additional "ground truth"
interaction-driving approaches should be incorporated into the study and tested. Ideally, multiple antibody panels/stimuli that
would detect distinct classes of interactions, compiled into a PICtR database, would make the method more robust.

4. The CytoStim experiments would also induce artificial interactions between cell types, which may not reflect true physiology.
A trained dataset focused on physiologic interactions during immunization, or equivalent, might make a better training dataset
and be more comprehensive.

5. The algorithm was trained on human data, which was then applied to the mouse. How generalizable are interactions in the
two systems to one another?

6. Almost all experiments are performed in vitro or from PBMCs, so while the throughput is increased, the relevance is
somewhat diminished. To showcase the power of this tool, the authors could investigate additional fluids not tractable with
other tools, and glean new insights not previously known, as they mentioned in the introduction.

7. An important feature of this approach is to delineate specific molecular insights that are not possible with conventional flow
cytometry. However, the authors only capitalized on broad cell lineage markers. How well are interactions actually detected
and validated when a panel of markers is used that is focused on subsets of intra-lineage cells? For example, can
Interactomics be applied to CD4 Th cell subset differentiation?

8. The inability to detect homotypic interactions is a weakness. If different starting panels of antibodies were used to train the
parameters of the system, would different interactions be prioritized as detected in test datasets? For example, if the 24-plex
panels contained much more specific markers for B cell subsets, could these interactions be detected?

9. Almost all findings are descriptive. If only a fraction of interactions are detectable by Interactomics, and there is no in vivo
validation of the method, it is hard to take much new information from the study. At least one substantial finding detected by
Interactomics should be validated in vivo (or in a related human system).

10. Can PICtR reevaluate cellular interactions in previously reported datasets? It would be valuable to mine new insights from
previous datasets in an agnostic way with orthogonal antibody panels.

11. Even if multiplets are detected in flow cytometry data, it is not clear how they are differentiated as "real" interactions and not
simply noise, for example, cells clumping within a tube for technical reasons. Controls guarding against the possibilities of
technical contamination would help enrich for meaningful signals.

Minor points:

1. Biological replicates are not mentioned in at least some figure legends.

2. Fig. 1E itis not clear how a My*T*B interaction (3 cells) could be represented by a doublet or singlet. Same with other
interactions in that panel. It should be shown more clearly.

3. In Fig. 3K there is not information learned, since the bifunctional antibody simply induces interactions mostly non-
specifically.

4.1In Fig. 5E, the distance in PCA space analysis is unusual. A different metric should be used.
5. The text formatting reads like a single long paragraph and would be more readable if broken into demarcated sections.

6. The name of the method "Interactomics” should be changed as many methods at this point perform interactomics. A more



specific name should be used.
Version 1:

Decision Letter:

Our ref: NMETH-A55672A
25th Nov 2024

Dear Simon,

Thank you for submitting your revised manuscript "Ultra-high scale cytometry-based cellular interaction mapping" (NMETH-
A55672A). It has now been seen by the original referees and their comments are below. The reviewers find that the paper has
improved in revision, and therefore we'll be happy in principle to publish it in Nature Methods, pending minor revisions to
satisfy the referees’ final requests and to comply with our editorial and formatting guidelines.

Thanks for sending us a quick response to our queries on the review. We think it would really help support the broad
applicability of the method if you could add an example on epithelial cells as demonstration. Also please make sure to discuss
limitations in the discussion.

We are now performing detailed checks on your paper and will send you a checklist detailing our editorial and formatting
requirements within two weeks or so. Please do not upload the final materials and make any revisions until you receive this
additional information from us.

TRANSPARENT PEER REVIEW

Nature Methods offers a transparent peer review option for new original research manuscripts submitted from 17th February
2021. We encourage increased transparency in peer review by publishing the reviewer comments, author rebuttal letters and
editorial decision letters if the authors agree. Such peer review material is made available as a supplementary peer review file.
Please state in the cover letter ‘l wish to participate in transparent peer review’ if you want to opt in, or ‘l do not wish to
participate in transparent peer review’ if you don’t. Failure to state your preference will result in delays in accepting your
manuscript for publication.

Please note: we allow redactions to authors’ rebuttal and reviewer comments in the interest of confidentiality. If you are
concerned about the release of confidential data, please let us know specifically what information you would like to have
removed. Please note that we cannot incorporate redactions for any other reasons. Reviewer names will be published in the
peer review files if the reviewer signed the comments to authors, or if reviewers explicitly agree to release their name. For more
information, please refer to our <a href="https://www.nature.com/documents/nr-transparent-peer-review.pdf" target="new">FAQ
page</a>.

ORCID

IMPORTANT: Non-corresponding authors do not have to link their ORCIDs but are encouraged to do so. Please note that it
will not be possible to add/modify ORCIDs at proof. Thus, please let your co-authors know that if they wish to have their ORCID
added to the paper they must follow the procedure described in the following link prior to acceptance:
https://www.springernature.com/gp/researchers/orcid/orcid-for-nature-research

Thank you again for your interest in Nature Methods. Please do not hesitate to contact me if you have any questions. We will
be in touch again soon.

Sincerely,
Madhura

Madhura Mukhopadhyay, PhD
Senior Editor
Nature Methods

Reviewer #1 (Remarks to the Author):

The revised manuscript is much improved, and | can see that the authors have made an honest effort to address my specific
concerns. They have added several new experiments addressing quality control issues, and improved figures and text
throughout.

My only remaining concerns are about novelty and generality

1. As | wrote in my original comments, counting co-stained doublets is not novel. Previous mMRNA-based doublet methods
derived their claim to originality on using the highly sensitive transcriptional profile to find new states and boost sensitivity. This
method introduces an automated clustering step to the co-staining protocol - is this novel enough to merit publication in Nature
Methods?



2. How general is the method? Immune cells are incredibly well defined by their cell surface markers - would you expect this
method to be largely domain specific? (ie Rev. 3, point 6). If you wanted to study epithelial cell interactions in brain, or lung, or
skin, some tumor, etc, would this method method be of any use?

| am not ultimately convinced of either of these points, but it is really a question of degrees rather than absolutes. | will simply
defer to the editor to judge how the novelty/generality issues should impact publishing in this case.

Reviewer #3 (Remarks to the Author):

In revision, the authors have undertaken a comprehensive set of experiments and clarifications, which address my comments.
In particular, there are now numerous technical controls as well as a limitations section, which advises future users on
parameters to optimize. I'm also more convinced the approach is fairly robust to noise. There are also important additions
demonstrating that previously acquired data can be analyzed by the approach.

| also believe the approach will have broad utility because of its flexibility and accessibility, which is actually uniqgue among all
interaction-based approaches, which tend to be complicated.

One lingering minor point left to the discretion of the editor and authors is the name, as "Interactomics" | think isn't descriptive
enough for the method, which doesn't assess all interactions and is neither the first nor only method to study interactions.
Could it be called PICtR?

| otherwise have no additional points to raise.
Version 2:
Decision Letter:

6th May 2025

Dear Simon,

| am pleased to inform you that your Article, "Ultra-high scale cytometry-based cellular interaction mapping", has now been
accepted for publication in Nature Methods. The received and accepted dates will be 7 Mar, 2024 and 6 May, 2025. This note
is intended to let you know what to expect from us over the next month or so, and to let you know where to address any further
questions.

Over the next few weeks, your paper will be copyedited to ensure that it conforms to Nature Methods style. Once your paper is
typeset, you will receive an email with a link to choose the appropriate publishing options for your paper and our Author
Services team will be in touch regarding any additional information that may be required. It is extremely important that you let
us know now whether you will be difficult to contact over the next month. If this is the case, we ask that you send us the contact
information (email, phone and fax) of someone who will be able to check the proofs and deal with any last-minute problems.

After the grant of rights is completed, you will receive a link to your electronic proof via email with a request to make any
corrections within 48 hours. If, when you receive your proof, you cannot meet this deadline, please inform us at
risproduction@springernature.com immediately.

Authors may need to take specific actions to achieve <a href="https:/www.springernature.com/gp/open-
research/funding/policy-compliance-fagqs"> compliance</a> with funder and institutional open access mandates. If
your research is supported by a funder that requires immediate open access (e.g. according to <a
href="https://www.springernature.com/gp/open-research/plan-s-compliance">Plan S principles</a>) then you should select the
gold OA route, and we will direct you to the compliant route where possible. For authors selecting the subscription publication
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First point-by-point reply

Reviewer #1:

Remarks to the Author:

In the manuscript, Vonficht et al describe a method to use standard cytometry to map changes
in interaction between cell types. They apply the method to different tasks for studying the
immune system - an artificially induced interaction using an engineered antibody, a murine
CAR-T cell activity model and an ex-vivo experiment using a therapeutic antibody that
crosslinks leukemic cells and T-cells, and viral infection in a mouse model. | am not an
immunologist, but from my horizon the experiments are impressive and could potentially be
developed further into individual projects, if proper validation experiments and further
experimentation to understand mechanistic details were included. The biology here is not my
area of expertise, and | leave this to the other reviewers.

However, the methodological innovation is somewhat less clear to me. The method consists
of 1. Cytometry of cells stained with cell-type specific markers. 2. Dimensionality reduction
based on all measured parameters, followed by classification to create clusters of cells (each
hopefully representing either a single cell type or a specific combination of cells). 3. Supervised
classification of each cluster to establish which cell type or combination of cell types
constitutes it. Duplet detection is still done based on FSC area/width, but data points in a
cluster “votes” for classifying the whole cluster rather than just affecting their own classification
into single or doublet.

Using double/multi-positive cytometry events to identify specific interactions is not new. The
novel step of this method is point 2: an initial classification of cells in a pre-processing step, to
enable downstream work to be done on the level of clusters instead of single events
(singlets/multiplets). Therefore, a lot is riding on the assumption that this step is important for
the quality of inferences, and that it is robust enough to be used broadly.

We thank the reviewer for recognizing the utility of our approach and the comprehensive
nature of our analysis. We also appreciate the reviewer’s critical evaluation, which has been
invaluable in significantly enhancing the quality of our manuscript. Below, we have thoroughly
addressed all of the reviewer's comments, including those mentioned above.

The major issue is that the methodological choices are not well motivated, alternatives not
explored and the limits/drawbacks of the method not quantified. This is the major issue
precluding publication, and the authors have to significantly strengthen this part of the
manuscript. Below are some specific points that have to be addressed. However, it is not an
exhaustive list: the manuscript would greatly benefit from a more thorough treatment of the
methodology in general.

We thank the reviewer for the critical assessment, and fully agree that this aspect should be
strengthened. In order to motivate methodological choices, we present a multi-step
quantitative benchmarking procedure:



1. As already described in the original manuscript, a feature importance analysis yielded
the FSC ratio to be most discriminative between singlets and doublets.

2. In the framework of the revision, we tested different thresholding and classification
methods on the FSC ratio and identified several approaches, including Otsu
thresholding, to have similar accuracy and to be comparable to manual gating, with
the advantage of being reproducible and data-driven.

3. To further improve classification and identification of interacting cells, we explored
clustering-based approaches for simultaneous multiplet discrimination and annotation.
Clustering based on cell type markers and scatter properties — including the FSC ratio
— but without image-based features yielded results comparable to those achieved
when including image-based features.

4. Having identified a set of flow cytometry parameters that is effective at identifying
singlet and multiplet events, we tested several community detection algorithms using
these features as input. Methods from the single-cell genomics field consistently
outperformed methods stemming from the flow cytometry field. In the updated version
of our PICtR software package, we implement several of the well performing
algorithms, leaving a customizable choice to expert users.

Since the first step was already included in our initial manuscript, the following sections provide
a detailed description of the remaining three benchmarking steps:

Benchmarking of thresholding and classification methods based on the FSC ratio. We
first tested a range of different classification thresholds for singlet vs. multiplet discrimination
based on the FSC ratio only, which was identified as the most important single feature in the
feature importance analysis (see Figure 1B of the manuscript). We evaluated several
approaches on the distribution of the FSC ratio, as often applied in image thresholding tasks
(Otsu, IsoData, Intermodes, RenyiEntropy, Triangle, Li, Shanbhag, Huang, Mean). In addition,
we employed kmeans clustering with k = 2 and a finite Gaussian mixture model (GMM) with
G = 2 as classification methods. Finally, we included manual gating of singlet/multiplet events
in our comparison, as traditionally used in the flow cytometry field. All approaches (listed in
Table R1) were tested across 4 technical replicates for which we obtained the ground truth
classification via manual annotation of the respective images (n = 3865 in total). Several
approaches, including Otsu thresholding, were comparable to manual gating, with the
advantage of being reproducible and data-driven (Fig. R1A).

Table R1: Thresholding methods evaluated for the FSC ratio.

Method Short Description, information on factorization rank Ref.
wherever appropriate

Manual Gating | Manual gating strategy based on scatter parameters -
from n = 3 analysts

Gaussian Finite Gaussian mixture model on the FSC ratio, G = 2 Fraley and Raftery, 2011, Journal
Mixture Model of the American Statistical
Association; Fraley and Raftery,
2007, Journal of Classification

Huang Fuzzy set theory to partition data into meaningful Huang and Wang, 1995, Pattern
regions, using Shannon’s entropy function recognition

Intermodes Iterative smoothing of a bimodal histogram until only two Prewitt and Mendelsohn, 1966,
local maxima remain; the threshold is given as the mean | Annals of the New York Academy
between the two of Sciences




IsoData Iterative thresholding evaluated by the composite Ridler and Calvard, 1978, IEEE
average of the data below and above the threshold Transcations on Systems, Man
and Cybernetics
kmeans Minimization of the distance between data points and Hartigan and Wong, 1979,
their assigned cluster’s center, k = 2 Journal of the Royal Statistical
Society
Li Minimization of the cross-entropy between segmented Li and Tam, 1998, Pattern
and unsegmented data Recognition Letters
Mean Selecting the mean of the data as the threshold Glasbey, 1993, CVGIP: Graphical
Models and Image Processing
Otsu Minimization of intra-group variance Otsu, 1979, IEEE Transcations

on Systems, Man and
Cybernetics

Renyi Entropy

Maximization of the information between distributions
using Renyi’s entropy method

Kapur, Sahoo and Wong, 1985,
Computer Vision, Graphics, and
Image Processing

extreme; the threshold is the maximum distance of the
line to the histogram

Shanbhag Modification of the Renyi/maximum entropy method Shanbhag, 1994, CVGIP:
Graphical Models and Image
Processing

Triangle For a line from the histogram’s peak to its farthest Zack, Rogers, and Latt, 1977,

Journal of Histochemistry &
Cytochemistry

Comparison between scatter-based thresholding and clustering-based approaches for
singlet vs multiplet discrimination. To systematically compare the thresholding or gating
methods based on the scatter alone to clustering approaches, we performed a series of
analyses. First, we employed Louvain clustering on cell type markers only, followed by
classifying clusters into singlets and multiplets based on FSC ratio and subsequent annotation
based on co-expression of mutually exclusive cell type markers. This cluster-based approach
considerably outperformed classifying cells directly based on FSC-thresholding alone (Fig.
R1B, comparison first and second bar). Notably, incorporating both cell type markers and
scatter properties — including the FSC ratio — into the initial clustering, followed by classifying
clusters based on the FSC ratio and subsequent annotation based on co-expression of
mutually exclusive cell type markers, further improved the classification (Fig. R1B, third bar).
Importantly, this approach yielded results comparable to those achieved when all important
features including image-based features were utilized, therefore serving as an optional
approach to map physically interacting cells with conventional cytometry with no ground truth
data available (Fig. R1B, comparison third and fourth bar). We have now included these
analyses in the revised version of our manuscript.



A [ image/histogram thresholding B 10 C
I manual gating ’ 1.0

[ unsupervised learning

o
.
@
o
©

09

F1 Score

08

FSC ratio

o | [
o
v | e
> | DR -
* | IS :
F1 Score
o
=]

N IR PR =
T FET IS KRS threshold c c c = o a o
FLEFSFS E & F & @ o ® g g 3
@@ ‘gé & & 0&&«-@ Q{‘S‘ Q& E louvain clustering I — 3 :nE; E 8 3 H Té
\Q’@ ES & celltype markers X X E Ju g g § -_:o g

<& scatter parameters X T e 3 e E

£

> X X
H

imaging parameters

Phenograph-Louvain
Phenograph-Leiden

Figure R1. Benchmarking of cytometry-based cellular interaction mapping.

A. Performance of different classification methods on the FSC ratio as measured by the F1
score. Manual image annotation served as the ground truth; see Methods for details. n = 4
replicates; bars indicate the mean F1 score. B. Performance of different classification methods
as measured by the F1 score. Cells were classified by Otsu thresholding of the FSC ratio (dark
blue), or by Louvain clustering of the indicated parameters followed by cluster-based
classification driven by the proportion of cells exceeding the FSC ratio threshold (light blue).
Louvain clustering was performed for n = 100 iterations, and for n = 4 replicates. Bars indicate
the mean F1 score. C. Performance of different clustering methods regarding their ability to
resolve singlet and interacting populations. All algorithms were used for n = 100 iterations on
conventional flow parameters including forward scatter parameters, side scatter parameters,
cell type markers and the FSC ratio, see Methods for details. n = 4 replicates; bars indicate
the mean F1 score.

Benchmarking of clustering approaches for singlet vs multiplet discrimination. Having
identified a general approach that employs conventional flow cytometry parameters effective
at identifying singlet and multiplet events, we tested several community detection algorithms
using these features as input. Candidates were selected based on their popularity in the
single-cell genomics and flow cytometry fields or based on their performance on high-
dimensional flow and mass cytometry data as evaluated by Weber and Robinson (Weber and
Robinson, 2016, Cytometry Part A). Each method was run for n = 100 iterations and the
performance was reported as F1 scores based on the ground-truth classification (Fig. R1C).
Methods from the single-cell genomics field consistently outperformed methods from the flow
cytometry field, such as FlowSOM or FlowMeans. Depending on the data set, some algorithms
might be more appropriate than others. We have thus implemented several alternatives in our
package (listed in Table R2, which has also been incorporated in the methods section of our
revised manuscript), leaving a possible customization option for expert users.

The remaining parts of our analysis pipeline are based on established single-cell workflows
as implemented in the Seurat (Hao et al., 2024, Nature Biotechnology) framework.



Table R2: Methods evaluated for distinguishing singlet and interacting communities.

Method Short Description Ref.

FlowMeans Based on kmeans clustering, finds non-spherical Aghaeepour et al., 2010,
clusters. Max. 10 iterations, standard Mahalanobis | Cytometry Part A
distance and no standardization

FlowSOM Two-level clustering using self-organizing maps. Van Gassen et al., 2015,
meta k = 20 Cytometry Part A

HDBSCAN Hierarchical clustering algorithm based on density. [ Campello et al., 2015,
Used with a minimum cluster size of 100 ACM Trans. Knowl.

Discov. Data

Immunoclust Iterative clustering using finite mixture models, Sorensen et al., 2015,
expectation maximization and integrated Cytometry Part A
classification likelihood

Leiden Modification of the Louvain algorithm. Used with Traag et al., 2019,
resolution = 1 Scientific Reports

Louvain Optimizes modularity by iteratively assigning Blondel et al., 2008, J.
nodes of a network to clusters so that links within Stat. Mech.
communities outweigh links between communities.

Used with resolution = 1

Phenograph Constructs a graph based on phenotypic similarity | Levine et al., 2015, Cell
before clustering. Used with k = 10 and Louvain or
Leiden clustering (resolution = 1, 10 iterations)

Rclusterpp Hierarchical clustering using Ward’s method and Linderman et al.,
Euclidean distances, k = 20 for cutting the tree 2022,Rclusterpp: Linkable

C++ Clustering. R
package version 0.2.6,

The authors start with a simple experiment where they obtain a microscopy-based ground-
truth of the number of cells along with the other cytometric measurements. BAased on this,
they do three analyses: 1. Split the data into singlets/doublets based on “FSC ratio”, where
the threshold is determined based on minimizing variance in the two groups (“Otsu’s
thresholding”). 2. Classify cells in singlets and doublets using a random forest classifier. 3.
Leiden-classification based on all marker data. Per-cell thresholded FSC ratio is compared to
per-cluster classification and since the latter has better precision/recall the authors use this
approach.

Other options need to be explored. For example, how well does a random forest classifier
trained on the FSC/SSC parameters perform? Or some other ML approach trained on the non-
marker measurements? Using markers to identify doublet clusters and then use the same
markers to determine which combination interacted could theoretically create artifacts where
a double-positive cell population is confused with doublets of two single-positives. This cannot
happen if only signal shape is used to determine doublets. Due to the large amounts of data
involved, | am not convinced that optimizing precision/recall is critical here, and that avoiding
potential systematic errors might be more important. This area needs to be fully explored.

We thank the reviewer for the in-depth analysis and are happy to comment. We aimed to
develop a framework that is applicable to conventional flow cytometry data. Supervised




approaches such as a random forest classifier can successfully be trained on image-enabled
flow cytometry datasets, using the manual annotation of the images as labels for the data.
However, these labels are not available in conventional flow cytometry, and therefore we
employed unsupervised approaches such as Louvain community detection in our framework
and used the information gained from the image-enabled flow cytometry dataset only as
ground truth data to evaluate our pipeline.

For the ground truth experiment in Figure 1 for which labeled data is available, we performed
a comparison between various supervised machine learning algorithms and the Interact-omics
approach, as well as a FSC ratio thresholding only (Fig. R2). Supervised models were trained
on non-marker measurements with the manual annotation of the images as labels. As seen in
Figure R2, the best performing supervised methods are comparable or inferior to FSC ratio
thresholding only, and are outperformed by the Interact-omics approach, which combines
Louvain clustering on all conventional flow parameters followed by the cluster-based
classification into singlets and multiplets based on the FSC-ratio.

F1 Score

Figure R2. Comparison of supervised machine learning approaches vs. Interact-omics.
Performance of different classification methods as measured by the F1 score. Linear
Discriminant Analysis (LDA, Ripley, 1996, Pattern Recognition and Neural Networks), a Naive
Bayes classifier, a classification tree (Breiman et al., 1984, Classification and Regression
Trees) and random forest classifier (Breiman, 2001, Machine Learning) were trained on the
scatter parameters (forward and side scatters, FSC ratio) with labels from the manual ground
truth annotation of the experiment in Figure 1. To the right, results for FSC ratio thresholding
only (Otsu) and the entire Interact-omics pipeline (from Fig. 1E) are shown for comparison.
Results for each replicate (n = 4) are shown in the scatter plot and bars indicate the mean F1
score.

Confusion of double-positive cell populations and doublets of two single-positives can be ruled
out based on the following two-step approach in Interact-omics: (i) Unsupervised clustering is
performed on all conventional flow parameters (forward scatter, side scatter, available cell
type markers and the FSC ratio) and each event is preliminarily classified as having a low or
high FSC ratio (e.g. via Otsu thresholding). Then, (ii) the number of events with a high FSC
ratio within each cluster decides whether the cluster is classified as a singlet or interacting cell
cluster. Only if a cluster is classified as an interacting cell cluster through this process and



contains more than one mutually-exclusive cell type marker, it is annotated as an interacting
population between the given interaction partners. Therefore, a population of singlets that
express both markers would not be classified as an interacting population a priori. Of note,
careful design of the used flow cytometry panels contributes to discriminatory power.
Moreover, we have provided additional experimental benchmarking in response to the
reviewer’s next question.

How sensitive is the method to systematic technical artifacts? The problem is mentioned, but
needs to be quantified. This should be done with a fully analyzed experiment to determine if
actual inferences are materially different. Could possibly be done with simulated data,
although a real experiment would be much more convincing.

We thank the reviewer for raising this highly relevant question. The proposed method
guantifies single-cell landscapes, as well as the frequencies and types of interactions among
physically interacting cells in a given sample at the time of analysis. This provides a snapshot
of current interactions, which may include both random technical interactions and specific
interaction that reflect biological effects. When analyzing interactions derived from an in vivo
setting, new interactions might be acquired during sample preparation. These are inherent
limitations to the growing family of methods that map the current state of physically interacting
cells, such as PIC-seq, CIM-seq, SPEAC-seq, Clumb-seq, paired-cell sequencing or imaging
cytometry. We fully agree with the reviewer that systematically understanding these limitations
is crucial for interpreting the results of the proposed and related methods. Therefore, we have
conducted a series of ex vivo and in vivo benchmarking experiments to thoroughly assess the
applicability and limitations of our approach, including analyses of the functionality and
specificity of cellular interactions.

1. Exvivo cellular mixing experiment

To assess the extent to which additional cellular interactions are formed during culture and
how different experimental settings impact this process, we conducted an extensive ex vivo
benchmarking experiment involving labeling and mixing of cell populations. We first induced
cellular interactions in PBMCs with CytoStim or left cells untreated. The PBMCs were then
split and labeled with two different fluorescently conjugated antibodies against CD45 (Fig.
R3A). Subsequently, the distinctively labeled PBMCs were reunited and processed at varying
cell concentrations, processing times, and fixation methods, followed by mapping cellular
interactions using our approach. This allowed us to effectively identify singlets positive for
each label (Fig. R3B-C), as well as cellular interactions that were either single- or double-
positive for both labels (Fig. R3D-F). Double-positive cellular interactions for the two
introduced labels were newly acquired during the second incubation period, while single-
positive interactions could have been acquired initially or throughout the culture period.
Focusing on B-T cell interactions, as one of the most frequent interactions induced by
CytoStim, our experiments revealed that single-positive interactions increased robustly upon
CytoStim treatment. In contrast, double-positive (newly acquired) interactions showed only a
mild increase, which appeared negligible compared to the induction of single-positive
interactions (approximately 5-10-fold higher in single positives compared to double positives)
(Fig. R3G). Increasing incubation periods post-CytoStim did not cause a stark increase in
newly acquired (double-positive) interactions, while a trend toward a decrease in CytoStim-
induced (single-positive) B-T cell interactions was observed (Fig. R3G). Even at 4 hours post-



incubation, CytoStim-induced single-positives were on average 7-fold more frequent than their
double-positive counterparts. These data suggest that ex vivo induced cellular interactions are
relatively stable, and newly acquired interactions occur but have a relatively minor impact in
this setting. With increasing cell concentrations, a mild baseline increase across all
interactions (both single and double positives, with and without CytoStim) was observed (Fig.
R3G). However, the relative effect of CytoStim-induced single-positive interactions compared
to newly acquired double-positive interactions remained comparable. These data reinforce the
importance of maintaining stable cell concentrations within experimental settings but also
demonstrate that ex vivo induced cellular interactions can be effectively measured across
distinct concentrations, providing stability across conditions.

Finally, we evaluated the impact of chemical fixation on newly formed ex vivo interactions.
PBMCs were either fixed or left unfixed after +/- CytoStim treatment, labeling, reuniting and
staining. Overall, only a minor impact of fixation was observed, with a trend towards higher
single and double positive interactions upon CytoStim treatment in fixed samples (Fig. R3G).
This experiment suggests that cellular interactions can be retrieved using fixation or leaving
samples in their native state, provided the same conditions are applied to all samples. We
recommend, however, to fix samples as early as possible during the sample preparation
workflow.

Collectively, these data provide quantitative insights into how experimental settings impact
background interactions while demonstrating that ex vivo modulations of cellular interactions
can be effectively quantified in the explored settings. Besides incubation times, cell numbers,
and fixation, flow rates significantly impact baseline interactions, as previously demonstrated
(Fig. R3H-J). Therefore, maintaining these parameters constant maximizes the recovery of
signal to background interactions. We have now included a limitations and guidelines section
in the manuscript detailing how to optimize the experimental setting for ex vivo cytometry-
based cellular interaction mapping.
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Figure R3. Effect of sample processing methods on ex vivo cellular interactions.

A. Schematic depiction of the experimental approach. B. Overall cellular landscape across all
experimental conditions. n = 3,292,837. C. Feature plots for the UMAP display in B, colored
by the two differently labeled antibodies against CD45. D. Interacting landscape across all
experimental conditions. n =23,620. E. Dot plot for the CD45 signals in interacting populations,
showcasing single-positive and double-positive interactions. F. Feature plots for the UMAP
from panel D, colored by the CD45 signal intensities. G. Quantification of single-positive and
double-positive, newly acquired interactions in CytoStim™ treated and untreated samples,
across different experimental conditions. Left: Varying incubation times at 4°C after mixing,
mimicking long sample processing times. Middle: Different cellular concentrations ranging
from 25,000 to 250,000 cells in 50 pL during staining and acquisition. Right: Fixation with 2 %
paraformaldehyde after staining compared to no fixation. The number of replicates is shown
in each plot and ranges from n = 2 to 3. H. Short-term cultures of PBMCs with or without
CytoStim™ measured at low or high flow rate (n = 4). Impact of flow rate on cellular interactions
is relatively mild. Two-way ANOVA (CytoStim™: F(1,13) = 189.138, P = 4.01e-09, flow rate:
F(1,13) = 6.598, P = 0.023), followed by Tukey’s Honest Significant Differences test for the
flowrate. I. Impact of flow rate and cellular concentration on cellular interactions in murine



spleens is more pronounced. Left: Baseline interactions in spleens measured with different
flow rates (n = 4). Right: Baseline interactions in spleens at different cell densities but constant
flow rate (n = 4). One-way ANOVA (flow rate: F(2,9) = 115.749, P = 3.79e-07, cell
concentration: F(2,9) = 61.397, P = 5.68e-06), followed by Tukey’s Honest Significant
Differences tests. J. Boxplots of T*B cell interactions upon Blinatumomab treatment that were
either fixed or fixed after a freeze-thaw cycle (n = 4). P values were determined with a two-
sided Welch'’s t-test.

2. Invivo benchmarking to imaging flow cytometry

To provide additional information on the reliability of interactions assessed in particular in vivo
settings, we performed ImageStream-based imaging flow cytometry of LCMV-infected spleens
at day 7 post-infection, similar to our experimental setup for organism-wide cytometry-based
cellular interaction mapping presented in the manuscript (Fig. 5). This experimental approach
has some analogy to the introductory experiment described in Figure 1 of manuscript,
however, here, we present a dataset which uses a different technology, with more events
analyzed and applied to more complex in vivo setting (see below). While imaging cytometry
requires specialized instruments, has a low cellular throughput than flow cytometry, and is
limited in the number of measured fluorochromes and cell types that can be resolved, it
provides morphological imaging information that can be used to classify cells into single versus
interacting cells. Due to the limited number of available channels, we utilized a 6-plex panel
focusing on T and B cell interactions. Upon data generation, we extracted the fluorescence
intensity values and applied the PICtR workflow without considering any morphological
information (Fig. R4A-C). As the FSC ratio cannot be extracted during the ImageStream
workflow, clustering and interaction identification was performed on fluorescence channel
values only. Consequently, the results presented here likely underestimate the performance
of the Interact-omics approach. We then evaluated the performance of the Interact-omics
approach with information gained from both images and fluorescence values regarding (i)
discriminating singlets from interacting cells, (ii) identifying cell type combinations of
interactions, and (iii) deriving qualitative changes in LCMV-induced interactions. For this
purpose, we first compared the results of the Interact-omics workflow to an image
segmentation-based classification of singlets and multiplets, demonstrating a high
concordance between the approaches regarding the discrimination between single cells and
multiplets (Fig. R4D). While neither image-based segmentation nor our approach reflects
ground truth data, the high concordance strongly supports the validity of the Interact-omics
results. Manual inspection of randomly selected images predicted as singlets or interacting
cells further verified the accuracy of the Interact-omics approach (Fig. R4C).

Next, we immunophenotypically characterized interacting populations using conventional
gating on marker expression values extracted from images (Fig. 4RG). As expected, this
revealed a high concordance with the cluster-based annotations from the Interact-omics
workflow. Manual inspection of randomly selected images regarding the localized expression
patterns of lineage-specific markers confirmed the expected types of interactions (Fig. R4C).
Finally, we compared the LCMV-induced alterations of cellular interactions as detected by
Interact-omics vs. the imaging flow cytometry approach. Due to the low plexity and low cellular
throughput of the imaging flow cytometry approach, only very crude interacting cell populations
could be defined, restricting the comparison to the populations depicted in Fig. R4B.
Nonetheless, interacting cell populations identified with both approaches showed qualitatively
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matching alterations induced by LCMV, including a marked increase in interactions involving
antigen-specific CD4 T cells (Fig. R4F).

Collectively, these data confirm the accuracy of the Interact-omics approach in discriminating
single and interacting cells and in quantifying the types of interactions in case-control settings.
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Figure R4. Comparison of the Interact-omics approach to imaging flow cytometry.

A. UMAP representation of the overall cellular landscape derived from the fluorescent intensity
values, n = 306538. Intensity values are based on the sum of the pixel intensities in the mask
as selected by ImageStream®%, background subtracted. The experiment corresponds to day
7 in Supplementary Figure 12. B. UMAP representation of the interacting landscape, n = 8683.
The heterogeneous cluster is mostly comprised of likely B*CD4*CD8 multiplets. The unknown
cluster expresses CD19 and CD3 but no other T cell markers, hindering confident annotation.
C. Pseudo-colored example images for cellular interactions in the brightfield and fluorescence
channels. D. Left: UMAP displays from A and B colored by the number of cells identified
through image segmentation. Right: Bar plots comparing the populations identified through
Interact-omics and the image segmentation. E. Left: UMAP displays from A and B colored by
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populations as identified through conventional gating. Right: Bar plots comparing the
populations identified through Interact-omics and conventional gating. NA indicates that the
event does not fall into any conventional gate. F. Fold changes of the frequencies +/- LCMV
infection. Holm-corrected estimated marginal means comparison. Left: Populations identified
by Interact-omics. Right: Populations identified through conventional gating. G. Gating
strategy for conventional gating. Abbreviations: Ag = antigen-specific, UMAP = uniform
manifold approximation and projection, BF = brightfield.

3. In vivo mixing experiments to characterize newly acquired cellular interactions

The presented approach measures cellular interactions following sample preparation ex vivo.
Consequently, for in vivo applications, additional cellular interactions can be acquired or lost
during sample preparation. While this limitation applies to all cellular interaction mapping
approaches that do not rely on specialized mouse models or measure co-localization in situ,
it remains poorly characterized to what extent this occurs, whether newly acquired interactions
are random or directed, and how representative the identified interactions are of the in vivo
situation.

To evaluate these questions, we utilized congenic mouse models differing in variants of the
pan-hematopoietic cell marker CD45, allowing identification of respective immune cells as
CD45.1 or CD45.2 using variant-sensitive antibodies. First, we transferred LCMV-specific CD4
T cells (SMARTA: CD90.1 positive, CD45.2 positive) into CD45.2 mice, followed by LCMV
infection (group A) (Fig. R5A). Non-infected control CD45.2 mice were included (group B). In
parallel, we infected CD45.1 mice with LCMV (group C) or left them untreated (group D). On
day 7 post-infection, spleens from all groups were harvested. Spleens from group A (infected,
CD45.2) and group B (non-infected, CD45.2) were either processed individually or mixed in
1:1 ratios with spleens from group C (infected, CD45.1) or group D (nhon-infected, CD45.1)
before tissue homogenization and processing. Applying the Interact-omics workflow to these
single and mixed samples resulted in single-cell and interacting cell landscapes of populations
that were either single positive or double positive for CD45.1 and CD45.2 (Fig. R5B-E), with
double-positive populations being newly acquired interactions during processing. Notably, we
observed a substantial acquisition of new interactions during sample processing (Fig. R5F).
However, these newly acquired interactions did not occur randomly but were highly correlated
with interactions induced upon infection (Fig. R5G). In particular, newly acquired interactions
in mixed spleens from infected mice compared to non-infected controls were highly correlated
with infection-induced single positive interactions in both mixed and non-mixed spleens (Fig.
R5G). This suggests that while new interactions can be acquired during sample preparation,
they are not random but reflect actual biological effects and likely are a proxy for cellular
interactions occurring in vivo (see also next section about qualitative comparison to in situ
methods).
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Figure R5. Interactions acquired a posteriori after in vivo experiment.

A. Schematic overview of the experimental approach. LCMV-specific CD4+ T cells were
transferred into CD45.2 host mice 5 days before infection with LCMV (group A) or the
respective control (group B). Additionally, CD45.1 host mice were infected with LCMV (group
C) or left untreated (group D). n = 3 for groups A, C, D and n = 4 for group B. B. Single-cell
landscape of all experimental groups. Out of n = 23,490,812 processed cells, n = 245,316 are
shown in the UMAP display. C. Feature plots for panel B, colored by the expression of the
congenital markers CD45.1 and CD45.2. D. Interacting landscape across all experimental
groups. Out of n = 731621 identifiable interactions, n = 93065 are shown. E. Dot plots
showcasing the expression of the congenital markers CD45.1 and CD45.2 in interacting
populations from the unmixed controls for the untreated and infected conditions, and the mixed
spleens from infected mice (infected+infected, group A + group C) or untreated mice
(control+control, group B + group D). F. Bar plots depicting the log2 fold changes (FC) between
the LCMV infected and untreated conditions for each interacting population. Solid bars indicate
the log2FC between group A (infected) und group B (control). Semi-transparent bars show the
log2FC for single-positive interactions in mixed samples (A+C for the infected condition, and
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B+D for the control). Transparent bars depict log2FC between the respective double-positive
interactions, which were definitely acquired ex vivo. n = 3 mixes. G. Linear relationships
between the log2FC between infected and control conditions for unmixed controls, single-
positive interactions after mixing and double-positive interactions after mixing. n = 3 mixes.

4. Qualitative comparison to in situ methods

To further explore whether in vivo-derived interactions measured using our approach resemble
those occurring in situ, we qualitatively compared our LCMV Interact-omics results with
imaging and in situ interaction mapping of approaches investigating LCMV infections:

e Monocyte—B Cell Interactions: Imaging has identified a drastic increase in monocyte—
B cell interactions following LCMV infection (Sammicheli et al., 2016, Science
Immunology). In line with this, our approach also identified a major increase in
monocyte-B cell interactions upon LCMV infection, matching the kinetics described by
Sammicheli et al.

e CDS8 T Cell Interactions: A recent study mapped the interactions of antigen-specific
CD8 T cells following LCMV infection using a newly developed universal version of the
labeling immune partnerships by SorTagging intercellular contacts (ULIPSTIC) mouse
model (Nakandakari-Higa et al., 2024, Nature). Although this model records past rather
than current interactions and investigated slightly different time points, the types of
interactions that antigen-specific CD8 T cells undergo can be compared. Notably, there
was a high concordance in the types of interactions that antigen-specific CD8 T cells
engage in within the uLIPSTIC model and our approach, including interactions with B
cells, CD4 T cells, bystander CD8 T cells, NK cells, Neutrophils and other myeloid
cells.

e Antigen-Specific T Cell Activation and Proliferation: Activation and proliferation of
transferred antigen-specific T cells have been described to start in spleens around 3
days post LCMV infection and increase thereafter (Olson et al., 2012, PLOS
Pathogens). A delay in kinetics has been described in non-draining lymph nodes
compared to the spleen. Similarly, our approach identified initial interactions of antigen-
specific T cells at day 3 post-infection, followed by a more pronounced increase at day
7. Consistent with Olson et al., the spleen showed more pronounced antigen-specific
T cell interactions compared to non-draining lymph nodes at matching time points,
likely due to more rapid kinetics.

Collectively, these observations suggest that while it cannot be unequivocally determined
whether all measured interactions in the Interact-omics approach have occurred in vivo, the
interactions are not random but reflect biological effects. The results align fully with those from
in situ methods. Still, we have now acknowledged the limitations and outlined resulting
guidelines on how to optimize our approach in the revised version of the manuscript.

How well does the proposed FSC thresholding work compared to alternative strategies? For
conventional cytometry, one would create a “singlet” and a “doublet” box/ellipse/polygon gate
rather than a single threshold, and typically double-gate based on both FSC-H vs FSC-W and
FSH-area vs FSC-W. Such an approach removes borderline doublet events from the analysis.
How does this conventional approach compare to an unsupervised threshold?
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We thank the reviewer for this interesting question. We have addressed this point as part of
this reviewer’s previous request on a more general benchmarking (Fig. R1A, Table R1). Here,
we enquired three expert cytometry users to perform manual gating based on a “singlet” and
a “doublet” box/ellipse/polygon gate. Notably, this resulted in a performance comparable to
data-driven approaches for scatter-based thresholding/gating, including Otsu thresholding on
FSC-ratio (Fig. R1A). However, manual gating, like similar approaches, was considerably
inferior to the proposed Interact-omics approach, employing an initial clustering on all cell type-
specific markers and scatter properties, followed by a cluster-based classification into singlets
and multiplets based on FSC-ratio and subsequent annotation based on exclusive markers
(Fig. R1B). Notably, in contrast to a conventional gating approach, the proposed framework
not only discriminates singlets from multiplets but also quantitatively resolves cellular
interaction partners.

How well does the method perform when the markers do not perfectly mark all the cell types
in the data? For exploratory research this will often be the case - especially if non-immune
cells are analyzed, since specific markers are often not available. Experiments can be done
in silico based on existing experiments, by removing the data for progressively more markers
and determining if results are corrupted.

We thank the reviewer for highlighting this important aspect. In flow cytometry, the design of
the panel largely determines the granularity of resolution for both cell types and cell states,
which also extends to cellular interactions. To address the reviewer’s point, we conducted an
analysis where we progressively identified the least important feature (marker) and reduced
the number of features by sequentially removing the least significant one from the input to the
workflow (Fig. R6; item A for the data underlying main Figure 2A—-cellular interactions in
human PBMCs after CytoStim—and item B for the data underlying main Figure 5B—virus-
induced cellular interaction networks in mice—as representative examples). We then
compared the results obtained from the reduced and full feature sets using the adjusted Rand
index. As shown in Figure R6, the adjusted Rand index remains consistent within a range of
approximately 15 to 25 features, demonstrating robustness to the inclusion or exclusion of
individual features.
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Figure R6. Comparison of adjusted Rand index across different numbers of features.
A. Feature importance analysis for data from Figure 2A. The adjusted Rand index was
calculated after iteratively removing the least important feature. B. Feature importance
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analysis for data from Figure 5B. The adjusted rand index was calculated after iteratively
removing the least important feature.

Notably, we provide fully optimized high parametric panels for mouse and human that enable
cytometry-based immune interaction mapping at high resolution and can be adapted for new
experiments. To practically demonstrate that our approach can also be applied in settings
where high parametric panels have not been optimized for our method, we applied the PICtR
workflow on a publicly available dataset of juvenile idiopathic arthritis (JIA) (Attrill et al., 2024,
Clinical and Experimental Immunology) (Fig. R7).

JIA is an autoimmune disease characterized by chronic inflammation of the joints, leading to
pain, swelling, and eventual joint damage. While it is hypothesized that an abnormal
interaction among immune cells, specifically T cells, B cells, and myeloid cells, contributes to
the production of inflammatory cytokines and autoantibodies that drive the disease, the actual
interaction processes remain poorly understood.

Within this study, Attrill and colleagues analyzed PBMC samples from healthy donors, JIA
patients with active and inactive disease as well as synovial fluid samples from JIA patients
with active disease. The data is available on www.flowrepository.org under FLOWRepository
ID FR-FCM-Z6VC. FCS files were downloaded and preprocessed as described in our Methods
section. Additionally, flowAl (a QC algorithm) was run on all FCS files and FCS files with
anomalies in their flow rate were excluded from further analysis. High quality samples were
then analyzed with the PICtR workflow. Results described by Attrill et al. concerning the single-
cell landscape could be reproduced (Fig. R7A, B). Focusing on the interacting cell landscape,
we explored three comparisons: 1. PBMCs from healthy donors vs. PBMCs from patients with
JIA (Fig. R7D-F), 2. PBMCs from JIA patients with active disease vs. inactive disease (Fig.
R7G-1), 3. PBMCs from JIA patients with active disease vs. synovial fluid of JIA patients with
active disease (Fig. R7J-L). Notably, we discovered both quantitative and qualitative changes
in cellular interactions in the blood of patients with inactive versus active disease, as well as
between the blood and synovial fluid of affected joints (Fig. R7D-L). Among the most intriguing
findings is the enrichment of T cells interacting with B cells, which predominantly comprise a
FoxP3-expressing regulatory T cell phenotype in patients with inactive disease (Fig. R7I).
However, these interactions switch to an inflammatory, non-regulatory phenotype in patients
with active disease. Similarly, major qualitative differences of interactions between CD4 T cells
and monocytes were observed between blood and synovial fluid of patients with active disease
(Fig. R7L). While several of these findings require further validation, they provide a first
guantitative framework for understanding changes in immune cell interactions that may
contribute to disease progression and help identify targets for therapeutic intervention.
Collectively, this analysis demonstrates that our approach can be applied in settings where
high parametric panels have not been optimized for our method, given that the sample set has
been acquired under constant experimental conditions (see limitations and guidelines section
of the manuscript).
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Figure R7. Interacting cell landscape in juvenile idiopathic arthritis (JIA).

A. Schematic describing publicly available spectral flow cytometry data of PBMCs and SFMC
of JIA patients (Attrill et al., 2024; Clinical and Experimental Immunology). Three comparisons
(indicated by the arrows) were made for the interacting cell landscape B. UMAP of the overall
cellular landscape. Recorded cells were processed with PICtR, out of 7,843,646 cells, 80,000
sketched cells are displayed. C. UMAP of interacting cells (n = 12,908) D. Point density UMAP
(left panel) and differential abundance (right panel) of interacting cells comparing PBMCs from
healthy donors vs. JIA patients. E. Quantitative comparisons of interacting cell frequencies
between PBMCs from healthy donors (n=18) and JIA patients (n=36). Top: Non-adjusted
frequencies. Bottom: Interaction frequencies normalized by the harmonic mean of the singlet
frequencies of the contributing cells (see Methods). P values were determined with a two-
sided t-test and adjusted for multiple testing using Benjamini-Hochberg correction. F.
Qualitative differences in CD4T*cl.mono interactions. P values were determined with a two-
sided Wilcoxon rank sum test and adjusted for multiple testing using Benjamini-Hochberg
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correction. G. Point density UMAP (left panel) and differential abundance (right panel) of
interacting cells comparing PBMCs of JIA patients with inactive disease (n=11) vs. active (n
=25). H. Quantitative comparisons of interacting cell frequencies between PBMCs from JIA
with inactive and active disease. Top: Non-adjusted frequencies. Bottom: Interaction
frequencies normalized by the harmonic mean of the singlet frequencies of the contributing
cells (see Methods). P values were determined with a two-sided t-test and adjusted for multiple
testing using Benjamini-Hochberg correction I. Qualitative differences in T*B interactions. P
values were determined with a two-sided Wilcoxon rank sum test and adjusted for multiple
testing using Benjamini-Hochberg correction. J. Point density UMAP (left panel) and
differential abundance (right panel) of interacting cells comparing PBMCs of JIA patients with
active disease vs. SFMC of active disease. K. Quantitative comparisons of interacting cell
frequencies between PBMCs of JIA patients with active disease (n=25) vs. SFMC of active
disease (n=8). Top: Non-adjusted frequencies. Bottom: Interaction frequencies normalized by
the harmonic mean of the singlet frequencies of the contributing cells (see Methods). P values
were determined with a two-sided t-test and adjusted for multiple testing using Benjamini-
Hochberg correction. L. Qualitative differences in CD4T*mono interactions. P values were
determined with a two-sided Wilcoxon rank sum test and adjusted for multiple testing using
Benjamini-Hochberg correction. Abbreviations: UMAP = uniform manifold approximation and
projection, PBMC = peripheral blood mononuclear cells, SFMC = synovial fluid mononuclear
cells. Red asterisks in cell type labels indicate interactions between the respective cell types.

Clustering is such a critical part of this method that better guidance is needed. The potential
for issues is well demonstrated when comparing Fig. S1A, which shows the 14 unsupervised
clusters to Fig 1D, which shows the expert-curated 5 clusters. The only clusters that remain
untouched are the three doublet/triplet clusters. How were the parameters for the initial
clustering selected? Did you already know the expected doublet clusters and adjusted based
on this?

We thank the reviewer for highlighting this important aspect. We fully agree that clustering is
critical. In this analysis, we follow widely accepted practices from the single-cell genomics
field, where data is commonly over-clustered relative to the expected number of cell types
(Weber et al., 2019, communications biology; Saeys et al., 2018, Nat. Rev. Immunol.). This
approach ensures the detection of smaller populations, while broader populations can be
merged if they express markers indicative of the same cell type or if finer annotations are
unnecessary for the specific question. Another common strategy in single-cell genomics is to
sub-cluster certain subsets of cells for a more detailed resolution.

In line with these conventions, the Interact-omics workflow iterates through multiple
resolutions, annotating based on one that yields more clusters than anticipated based on the
marker panel. Merging is performed afterwards if necessary. In the framework of the revision
process, we re-analyzed the data underlying Figure 1 using 100 iterations of Louvain
clustering. In the example provided, we initially over-clustered the data into 14 clusters (Fig.
R8A). These were then merged into singlet T cells, B cells, CD33M9" myeloid cells, CD33'°"
myeloid cells, and other CD45-positive cells due to their marker expression patterns and low
FSC ratio. Two clusters were identified to contain cellular interactions based on high FSC ratio
and co-expression of cell type-exclusive markers (Fig. R8B, C). While the majority of clusters
showed a high degree of homogeneity, one of the cellular interaction clusters displayed
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heterogeneous marker expression and was therefore subjected to subclustering, yielding in
total three clusters of interacting cells: B*T, My*T, and My*T*B cell populations (Fig. R8C, D).

It is important to note that in the example shown in Fig. 1, a low-plex panel was used due to
the acquisition method involving an imaging flow cytometer, which was simultaneously used
to generate ground truth data. As a result, the resolution between distinct interacting cell
clusters is lower compared to all other analyses presented in the manuscript.
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Figure R8: Clustering and annotation in PICtR.

A. UMAP embedding colored by the 14 Louvain clusters based on conventional flow cytometry
parameters. Corresponds to Figure 1F. B. Stacked bar plot for each of the 14 clusters colored
by whether events fall above or below the FSC ratio threshold (Otsu-based, see Figure 1D).
Out of the 14 clusters, those clusters containing the most cells exceeding the FSC ratio
threshold are classified as interacting clusters, here clusters 9 and 11. C. Feature plots for the
UMAP embedding in panel A, colored by the expression of the cell type markers and the FSC
ratio. D. Annotated UMAP embedding from panel A (corresponds to Figure 1F). Due to the
marker expression in C, some clusters are merged and a focused analysis of clusters
representing cellular interactions resulted in 3 populations, namely B*T, My*T and My*T*B
populations.

Frequency
o
(4]

2 3 4 5 8 9 10 11 12 13 14
Clusters

UMAP2
UMAP 2

19



“Singlet” clusters seem to often contain around 10% doublets (by FSC), considerably higher
than | would expect if they were homotypic interactions (See Fig. S5D). Also in the ground-
truth experiment Fig 1E, there seems to be ~5-10% of singlets in the doublet classes. In Fig
S1B it does not look like there is a threshold that separates the two populations, but rather a
continuum. Are these issues experiment-specific? Is it a side-effect of the sketching procedure
(i.e selecting rare events)?

We thank the reviewer for highlighting this aspect. To clarify, the plots showing the frequency
of classified cells within a specific cluster or population focus on either classification based
solely on the FSC ratio (as in the former Figure S5D, now Figure S6D) or classification based
on clustering combined with FSC ratio thresholding, compared to the ground truth annotation
(as in the former Figure 1E, now Figure 1H). The stacked bar plots presented for events below
or above the FSC ratio threshold (e.g., Figure 1G, Supplementary Figure 2C) may therefore
still contain misclassified cells, as classification based solely on the FSC ratio is less accurate
than the two-step approach introduced by us.

When classifying cells only based on FSC-ratio thresholding (without prior clustering), we
generally observe that ground-truth singlets which are misclassified as multiplets are
predominantly myeloid cells, likely due to their distinct scattering parameters (Fig. R9).
Depending on the data set and the heterogeneity of included cell types, the FSC ratio might
not have a clear bimodal distribution. Of note, this is not a side effect of the sketching
procedure, since thresholding of the FSC ratio is performed on all events.

The proposed two-step approach, which involves unsupervised clustering prior to
classification into singlet and interacting clusters, mitigates these errors and therefore provides
superior accuracy of 97.8 % and a mean F1 score of 0.91 for the ground-truth data set (see
Figure 1E of the revised manuscript, Supplementary Figure 1M, Fig. R1B).
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Figure R9. Properties of singlets misclassified by thresholding of the FSC ratio. Dot plot
displaying the forward scatter area (FSC-A) and forward scatter height (FSC-H) properties of
ground truth singlets; the Otsu threshold of the FSC ratio is shown as a diagonal line. The bar
plots show all ground truth singlets split into correctly classified and misclassified events
according to the FSC ratio threshold and are colored by marker expression. n = 4 replicates;
error bars indicate the standard deviation.
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Minor issues
Line 38: “Saliva”, not “Salvia”

We have now adjusted this.

Line 41-43: “These technologies mostly focus on interaction of pre-defined cell types...”. It is
not relevant what the majority methods do; both Andrews and Boisset papers allow analysis
of non-pre-defined cell types and are cited here. The difference in throughput and price is a
major advantage, and of course highly relevant. However, these differences are similar to
differences in price between any mRNA and cytometry based method, and the drawbacks are
also the same: cytometry-based methods operate only on cell types with known markers
whereas mMRNA-based methods are hypothesis-free. It is not appropriate to compare such
vastly different methods mainly on price per cell.

We agree with the statements of the reviewer and have now adjusted the wording in the
manuscript.

Fig 1H: How many data points constitute the boxplots? Boxplots show a distribution and are
only suitable if the number of observations is high. Please indicate n= and plot individual points
instead of boxplots if n is low.

We have now implemented this throughout the manuscript and display individual data points
where applicable. Moreover, we now provide a description of the number of data points for
each experiment in the figure legend.

Fig 2D: This figure is confusing - what does the color shading mean? What does the thickness
mean?

It looks like the left/right side were one plot that was later separated, which makes the plot
look a little bit awkward (lines originate at random positions within fields) - maybe better to
keep them together and indicate -/+CytoStim with color?

We have now adapted the plot according to the suggestion of the reviewer.

Fig 3E: Here n is clearly too low for drawing boxplots. Please just show the individual
observations instead.

This has now been implemented.

Fig 6F-I: Same thing, no boxplots with low n.
This has now been implemented.

Fig S4 J,K: Same issue with boxplots.

This has now been implemented.
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Fig S1 F and G. These figures are meant to show that cell concentration does not have a
strong effect on doublet formation in PBMCs, but the ranges are too different - the lowest
spleen concentration is higher than the highest PBMC concentration.

We thank the reviewer for highlighting this aspect. As part of our newly conducted, extensive
ex vivo benchmarking, we now provide a more detailed analysis across a range of human
PBMC concentrations, including similar ranges as for the spleen samples analyzed (see
Supplementary Figure 4G or Fig. R3B). These analyses show that as PBMC concentrations
increase (from 25,000 to 250,000 cells per well, corresponding to 500 to 5,000 cells/uL during
staining and acquisition), there is a slight increase in overall detected interactions. Similarly,
though to a more pronounced extent, a significant increase in interactions is observed among
splenocytes as their concentration increases (from 2,500 cells/puL to 10,000 cells/uL; see
Supplementary Figure 4l1). Importantly, our intention was not primarily to imply that cell
concentration is more significant in one tissue type over another, but rather to emphasize that,
alongside technical factors, the tissue type being studied can also impact the observed cellular
interactions. Therefore, we strongly recommend maintaining consistent experimental
conditions and directly comparing matching tissue types for accurate assessment.
In our manuscript, we state: “Collectively, these data provide quantitative insights into how
experimental settings impact background interactions while demonstrating that ex vivo
modulations of cellular interactions can be effectively quantified in the explored settings.
Besides incubation times, cell numbers and fixation, flow rates and tissue type may
significantly impact baseline interactions (Supplementary Figure 4H-I). Therefore, maintaining
these parameters constant is critical for maximizing the recovery of signal to background
interactions. Limitations and guidelines are further detailed in a separate section (see
Limitations and Guidelines).”

Line 710-718: Should be rewritten to precisely describe the algorithm, or if this is not possible
removed and simply replaced by the reference (Hao et al?). Currently it just reads as word-
salad and does not aid understanding.

We have now adapted this accordingly.

Line 721-722: What is “the maximum number of dimensions in the data”? Do you mean the
actual dimensionality of the dataset (eg. the number of measured values per cytometry event?
In that case reducing this to n-1 seems strangely redundant - the data is (almost) the same
size, so why the dimensionality reduction? How have different n been evaluated to arrive at n-
1 as the optimum?

We apologize for the misleading wording. Indeed “the maximum number of dimensions in the
data” meant the actual dimensionality of the dataset. We also agree that reducing to n-1
dimensions has minimal impact; however, it does offer a slight improvement in runtime, as
shown in items B and D in Figure R10, with only marginal changes to the adjusted Rand index
(tems A and C in Figure R10). Based on this benchmark, there is flexibility in selecting the
factorization rank. We opted for n-1 and, for consistency, kept it constant throughout the
manuscript. In the PICtR software package, we have updated this parameter from being hard-
coded to a customizable option for users."
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Figure R10. Comparison of adjusted Rand index and runtime performance across
different numbers of principal components. A. The adjusted Rand index was calculated
after iteratively removing the last principal component. Data of Fig. 2A of the manuscript. B.
Runtime analysis (in sec.) for 1 mio. cells performed when iteratively removing the last
principal component. Data of Fig. 2A of the manuscript. C. The adjusted Rand index was
calculated after iteratively removing the last principal component. Data of Fig. 5B of the
manuscript. D Runtime analysis (in sec.) for 1 mio. cells performed when iteratively removing
the last principal component. Data of Fig. 5B of the manuscript.

Line 726-: Clustering is clearly critical to obtaining accurate results using this method, so some
guidelines would be in order here.

We fully agree. Choosing a resolution requires curation and expert knowledge about the
expected cell identities in a given tissue/sample/panel and the observation of patterns of
marker expression (e.g. feature plots), cf. Luecken and Theis (Luecken and Theis, 2019, mol
systems biology). We now provide additional guidelines on this topic in the package’s vignette
(section “3.3.1 Guidelines for Clustering”).

Line 735-737: This cannot be universally true. Each cluster has a fraction of cells with FSC
ratio > threshold, and the top 15-20% of the clusters are classified as doublets. But in Fig. 1
three out of seven clusters are doublet/triplet clusters, which is >40%. Even if you mean the
initial 14 clusters, it amounts to >20% of the clusters. This part of the method has to be better
described!

We thank the reviewer for highlighting this important point. The 15-20% estimate for clusters
was intended as a general guideline, reflecting our broader experience across various setups.
However, we fully agree that this percentage can vary significantly depending on the specific
experimental context and biological questions being addressed. In light of this, we have
decided to avoid making such general recommendations and instead offer more tailored
guidance.

Line 749-751: This section (“Annotation of physically interacting cells”) describes a different
method for determining interacting cell clusters “The key criterion for identification of
interacting cell clusters was a high FSC-ratio and the presence of more than one cell type-
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specific marker.” Which one is correct? Or has different heuristics been applied to different
parts of the manuscript?

We thank the reviewer for pointing out this aspect and apologize for the confusion caused by
this ambiguity. The process of annotating interacting cells is the same throughout the
manuscript.Briefly, we perform clustering, and select interacting populations based on the
amount of events with a high FSC ratio that fall into a given cluster and annotate the interaction
partners based on mutually exclusive cell type markers. The only exception is the
ImageStream data for the in vivo benchmarking to imaging flow cytometry that we included in
the revision, since ImageStream data does not contain the forward scatter parameter
necessary for calculating the FSC ratio. Here, interacting populations were only annotated
based on the presence of mutually exclusive cell type markers, probably undermining the
performance of our approach. We have now improved the wording in the manuscript to avoid
any confusion (see Methods section).

Reviewer #2:

Remarks to the Author:

The paper proposes a new method for detecting and studying physical cell-cell interactions
using flow cytometry. The task is very important and there's great interest and progress
recently in developing methods for solving it. The proposed method has potential advantages
as compared with existing methods, e.g. in cell throughput, potential ease of use, and
applicability e.g. to human samples because no genetic engineering is required. The method
relies on using parameters measured in flow cytometry that are demonstrated to work well in
discriminating single cells from cell doublets and multiplets. The results of application of the
method in several contexts are reasonable and actually very interesting, especially in analysis
of immunotherapy response. The paper is well written. The software can be run and the results
can be reproduced (but see below). However, | have questions about robustness, precision
and recall of the approach with respect to true physiological cell interactions in vivo, which
may affect applicability and interpretability of the method.

We thank this reviewer for the insightful comments and suggestions that have greatly
enhanced the quality of our manuscript. In response to the reviewer's questions, we have
performed an extensive benchmarking and characterization of our method. Taking the
respective insights into consideration, we have added a new section to the manuscript
detailing the limitations of our approach and providing guidelines for best practices to optimize
performance. Additionally, in response to the reviewer’'s request, we have demonstrated that
our approach can infer true biological cellular interaction networks from existing cytometry
data, given specific preconditions, thereby significantly broadening the method's applicability
and scope. A detailed response to each of the reviewer’s points is provided below.

More specific comments:
While | am not an expert in technical aspects of flow cytometry, it is convincing that the method

can detect and report some cell interactions. However, it is unclear how physiologically
relevant these detected cell interactions are, and how representative they are of all interactions
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in vivo. How many and which of the detected cell interactions form as a result of sample
manipulations? In principle some cells (e.g. DCs and T cells) may be "sticky" and may form
interactions in a suspension as a result or byproduct of some technical manipulations with
samples, but not in vivo. But does it really happen, and if yes, does it happen in a biased
manner, more so for some cell types and cell states than others? Also, which of the cell
interactions happening in vivo in physiological contexts are actually preserved in all sample
preparation and sample handling and then detected with this method? Is it for the strongest
interactions? or only interactions of some specific types? or some random ones?

We thank the reviewer for raising this highly relevant question. The proposed method
guantifies single-cell landscapes, as well as the frequencies and types of interactions among
physically interacting cells in a given sample at the time of analysis. This provides a snapshot
of current interactions, which may include both random technical interactions and specific
interactions that reflect biological effects. When analyzing interactions derived from an in vivo
setting, new interactions might be acquired during sample preparation. These are inherent
limitations to the growing family of methods that map the current state of physically interacting
cells, such as PIC-seq, CIM-seq, SPEAC-seq, Clumb-seq, paired-cell sequencing or imaging
cytometry. We fully agree with the reviewer that systematically understanding these limitations
is crucial for interpreting the results of the proposed and related methods. Therefore, we have
conducted a series of ex vivo and in vivo benchmarking experiments to thoroughly assess the
applicability and limitations of our approach, including analyses of the functionality and
specificity of cellular interactions.

1. Ex vivo cellular mixing experiment

To assess the extent to which additional cellular interactions are formed during culture and
how different experimental settings impact this process, we conducted an extensive ex vivo
benchmarking experiment involving labeling and mixing of cell populations. We first induced
cellular interactions in PBMCs with CytoStim or left cells untreated. The PBMCs were then
split and labeled with two different fluorescently conjugated antibodies against CD45 (Fig.
R11A). Subsequently, the distinctively labeled PBMCs were reunited and processed at varying
cell concentrations, processing times, and fixation methods, followed by mapping cellular
interactions using our approach. This allowed us to effectively identify singlets positive for
each label (Fig. R11B, C), as well as cellular interactions that were either single- or double-
positive for both labels (Fig. R11D-F). Double-positive cellular interactions for the two
introduced labels were newly acquired during the second incubation period, while single-
positive interactions could have been acquired initially or throughout the culture period.
Focusing on B-T cell interactions, as one of the most frequent interactions induced by
CytoStim, our experiments revealed that single-positive interactions increased robustly upon
CytoStim treatment. In contrast, double-positive (newly acquired) interactions showed only a
mild increase, which appeared negligible compared to the induction of single-positive
interactions (approximately 5-10-fold higher in single positives compared to double positives)
(Fig. R11G). Increasing incubation periods post-CytoStim did not cause a stark increase in
newly acquired (double-positive) interactions, while a trend toward a decrease in CytoStim-
induced (single-positive) B-T cell interactions was observed (Fig. R11G). Even at 4 hours post-
incubation, CytoStim-induced single positives were on average 7-fold more frequent than their
double-positive counterparts. These data suggest that ex vivo induced cellular interactions are
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relatively stable, and newly acquired interactions occur but have a relatively minor impact in
this setting. With increasing cell concentrations, a mild baseline increase across all
interactions (both single and double positives, with and without CytoStim) was observed (Fig.
R11G). However, the relative effect of CytoStim-induced single-positive interactions compared
to newly acquired double-positive interactions remained comparable. These data reinforce the
importance of maintaining stable cell concentrations within experimental settings but also
demonstrate that ex vivo induced cellular interactions can be effectively measured across
distinct concentrations, providing stability across conditions. Finally, we evaluated the impact
of chemical fixation on newly formed ex vivo interactions. PBMCs were either fixed or left
unfixed after +/- CytoStim treatment, labeling, reuniting and staining. Overall, only a minor
impact of fixation was observed, with a trend towards higher single and double positive
interactions upon CytoStim treatment in fixed samples (Fig. R11G). This experiment suggests
that cellular interactions can be retrieved using fixation or leaving samples in their native state,
provided the same conditions are applied to all samples. We recommend, however, to fix
samples as early as possible during the sample preparation workflow. Collectively, these data
provide guantitative insights into how experimental settings impact background interactions
while demonstrating that ex vivo modulations of cellular interactions can be effectively
guantified in the explored settings. Besides incubation times, cell numbers, and fixation, flow
rates significantly impact baseline interactions, as previously demonstrated (Fig. R11H-J).
Therefore, maintaining these parameters constant maximizes the recovery of signal to
background interactions. We have now included a limitations and guidelines section in the
manuscript detailing how to optimize the experimental setting for ex vivo cytometry-based
cellular interaction mapping.
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Figure R11. Effect of sample processing methods on ex vivo cellular interactions.

A. Schematic depiction of the experimental approach. B. Overall cellular landscape across all
experimental conditions. n = 3,292,837. C. Feature plots for the UMAP display in B, colored
by the two differently labeled antibodies against CD45. D. Interacting landscape across all
experimental conditions. n =23,620. E. Dot plot for the CD45 signals in interacting populations,
showcasing single-positive and double-positive interactions. F. Feature plots for the UMAP
from panel D, colored by the CD45 signal intensities. G. Quantification of single-positive and
double-positive, newly acquired interactions in CytoStimTM treated and untreated samples,
across different experimental conditions. Left: Varying incubation times at 4°C after mixing,
mimicking long sample processing times. Middle: Different cellular concentrations ranging
from 25,000 to 250,000 cells in 50 pL during staining and acquisition. Right: Fixation with 2 %
paraformaldehyde after staining compared to no fixation. The number of replicates is shown
in each plot and ranges from n = 2 to 3. H. Short-term cultures of PBMCs with or without
CytoStimTM measured at low or high flow rate (n = 4). Impact of flow rate on cellular
interactions is relatively mild. Two-way ANOVA (CytoStimTM: F(1,13) = 189.138, P = 4.01e-
09, flow rate: F(1,13) = 6.598, P = 0.023), followed by Tukey’s Honest Significant Differences
test for the flowrate. I. Impact of flow rate and cellular concentration on cellular interactions in
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murine spleens is more pronounced. Left: Baseline interactions in spleens measured with
different flow rates (n = 4). Right: Baseline interactions in spleens at different cell densities but
constant flow rate (n = 4). One-way ANOVA (flow rate: F(2,9) = 115.749, P = 3.79e-07, cell
concentration: F(2,9) = 61.397, P = 5.68e-06), followed by Tukey’s Honest Significant
Differences tests. J. Boxplots of T*B cell interactions upon Blinatumomab treatment that were
either fixed or fixed after a freeze-thaw cycle (n = 4). P values were determined with a two-
sided Welch'’s t-test.

2. In vivo benchmarking to imaging flow cytometry

To provide additional information on the reliability of interactions assessed in particular in vivo
settings, we performed ImageStream-based imaging flow cytometry of LCMV-infected spleens
at day 7 post-infection, similar to our experimental setup for organism-wide cytometry-based
cellular interaction mapping presented in the manuscript (Fig. R12). While imaging cytometry
requires specialized instruments, has a low cellular throughput, and is limited in the number
of measured fluorochromes and cell types that can be resolved, it provides morphological
imaging information that can classify cells into single versus interacting cells. Due to the limited
number of available channels, we utilized an 6-plex panel focusing on T and B cell interactions.
Upon data generation, we extracted the fluorescence intensity values and applied the PICtR
workflow without considering any morphological information (Fig. R12A-C). As the FSC ratio
cannot be extracted during the ImageStream workflow, clustering and interaction identification
was performed on fluorescence channel values only. Consequently, the results presented
here likely underestimate the performance of the Interact-omics approach.
We then evaluated the performance of the Interact-omics approach with information gained
from both images and fluorescence values regarding (i) discriminating singlets from interacting
cells, (ii) identifying cell type combinations of interactions, and (iii) deriving qualitative changes
in LCMV-induced interactions. For this purpose, we first compared the results of the Interact-
omics workflow to an image segmentation-based classification of singlets and multiplets,
demonstrating a high concordance between the approaches regarding the discrimination
between single cells and multiplets (Fig. R12D). While neither image-based segmentation nor
our approach reflects ground truth data, the high concordance strongly supports the validity of
the Interact-omics results. Manual inspection of randomly selected images predicted as
singlets or interacting cells further verified the accuracy of the Interact-omics approach (Fig.
R12C).

Next, we immunophenotypically characterized interacting populations using conventional
gating on marker expression values extracted from images (Fig. R12E). As expected, this
revealed a high concordance with the cluster-based annotations from the Interact-omics
workflow. Manual inspection of randomly selected images regarding the localized expression
patterns of lineage-specific markers confirmed the expected types of interactions (Fig. R12C).
Finally, we compared the LCMV-induced alterations of cellular interactions as detected by
Interact-omics vs. the imaging flow cytometry approach. Due to the low plexity and low cellular
throughput of the imaging flow cytometry approach, only very crude interacting cell populations
could be defined, restricting the comparison to the populations depicted in Fig. R12B.
Nonetheless, interacting cell populations identified with both approaches showed qualitatively
matching alterations induced by LCMV, including a marked increase in interactions involving
antigen-specific CD4 T cells (Fig. R12F). Collectively, these data confirm the accuracy of the
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Interact-omics approach in discriminating single and interacting cells and in quantifying the
types of interactions in case-control settings.
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Figure R12. Comparison of the Interact-omics approach to imaging flow cytometry.

A. UMAP representation of the overall cellular landscape derived from the fluorescent intensity
values, n = 306538. Intensity values are based on the sum of the pixel intensities in the mask
as selected by ImageStream®X, background subtracted. The experiment corresponds to day
7 in Supplementary Figure 11. B. UMAP representation of the interacting landscape, n = 8683.
The heterogeneous cluster is mostly comprised of likely B*CD4*CD8 multiplets. The unknown
cluster expresses CD19 and CD3 but no other T cell markers, hindering confident annotation.
C. Pseudo-colored example images for cellular interactions in the brightfield and fluorescence
channels. D. Left: UMAP displays from A and B colored by the number of cells identified
through image segmentation. Right: Bar plots comparing the populations identified through
Interact-omics and the image segmentation. E. Left: UMAP displays from A and B colored by
populations as identified through conventional gating. Right: Bar plots comparing the
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populations identified through Interact-omics and conventional gating. NA indicates that the
event does not fall into any conventional gate. F. Fold changes of the frequencies +/- LCMV
infection. Holm-corrected estimated marginal means comparison. Left: Populations identified
by Interact-omics. Right: Populations identified through conventional gating. G. Gating
strategy for conventional gating. Abbreviations: Ag = antigen-specific, UMAP = uniform
manifold approximation and projection, BF = brightfield.

3. In vivo mixing experiments to characterize newly acquired cellular interactions

The presented approach measures cellular interactions following sample preparation ex vivo.
Consequently, for in vivo applications, additional cellular interactions can be acquired or lost
during sample preparation. While this limitation applies to all cellular interaction mapping
approaches that do not rely on specialized mouse models or measure co-localization in situ,
it remains poorly characterized to what extent this occurs, whether newly acquired interactions
are random or directed, and how representative the identified interactions are of the in vivo
situation.

To evaluate these questions, we utilized congenic mouse models differing in variants of the
pan-hematopoietic cell marker CD45, allowing identification of respective immune cells as
CD45.1 or CD45.2 using variant-sensitive antibodies. First, we transferred LCMV-specific CD4
T cells (SMARTA: CD90.1 positive, CD45.2 positive) into CD45.2 mice, followed by LCMV
infection (group A) (Fig. R13A). Non-infected control CD45.2 mice were included (group B). In
parallel, we infected CD45.1 mice with LCMV (group C) or left them untreated (group D). On
day 7 post-infection, spleens from all groups were harvested. Spleens from group A (infected,
CD45.2) and group B (non-infected, CD45.2) were either processed individually or mixed in
1:1 ratios with spleens from group C (infected, CD45.1) or group D (non-infected, CD45.1)
before tissue homogenization and processing. Applying the Interact-omics workflow to these
single and mixed samples resulted in single-cell and interacting cell landscapes of populations
that were either single positive or double positive for CD45.1 and CD45.2 (Fig. R13B-E), with
double-positive populations being newly acquired interactions during processing. Notably, we
observed a substantial acquisition of new interactions during sample processing (Fig. R13F).
However, these newly acquired interactions did not occur randomly but were highly correlated
with interactions induced upon infection (Fig. R13G). In particular, newly acquired interactions
in mixed spleens from infected mice compared to non-infected controls were highly correlated
with infection-induced single positive interactions in both mixed and non-mixed spleens (Fig.
R13G). This suggests that while new interactions can be acquired during sample preparation,
they are not random but reflect actual biological effects and likely are a proxy for cellular
interactions occurring in vivo (see also next section about qualitative comparison to in situ
methods).
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Figure R13. Interactions acquired a posteriori after in vivo experiment.

A. Schematic overview of the experimental approach. LCMV-specific CD4+ T cells were
transferred into CD45.2 host mice 5 days before infection with LCMV (group A) or the
respective control (group B). Additionally, CD45.1 host mice were infected with LCMV (group
C) or left untreated (group D). n = 3 for groups A, C, D and n = 4 for group B. B. Single-cell
landscape of all experimental groups. Out of n = 23,490,812 processed cells, n = 245,316 are
shown in the UMAP display. C. Feature plots for panel B, colored by the expression of the
congenital markers CD45.1 and CD45.2. D. Interacting landscape across all experimental
groups. Out of n = 731621 identifiable interactions, n = 93065 are shown. E. Dot plots
showcasing the expression of the congenital markers CD45.1 and CD45.2 in interacting
populations from the unmixed controls for the untreated and infected conditions, and the mixed
spleens from infected mice (infected+infected, group A + group C) or untreated mice
(control+control, group B + group D). F. Bar plots depicting the log2 fold changes (FC) between
the LCMV infected and untreated conditions for each interacting population. Solid bars indicate
the log2FC between group A (infected) und group B (control). Semi-transparent bars show the
log2FC for single-positive interactions in mixed samples (A+C for the infected condition, and
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B+D for the control). Transparent bars depict log2FC between the respective double-positive
interactions, which were definitely acquired ex vivo. n = 3 mixes. G. Linear relationships
between the log2FC between infected and control conditions for unmixed controls, single-
positive interactions after mixing and double-positive interactions after mixing. n = 3 mixes.

4. Qualitative comparison to in situ methods

To further explore whether in vivo-derived interactions measured using our approach resemble
those occurring in situ, we qualitatively compared our LCMV Interact-omics results with
imaging and in situ interaction mapping of approaches investigating LCMV infections:

e Monocyte—B Cell Interactions: Imaging has identified a drastic increase in monocyte—
B cell interactions following LCMV infection (Sammicheli et al., 2016, Science
Immunology). In line with this, our approach also identified a major increase in
monocyte-B cell interactions upon LCMV infection, matching the kinetics described by
Sammicheli et al.

e CDS8 T Cell Interactions: A recent study mapped the interactions of antigen-specific
CD8 T cells following LCMV infection using a newly developed universal version of the
labeling immune partnerships by SorTagging intercellular contacts (uLIPSTIC) mouse
model (Nakandakari-Higa et al., 2024, Nature). Although this model records past rather
than current interactions and investigated slightly different time points, the types of
interactions that antigen-specific CD8 T cells undergo can be compared. Notably, there
was a high concordance in the types of interactions that antigen-specific CD8 T cells
engage in within the uLIPSTIC model and our approach, including interactions with B
cells, CD4 T cells, bystander CD8 T cells, NK cells, Neutrophils and other myeloid
cells.

e Antigen-Specific T Cell Activation and Proliferation: Activation and proliferation of
transferred antigen-specific T cells have been described to start in spleens around 3
days post LCMV infection and increase thereafter (Olson et al., 2012, PLOS
Pathogens). A delay in kinetics has been described in non-draining lymph nodes
compared to the spleen. Similarly, our approach identified initial interactions of antigen-
specific T cells at day 3 post-infection, followed by a more pronounced increase at day
7. Consistent with Olson et al., the spleen showed more pronounced antigen-specific
T cell interactions compared to non-draining lymph nodes at matching time points,
likely due to more rapid kinetics.

Collectively, these observations suggest that while it cannot be unequivocally determined
whether all measured interactions in the Interact-omics approach have occurred in vivo, the
interactions are not random but reflect biological effects. The results align fully with those from
in situ methods. Still, we have now acknowledged the limitations and outlined resulting
guidelines on how to optimize our approach in the revised version of the manuscript.

The method is interesting, new and worthy, and some limitations are OK and expected but
then should be stated and acknowledged clearly. The above questions may be hard to address
fully, but should probably be addressed at least somewhat. E.g. how the results of the method
will change after varying some parameters of sample preparation or tissue dissociation? Or
some additional experimental manipulations with the sample, to varying degree, in the attempt
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to break more of the cell-cell interactions, or to create more of artificial ones? The CytoStim or
the antigen experiments address these questions but | think only very partially.

We thank this reviewer for this comment and fully agree. As described above, we have now
performed a comprehensive benchmarking on experimental settings. These results indicate
that varying parameters both of sample preparation, tissue dissociation and cytometric
settings can have strong impact on the measured cell interactions. However, if these
parameters are maintained constant, biological cellular interactions can be effectively
guantified in case-control settings. As we fully agree with this reviewer on the significance of
this topic, we have included the extensive ex vivo and in vivo benchmarking studies into the
manuscript. Additionally, we included a section on limitations and guidelines that describes
limitations but also provides insights into best practices on minimizing potential technical
artifacts.

A related but different question is which of the detected cell-cell interactions are functional and
which are just by random chance because the cells were next to each other even if in vivo
(e.g. in a tissue)?

We agree with the reviewer that this is an important point. We have addressed this by
conducting extensive ex vivo and in vivo mixing experiments with differentially labeled
populations, as described above (see sections 1-3 and Figures R11, R12, R13). These
experiments demonstrate that while new interactions can be acquired during sample
preparation, these interactions are not random but reflect biological effects. Moreover, we
have performed additional experiments and analyses that unequivocally show that the
measured interactions are highly enriched for functional interactions rather than random ones.
These include demonstrating that: i) Virus-specific T cells display significantly higher
interactions with their predicted target cells in infected animals compared to on one hand
bystander T cells and on the other hand what would be expected by chance (Fig. 6 of the
manuscript). ii) Arthritis patients - which we ventured into in the framework of exploring cellular
interacting mapping in publicly available datasets - exhibit an enrichment of cellular
interactions associated with disease activity and display a unique phenotype, associated with
reduced immune regulatory control (see response to the next reviewer’s question; Fig. S13 of
the manuscript).

To further demonstrate that cellular interactions acquired by our approach are not random but
instead have a biological correlate, we evaluated whether the identified interacting cells exhibit
intracellular signaling as a consequence of their interaction. For this purpose, we established
a high-plex cytometry panel that includes an antibody detecting phosphorylation (pY142) of
intracellular CD3 zeta (CD247), a transmembrane signaling adaptor protein phosphorylated
upon T cell receptor signaling and T cell activation. Using this panel, we investigated
intracellular TCR signaling in cellular interactions induced in human PBMCs upon CytoStim
(which crosslinks antigen-presenting cells with T cells) and Blinatumomab (which crosslinks B
cells with T cells) treatment (Fig. R14A). Consistent with our previous results and the
molecular mechanisms of the inducers used, we observed few background interactions at
homeostasis but noted specific induction of B - T cell interactions upon Blinatumomab
treatment and broader myeloid and B cell interactions with T cells upon CytoStim treatment
(Fig. R14B-D). As expected, CytoStim-induced interactions caused strong phosphorylation of
the intracellular CD3 zeta domain in both T*B and T*Myeloid interactions, as well as in
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T*B*Myeloid triplets, demonstrating functional T cell receptor engagement in the interacting T
cells (Fig. R14 E, F). In line with its more specific cross-linking activities, Blinatumomab caused
a specific increase in phosphorylation of the intracellular CD3 zeta domain in T cells involved
in interactions with B cells, but to a much lower degree in interactions not involving B cells
(Fig. R14 E, F).

Collectively, these findings demonstrate that our approach is capable of identifying interactions
that reflect actual biological effects.
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CD8+ T cells
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Figure R14. Characterization of downstream effects of functional interactions by
assessment of phosphorylated CD247. A. Schematic overview of the experimental
approach. PBMCs from 4 healthy donors were incubated in the presence or absence of
Blinatumomab (Blina) or Cytostim (CS). B. UMAP of the overall cellular landscape. Recorded
cells were processed with PICtR, out of 1,204,382 cells, 70,954 sketched cells are displayed.
C. UMAP of interacting cells (n = 52,239) D. Point density UMAP of interacting cells split into
the conditions control, Blinatumumab and Cytostim. E. Histograms of scaled fluorescence
intensity of pCD247 for each interacting cell population from C. Left panel: T*B interactions.
Middle panel: T*My interactions. Right panel: T*B*My. F. Mean fluorescence intensity of
pCD247 per donor and condition. Left panel: T*B interactions. Middle panel: T*My interactions.
Right panel: T*B*My. P values were determined with a paired t-test. Abbreviations: UMAP =
uniform manifold approximation and projection, Ctrl. = control, Blina = Blinatumomab, CS =
Cytostim. Red asterisks in cell type labels indicate interactions between the respective cell

types.
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The core of the method is application of their software PICtR to compensated and transformed
FACS data. It is unclear if the software can detect physical cell interactions in any such
previously published data from other experiments and other labs (if yes, it should be
demonstrated), or some specific experimental details are important to make it work
successfully (then these details should be clearly stated).

We thank the reviewer for raising this highly important point. Indeed, the PICtR workflow can
be applied to existing datasets, provided that the data have been generated following the
guidelines outlined in the manuscript. These guidelines include the inclusion of adequate
control samples for relative case-control comparison, the use of a multi-color panel with cell
type-discriminating markers, and the avoidance of experimental batch effects during sample
preparation and acquisition (e.g., consistent flow rates, cell concentrations, voltages, etc.) (see
also Limitations and Guidelines in the manuscript). To demonstrate the applicability of our
approach for analyzing cellular interactions in previously generated datasets, we applied the
PICtR workflow on a publicly available dataset of juvenile idiopathic arthritis (JIA) (Attrill et al.,
2024, Clinical and Experimental Immunology) (Fig. R15).

JIA is an autoimmune disease characterized by chronic inflammation of the joints, leading to
pain, swelling, and eventual joint damage. While it is hypothesized that an abnormal
interaction among immune cells, specifically T cells, B cells, and myeloid cells, contributes to
the production of inflammatory cytokines and autoantibodies that drive the disease, the actual
interaction processes remain poorly understood.

Within this study, Attrill and colleagues analyzed PBMC samples from healthy donors, JIA
patients with active and inactive disease as well as synovial fluid samples from JIA patients
with active disease. The data is available on www.flowrepository.org under FLOWRepository
ID FR-FCM-Z6VC. FCS files were downloaded and preprocessed as described in our Methods
section. Additionally, flowAl (a QC algorithm) was run on all FCS files and FCS files with
anomalies in their flow rate were excluded from further analysis. High quality samples were
then analyzed with the PiCtR workflow. Results described by Attrill et al. concerning the single-
cell landscape could be reproduced (Fig. R15B). Focusing on the interacting cell landscape,
we explored three comparisons: 1. PBMCs from healthy donors vs. PBMCs from patients with
JIA (Fig. R15 D-F), 2. PBMCs from JIA patients with active disease vs. inactive disease (Fig.
R15 G-I), 3. PBMCs from JIA patients with active disease vs. synovial fluid of JIA patients with
active disease (Fig. R15 J-L). Notably, we discovered both quantitative and qualitative
changes in cellular interactions in the blood of patients with inactive versus active disease, as
well as between the blood and synovial fluid of affected joints (Fig. R15 D-L). Among the most
intriguing findings is the enrichment of T cells interacting with B cells, which predominantly
comprise a FoxP3-expressing regulatory T cell phenotype in patients with inactive disease
(Fig. R15I1). However, these interactions switch to an inflammatory, non-regulatory phenotype
in patients with active disease. Similarly, major qualitative differences of interactions between
CD4 T cells and monocytes were observed between blood and synovial fluid of patients with
active disease (Fig. R15L). While several of these findings require further validation, they
provide a first quantitative framework for understanding changes in immune cell interactions
that may contribute to disease progression and help identify targets for therapeutic
intervention.
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Figure R15. Interacting cell landscape in juvenile idiopathic arthritis (JIA).

A. Schematic describing publicly available spectral flow cytometry data of PBMCs and SFMC
of JIA patients (Attrill et al., 2024, Clinical and Experimental Immunology). Three comparisons
(indicated by the arrows) were made for the interacting cell landscape B. UMAP of the overall
cellular landscape. Recorded cells were processed with PICtR, out of 7,843,646 cells, 80,000
sketched cells are displayed. C. UMAP of interacting cells (n = 12,908) D. Point density UMAP
(left panel) and differential abundance (right panel) of interacting cells comparing PBMCs from
healthy donors vs. JIA patients. E. Quantitative comparisons of interacting cell frequencies
between PBMCs from healthy donors (n=18) and JIA patients (n=36). Top: Non-adjusted
frequencies. Bottom: Interaction frequencies normalized by the harmonic mean of the singlet
frequencies of the contributing cells (see Methods). P values were determined with a two-
sided t-test and adjusted for multiple testing using Benjamini-Hochberg correction. F.
Qualitative differences in CD4T*cl.mono interactions. P values were determined with a two-
sided Wilcoxon rank sum test and adjusted for multiple testing using Benjamini-Hochberg

36



correction. G. Point density UMAP (left panel) and differential abundance (right panel) of
interacting cells comparing PBMCs of JIA patients with inactive disease (n=11) vs. active (n
=25). H. Quantitative comparisons of interacting cell frequencies between PBMCs from JIA
with inactive and active disease. Top: Non-adjusted frequencies. Bottom: Interaction
frequencies normalized by the harmonic mean of the singlet frequencies of the contributing
cells (see Methods). P values were determined with a two-sided t-test and adjusted for multiple
testing using Benjamini-Hochberg correction I. Qualitative differences in T*B interactions. P
values were determined with a two-sided Wilcoxon rank sum test and adjusted for multiple
testing using Benjamini-Hochberg correction. J. Point density UMAP (left panel) and
differential abundance (right panel) of interacting cells comparing PBMCs of JIA patients with
active disease vs. SFMC of active disease. K. Quantitative comparisons of interacting cell
frequencies between PBMCs of JIA patients with active disease (n=25) vs. SFMC of active
disease (n=8). Top: Non-adjusted frequencies. Bottom: Interaction frequencies normalized by
the harmonic mean of the singlet frequencies of the contributing cells (see Methods). P values
were determined with a two-sided t-test and adjusted for multiple testing using Benjamini-
Hochberg correction. L. Qualitative differences in CD4T*mono interactions. P values were
determined with a two-sided Wilcoxon rank sum test and adjusted for multiple testing using
Benjamini-Hochberg correction. Abbreviations: UMAP = uniform manifold approximation and
projection, PBMC = peripheral blood mononuclear cells, SFMC = synovial fluid mononuclear
cells. Red asterisks in cell type labels indicate interactions between the respective cell types.

In the viral infection experiment, why aren't T cell-DC interactions found? Is it possible that the
flow panel doesn't allow to distinguish between DCs and monocytes and macrophages? Also,
| can see cDC2 annotation in Fig 5B, but not cDC1, though cDC1 are mentioned in Fig 5C.

We thank the reviewer for the question and would like to elaborate on this point. Our panel
can differentiate between monocytes, macrophages, pDCs, cDC1s, and cDC2 singlet
populations. However, annotating cellular interactions can be more challenging due to the
mixed signals from interacting cells within a cluster. Therefore, depending on the cluster's
representation of distinct types of interaction partners and the number of identified interactions,
we made more fine-grained distinctions in some cases, while applying a more conservative
annotation in others.

Regarding T cell-DC interactions, as expected, we identified interactions between antigen-
specific CD4 T cells and DCs, specifically in the spleens of infected mice at day 7 post-infection
(Fig. R16, Fig. S9). Please note that in the LCMV in vivo figures (Fig. 5 of the manuscript),
only the most abundant populations are highlighted due to limited space available.

37



BM LN Spleen

0.54

Freg. antigen-specific CD4T*DC interactions

04 = 0* - o-‘-—o—*

na;ive DE'ly3 Déy? neltive Déy3 D;f-ly? n.aive D'ays Dlay7

Figure R16. Frequency of antigen-specific CD4T*DC interactions across time and
organs.

The frequency of antigen-specific CD4T*DC interactions per mouse were quantified across
live cells and compared within the respective organ at three timepoints (naive, day3 post
infection, day7 post infection). Abbreviations: BM = bone marrow, LN = lymph node.

Not sure if reporting relative frequencies of cell interactions (e.g. in Fig 5C) is relevant.
Shouldn't it be normalized by frequencies of individual cell types which are probably also
changing between time points?

We thank the reviewer for this thoughtful comment. We fully agree that there are several
approaches to visualizing changes in cellular interactions, each with its own advantages and
disadvantages. Overall, we provide three types of measures on cellular interactions:

1. Relative frequencies of interactions among all interactions (e.g., Figure 5C):
This provides a global understanding of how the composition of cellular interactions
change over time.

2. Relative frequencies of cellular interactions among all measured events (e.g.,
most of Figure 6): This shows how prevalent certain interactions are in relation to all
cells and other interactions.

3. Normalized frequencies using the harmonic mean (e.g., Figure 6l): This
indicates the relative enrichment of frequencies as compared to expected random
interactions based on the respective frequencies of the single interaction partners.

We have deliberately used all three measures to characterize the observed changes in cellular
interactions. To provide a global overview of all observed changes, the display in Figure 5C,
complemented by a heatmap on cluster frequencies in Figure S10 and Figure 6, appeared
most fitting. In response to this reviewer's comment, we have now more explicitly explained
the meaning and rationale of these different methods of analyzing changes in cellular
interactions in the manuscript.

The exact Zenodo link to the software provided in the submission actually leads to an older
version of the software, v2 dated Feb 2014. We tried to run this but it is not well documented
and returns an error. However, there's v5 from Feb 27, 2024, which we tried to use to
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reproduce some analysis in the manuscript, specifically the results for the LCMV experiment.
It worked quite well. However, it was unclear how exactly subsampling (or sketching?) works,
because following the instructions to the best of our ability resulted in 5000 cell analysis, but
Fig 5 reports much larger numbers of cells. This Zenodo link to v5 includes the file PICtR-
manual.pdf, which is indeed a manual of the R package. But it will be helpful to include some
examples of running the analysis to reproduce at least some figures in the paper exactly, and
walk the users through all steps (a notebook and step-by-step instructions, or what sometimes
is called "vignette" for R packages).

We apologize for the confusion and have now updated the link. The demo data set included
in the package is only a subset of the data in Supplementary Figure 4 since full data sets are
too large and too computationally demanding for an example workflow. It contains a subset of
the cells from group A and group B. (see ?demo_Icmv for details). Therefore, the demo only
samples 5,000 cells (customizable through the n_sketch_cells parameter, defaults to 50,000).
We now include step-by-step instructions in the form of a complete but preliminary vignette to
walk users through the PICtR pipeline using this demo data set. A finalized version of the
vignette is currently under development. Full data sets ensuring reproducibility of the figures
can be found in the Zenodo repository.

Reviewer #3:

Remarks to the Author:

In this study, the authors developed Interactomics, which is a cytometry-based workflow that
can detect multiplet interactions. In principle, it does fill an open niche in the investigation of
immune cell interactions in high-dimensional space with high throughput. However, it is not
deployed to its full potential in this manuscript at present. One could imagine performing a
lower throughput or more time consuming approach such as PIC-seq or LIPSTIC that yields
more information than using Interactomics. | find several key weaknesses with the manuscript
at present: 1) A lack of mechanistic depth in any conclusions that are generated; 2) Concerns
about the ab initio classification of the interactions detectable by the method; and 3) The long-
term utility and flexibility of the method to detect more specific (and probably more valuable)
interactions among more narrowly defined cell subsets. The strengths of the study are the
authors' development of a creative platform that could be widely adopted, demonstration of
proof-of-concept data across multiple mouse and human systems, and well-designed studies
across time and stimulation. In general, if the authors can address the above concerns, |
believe it could be a valuable tool. Additional points are listed below:

We thank the reviewer for his/her constructive feedback on our manuscript. We appreciate the
recognition of the strengths in our approach and the valuable suggestions for improvement. In
response to the reviewers' feedback, we have: 1) demonstrated how our approach can be
expanded to provide mechanistic or biological insights, 2) clarified concerns regarding the ab
initio classification of cellular interactions and performed comprehensive technical
benchmarking of our method (see the final section of reviewer response), and 3) demonstrated
its broad applicability across various model systems, tissues, and existing datasets, including
the evaluation of more narrowly defined cell subset interactions. Additionally, we have
addressed the specific points raised by the reviewer as outlined below.
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1. The advantages over pre-existing approaches to study immune cell interactions are not
clear. For example, "Interactomics" is entirely descriptive, while LIPSTIC and PIC-seq gain
mechanistic information. Investigation and validation of the findings by Interactomics is needed
in mouse and human systems.

We appreciate the reviewer's comment and would like to provide further clarification. We do
not view the Interact-omics workflow as a "competitor" to methods such as LIPSTIC or PIC-
seq, which offer high-resolution insights into past (LIPSTIC) and current (PIC-seq) cellular
interactions. While these methods are powerful tools for mechanistically exploring cellular
interactions, they are limited in throughput, by cost, and by the need for extensive preparations
(e.g., mouse models for LIPSTIC and cell sorting of predefined interaction partners followed
by sequencing for PIC-seq).

In contrast, the Interact-omics approach is a versatile, high-throughput, cost-effective, and
straightforward workflow that can be readily adopted by any laboratory with cytometry
experience using standard equipment and no additional prerequisites. The Interact-omics
workflow excels at quantifying cellular interactions; it can generate quantitative datasets on
potential changes in cellular interaction networks across all immune cells as a “byproduct” of
a cytometry experiment. Additionally, it can be used to mine potential alterations in cellular
interactions in existing datasets (see below). Specific interactions identified through this
workflow can then be further investigated using more mechanistic, low-throughput approaches
like LIPSTIC or PIC-seq. Furthermore, as outlined in our responses to the reviewer’s questions
below, the Interact-omics workflow panel can be adapted to investigate the functional
associations of cellular interactions, such as activation, immune-regulation or intracellular
phosphorylation states.

2. Additional validation of the functional implications of the interactions detected is needed on
the level of intracellular signaling. Even if cell types are interacting, no mechanistic data are
included in the manuscript to define that the interactions are controlling cellular physiology
using this method. Many findings reported in the manuscript could be discerned using other
approaches.

We agree with the reviewer that exploring the functionality of cellular interactions at the level
of intracellular signaling is of high interest. To address this point, we established a high-plex
cytometry panel that includes an antibody detecting phosphorylation (pY142) of intracellular
CD3 zeta (CD247), a transmembrane signaling adaptor protein phosphorylated upon T cell
receptor signaling and T cell activation. Using this panel, we investigated intracellular TCR
signaling in cellular interactions induced in human PBMCs upon CytoStim (which crosslinks
antigen-presenting cells with T cells) and Blinatumomab (which crosslinks B cells with T cells)
treatment (Fig. R17A). Consistent with our previous results and the molecular mechanisms of
the inducers used, we observed few background interactions at homeostasis but noted
specific induction of B - T cell interactions upon Blinatumomab treatment and broader myeloid
and B cell interactions with T cells upon CytoStim treatment (Fig. R17B-D). As expected,
CytoStim-induced interactions caused strong phosphorylation of the intracellular CD3 zeta
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domain in both T*B and T*Myeloid interactions, as well as in T*B*Myeloid triplets,
demonstrating functional T cell receptor engagement in the interacting T cells (Fig. R17 E, F).
In line with its more specific cross-linking activities, Blinatumomab caused a specific increase
in phosphorylation of the intracellular CD3 zeta domain in T cells involved in interactions with
B cells, but to a much lower degree in interactions not involving B cells (Fig. R17 E, F).

Collectively, these findings demonstrate the capability of our approach to study intracellular
signaling in interacting cells. Additionally, in response to another enquiry from this reviewer,
we show that interacting cells of patients with active autoimmune diseases acquire distinct
cellular states, further evidencing the capacity of our approach to identify interactions that
control cellular physiology (see below).
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Figure R17. Characterization of functional interactions by assessment of
phosphorylated CD247. A. Schematic overview of the experimental approach. PBMCs from
4 healthy donors were incubated in the presence or absence of Blinatumomab (Blina) or
Cytostim (CS). B. UMAP of the overall cellular landscape. Recorded cells were processed
with PICtR, out of 1,204,382 cells, 70,954 sketched cells are displayed. C. UMAP of interacting
cells (n = 52,239) D. Point density UMAP of interacting cells split into the conditions. E.
Histograms of scaled fluorescence intensity of pCD247 for each interacting cell population
from C. Left panel: T*B interactions. Middle panel: T*My interactions. Right panel: T*B*My. F.
Mean fluorescence intensity of pCD247 per donor and condition. Left panel: T*B interactions.
Middle panel: T*My interactions. Right panel: T*B*My. P values were determined with a paired
t-test. Abbreviations: UMAP = uniform manifold approximation and projection, Ctrl. = control,
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Blina = Blinatumomab, CS = Cytostim. Red asterisks in cell type labels indicate interactions
between the respective cell types.

3. One main limitation of the study is the focus on CytoStim as an inducer of "ground truth"
cellular interactions. This approach would primarily label memory lymphocytes and APCs. The
argument for developing this method is that it is more high throughput and generalizable than
current approaches, but the training dataset undermines this. Additional "ground truth"
interaction-driving approaches should be incorporated into the study and tested. Ideally,
multiple antibody panels/stimuli that would detect distinct classes of interactions, compiled into
a PICtR database, would make the method more robust.

We apologize for any confusion caused by the potentially misleading depiction of our
approach. To clarify, Figure 1 illustrates how we employed imaging cytometry to obtain both
ground truth data on cellular interactions (from imaging) and cytometric readouts from the
same cells. This setup allowed us to derive general features, principles and rules to identify,
discriminate, and quantify physically interacting cells from cytometry data without prior ground
truth knowledge. Importantly, CytoStim was employed solely as a tool to induce a specific set
of interactions, serving as a means to evaluate the specificity of our approach. The features
identified and the methodology established are therefore independent of the interaction
inducer and model system, and do not require prior training. With each experiment, interacting
populations are identified based on clustering of multi-dimensional space, followed by
employing the FSC ratio and presence of two or more mutually exclusive cell type markers for
singlet to multiplet discrimination and cell type annotation.

Throughout the manuscript, we demonstrate the versatility of our approach across various
model systems (e.g., mouse and human) and tissues (e.g., blood, bone marrow, spleen, lymph
nodes, synovial fluid). During the revision process, we further benchmarked our approach
against imaging flow cytometry in the context of the LCMV infection model presented in Figure
5, demonstrating high specificity and accuracy (cf. additional benchmarking at the end of the
reviewer comments). To prevent future confusion, we have rephrased and restructured Figure
1 and the accompanying text to more clearly convey the methodology and its applications.

4. The CytoStim experiments would also induce artificial interactions between cell types, which
may nhot reflect true physiology. A trained dataset focused on physiologic interactions during
immunization, or equivalent, might make a better training dataset and be more
comprehensive.

As depicted above, the Interact-omics approach operates in an agnostic manner and does not
require prior training.

5. The algorithm was trained on human data, which was then applied to the mouse. How
generalizable are interactions in the two systems to one another?

As depicted above, the Interact-omics approach operates in an agnostic manner and does not

require prior training. We have now validated our approach both in humans (Fig. 1) and mouse
using imaging cytometry (cf. additional benchmarking at the end of the reviewer comments).
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6. Almost all experiments are performed in vitro or from PBMCs, so while the throughput is
increased, the relevance is somewhat diminished. To showcase the power of this tool, the
authors could investigate additional fluids not tractable with other tools, and glean new insights
not previously known, as they mentioned in the introduction.

We thank the reviewer for raising this point and fully agree with the importance of
demonstrating a broad applicability across different tissues and systems. In the revised
version of the manuscript (including both original and new analyses), we demonstrate the
successful applicability of our approach for human primary blood (Figs. 2A-E, 3F-K, S4, S8),
bone marrow (Fig. 4) and synovial fluid (Fig. S13), as well as for murine spleens (Figs. 2F-J,
3A-E, 5, 6, S12), lymph nodes (Fig. 5, 6) and bone marrow (Fig. 5, 6), and in diverse ex vivo
and in vivo settings. As part of the response to this reviewer's 9th comment, we elaborate in
more detail the novel findings and applications that can be derived from the revised version of
the manuscript.

7. An important feature of this approach is to delineate specific molecular insights that are not
possible with conventional flow cytometry. However, the authors only capitalized on broad cell
lineage markers. How well are interactions actually detected and validated when a panel of
markers is used that is focused on subsets of intra-lineage cells? For example, can
Interactomics be applied to CD4 Th cell subset differentiation?

We thank the reviewer for raising this important question. Our approach is intentionally
designed with a broad backbone panel of primarily cell type-specific markers, enabling the
guantitative measurement of cellular interactions across all major immune cell types. However,
additional markers for intra-lineage differentiation can be easily incorporated to provide more
detailed annotation of immune cell subsets. To practically demonstrate this, we applied the
PICtR workflow to a published ultra-high plex Arthritis cytometry dataset (Fig. R18A-C, see
response to reviewer comment 10) and an unpublished inflammatory bowel disease dataset
from our laboratory (Fig. R18D-F), both of which include a sufficient number of cell type-
specific and subset-specific markers. These analyses reveal that interactions can be resolved
at the intra-lineage level if the respective markers are included. Examples include interactions
of CD16 vs. CD56bright NK cell subsets (Fig. R18B), CD14 classical vs. CD16 non-classical
monocytes, intracellular measurements of FoxP3 to identify interactions involving regulatory
T cells (Fig. R18C), B cell subsets characterized by the presence or absence of IgD (Fig.
R18E, F), and activation and regulatory markers to identify functional immune cell subsets.
The approach is flexible and can be fine-tuned for specific research questions.
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Figure R18. Intra-lineage characterization of interacting cells in two different medical
conditions. A. UMAP of interacting cells (n = 12,908) from juvenile idiopathic arthritis (JIA)
patients. B. Mean scaled fluorescence intensity of CD16 (left boxplot) and CD56 (right boxplot)
in B*NK interactions. P values were determined with a two-sided Wilcoxon rank sum test. C.
Mean scaled fluorescence intensity of FoxP3 in T*B interactions compared between JIA
patients with active (act.) vs. inactive (inact.) disease. P value was determined with a two-
sided Wilcoxon rank sum test. D. UMAP of interacting cells (n = 40,938 out of 422,073 cells)
from juvenile inflammatory bowel disease (IBD) patients. D. Point density UMAP of interacting
cells split into the conditions. E. Mean scaled fluorescence intensity of IgD compared in IgD+
vs. IgD- B*CDAT cell interactions. P value was determined with a two-sided Wilcoxon rank
sum test. F. Mean scaled fluorescence intensity of IgD compared in IgD+ vs. IgD- B*classical
monocyte interactions. P value was determined with a two-sided Wilcoxon rank sum test.
Abbreviations: UMAP = uniform manifold approximation and projection, cl.mono = classical
monocytes, noncl.mono = non-classical monocytes, neutro = neutrophils, NK = natural killer
cells.

8. The inability to detect homotypic interactions is a weakness. If different starting panels of
antibodies were used to train the parameters of the system, would different interactions be
prioritized as detected in test datasets? For example, if the 24-plex panels contained much
more specific markers for B cell subsets, could these interactions be detected?
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As detailed above, while we developed the concept and features for distinguishing singlets
from multiplets through a systematic comparison with ground truth imaging cytometry data,
any subsequent analyses are not based on the dataset from Figure 1. Instead, analyses can
be carried out on any pre-existing or novel dataset, assuming some guidelines are met (see
Limitations and Guidelines in the revised manuscript). The antibody panels can be adapted
according to the user's specific research question.

To address the reviewer's question about how modifying the antibody panel affects the
resolution of cellular interactions, we systematically investigated how reducing or extending
the antibody panel impacts performance in dissecting interactions. For this purpose, we
conducted an analysis where we progressively identified the least important feature (marker)
and reduced the number of features by sequentially removing the least significant one from
the input to the workflow (Fig. R19; item A for the data underlying main Figure 2A—cellular
interactions in human PBMCs after CytoStim—and item B for the data underlying main Figure
5B—virus-induced cellular interaction networks in mice—as representative examples). We
then compared the results obtained from the reduced and full feature sets using the adjusted
Rand index. As shown in Figure R19, the adjusted Rand index remains consistent within a
range of approximately 15 to 25 features, demonstrating robustness to the inclusion or
exclusion of individual features for identifying more broadly defined cell type interactions.

Nonetheless, as this reviewer rightly noted, the presence of specific markers is crucial for
identifying interactions among distinct immune cell subsets, as addressed in the response to
the previous comment. Similarly, adding more markers specific for subsets of a single lineage
could potentially resolve homotypic interactions among sub-lineage cell types within the same
broader lineage. However, since homotypic interactions lack the co-expression of mutually
exclusive main lineage markers (e.g. double positive of CD3 and CD19), the resulting
annotations of homotypic interactions may remain less reliable. As a result, we have opted not
to annotate homotypic interactions in the examples presented in the manuscript. That said, if
of particular interest, custom panel adaptations or future extensions to the computational
framework could facilitate the study of these interactions.
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Figure R19. Comparison of adjusted Rand index across different numbers of features.
A. Feature importance analysis for data from Figure 2A. The adjusted Rand index was
calculated after iteratively removing the least important feature. B. Feature importance
analysis for data from Figure 5B. The adjusted Rand index was calculated after iteratively
removing the least important feature.
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9. Almost all findings are descriptive. If only a fraction of interactions are detectable by
Interactomics, and there is no in vivo validation of the method, it is hard to take much new
information from the study. At least one substantial finding detected by Interactomics should
be validated in vivo (or in a related human system).

As this manuscript is a methods paper, the primary focus has been on showcasing the broad
applicability of the technique rather than presenting a specific new finding. Nonetheless, our
study introduces several novel aspects that are of high relevance to both science and
medicine, as outlined in the following:

1. Characterization and therapy response prediction of Blinatumomab.
Immunotherapies, such as Blinatumomab, have revolutionized the treatment of certain
cancers. However, therapy resistance remains a major hurdle. Deciphering the causes
underlying therapy resistance and developing predictive assays has the potential to 1)
redirect patients that would benefit from alternative therapies, to 2) save substantial
financial resources to public health care systems and to 3) expand Blinatumomab
treatment to other B cell cancers beyond ALL. Our study provides an important step
towards these goals by confirming previous features associated with therapy
resistance, and, for the first time, demonstrating that frequencies of cellular interactions
prior to treatment or upon induction with Blinatumomab can serve as predictive
biomarkers for therapy response and failure. Specifically, our findings suggest that
Blinatumomab fails to induce effective B - T cell interactions in patient samples with
unbalanced T cell to B cell ratios and provides quantitative limits for the definition of
“‘unbalanced”, and that T - myeloid interactions at baseline are associated with therapy
failure. Most notably, our data suggest that the efficiency of Blinatumomab induced B
- T interactions ex vivo in patient samples prior treatment may be used to predict actual
response. While the presented results still require additional validation, they have been
performed on a substantial number of patients (n = 42). Based on these results, we
are currently engaged in a larger effort with clinical centers and industry for designing
personalized response prediction tools.

2. Organism-wide cellular interaction mapping of virus infection. Infectious agents
and pathogens induce complex cascades of organ-specific immune reactions in vivo,
comprising cell-cell interactions, cell expansion and cellular trafficking, jointly
establishing first line defense as well as long-lasting adaptive immunity. However, the
comprehension in the scientific community of such pathogen-induced cellular immune
dynamics remains poorly characterized. In particular, there is a lack of quantitative
insights into organotypic differences in the composition, order and kinetics of cellular
interactions induced upon pathogen exposure in vivo. Complementarily to a paper
published during the revision process at Nature that investigated past interaction of
CD8 T cells (Nakandakari-Higa et al., 2024) using an elegant mouse model-based
approach (uLIPSTIC), we here have unveiled a quantitative cellular interactions
network among immune cells across various time points and organs. This approach
validates previously reported interactions, quantifies organ-specific differences in
kinetics and interaction patterns, and provides a framework to study cellular interaction
affinities organism-wide.

3. Quantitative and qualitative alterations of cellular interactions in arthritis.
Juvenile idiopathic arthritis (JIA) is an autoimmune disease characterized by chronic
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inflammation of the joints, leading to pain, swelling, and eventually joint damage. While
it is hypothesized that abnormal interactions among immune cells, specifically T cells,
B cells, and myeloid cells, contribute to the production of inflammatory cytokines and
autoantibodies that drive the disease, the actual interaction processes remain poorly
understood. As part of the response to this reviewer’s 10th comment (see below), we
have applied the PICtR workflow on a large published JIA dataset and discovered both
guantitative and qualitative changes in cellular interactions in the blood of patients with
inactive versus active disease and between blood and synovial fluid of affected joints.
Among the interesting findings is that T cells interacting with B cells are highly enriched
in FoxP3-expressing regulatory T cells in patients with inactive disease, but display an
inflammatory, non-regulatory phenotype in patients with active disease. While several
of those findings require additional validations, these data provide a first quantitative
framework for understanding changes in cellular interactions of immune cells that
might contribute to disease and may help to identify targets for therapeutic intervention.

In summary, we believe that our revised manuscript provides numerous new biological and
clinically relevant insights and approaches. In general, we acknowledge that some points
require further exploration beyond this study, as the primary focus of this method paper was
to demonstrate broad applicability across various model systems, diseases, and clinical
applications.

10. Can PICtR reevaluate cellular interactions in previously reported datasets? It would be
valuable to mine new insights from previous datasets in an agnostic way with orthogonal
antibody panels.

We thank the reviewer for raising this highly important point. Indeed, the PICtR workflow can
be applied to existing datasets, provided that generation of the data is compliant with minimum
requirements as described in the guidelines outlined in the manuscript. These guidelines
include the inclusion of adequate control samples for relative case-control comparison, the
use of a multi-color panel with cell type-discriminating markers, and the avoidance of
experimental batch effects during sample preparation and acquisition (e.g., consistent flow
rates, cell concentrations, voltages, etc.) (see “Limitations and Guidelines” of the manuscript).
To demonstrate the applicability of our approach for analyzing cellular interactions in
previously generated datasets, we applied the PICtR workflow to a publicly available dataset
of juvenile idiopathic arthritis (JIA) (Attrill et al., 2024, Clinical and Experimental Immunology)
(Fig. R20). JIA is an autoimmune disease characterized by chronic inflammation of the joints,
leading to pain, swelling, and eventually joint damage. While it is hypothesized that an
abnormal interaction among immune cells, specifically T cells, B cells, and myeloid cells,
contributes to the production of inflammatory cytokines and autoantibodies that drive the
disease, the actual interaction processes remain poorly understood.

Within this study, Attrill and colleagues analyzed PBMC samples from healthy donors, JIA
patients with active and inactive disease as well as synovial fluid samples from JIA patients
with active disease. The data is available on www.flowrepository.org under FLOWRepository
ID FR-FCM-Z6VC. FCS files were downloaded and preprocessed as described in our Methods
section. Additionally, flowAl (a QC algorithm) was run on all FCS files and FCS files with
anomalies in their flow rate were excluded from further analysis. High quality samples were
then analyzed with the PiCtR workflow. Results described by Attrill et al. concerning the single-
cell landscape could be reproduced (Fig. R20B). Focusing on the interacting cell landscape,
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we explored three comparisons: 1. PBMCs from healthy donors vs. PBMCs from patients with
JIA (Fig. R20D-F), 2. PBMCs from JIA patients with active disease vs. inactive disease (Fig.
R20G-I), 3. PBMCs from JIA patients with active disease vs. synovial fluid of JIA patients with
active disease (Fig. R20J-L). Notably, we discovered both quantitative and qualitative changes
in cellular interactions in the blood of patients with inactive versus active disease, as well as
between the blood and synovial fluid of affected joints (Fig. R20 D-L). Among the most
intriguing findings is the enrichment of T cells interacting with B cells, which predominantly
comprise a FoxP3-expressing regulatory T cell phenotype in patients with inactive disease
(Fig. R20I1). However, these interactions switch to an inflammatory, non-regulatory phenotype
in patients with active disease. Similarly, major qualitative differences of interactions between
CD4 T cells and monocytes were observed between blood and synovial fluid of patients with
active disease (Fig. R20L). While several of these findings require further validation, they
provide a first quantitative framework for understanding changes in immune cell interactions
that may contribute to disease progression and help identify targets for therapeutic
intervention.
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Figure R20. Interacting cell landscape in juvenile idiopathic arthritis (JIA).

A. Publicly available spectral flow cytometry data of PBMCs and SFMC of JIA patients (Attrill
et al., 2024; Clinical and Experimental Immunology). Three comparisons (indicated by the
arrows) were made for the interacting cell landscape B. UMAP of the overall cellular
landscape. Recorded cells were processed with PICtR, out of 7,843,646 cells, 80,000
sketched cells are displayed. C. UMAP of interacting cells (n = 12,908) D. Point density UMAP
(left panel) and differential abundance (right panel) of interacting cells comparing PBMCs from
healthy donors vs. JIA patients. E. Quantitative comparisons of interacting cell frequencies
between PBMCs from healthy donors and JIA patients. Non-adjusted frequencies (top panel)
and adjusted for singlet frequencies (bottom panel) are displayed. P values were determined
with a two-sided t-test and adjusted for multiple testing. F. Qualitative differences in
CDA4T*cl.mono interactions. P values were determined with a two-sided Wilcoxon rank sum
test and adjusted for multiple testing. G. Point density UMAP (left panel) and differential
abundance (right panel) of interacting cells comparing PBMCs of JIA patients with inactive
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disease vs. active. H. Quantitative comparisons of interacting cell frequencies between
PBMCs from JIA with inactive and active disease. Non-adjusted frequencies (top panel) and
adjusted for singlet frequencies (bottom panel) are displayed. P values were determined with
a two-sided t-test and adjusted for multiple testing. F. Qualitative differences in T*B
interactions. P values were determined with a two-sided Wilcoxon rank sum test and adjusted
for multiple testing. J. Point density UMAP (left panel) and differential abundance (right panel)
of interacting cells comparing PBMCs of JIA patients with active disease vs. SFMC of active
disease. K. Quantitative comparisons of interacting cell frequencies between PBMCs of JIA
patients with active disease vs. SFMC of active disease. Non-adjusted frequencies (top panel)
and adjusted for singlet frequencies (bottom panel) are displayed. P values were determined
with a two-sided t-test and adjusted for multiple testing. L. Qualitative differences in
CD4T*mono interactions. P values were determined with a two-sided Wilcoxon rank sum test
and adjusted for multiple testing. Abbreviations: UMAP = uniform manifold approximation and
projection, PBMC = peripheral blood mononuclear cells, SFMC = synovial fluid mononuclear
cells. Red asterisks in cell type labels indicate interactions between the respective cell types.

11. Even if multiplets are detected in flow cytometry data, it is not clear how they are
differentiated as "real" interactions and not simply noise, for example, cells clumping within a
tube for technical reasons. Controls guarding against the possibilities of technical
contamination would help enrich for meaningful signals.

We fully agree with this comment and recognize the importance of adequate controls. In our
proposed approach, interactions that reflect actual biological effects are always derived as
statistical enrichments compared to control settings using the same experimental and
technical framework (case-control setting). Throughout the revised manuscript, we have
demonstrated, across multiple settings, diseases, and model systems, that this approach can
derive plausible results that reflect actual biologically effects.

Nonetheless, we agree with this reviewer that systematically evaluating technical limitations
is crucial for interpreting the results of the proposed methods. Therefore, we have conducted
a series of ex vivo and in vivo benchmarking experiments to thoroughly assess the applicability
and limitations of our approach, including analyses of the functionality and specificity of cellular
interactions.

1. Ex vivo cellular mixing experiment

To assess the extent to which additional cellular interactions are formed during culture and
how different experimental settings impact this process, we conducted an extensive ex vivo
benchmarking experiment involving labeling and mixing of cell populations. We first induced
cellular interactions in PBMCs with CytoStim or left cells untreated. The PBMCs were then
split and labeled with two different fluorescently conjugated antibodies against CD45 (Fig.
R21A). Subsequently, the distinctively labeled PBMCs were reunited and processed at varying
cell concentrations, processing times, and fixation methods, followed by mapping cellular
interactions using our approach. This allowed us to effectively identify singlets positive for
each label (Fig. R21B, C), as well as cellular interactions that were either single- or double-
positive for both labels (Fig. R21D-F). Double-positive cellular interactions for the two
introduced labels were newly acquired during the second incubation period, while single-
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positive interactions could have been acquired initially or throughout the culture period.
Focusing on B-T cell interactions, as one of the most frequent interactions induced by
CytoStim, our experiments revealed that single-positive interactions increased robustly upon
CytoStim treatment. In contrast, double-positive (newly acquired) interactions showed only a
mild increase, which appeared negligible compared to the induction of single-positive
interactions (approximately 5-10-fold higher in single positives compared to double positives)
(Fig. R21G). Increasing incubation periods post-CytoStim did not cause a stark increase in
newly acquired (double-positive) interactions, while a trend toward a decrease in CytoStim-
induced (single-positive) B-T cell interactions was observed (Fig. R21G). Even at 4 hours post-
incubation, CytoStim-induced single positives were on average 7-fold more frequent than their
double-positive counterparts. These data suggest that ex vivo induced cellular interactions are
relatively stable, and newly acquired interactions occur but have a relatively minor impact in
this setting. With increasing cell concentrations, a mild baseline increase across all
interactions (both single and double positives, with and without CytoStim) was observed (Fig.
R21G). However, the relative effect of CytoStim-induced single-positive interactions compared
to newly acquired double-positive interactions remained comparable. These data reinforce the
importance of maintaining stable cell concentrations within experimental settings but also
demonstrate that ex vivo induced cellular interactions can be effectively measured across
distinct concentrations, providing stability across conditions. Finally, we evaluated the impact
of chemical fixation on newly formed ex vivo interactions. PBMCs were either fixed or left
unfixed after +/- CytoStim treatment, labeling, reuniting and staining. Overall, only a minor
impact of fixation was observed, with a trend towards higher single and double positive
interactions upon CytoStim treatment in fixed samples (Fig. R21G). This experiment suggests
that cellular interactions can be retrieved using fixation or leaving samples in their native state,
provided the same conditions are applied to all samples. We recommend, however, to fix
samples as early as possible during the sample preparation workflow. Collectively, these data
provide quantitative insights into how experimental settings impact background interactions
while demonstrating that ex vivo modulations of cellular interactions can be effectively
guantified in the explored settings. Besides incubation times, cell numbers, and fixation, flow
rates significantly impact baseline interactions, as previously demonstrated (Fig. R21H-J).
Therefore, maintaining these parameters constant maximizes the recovery of signal to
background interactions. We have now included a limitations and guidelines section in the
manuscript detailing how to optimize the experimental setting for ex vivo cytometry-based
cellular interaction mapping.
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Figure R21. Effect of sample processing methods on ex vivo cellular interactions.

A. Schematic depiction of the experimental approach. B. Overall cellular landscape across all
experimental conditions. n = 3,292,837. C. Feature plots for the UMAP display in B, colored
by the two differently labeled antibodies against CD45. D. Interacting landscape across all
experimental conditions. n =23,620. E. Dot plot for the CD45 signals in interacting populations,
showcasing single-positive and double-positive interactions. F. Feature plots for the UMAP
from panel D, colored by the CD45 signal intensities. G. Quantification of single-positive and
double-positive, newly acquired interactions in CytoStim™ treated and untreated samples,
across different experimental conditions. Left: Varying incubation times at 4°C after mixing,
mimicking long sample processing times. Middle: Different cellular concentrations ranging
from 25,000 to 250,000 cells in 50 pL during staining and acquisition. Right: Fixation with 2 %
paraformaldehyde after staining compared to no fixation. The number of replicates is shown
in each plot and ranges from n = 2 to 3. H. Short-term cultures of PBMCs with or without
CytoStim™ measured at low or high flow rate (n = 4). Impact of flow rate on cellular interactions
is relatively mild. Two-way ANOVA (CytoStim™: F(1,13) = 189.138, P = 4.01e-09, flow rate:
F(1,13) = 6.598, P = 0.023), followed by Tukey’s Honest Significant Differences test for the
flowrate. I. Impact of flow rate and cellular concentration on cellular interactions in murine
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spleens is more pronounced. Left: Baseline interactions in spleens measured with different
flow rates (n = 4). Right: Baseline interactions in spleens at different cell densities but constant
flow rate (n = 4). One-way ANOVA (flow rate: F(2,9) = 115.749, P = 3.79e-07, cell
concentration: F(2,9) = 61.397, P = 5.68e-06), followed by Tukey’s Honest Significant
Differences tests. J. Boxplots of T*B cell interactions upon Blinatumomab treatment that were
either fixed or fixed after a freeze-thaw cycle (n = 4). P values were determined with a two-
sided Welch'’s t-test.

2. In vivo benchmarking to imaging flow cytometry

To provide additional information on the reliability of interactions assessed in particular in vivo
settings, we performed ImageStream-based imaging flow cytometry of LCMV-infected spleens
at day 7 post-infection, similar to our experimental setup for organism-wide cytometry-based
cellular interaction mapping presented in the manuscript (Fig. R22). While imaging cytometry
requires specialized instruments, has a low cellular throughput, and is limited in the number
of measured fluorochromes and cell types that can be resolved, it provides morphological
imaging information that can classify cells into single versus interacting cells. Due to the limited
number of available channels, we utilized a 6-plex panel focusing on T and B cell interactions.
Upon data generation, we extracted the fluorescence intensity values and applied the PICtR
workflow without considering any morphological information (Fig. R22A-C). As the FSC ratio
cannot be extracted during the ImageStream workflow, clustering and interaction identification
was performed on fluorescence channel values only. Consequently, the results presented
here likely underestimate the performance of the Interact-omics approach.
We then evaluated the performance of the Interact-omics approach with information gained
from both images and fluorescence values regarding (i) discriminating singlets from interacting
cells, (ii) identifying cell type combinations of interactions, and (iii) deriving qualitative changes
in LCMV-induced interactions. For this purpose, we first compared the results of the Interact-
omics workflow to an image segmentation-based classification of singlets and multiplets,
demonstrating a high concordance between the approaches regarding the discrimination
between single cells and multiplets (Fig. R22D). While neither image-based segmentation nor
our approach reflects ground truth data, the high concordance strongly supports the validity of
the Interact-omics results. Manual inspection of randomly selected images predicted as
singlets or interacting cells further verified the accuracy of the Interact-omics approach (Fig.
R22C).

Next, we immunophenotypically characterized interacting populations using conventional
gating on marker expression values extracted from images (Fig. R22E). As expected, this
revealed a high concordance with the cluster-based annotations from the Interact-omics
workflow. Manual inspection of randomly selected images regarding the localized expression
patterns of lineage-specific markers confirmed the expected types of interactions (Fig. R22C).
Finally, we compared the LCMV-induced alterations of cellular interactions as detected by
Interact-omics vs. the imaging flow cytometry approach. Due to the low plexity and low cellular
throughput of the imaging flow cytometry approach, only very crude interacting cell populations
could be defined, restricting the comparison to the populations depicted in Fig. R22B.
Nonetheless, interacting cell populations identified with both approaches showed qualitatively
matching alterations induced by LCMV, including a marked increase in interactions involving
antigen-specific CD4 T cells (Fig. R22F).
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Collectively, these data confirm the accuracy of the Interact-omics approach in discriminating
single and interacting cells and in quantifying the types of interactions in case-control settings.
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Figure R22. Comparison of the Interact-omics approach to imaging flow cytometry.

A. UMAP representation of the overall cellular landscape derived from the fluorescent intensity
values, n = 306538. Intensity values are based on the sum of the pixel intensities in the mask
as selected by ImageStream®%, background subtracted. The experiment corresponds to day
7 in Supplementary Figure 11. B. UMAP representation of the interacting landscape, n = 8683.
The heterogeneous cluster is mostly comprised of likely B*CD4*CD8 multiplets. The unknown
cluster expresses CD19 and CD3 but no other T cell markers, hindering confident annotation.
C. Pseudo-colored example images for cellular interactions in the brightfield and fluorescence
channels. D. Left: UMAP displays from A and B colored by the number of cells identified
through image segmentation. Right: Bar plots comparing the populations identified through
Interact-omics and the image segmentation. E. Left: UMAP displays from A and B colored by
populations as identified through conventional gating. Right: Bar plots comparing the
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populations identified through Interact-omics and conventional gating. NA indicates that the
event does not fall into any conventional gate. F. Fold changes of the frequencies +/- LCMV
infection. Holm-corrected estimated marginal means comparison. Left: Populations identified
by Interact-omics. Right: Populations identified through conventional gating. G. Gating
strategy for conventional gating. Abbreviations: Ag = antigen-specific, UMAP = uniform
manifold approximation and projection, BF = brightfield.

3. In vivo mixing experiments to characterize newly acquired cellular interactions

The presented approach measures cellular interactions following sample preparation ex vivo.
Consequently, for in vivo applications, additional cellular interactions can be acquired or lost
during sample preparation. While this limitation applies to all cellular interaction mapping
approaches that do not rely on specialized mouse models or measure co-localization in situ,
it remains poorly characterized to what extent this occurs, whether newly acquired interactions
are random or directed, and how representative the identified interactions are of the in vivo
situation.

To evaluate these questions, we utilized congenic mouse models differing in variants of the
pan-hematopoietic cell marker CD45, allowing identification of respective immune cells as
CD45.1 or CD45.2 using variant-sensitive antibodies. First, we transferred LCMV-specific CD4
T cells (SMARTA: CD90.1 positive, CD45.2 positive) into CD45.2 mice, followed by LCMV
infection (group A) (Fig. R23A). Non-infected control CD45.2 mice were included (group B). In
parallel, we infected CD45.1 mice with LCMV (group C) or left them untreated (group D). On
day 7 post-infection, spleens from all groups were harvested. Spleens from group A (infected,
CD45.2) and group B (non-infected, CD45.2) were either processed individually or mixed in
1:1 ratios with spleens from group C (infected, CD45.1) or group D (non-infected, CD45.1)
before tissue homogenization and processing. Applying the Interact-omics workflow to these
single and mixed samples resulted in single-cell and interacting cell landscapes of populations
that were either single positive or double positive for CD45.1 and CD45.2 (Fig. R23B-E), with
double-positive populations being newly acquired interactions during processing. Notably, we
observed a substantial acquisition of new interactions during sample processing (Fig. R23F).
However, these newly acquired interactions did not occur randomly but were highly correlated
with interactions induced upon infection (Fig. R23G). In particular, newly acquired interactions
in mixed spleens from infected mice compared to non-infected controls were highly correlated
with infection-induced single positive interactions in both mixed and non-mixed spleens (Fig.
R23G). This suggests that while new interactions can be acquired during sample preparation,
they are not random but reflect actual biological effects and likely are a proxy for cellular
interactions occurring in vivo (see also next section about qualitative comparison to in situ
methods).
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Figure R23. Interactions acquired a posteriori after in vivo experiment.

A. Schematic overview of the experimental approach. LCMV-specific CD4+ T cells were
transferred into CD45.2 host mice 5 days before infection with LCMV (group A) or the
respective control (group B). Additionally, CD45.1 host mice were infected with LCMV (group
C) or left untreated (group D). n = 3 for groups A, C, D and n = 4 for group B. B. Single-cell
landscape of all experimental groups. Out of n = 23,490,812 processed cells, n = 245,316 are
shown in the UMAP display. C. Feature plots for panel B, colored by the expression of the
congenital markers CD45.1 and CD45.2. D. Interacting landscape across all experimental
groups. Out of n = 731621 identifiable interactions, n = 93065 are shown. E. Dot plots
showcasing the expression of the congenital markers CD45.1 and CD45.2 in interacting
populations from the unmixed controls for the untreated and infected conditions, and the mixed
spleens from infected mice (infected+infected, group A + group C) or untreated mice
(control+control, group B + group D). F. Bar plots depicting the log2 fold changes (FC) between
the LCMV infected and untreated conditions for each interacting population. Solid bars indicate
the log2FC between group A (infected) und group B (control). Semi-transparent bars show the
log2FC for single-positive interactions in mixed samples (A+C for the infected condition, and
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B+D for the control). Transparent bars depict log2FC between the respective double-positive
interactions, which were definitely acquired ex vivo. n = 3 mixes. G. Linear relationships
between the log2FC between infected and control conditions for unmixed controls, single-
positive interactions after mixing and double-positive interactions after mixing. n = 3 mixes.

4. Qualitative comparison to in situ methods

To further explore whether in vivo-derived interactions measured using our approach resemble
those occurring in situ, we qualitatively compared our LCMV Interact-omics results with
imaging and in situ interaction mapping of approaches investigating LCMV infections:

e Monocyte—B Cell Interactions: Imaging has identified a drastic increase in monocyte—
B cell interactions following LCMV infection (Sammicheli et al., 2016, Science
Immunology). In line with this, our approach also identified a major increase in
monocyte-B cell interactions upon LCMV infection, matching the kinetics described by
Sammicheli et al.

e CDS8 T Cell Interactions: A recent study mapped the interactions of antigen-specific
CD8 T cells following LCMV infection using a newly developed universal version of the
labeling immune partnerships by SorTagging intercellular contacts (ULIPSTIC) mouse
model (Nakandakari-Higa et al., 2024, Nature). Although this model records past rather
than current interactions and investigated slightly different time points, the types of
interactions that antigen-specific CD8 T cells undergo can be compared. Notably, there
was a high concordance in the types of interactions that antigen-specific CD8 T cells
engage in within the uLIPSTIC model and our approach, including interactions with B
cells, CD4 T cells, bystander CD8 T cells, NK cells, Neutrophils and other myeloid
cells.

e Antigen-Specific T Cell Activation and Proliferation: Activation and proliferation of
transferred antigen-specific T cells have been described to start in spleens around 3
days post LCMV infection and increase thereafter (Olson et al., 2012, PLOS
Pathogens). A delay in kinetics has been described in non-draining lymph nodes
compared to the spleen. Similarly, our approach identified initial interactions of antigen-
specific T cells at day 3 post-infection, followed by a more pronounced increase at day
7. Consistent with Olson et al., the spleen showed more pronounced antigen-specific
T cell interactions compared to non-draining lymph nodes at matching time points,
likely due to more rapid kinetics.

Collectively, these observations suggest that while it cannot be unequivocally determined
whether all measured interactions in the Interact-omics approach have occurred in vivo, the
interactions are not random but reflect biological effects. The results align fully with those from
in situ methods. Still, we have now acknowledged the limitations and outlined resulting
guidelines on how to optimize our approach in the revised version of the manuscript.

Minor points:
1. Biological replicates are not mentioned in at least some figure legends.

We have now depicted the number of used replicates in each figure legend.
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2. Fig. 1E it is not clear how a My*T*B interaction (3 cells) could be represented by a doublet
or singlet. Same with other interactions in that panel. It should be shown more clearly.

We apologize for the confusion. Our approach quantifies all selected live events acquired by
flow cytometry. The vast majority of these events are typically single cells, with fewer
interacting cells comprising two partner cells (doublets), and, with decreasing frequency,
triplets and higher-order multiplets, depending on the sample source and processing. Using
distinct types of imaging cytometry, we have demonstrated that our approach can correctly
identify multiplets, though the confidence of the order of multiplicity decreases with higher-
order interactions. We have now more explicitly clarified this in the manuscript.

3. In Fig. 3K there is not information learned, since the bifunctional antibody simply induces
interactions mostly no n-specifically.

Blinatumomab crosslinks CD19, a pan B cell marker, and CD3, which is expressed across T
cell subsets. Figure 3C demonstrates our approach's ability to accurately depict the specificity
and kinetics of Blinatumomab-induced cellular interactions across various T cell subsets with
B cells. Consistent with this, we observe a rapid induction of interactions between B cells and
CDA4 T cells, CD8 T cells, gamma-delta T cells, and NK T cells, while other interactions remain
unchanged, demonstrating the technical soundness of the approach. The additional
information introduced in Figure 3K is in particular the time course and precise quantification
of the time intervals for increase in and half-life of induced cellular interactions. Conceptually
new points are presented in Figure 4.

4. In Fig. 5E, the distance in PCA space analysis is unusual. A different metric should be used.

We appreciate the reviewer's comment and would like to explain the rationale behind our
approach. The goal of Figure 5E is to quantitatively summarize similarities and differences in
abundances of single cells and cellular interactions across various organs and time points.
Capturing such high-dimensional relationships concisely is challenging. PCA leaves Euclidean
distances invariant and is thus well-suited for assessment of global similarities or differences
in single-cell and interaction landscapes. We have now more explicitly stated the rationale for
this approach in the figure legends.

5. The text formatting reads like a single long paragraph and would be more readable if broken
into demarcated sections.

We have now adapted the manuscript employing shorter paragraphs to make it more
readable.

6. The name of the method "Interactomics" should be changed as many methods at this point
perform interactomics. A more specific name should be used.

The name was originally chosen due to its ultra-high throughput and capacity to map
interactions across a wide range of cell types simultaneously. Alternatively, we could refer to
the method simply as cytometry-based cellular interaction mapping. However, we are hesitant
to change the name without prior consultation with the editor and will defer to their discretion
for the final decision.

58



Second point-by-point reply

Reviewer #1:

Remarks to the Author:

The revised manuscript is much improved, and | can see that the authors have made an
honest effort to address my specific concerns. They have added several new experiments
addressing quality control issues, and improved figures and text throughout.

My only remaining concerns are about novelty and generality

1. As | wrote in my original comments, counting co-stained doublets is not novel. Previous
MRNA-based doublet methods derived their claim to originality on using the highly sensitive
transcriptional profile to find new states and boost sensitivity. This method introduces an
automated clustering step to the co-staining protocol - is this novel enough to merit publication
in Nature Methods?

We thank the reviewer for their comment and would like to take this opportunity to outline the
novelty and broader impact of our approach, which extends well beyond the points mentioned,
comprising a set of technical, computational and conceptual novelties.

Technical and Computational Novelty

Our approach encompasses a combination of experimental and computational steps that, for
the first time, enable efficient and unbiased cytometry-based cellular interaction mapping
across entire cellular interaction networks. This includes:

1. Data-derived ultra-high plex cytometry panels capable of mapping cellular interactions
across a variety of cell types, organs and model systems.

2. Rational extraction of cytometry-based parameters associated with cellular
interactions.

3. Implementation of a ready-to-use, highly sensitive, performant and benchmarked
computational framework for the analysis of large-scale cytometry datasets spanning
multiple tens of millions of events, while retaining rare interactions.

4. Statistical framework for interpreting cellular interactions.

Conceptual Novelty

e Therapy response prediction: For the first time, we demonstrate that cellular interaction
networks serve as powerful predictors of clinical responses in immunotherapies — a
topic of critical medical relevance and broad impact.

e Insights into autoimmune diseases: For the first time, we uncover significant
differences in cellular interactions within the context of autoimmune diseases,
providing critical insights that could explain disease pathology.

e Organism-wide insights: Our work maps organism-wide cellular interaction networks
in response to viral infections, offering unprecedented insights into systemic cellular
immune cell dynamics.
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Broad Impact

o Wide applicability: Our approach has broad utility across multiple fields and is
immediately applicable to various research contexts.

e Cost-effective and high-throughput: The methodology is designed to reduce costs
while enabling ultra high-throughput, making it accessible to a wider research
community, and a prime candidate for implementation into clinical routines.

e Enhanced insights from existing data: By unlocking additional layers of information
from existing datasets, our approach amplifies the value of previously collected data,
enabling deeper and more comprehensive analyses.

This combination of technical, computational, and conceptual advances underscores the
significant novelty and impact of our work.

2. How general is the method? Immune cells are incredibly well defined by their cell surface
markers - would you expect this method to be largely domain specific? (ie Rev. 3, point 6). If
you wanted to study epithelial cell interactions in brain, or lung, or skin, some tumor, etc, would
this method method be of any use?

Our method is broadly applicable across a wide range of applications and research fields. In
the revised manuscript, we showcase compelling use cases spanning multiple domains,
including:

Infectious diseases
Autoimmune diseases
Hematology
Immunotherapies
Personalized medicine

abrwneE

The revised manuscript provides examples of cellular interaction mapping of more than 50
interaction types among 18 cell types in mice and of more than 30 interaction types among 14
cell types in humans, encompassing a variety of organs such as lymph nodes, spleen, blood,
synovial fluid, and bone marrow.

Additionally, in unpublished work from our laboratory, we have demonstrated the versatility of
this approach in fields such as tumor immunology, bone regeneration, and inflammation.

While new setups may require adaptations, our method is fundamentally applicable to all cells,
tissues, and organs that can be analyzed using flow cytometry. In the revised version of the
manuscript, we have now included an analysis of a published mouse intestinal epithelium
dataset (Funk et al., 2023). Here, we demonstrate that our approach can not only be used to
map cellular interactions across immune cells but to also measure interactions with epithelial
cells (see Supplementary Figure 5).

Our method is specifically tailored for mapping dynamic interaction networks among cells
using flow cytometry, making compatibility of tissues and cells with cytometry an obvious
requirement. For cellular structures in static tissues, such as neurons in the brain, spatial
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omics approaches are more appropriate. However, this limitation is not unique to our method,
but applies universally to all techniques in this category.

Importantly, our approach is specifically designed to address a critical gap by enabling the
mapping of dynamically changing cellular interaction networks at unprecedented scale,
particularly in non-static tissues which are inaccessible to spatial techniques. The ability of our
approach for ultra-high throughput mapping of dynamic cellular interactions represents a key
strength of our method.

| am not ultimately convinced of either of these points, but it is really a question of degrees
rather than absolutes. | will simply defer to the editor to judge how the novelty/generality issues
should impact publishing in this case.

Reviewer #2:

Remarks to the Author:

The authors did a major revision, adding substantial and interesting new experiments and
analysis and very thorough responses to my and other reviewer's questions. | think the paper
can be published. At the discretion of the editor and the authors, they may decide to take into
account my remaining concerns described below.

My main remaining concern, expressed also in my previous review, is the relevance of the
cell-cell interactions detected by this method for the physiological in vivo contexts. New
experiments and analysis presented by the authors in Fig S4 and S12 confirm that this is an
important concern and limitation of the method. Via a clever labeling with different labels for
otherwise equivalent cells, in several experiments they determine a substantial portion of
interactions that are a result of the ex vivo sample manipulation, including cell culture,
stimulation etc.

(By the way, it is incovenient and confusing that seemingly the same exact figures are included
several times with different identifiers, e.g. S4, R3, R11 etc.)

For example, in Figure S4, the authors show the results where doublet cells labeled with two
different CD45 labels indicate cell interactions formed after cell isolation during cell stimulation
treatment. They focus mostly on T-B cell interactions, and indeed the number of such newly
acquired interactions is relatively small, though cleary noticeable. However, upon inspection
of their results, for example it seems that for CD4 T - CD8 T cell interactions (see UMAP in
Fig S4F), the number of newly acquired interactions is actually very large, comparable with
other single-CD45-label interactions. This also suggests that the number (or fraction) of such
artificial non-physiological interactions is variable depending on the interacting cell types,
making it even more difficult methodologically.

We thank the reviewer for their comment and agree with their observations. We focused on
B*T interactions as these are the most prevalent interactions upon CytoStim™ treatment. The
observation that other interactions show little to no difference between single positive and
double-positive interaction frequencies mainly applies to background interactions such as
interactions between CD4+ and CD8+ T cells, which do not increase specifically upon
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CytoStim™ treatment. In general, we recommend focusing on case-control settings, and to
only regard interactions that show significant changes relative to the control.

It is even more problematic in the results in Fig S12. This is an experiment for LCMV infection,
with a similar idea of using two CD45 labels for identifying double-labeled CD45.1-CD45.2
interactions the are definitely a result of ex vivo manipulation, i.e. not obtained in vivo. In this
experiment, the log2FC of interaction intensity in infection vs. control is a measure of biological
enrichment of cell-cell interactions of different types. It is striking that this measure for double-
labeled interactions is very highly correlated with such measure for single-labeled interactions,
see Fig S12F. This suggests that single-labeled interactions cannot be truly distinguished from
those obtained as technical artifacts, for any pair of the detected interacting cell types. This
makes the physiological relevance of the entire experiment questionable.

| agree with the authors that this problem is common for a family of related methods, including
their method, PIC-seq and others. Their new data helps understand this problem very well.

We sincerely thank the reviewer for their thoughtful feedback and concerns. The proposed
approach captures the current state of cellular interactions, encompassing both newly
acquired and in vivo-derived interactions. Notably, our data demonstrate that in vivo-derived
interactions are non-random and serve as reliable proxies for underlying biological processes,
since significant changes are observed relative to the control. To address potential concerns,
we have included a detailed section outlining limitations and providing recommendations for
minimizing technical artifacts while maximizing biological signals. Additionally, we refer to
Supplementary Note 1 and 2 on ex vivo and in vivo benchmarking, offering detailed insights
into the experimental conditions that influence technical interactions.

Some specific suggestions:

- In guidelines and limitations for applying the method, that are now included in the paper, they
may specifically include a strong recommendation to always include the types of controls used
in Fig S3 and S12. All the cell-cell interactions detected with the proposed new method should
be compared against a control set of interactions that are clearly obtained as a result only of
ex vivo manipulations. The biological relevance of interactions obtained in experiments without
such controls is questionable, in my opinion.

We agree with the reviewer that the co-labeling strategy is a valuable tool to assess which
interactions have formed during the sample preparation process. Whenever feasible, users of
our framework are encouraged to include a similar setup during their adaptation of the method
in vivo. We have now included such a statement into the manuscript. That said, we believe
that in many scenarios, meaningful conclusions about changes in interactions can still be
drawn without the more advanced co-labeling setup, provided a robust case-control
experimental design is established, as detailed in our manuscript.

- Experiments in Fig S3 and S12 are very interesting, but data is underanalyzed and presented
not fully. I encourage the authors to include all the raw and processed data from these
experiments, in figure and table formats, so that readers and future users of the method can
decide themselves about potential use cases and limitations. For example, see my comment
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about CD4 T - CD8 T cell interactions - it would be nice to quantify this and all similar values,
in all kinds of reasonable ways, to help understand the method and the data.

We agree with the reviewer that data can be analyzed further, exceeding the scope of our
manuscript. We provide raw data in form of FCS files, processed csv files, and the respective
code for the benchmarking experiments to enable further analysis of our data by readers and
future users.

- In fact, | encourage the authors to include raw and processed data, at different levels of
preprocessing, from all of their very interesting experiments presented in the paper (not only
Fig S3 and S12) to increase the impact of their study, both the method and the many results
they already obtained.

We have uploaded the key results, tables and accompanying analysis code.

Reviewer #3:

Remarks to the Author:

In revision, the authors have undertaken a comprehensive set of experiments and
clarifications, which address my comments. In particular, there are now numerous technical
controls as well as a limitations section, which advises future users on parameters to optimize.
I'm also more convinced the approach is fairly robust to noise. There are also important
additions demonstrating that previously acquired data can be analyzed by the approach.

| also believe the approach will have broad utility because of its flexibility and accessibility,
which is actually unique among all interaction-based approaches, which tend to be
complicated.

One lingering minor point left to the discretion of the editor and authors is the name, as
"Interactomics” | think isn't descriptive enough for the method, which doesn't assess all
interactions and is neither the first nor only method to study interactions. Could it be called
PICtR?

We thank the reviewer for recognizing the broad utility of our method. The name
“Interactomics” was originally chosen to emphasize its ultra-high throughput and ability to map
interactions across a wide range of cell types simultaneously. Alternatively, the method could
be referred to more descriptively as cytometry-based cellular interaction mapping. We are
happy to defer to the editor's discretion regarding the preferred terminology.

| otherwise have no additional points to raise.
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