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Supplementary Note 1: Benchmarking of ex vivo cellular interaction mapping 

To evaluate the influence of different experimental conditions and the non-specific 

formation of cellular interactions, we conducted a series of ex vivo benchmarking 

experiments. First, CytoStimTM-treated PBMCs were split, labeled with two distinct 

fluorescently conjugated CD45 antibodies, reunited, and processed under varying cell 

concentrations, processing times, and fixation methods (Supplementary Figure 1A-G). 

Cellular interactions were then mapped using the Interact-omics approach. 

Interactions double-positive for both labels must have been newly acquired during the 

second incubation, while single-positive interactions could have occurred initially or 

throughout the culture.  

 

Our findings revealed a robust increase in single-positive interactions following 

CytoStimTM treatment, whereas double-positive (newly acquired) interactions showed 

only a mild increase, which was negligible compared to the surge in CytoStimTM-

induced single-positive interactions (approximately 5-10 times higher, Supplementary 

Figure 1G). Extending incubation periods post-CytoStimTM did not significantly elevate 

newly acquired interactions, though there was a slight decrease in CytoStimTM -

induced B-T cell interactions at later time points. These results suggest that ex vivo-

induced cellular interactions are relatively stable, with newly acquired interactions 

occurring but having only a minor impact in this context. A mild baseline increase in 

all interactions was observed with higher cell concentrations, but the relative effect of 

CytoStimTM-induced single-positive interactions versus newly acquired double-

positive interactions remained consistent (Supplementary Figure 1G). Fixation had 

only a minor effect, with a trend towards higher single- and double- positive 

interactions upon CytoStimTM treatment in fixed samples (Supplementary Figure 1G).  

 

Collectively, these data provide quantitative insights into how experimental settings 

impact interactions while demonstrating that ex vivo modulations of cellular 

interactions can be effectively quantified in the explored settings. Besides incubation 

times, cell numbers and fixation, flow rates and tissue type may significantly impact 

baseline interactions (Supplementary Figure 1H-I). Therefore, maintaining these 

parameters constant is critical for maximizing the recovery of signal to background 

interactions. Notably, cellular interactions were unaffected by cryopreservation 
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(Supplementary Figure 1J). See Limitations and Guidelines for further details and 

recommendations.  

Supplementary Figure 1. Effect of sample processing methods on ex vivo cellular 

interactions. A. Schematic depiction of the experimental approach. Created in BioRender. B. 

Overall cellular landscape across all experimental conditions. n = 3,292,837. Label 1 and 2 

refer to CD45 APC-Fire810 and CD45 PE-Fire640, respectively. C. Feature plots for the 

UMAP display in B, colored by the two differently labeled antibodies against CD45. D. 

Interacting landscape across all experimental conditions. n = 23,620. E. Dot plot for the CD45 

signals in interacting populations, showcasing single-positive and double-positive (highlighted 

in red) interactions. F. Feature plots for the UMAP from panel D, colored by the CD45 signal 

intensities. G. Quantification of single-positive (white) and double-positive, newly acquired 

(black) interactions in CytoStimTM treated and untreated samples, across different 

experimental conditions. Left: Varying incubation times at 4°C after mixing, mimicking long 

sample processing times. Middle: Different cellular concentrations ranging from 25,000 to 

250,000 cells in 50 µL during staining and acquisition. Right: Fixation with 2 % 
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paraformaldehyde after staining compared to no fixation. n = 2 to 3 technical replicates. Error 

bars indicate the standard deviation. H. Short-term cultures of PBMCs with or without 

CytoStimTM measured at low or high flow rate (n = 4 technical replicates, the horizontal bar 

shows the mean). Impact of flow rate on cellular interactions is relatively mild. Two-way 

ANOVA (CytoStimTM: F(1,13) = 189.138, P = 4.01e-09, flow rate: F(1,13) = 6.598, P = 0.023), 

followed by Tukey’s Honest Significant Differences test for the flowrate. I. Impact of flow rate 

and cellular concentration on cellular interactions in murine spleens is more pronounced. Left: 

Baseline interactions in spleens measured with different flow rates (n = 4 technical replicates, 

the horizontal bar shows the mean). Right: Baseline interactions in spleens at different cell 

densities but constant flow rate (n = 4 technical replicates). One-way ANOVA (flow rate: F(2,9) 

= 115.749, P = 3.79e-07, cell concentration: F(2,9) = 61.397, P = 5.68e-06), followed by 

Tukey’s Honest Significant Differences tests. J. Frequency of T*B cell interactions upon 

Blinatumomab treatment that were either fixed or fixed after a freeze-thaw cycle (n = 4 

replicates from a single donor). P values were determined with a two-sided Welch’s t-test and 

Bonferroni corrected. Error bars indicate the mean and standard deviation. Abbreviations: 

UMAP: uniform manifold approximation and projection, CD45 APC-Fire810/CD45-PE-

Fire640: fluorescently-coupled CD45 labels, My: myeloid cells, PBMCs: peripheral blood 

mononuclear cells. 
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Supplementary Note 2: Benchmarking and interpretation of in vivo interaction 

mapping 

To assess the general reliability of interactions derived from in vivo settings, we 

performed ImageStream-based imaging flow cytometry on LCMV-infected spleens on 

day 7 post-infection. Despite its limitations in cellular throughput and number of 

measured markers, this method provides morphological information that can be used 

to distinguish single cells from interacting cells, making it a suitable benchmarking tool. 

Using a 6-plex panel focused on T and B cell interactions, we first applied the PICtR 

workflow on the ImageStream data without taking any morphological information into 

consideration (Supplementary Figure 2A-C). Here, clustering and interaction 

identification relied solely on fluorescence intensity values as no forward scatter 

information is recorded with this method. We then compared the results from the 

Interact-omics workflow with data gained from both morphological imaging and/or 

fluorescence intensity data in order to: (i) differentiate singlets from interacting cells, 

(ii) identify interacting cell types, and (iii) assess LCMV-induced interaction changes.

Comparing the results obtained from the Interact-omics-based approach to image 

segmentation-based classification showed high concordance in singlet and multiplet 

discrimination (Supplementary Figure 2D, see Methods), further verified by manual 

inspection of images (Supplementary Figure 2C). Immunophenotypic characterization 

of interacting populations via conventional gating also showed high agreement with 

Interact-omics-derived annotations (Supplementary Figure 2E). Manual inspection of 

randomly selected images regarding the localized expression patterns of lineage-

specific markers confirmed the expected types of interactions (Supplementary Figure 

2C). 

Finally, comparing LCMV-induced changes in cellular interactions derived from 

Interact-omics and conventional gating of imaging flow cytometry data, showed a high 

concordance (Supplementary Figure 2F, G). These findings confirm the Interact-omics 

approach's accuracy in identifying and quantifying single and interacting cell 

landscapes in case-control settings. 
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Supplementary Figure 2. Comparison of the Interact-omics approach to imaging flow 

cytometry. A. UMAP representation of the overall cellular landscape derived from the 

fluorescent intensity values, n = 306,538. Intensity values are based on the sum of the pixel 

intensities in the mask as selected by ImageStream®X, background subtracted. The 

experiment corresponds to day 7 in Supplementary Figure 3. B. UMAP representation of the 

interacting landscape, n = 8,683. The heterogeneous cluster is likely mostly comprised of 

B*CD4*CD8 multiplets. The unknown cluster expresses CD19 and CD3 but no other T cell 

markers, hindering confident annotation. C. Pseudo-colored example images for cellular 

interactions in the brightfield and fluorescence channels. D. Left: UMAP displays from A and 

B colored by the number of cells identified through image segmentation. Right: Bar plots 

comparing the populations identified through Interact-omics (x-axis labels) and image 

segmentation (color code). E. Left: UMAP displays from A and B colored by populations as 

identified through conventional gating. Right: Bar plots comparing the populations identified 

through Interact-omics (x-axis labels) and conventional gating (color code). NA indicates that 

the event does not fall into any conventional gate. F. Fold changes of the frequencies +/- 

LCMV infection. Holm-corrected estimated marginal means comparison. Left: Populations 

identified by Interact-omics. Right: Populations identified through conventional gating. n = 3 

biological replicates, error bars show the mean and standard deviation. G. Gating strategy for 
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conventional gating. Abbreviations: Ag = antigen-specific, UMAP = uniform manifold 

approximation and projection, BF = brightfield. 

The presented framework measures cellular interactions following sample preparation 

ex vivo. Consequently, for in vivo applications, additional cellular interactions may be 

acquired during sample preparation. While this limitation applies to all cellular 

interaction mapping approaches that do not rely on specialized mouse models or 

measure co-localization in situ, it remains poorly characterized to what extent this 

occurs, whether newly acquired interactions are random or directed, and how 

representative the identified interactions are of the in vivo situation. 

To evaluate these questions, we utilized congenic mouse models differing in variants 

of the pan-hematopoietic cell marker CD45, allowing identification of respective 

immune cells as CD45.1 or CD45.2 using variant-sensitive antibodies (Supplementary 

Figure 3A). First, we transferred LCMV-specific CD4 T cells (SMARTA: CD90.1-

positive, CD45.2-positive) into CD45.2 mice, followed by LCMV infection (group A, 

Supplementary Figure 3A). Non-infected control CD45.2 mice formed group B. In 

parallel, we infected CD45.1 mice with LCMV (group C) or left them untreated (group 

D). On day 7 post-infection, spleens from group A (infected, CD45.2) and group B 

(non-infected, CD45.2) were either processed individually or mixed with spleens from 

group C (infected, CD45.1) or group D (non-infected, CD45.1) before tissue 

homogenization and processing. Applying the Interact-omics workflow to these 

individual and mixed samples resulted in single-cell and interacting cell landscapes of 

populations that were either single-positive or double-positive for CD45.1 and CD45.2 

(Supplementary Figure 3B-E). In this setting, double-positive interactions must have 

arisen during processing ex vivo and can be quantified.  

Notably, we observed a substantial fraction of newly acquired double-positive 

interactions during sample processing (Supplementary Figure 3F). However, newly 

acquired interactions did not occur randomly but were highly correlated with 

interactions induced upon infection (Supplementary Figure 3G). In particular, newly 

acquired interactions in mixed spleens from infected mice compared to non-infected 

controls were highly correlated with infection-induced single positive interactions in 

both mixed and non-mixed spleens (Supplementary Figure 3G). This suggests that 
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while new interactions can be acquired during sample preparation, they are not 

random but directed and reflect actual biological effects. Notably, a comparison with 

imaging and in situ interaction mapping in an LCMV infection study1 revealed highly 

similar interaction types and confirmed key LCMV-induced changes identified by the 

Interact-omics approach, including antigen-specific T cell interactions and transient 

monocyte-B cell interactions. 

Overall, these observations suggest that while it cannot be unequivocally determined 

whether the measured interactions in the Interact-omics approach have all occurred 

in vivo, the interactions are not random but reflect biological effects, and likely are a 

proxy for cellular interactions occurring in vivo. Guidelines for optimizing the approach 

to avoid potentially misleading results are discussed in the Limitations and Guidelines 

section. 

https://sciwheel.com/work/citation?ids=5308371&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5308371&pre=&suf=&sa=0&dbf=0
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Supplementary Figure 3. Interactions acquired a posteriori after in vivo experiment. A. 

Schematic overview of the experimental approach. LCMV-specific CD4+ T cells were 

transferred into CD45.2 host mice 5 days before infection with LCMV (group A) or the 

respective control (group B). Additionally, CD45.1 host mice were infected with LCMV (group 

C) or left untreated (group D). n = 3 for groups A, C, D and n = 4 for group B. Created in

BioRender. B. Single-cell landscape of all experimental groups. Out of n = 23,490,812

processed cells, n = 245,316 are shown in the UMAP display. C. Feature plots for panel B,

colored by the expression of the congenital markers CD45.1 and CD45.2. D. Interacting

landscape across all experimental groups. Out of n = 731,621 identifiable interactions, n =

93,065 are shown. E. Dot plots showcasing the expression of the congenital markers CD45.1

and CD45.2 in interacting populations from the unmixed controls for the untreated and infected

conditions, and the mixed spleens from infected mice (infected+infected, group A + group C)

or untreated mice (control+control, group B + group D). F. Bar plots depicting the log2 fold

changes (FC) between the LCMV infected and untreated conditions for each interacting

population. Solid bars indicate the log2FC between group A (infected) und group B (control).

Semi-transparent bars show the log2FC for single-positive interactions in mixed samples (A+C
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for the infected condition, and B+D for the control). Transparent bars depict log2FC between 

the respective double-positive interactions, which were definitely acquired ex vivo. n = 3 mixes 

across biological replicates, error bars indicate the standard deviation. G. Linear relationships 

between the log2FC between infected and control conditions for unmixed controls, single-

positive interactions after mixing and double-positive interactions after mixing. n = 3 mixes 

across biological replicates. The shaded area shows the 95 % confidence interval for the linear 

model. 

Supplementary Note 3: Application to existing cytometry datasets 

To demonstrate the applicability of our approach for analyzing cellular interactions in 

previously generated datasets, we applied the PICtR workflow to a publicly available 

cytometry dataset on juvenile idiopathic arthritis (JIA)2. JIA is an autoimmune disease 

characterized by chronic joint inflammation, leading to pain, swelling, and eventual 

joint damage. While it is hypothesized that abnormal interactions among immune cells 

– specifically T cells, B cells, and myeloid cells – contribute to the production of

inflammatory cytokines and autoantibodies that drive the disease, the precise 

interaction processes remain poorly understood. 

In their study, Attrill and colleagues interrogated PBMC samples from healthy donors, 

JIA patients with active and inactive disease, and synovial fluid samples from JIA 

patients with active disease. We downloaded and preprocessed the FCS files as 

described in the Methods section and ran the flowAI QC algorithm3 on all FCS files to 

exclude those with anomalous flow rates from further analysis. High-quality samples 

were then processed using the PICtR workflow. Notably, we were able to reproduce 

the single-cell landscape described by Attrill et al., and discovered a range of 

quantitative and qualitative changes in cellular interactions in the blood of patients with 

inactive versus active disease, as well as between the blood and synovial fluid of 

affected joints (Supplementary Figure 4). 

Interestingly, in patients with inactive disease, T cells interacting with B cells, 

predominantly displayed a FoxP3-expressing regulatory T cell phenotype 

(Supplementary Figure 4I). In contrast, in patients with active disease, these 

interactions shifted to an inflammatory, non-regulatory phenotype. Similarly, major 

qualitative differences of interactions between CD4 T cells and monocytes were 

observed between blood and synovial fluid of patients with active disease 

(Supplementary Figure 4L). While several of these findings require further validation, 

https://sciwheel.com/work/citation?ids=16834119&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=7639982&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=16834119&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=7639982&pre=&suf=&sa=0&dbf=0
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they provide an initial quantitative framework for understanding changes in immune 

cell interactions that may contribute to disease progression and could help identify 

targets for therapeutic intervention.  

Supplementary Figure 4. Interacting cell landscape in juvenile idiopathic arthritis (JIA). 

A. Publicly available spectral flow cytometry data of PBMCs and SFMCs of JIA patients2.

Three comparisons (indicated by the arrows) were made for the interacting cell landscape.

Created in BioRender. B. UMAP of the overall cellular landscape. Recorded cells were

processed with PICtR, out of 7,843,646 cells, 80,000 sketched cells are displayed.  C. UMAP

of interacting cells (n = 12,908) D. Point density UMAP (left panel) and differential abundance

(right panel) of interacting cells comparing PBMCs from healthy donors vs. JIA patients.  E.

Quantitative comparisons of interacting cell frequencies between PBMCs from healthy donors

(n=18) and JIA patients (n=36). Top: Non-adjusted frequencies. Bottom: Interaction

frequencies adjusted by the harmonic mean of the singlet frequencies of the contributing cells

https://sciwheel.com/work/citation?ids=16834119&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=16834119&pre=&suf=&sa=0&dbf=0
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(see Methods). P values were determined with a two-sided t-test and adjusted for multiple 

testing using Benjamini-Hochberg correction. F. Qualitative differences in CD4T*cl.mono 

interactions. P values were determined with a two-sided Wilcoxon rank sum test and adjusted 

for multiple testing using Benjamini-Hochberg correction. G. Point density UMAP (left panel) 

and differential abundance (right panel) of interacting cells comparing PBMCs of JIA patients 

with inactive disease (n=11) vs. active (n =25). H. Quantitative comparisons of interacting cell 

frequencies between PBMCs from JIA with inactive and active disease. Top: Non-adjusted 

frequencies. Bottom: Interaction frequencies adjusted by the harmonic mean of the singlet 

frequencies of the contributing cells (see Methods). P values were determined with a two-

sided t-test and adjusted for multiple testing using Benjamini-Hochberg correction I. 

Qualitative differences in T*B interactions. P values were determined with a two-sided 

Wilcoxon rank sum test and adjusted for multiple testing using Benjamini-Hochberg correction. 

J. Point density UMAP (left panel) and differential abundance (right panel) of interacting cells

comparing PBMCs of JIA patients with active disease vs. SFMC of active disease.  K.

Quantitative comparisons of interacting cell frequencies between PBMCs of JIA patients with

active disease (n=25) vs. SFMC of active disease (n=8). Top: Non-adjusted frequencies.

Bottom: Interaction frequencies adjusted by the harmonic mean of the singlet frequencies of

the contributing cells (see Methods). P values were determined with a two-sided t-test and

adjusted for multiple testing using Benjamini-Hochberg correction.  L. Qualitative differences

in CD4T*mono interactions. P values were determined with a two-sided Wilcoxon rank sum

test and adjusted for multiple testing using Benjamini-Hochberg correction. Abbreviations:

UMAP = uniform manifold approximation and projection, PBMC = peripheral blood

mononuclear cells, SFMC = synovial fluid mononuclear cells. Red asterisks in cell type labels

indicate interactions between the respective cell types. Box plots display the median, first and

third quartiles and whiskers are defined as 1.5 times interquartile range.

To demonstrate our framework's ability to identify cellular interactions involving non-

immune cells, we applied the PICtR workflow to a spectral flow cytometry dataset4 

from the proximal intestine of young and old mice (Supplementary Figure 5A). PICtR 

identified interactions among EpCAM+ epithelial cells, Lgr5+ intestinal stem cells 

(ISCs), and various immune cell types (Supplementary Figure 5B, C). In line with 

previous reports, our analysis confirmed an age-associated increase in CD4 and CD4-

CD8 double-positive T cells, a decrease in CD8+ TCRαβ+/TCRγδ+ populations, and a 

notable increase in interactions between CD4+ TCRαβ+ T cells and epithelial cells in 

the aged group (Supplementary Figure 5D, E). The latter supports the reported 

upregulation of the MHCII machinery in the aged intestine4, suggesting enhanced 

antigen-presentation to CD4 T cells.  

These analyses demonstrate that our approach can also be applied to existing 

datasets and non-immune cell types, provided that the data have been generated 

following the guidelines outlined in this manuscript (see Limitations and Guidelines). 

https://sciwheel.com/work/citation?ids=15797591&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=15797591&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=15797591&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=15797591&pre=&suf=&sa=0&dbf=0
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Supplementary Figure 5: Interacting cell landscape in the proximal small intestine. A. 

Schematic overview of the experimental approach (adapted from Funk and colleagues4). n = 

3 young mice and n = 3 aged mice were analyzed. Created in BioRender. B. Overall cellular 

landscape of epithelial cells and the immune microenvironment. Recorded cells were 

processed with PICtR; out of 4,167,516 cells, 399,608 sketched cells are displayed. C. UMAP 

of the interacting cell landscape, n = 32,554. D. Comparison of the T cell population frequency 

in young (n = 3) and aged (n = 3) mice.  P values were calculated using least squared means 

(two-sided) and were Bonferroni-corrected. Error bars indicate the mean and standard 

deviation. E. Comparison of interacting populations that involve T cells in young (n = 3) and 

aged (n = 3) mice. P values were calculated using least squared means (two-sided) and were 

Bonferroni-corrected. Error bars indicate the mean and standard deviation. 

https://sciwheel.com/work/citation?ids=15797591&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=15797591&pre=&suf=&sa=0&dbf=0
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