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Cellular interactions are of fundamental importance, orchestrating 
organismal development, tissue homeostasis and immunity. Recently, 
powerful methods that use single-cell genomic technologies to dissect 
physically interacting cells have been developed. However, these 
approaches are characterized by low cellular throughput, long processing 
times and high costs and are typically restricted to predefined cell types. 
Here we introduce Interact-omics, a cytometry-based framework to 
accurately map cellular landscapes and cellular interactions across all 
immune cell types at ultra-high resolution and scale. We demonstrate the 
utility of our approach to study kinetics, mode of action and personalized 
response prediction of immunotherapies, and organism-wide shifts in 
cellular composition and cellular interaction dynamics following infection 
in vivo. Our scalable framework can be applied a posteriori to existing 
cytometry datasets or incorporated into newly designed cytometry-based 
studies to map cellular interactions with a broad range of applications from 
fundamental biology to applied biomedicine.

Many fundamental processes in life are shaped by physical interactions 
between cells, including the orchestration of organismal development, 
tissue homeostasis and immunity1–4. Notably, the immune system is one 
of the most dynamic biological systems in mammals, operating through 
an exceptionally complex network of intercellular signaling mediators 
and cell–cell interactions. During immune responses, a highly ordered 
sequence of antigen-dependent and antigen-independent interactions 
among various immune cells collectively orchestrates a comprehensive 
response of the immune system5. In this process, transient cellular 

interactions act as central hubs for information processing and deci-
sion making, collectively driving the outcome of immune responses 
in diverse physiological and pathological states.

While single-cell genomic technologies have substantially 
advanced our understanding of cellular ecosystems in health and 
disease, the spatial context of cells in tissues is lost. To overcome this 
limitation, spatial transcriptomic and high-plex imaging technologies 
have been developed6–17. Although these approaches are powerful in 
mapping global structures in static tissues, studying transient and 
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types of the myeloid lineage with distinct scatter properties (Fig. 1d 
and Extended Data Fig. 1b).

To further improve classification and identification of interacting 
cells, we explored clustering-based approaches for simultaneous multi-
plet discrimination and annotation. First, we used Louvain31 clustering 
using the features identified in the feature importance analysis for the 
singlet to multiplet discrimination, including image-based parameters 
(Fig. 1c). This revealed individual clusters single-positive for distinct 
lineage-defining markers, largely comprising ground-truth single 
cells of distinct PBMC cell types with low FSC ratio, as well as sepa-
rate clusters characterized by the coexpression of mutually exclusive 
lineage-defining markers and a high FSC ratio, largely comprising PICs 
(Extended Data Fig. 1c–g). Classifying clusters based on FSC ratio into 
singlets versus multiplets considerably outperformed the approach 
using scatter properties only (Fig. 1e), and enabled annotation of inter-
acting cell partners based on the coexpression of mutually exclusive 
lineage-defining markers.

To explore whether such an approach could also be applied to 
conventional cytometry without image-based information, we per-
formed Louvain clustering on cell type markers only, followed by FSC 
ratio-based classification into singlet and multiplet clusters (Extended 
Data Fig. 1h–k). While this approach outperformed FSC ratio only clas-
sification, it remained inferior to using all important features (Fig. 1e). 
In contrast, incorporating both cell type markers and scatter proper-
ties—including the FSC ratio—into the clustering, followed by FSC 
ratio-based classification into singlet and multiplet clusters, yielded 
results comparable to those achieved when all important features 
including image-based features were used (Fig. 1e–h and Extended Data 
Fig. 1l–n). This result was reproducible across various cluster resolu-
tions (Fig. 1i). A comparison between different clustering methods sug-
gested Louvain clustering, alongside others, as an accurate approach 
(Extended Data Fig. 1o).

Based on these findings, we established the flow cytometry-based 
Interact-omics framework, which also comprises the computational 
workflow for the quantification of cellular compositions and physical 
interactions of cells (PICtR, section ‘PIC toolkit for R’ in Methods). 
Briefly, recorded flow cytometry datasets are preprocessed using 
standard pipelines without multiplet exclusion and are nonuniformly 
sampled to preserve rare cell types and cellular multiplets (sketch-
ing32), followed by clustering based on surface marker expression, 
scatter properties and FSC ratio (Methods). PIC-containing clusters, 
characterized by predominantly containing events with a high FSC 
ratio and combinations of mutually exclusive cell-type-specific mark-
ers, are selected and used for further downstream analysis, in-depth 
annotation and quantification. Notably, while Otsu thresholding of 
the FSC ratio and Louvain clustering are provided as default settings, 
alternative approaches can be selected (see Extended Data Fig. 1a,o 
for benchmarking).

Throughout the paper, we present cellular interaction frequencies 
using any of the following three normalization approaches. First, we 
report the relative frequencies of cellular interactions among all live, 
high-quality events, which indicates how prevalent certain interac-
tions are in relation to all cells and other interactions. Second, we 
present the relative frequencies of a given type of interaction among 
all interactions, providing insight into how the relative composition of 
cellular interactions changes across conditions. Third, in scenarios with 
unbalanced or rapidly changing frequencies of interacting partners, 
the harmonic mean can be used to calculate the expected interaction 
frequency based on singlet frequencies, which can then be compared 
to the observed interactions to assess relative enrichment (Methods). 
Since these normalization methods address different biological ques-
tions, we apply them separately or in combination as appropriate 
throughout the paper.

Compared to single-cell genomics-based workflows, the ultra-high 
cellular throughput, rapid processing time and low costs associated 

dynamically changing cellular interactions among single cells remains 
challenging. In particular, transient cellular interactions among 
immune cells in semisolid or liquid organs such as the blood, or in 
body fluids such as lymph, urine, cerebrospinal, synovial fluid or saliva, 
cannot be studied using spatial technologies. In recent years, special-
ized technologies to study cellular interactions through single-cell 
transcriptomic profiling of physically interacting cells (PICs) have  
been developed18–24. However, these technologies are limited by  
their cellular throughput and costs. In parallel, elegant approaches 
using murine reporter mouse lines have been developed that track 
past interactions on transient cellular engagement25–28. While these 
technologies are powerful, they are dependent on complex mouse 
models and are not applicable to study human samples. Therefore, to 
systematically unravel the dynamic cellular crosstalk of cells across 
entire organs, organisms and patient cohorts, approaches capable 
of quantitatively mapping millions of cellular interactions among all 
cell types of a given biological system at low cost and rapid turnaround 
times—without the need of complex model systems—are required.

Here we introduce a cytometry-based framework to accurately 
map both cellular landscapes and physical cellular interactions across 
all immune cell types at low costs, high speed, high precision and 
ultra-high scale. We demonstrate the utility of our approach to deci-
pher the kinetics and mode of action of immunotherapies, to derive 
insights on mechanisms governing therapy response and to disentan-
gle complex, organism-wide immune interaction networks in vivo. Our 
approach can be readily implemented into any cytometry-based assay 
with a broad spectrum of applications, ranging from basic biology to 
advanced immunology, cancer research and applied biomedicine.

Results
Cytometry-based quantification of cellular interactions
To develop a universal and flexible cytometry-based framework for 
mapping physical interactions among immune cells, we first focused 
on identifying strategies to accurately discriminate between single  
cells and PICs in cytometry data. For this purpose, we induced a 
defined set of cellular interactions among human peripheral blood 
mononuclear cells (PBMCs) using a bispecific antibody-based reagent 
(CytoStim) that binds both T cell receptors (TCRs) and major histo-
compatibility complex molecules, thereby physically engaging T cells 
with antigen-presenting cells (Fig. 1a and Methods). Subsequently, we 
used an imaging flow cytometer prototype29 to generate ground-truth 
data on cellular interactions and concurrently measured cytometry 
parameters. These comprised five surface markers broadly indicative 
for distinct immune cell populations, along with a range of image-based 
and cytometric parameters, such as light scatter profiles (see Sup-
plementary Table 1 for all parameters). Following data acquisition, 
we manually classified 1,000 randomly selected cellular events based 
on imaging information across four replicates into singlets, doublets, 
triplets or higher-plex cell–cell interactions. To extract cytometric 
features capable of discriminating between single cells and PICs, we 
performed a feature importance analysis considering the manually 
classified images as ground-truth data (Fig. 1a,b). This analysis revealed 
the ratio between signal intensities of forward scatter area and height 
(termed the forward scatter channel (FSC) ratio), alongside other scat-
ter properties, as highly indicative for singlet to multiplet discrimina-
tion, in line with a common gating-based strategy to exclude multiplets 
from cytometric analyses (Fig. 1b,c). Indeed, by relying solely on the 
FSC ratio to distinguish singlets from multiplets, an F1 score between 
0.50 and 0.84 was achieved, depending on the thresholding method 
used (Extended Data Fig. 1a and Methods). Notably, we identified 
Otsu30-based thresholding of the FSC ratio as a robust, reproducible and 
data-driven approach for scatter-based multiplet identification, while 
alternative thresholding methods produced similar results (Fig. 1d and 
Extended Data Fig. 1a). However, a portion of cells remained misclassi-
fied when using scattering parameters only, particularly affecting cell 
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Fig. 1 | A cytometry-based framework for the accurate identification of 
physical cellular interactions. a, Schematic overview of the experimental 
approach and exemplary ground-truth image data. PBMCs were incubated with 
the T cell crosslinker CytoStim, followed by manual classification of 1,000 living 
cells into singlets or multiples across 4 technical replicates. b, Importance of 
features obtained from a decision tree model to classify the data into singlets 
and multiplets. Features from imaging flow cytometry are written in italic. 
n = 4, horizontal bars indicate the median. c, Heatmap of most important 
features, colored by mean z-score of features across replicates grouped into 
singlets, doublets, triplets and multiplets. d, FSC ratio histogram, colored by 
the ground-truth annotation. The classification into singlets and multiplets by 
Otsu30 thresholding is shown. e, Performance of different classification methods 
as measured by the F1 score. In all methods displayed, cells were categorized by 
Otsu thresholding of the FSC ratio. The first method (dark blue) relies on Otsu 
thresholding of the FSC ratio only, and all others (light blue) involve Louvain31 
clustering based on different feature sets as indicated below the x axis, followed 
by assertion of clusters to either singlets or multiplets based on the proportion of 
cells exceeding the FSC ratio threshold. The third bar represents the Interact-

omics workflow. Louvain clustering was performed for n = 100 iterations, and 
the results for each technical replicate (n = 4) are shown in the point plot. Bars 
indicate the mean F1 score. X* shows only the most important scatter parameters 
were used (c). f, Left: UMAP55 embedding of classified cells (n = 3,865) based on 
conventional flow cytometry parameters, including cell type markers, scatter 
parameters and the FSC ratio. Right: UMAP embeddings with cells exceeding 
the Otsu threshold of the FSC ratio highlighted in blue (top) or cells colored by 
their ground-truth annotation (bottom). g, Relative frequency of cells classified 
according to the FSC ratio. n = 4, error bars indicate the standard deviation.  
h, Relative frequency of singlets and interacting cells based on the ground-truth 
annotation. n = 4, error bars indicate the standard deviation. i, Adjusted rand 
index (ARI) of consensus clustering solutions obtained for (1) the important 
features shown in c and cell type markers versus (2) only conventional cytometry 
features as used in f for different resolutions in Louvain clustering. Clustering 
was performed for n = 100 iterations at each resolution. A, area; H, height; max., 
maximum; min., minimum; my., myeloid; SSC, side scatter; W, width. Interactions 
between cell types are encoded by a red asterisk between the two cell type labels. 
Panel a created with BioRender.com.
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with the presented cytometry-based approach enable the seamless 
analysis of millions of cellular events within short time periods. Note 
that the Interact-omics framework is designed to specifically dissect 
heterotypic PICs and relies on carefully chosen case-control settings 
with stable experimental conditions to determine an enrichment of 
true PICs above baseline interactions. A detailed description about 
the technical aspects affecting the formation of PICs is provided in the 
‘Limitations and guidelines’ section.

Cellular interaction mapping of complex immune landscapes
To simultaneously map cellular composition and cellular interactions 
in complex immune landscapes at high resolution, we established 
ultra-high parametric, data-informed flow cytometry assays for mouse 
and human. To optimize cell type resolution across all common blood 
and immune cell populations, we leveraged single-cell proteo-genomic 
datasets33,34 to identify optimally discriminating cell type- and cell 
state-specific markers. Moreover, to enable the simultaneous detec-
tion of mutually exclusive cell type markers in multiplets, we assigned 
cell-type-specific markers to fluorophores with low spectral overlap to 
reduce spreading errors. While our approach can be applied to standard 
flow cytometry-based assays, we used full-spectrum flow cytometry35 
due to its superior capacity to disentangle high-plex marker panels. 
Applying the Interact-omics framework with such an optimized 24-plex 
panel to human PBMCs revealed an accurate representation of the 
CytoStim-induced changes in cellular composition and cellular interac-
tions at cell type and cell state resolution (Fig. 2a–e and Extended Data 
Fig. 2a–f). As expected, interactions between various T cell subsets 
and antigen-presenting cell populations significantly increased upon 
CytoStim treatment, whereas other cellular interactions remained 
unaffected or decreased (Fig. 2d,e). Notably, the results were highly 
reproducible across replicates and interactions among rare popula-
tions could be accurately quantified, including multiple T cell subset 
and dendritic cell interactions.

Next, to investigate whether the Interact-omics framework is 
capable of resolving antigen-dependent immune cell interactions, 
we isolated CD4 T cells carrying a transgenic TCR specific for chicken 
ovalbumin (OVA) from OT-II mice and cocultured them in the presence 
or absence of its cognate antigen with a complex cellular mixture 
of murine splenocytes (Fig. 2f). As expected, cellular interactions 
between OVA-specific CD4 T cells and a range of antigen-presenting 
cells were specifically induced in the presence of the respective antigen, 
whereas cellular interactions of bystander cells remained unaffected or 
changed only mildly (Fig. 2g–j and Extended Data Fig. 3a–i). Together, 
these results demonstrate the utility of our approach in resolving 
antigen-dependent and -independent cellular interactions across com-
plex immune landscapes with a broad range of potential applications.

To evaluate the effects of various experimental conditions on the 
nonspecific formation of cellular interactions, we conducted a series of 
ex vivo benchmarking experiments (Supplementary Note 1 and Supple-
mentary Fig. 1). The results demonstrated that ex vivo-induced cellular 
interactions are relatively stable but highlighted the critical importance 
of maintaining consistent experimental parameters, including cell 
concentrations, processing times and cytometer settings, to ensure 
reliable and reproducible outcomes while limiting technical artifacts.

Dissecting the mechanism and kinetics of immunotherapies
The molecular mode of action of most cancer immunotherapies is 
based on the redirection of cancer–immune cell interactions. For 
example, bispecific antibodies engage cancer cells with immune  
cells, whereas chimeric antigen receptor (CAR)-T cells are engineered 
T cells that specifically target epitopes present on cancer cells.  
To investigate whether the Interact-omics framework is capable of 
resolving CAR-T-cell-mediated cellular interactions, we used engi-
neered green fluorescent protein (GFP)-tagged murine CAR-T cells 
targeting CD19-expressing cells in cocultures with murine splenocytes 

(Fig. 3a). As expected, our analyses revealed that both CD4 and CD8 
CAR-T cell subsets rapidly engaged in specific interactions with 
CD19-expressing target B cells (Fig. 3b–d and Extended Data Fig. 4a–h).  
As a consequence, CAR-T cell interactions with B cells were highly 
enriched when compared to interactions between B cells and endo-
genous T cells (Fig. 3e), reaching a maximum at 1 hour post-treatment, 
followed by a gradual decline (Extended Data Fig. 4i–l).

Bispecific antibodies engage T cells with tumor cells. Blina-
tumomab, which engages CD3-positive T cells with CD19-positive 
(malignant) B cells is a clinically approved immunotherapy36,37. To inves-
tigate whether the Interact-omics framework is capable of resolving 
blinatumomab-induced cellular interactions, we treated human PBMCs 
with blinatumomab ex vivo (Fig. 3f). As expected, blinatumomab 
induced a strong increase in cellular interactions among a range of B 
and T cell populations, peaking 1 hour post-treatment followed by a 
gradual decline of interactions over time (Fig. 3g–k and Extended Data 
Fig. 5a–j). As expected, the transient increase in cellular interactions of 
B cells was mirrored by a transient decrease of free single B cells and a 
time-delayed decrease in overall B cell-containing events, suggesting 
a rapid engagement of B and T cells, likely followed by a mild cytotoxic 
effect induced by blinatumomab (Fig. 3j and Extended Data Fig. 5k). In 
contrast to blinatumomab-induced B cell–T cell interactions, interac-
tions among other cell types remained unaffected, demonstrating the 
specificity of the interactions (Fig. 3k).

Notably, following chemical fixation, the quantification of  
cellular interactions induced by blinatumomab remained unaffected by 
freeze–thawing associated cryogenic preservation (cryopreservation), 
enabling a broad range of applications with primary patient material 
(Supplementary Fig. 1j). Together, these analyses demonstrate the 
broad utility of the Interact-omics framework to characterize cellular 
interactions induced by immunotherapies.

Interact-omics reveals immunotherapy response features
Blinatumomab has been approved for the treatment of B cell acute 
lymphoblastic leukemia (B-ALL), the most common type of cancer in 
children, at relapsed or refractory stages38. Although blinatumomab 
is progressing toward becoming the standard of care for relapsed and 
refractory pediatric ALL, the response rates remain heterogeneous36,37. 
While few clinical and molecular parameters have been associated with 
outcome to blinatumomab therapy, the underlying mechanisms remain 
poorly understood and a robust test predicting therapy response is 
lacking39–44. To evaluate whether the Interact-omics framework can 
be used to extract parameters associated with therapy response, we 
acquired bone marrow (BM) aspirates from 42 pediatric patients with 
relapsed B-ALL before blinatumomab treatment. Subsequently, we 
applied the Interact-omics framework using an adjusted panel on the 
samples in the presence or absence of ex vivo blinatumomab treat-
ment (Fig. 4a–c). We extracted a range of parameters from the data, 
including cellular frequencies of singlet populations in the absence of 
treatment and the induction of cellular interactions on ex vivo blina-
tumomab treatment (Fig. 4b,c). To explore mechanisms underlying 
therapy response among patients with residual disease, we compared 
patients who could unequivocally be categorized into good responders 
(n = 18) and nonresponders (n = 4) (Fig. 4d).

In line with previous studies40,41, high frequencies of various T cell 
subsets, particularly central and effector memory subsets, were associ-
ated with good response to blinatumomab (Fig. 4d,e). However, also the 
frequencies of cellular interactions before treatment or upon blinatu-
momab were associated with therapy response (Fig. 4d). For instance, 
blinatumomab induced interactions of B and T cells, and B, T and 
myeloid cells more efficiently in good responders compared to non-
responders (fold change good versus nonresponders B–T(–myeloid); 
Fig. 4d,e). Blinatumomab failed to induce effective B–T cell interactions 
in patient samples with unbalanced T cell to B cell ratios (Fig. 4f). Simi-
larly, in patient samples with high T–myeloid interactions at baseline, 
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blinatumomab treatment failed to effectively induce B–T cell interac-
tions, suggesting that T–myeloid interactions may inhibit or com-
pete with B–T cell interactions (Fig. 4g). Accordingly, high T–myeloid 
interactions at baseline were associated with therapy failure (Fig. 4d). 
A correlation analysis of selected parameters associated with therapy 
response revealed that singlet frequencies of T cell subsets were highly 
correlated among each other, whereas cellular interactions provided 
independent and additive information on therapy response (Fig. 4h 
and Extended Data Fig. 6). Jointly, these analyses provide new insights 
into the cellular mechanisms mediating response to blinatumomab and 
may lay the foundation for personalized therapy response prediction.

Downstream signaling as a consequence of cellular 
interactions
To evaluate whether Interact-omics can be used to study intracellular 
signaling in response to cellular interactions, we established a high-plex 
cytometry panel that includes an antibody detecting phosphorylation 
(pY142) of intracellular CD3 zeta (CD247), a transmembrane signal-
ing adapter protein phosphorylated upon TCR signaling and T cell 
activation (Extended Data Fig. 7a). Using this panel, we investigated 
intracellular TCR signaling in cellular interactions induced in human 
PBMCs following CytoStim (crosslinks antigen-presenting cells with 
T cells) and blinatumomab (crosslinks B cells with T cells) treatment.

Consistent with our previous results and the molecular mecha-
nisms of the inducers used, we observed few background interactions 
at homeostasis but noted specific induction of B–T cell interactions 
in response to blinatumomab treatment and broader myeloid and B 
cell interactions with T cells after CytoStim treatment (Extended Data 
Fig. 7b–d). As expected, CytoStim-induced interactions caused strong 
phosphorylation of the intracellular CD3 zeta domain in both T–B and 
T–myeloid interactions, as well as in T–B–myeloid triplets, demonstrat-
ing functional TCR engagement in the interacting T cells (Extended Data 
Fig. 7e,f). In line with its more specific crosslinking activities, blinatu-
momab caused a specific increase in phosphorylation of the intracellular 
CD3 zeta domain in T cells involved in interactions with B cells, but to 
a much lower degree in interactions not involving B cells. Collectively, 
these findings demonstrate that our approach can be used to study 
intracellular signaling in response to cellular interactions.

Organism-wide interaction mapping of viral infections
Infectious agents and pathogens induce complex cascades of organ- 
specific immune reactions in vivo, comprising cell–cell interactions, 
cell expansion and cellular trafficking, jointly establishing first line 
defense, long-lasting adaptive immunity and hematopoietic recov-
ery after pathogen insult. However, our comprehension of such 
pathogen-induced cellular immune dynamics remains limited due 
to current technological restrictions. In particular, there is a lack of 
quantitative insights into organotypic differences in the composition, 
order and kinetics of cellular interactions induced following pathogen 
exposure in vivo.

The lymphocytic choriomeningitis virus (LCMV) serves as a 
well-established murine model pathogen to study key questions in 
immunology, including the induction of innate and adaptive immu-
nity, pathologic consequences of virus infections, immune evasion 
mechanisms and virus-induced suppression of hematopoiesis45,46. 
To systematically unravel LCMV-induced alterations in the immune 
cell and cellular interaction networks across distinct organ systems, 
we applied the Interact-omics workflow to mesenteric lymph nodes 
(LNs), spleens and BM of mice at days 0 (naive), 3 and 7 after intraperi-
toneal LCMV infection (Fig. 5a). To discriminate cellular interactions 
mediated by antigen-dependent and -independent mechanisms, we 
transferred congenic, LCMV-specific CD4 and CD8 T cells recognizing 
epitopes of the LCMV glycoprotein into mice 5 days before infection 
(Fig. 5a) and included congenic markers (SMARTA:CD90.1; P14:CD45.1) 
in our cytometry panel (Methods). In total, we quantified more than 

34 million single cells from 21 cell types, and around 415,000 cellular 
interactions from 52 cell type pairs, across 36 samples (Fig. 5b,c and 
Extended Data Fig. 8). Notably, LCMV infection caused a wide range of 
alterations in cellular composition and cellular interactions. Principal 
component analysis (PCA) of cellular abundances and interactions 
revealed organ- and time-specific changes that were highly reproduc-
ible across replicates, demonstrating the robustness of our approach 
(Fig. 5d,e). To assess the reliability of interactions derived from in vivo 
settings, we performed extensive benchmarking using imaging flow 
cytometry and colabeling experiments (Supplementary Note 2 and 
Supplementary Figs. 2 and 3). The findings revealed that, although 
extra interactions may be acquired during sample preparation, these 
interactions are nonrandom, reflect underlying biological effects and 
probably provide a reliable proxy for cellular interactions occurring 
in vivo.

Clustering cellular interactions according to their virus-induced 
alterations over time revealed groups with distinct patterns of inter-
action dynamics (Fig. 6a and Extended Data Fig. 9). For example, 
cellular interactions in cluster 4 were rapidly inducible at day 3 and 
partially normalized toward day 7 post-infection. Cellular interac-
tions in this cluster comprised mainly cell types of the innate arm of 
the immune system (for example, natural killer (NK) cells, monocytes, 
macrophages), in line with their rapid response and key role in first line 
defense, as well as few nonantigen-specific adaptive immune cells. In 
contrast, clusters 3 and 5 contained a variety of interactions compris-
ing LCMV-specific T cells, which displayed a delayed but pronounced 
induction of cellular abundances and interactions at day 7, in line 
with their well-documented response pattern (Fig. 6a,b). Notably, 
LCMV-specific T cell interactions were more pronounced in spleen 
when compared to mesenteric LNs (Fig. 6c), likely reflecting a more 
rapid uptake of LCMV into the spleen after intraperitoneal administra-
tion, as previously described47. LCMV-specific T cells were also detected 
in the BM (Fig. 6b), in line with the notion that BM may serve as primary 
immune organ48. However, LCMV-specific BM T cells were less likely to 
engage in cellular interactions compared to their non-LCMV-specific 
T cell counterparts, as indicated by a negative odds ratio, taking their 
singlet frequencies into account (Fig. 6d). In contrast, LCMV-specific 
T cells in LN and spleen were more likely to engage in cellular interac-
tions when compared to their non-LCMV-specific counterparts, in line 
with the key role of LNs and spleen in the orchestration of adaptive 
immune responses (Fig. 6d).

In LCMV infections, BM myelosuppression is associated with a tran-
sient activation of NK cells, peaking at day 3 post-infection, followed by 
a rapid recovery49,50. In line with this, we observed a massive increase in 
NK cell interactions with cells of the myeloid lineage, including myeloid 
progenitors, peaking at day 3 post-infection in BM samples (Fig. 6e). 
Subsequently, NK cell–myeloid interactions decreased, followed by 
an expansion of hematopoietic stem and progenitor cells (HSPCs) and 
BM monocytes at day 7 (Fig. 6e), suggesting a switch from myelosup-
pression to active emergency hematopoiesis, in line with previously 
reported kinetics of LCMV-induced myelopoiesis51.

Notably, on infection, a rapid infiltration of monocytes into LNs 
and spleens was observed (Fig. 6f). Recruited monocytes readily 
engaged with LN and spleen B cells at day 3, partially normalizing at 
day 7 (Fig. 6g). Such extensive monocyte–B cell interactions have 
recently been described to serve as an LCMV-specific immune eva-
sion mechanism, hindering early B cell responses in a chronic model 
of LCMV infection52. In line with this, increased interactions between 
plasmablasts and LCMV-specific CD4 T cells in LN and spleen samples, 
as well as an expansion of plasma cells coincided with the disappear-
ance of suppressive monocyte–B cell interactions at day 7 (Fig. 6h,i).

Together, these results demonstrate the utility of the Interact- 
omics approach for dissecting complex immune interaction networks 
in vivo. Our data accurately recapitulate previous findings and pro-
vide a quantitative framework for a systems-level understanding of 
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virus-induced alterations of the cellular immune interaction networks 
and how they cooperate across organ systems to elicit intricate immune 
responses. However, limitations outlined in Supplementary Note 2  
and the ‘Limitations and guidelines’ section should be considered.

Application to existing cytometry data
To assess the applicability of our approach for analyzing cellular interac-
tions in existing datasets, we applied the PICtR workflow to two publicly 
available cytometry datasets53,54 (Supplementary Note 3). In a juvenile 
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Fig. 5 | Virus-induced alterations of cellular landscapes and interaction 
networks. a, Schematic overview of the experimental design. n = 4 biological 
replicates at each time point. b, Left: UMAP display of the cellular landscape. 
Recorded cells were processed with PICtR; out of 34,369,995 cells, 262,628 
sketched single cells are displayed. Right: alluvial plots depicting the change of 
single-cell frequencies over time and across organs. c, Left: UMAP displaying the 
interacting cell landscape (n = 414,564). Right: alluvial plots depicting the change 
of interacting cell frequencies over time and across organs. d, PCA of single-cell 
and interacting cell frequencies across organs and time points, encoded by color 

and shape, respectively. e, Scaled Euclidean distances from the mean naive state 
to all samples in PCA space, representing global similarities or differences in 
single-cell and interaction landscapes. P values were calculated with a two-sided 
t-test and adjusted according to Benjamini–Hochberg. Error bars indicate the 
mean and standard deviation. n = 16, box plots display the median, and first 
and third quartiles and whiskers are defined as 1.5 times interquartile range. 
D3, day 3; D7, day 7; Ag, LCMV antigen-specific; IgD, immunoglobulin D; i.p., 
intraperitoneal; i.v., intravenous; macro., macrophages; PCs, plasma cells; PC1 or 
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Fig. 6 | Cellular interaction dynamics underlying immune response to LCMV 
infection. a, Line plots depicting the frequency of cell types across time points 
and organs; obtained from k-means clustering (k = 7). Clusters with no change in 
dynamics are not shown. Horizontal bar plots at the top indicate the percentage 
of interactions contributing to each organ and LCMV-specific cells for each 
cluster (clst.). n = 4 biological replicates. b, Alluvial plots showing the fraction  
of LCMV-specific CD4+ and CD8+ T cells. c, Alluvial plots showing the fraction  
of cellular interactions comprising LCMV-specific CD4+ and CD8+ T cells.  
d, Point plots displaying the log2OR enrichment or depletion of LCMV-specific 
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n = 4 biological replicates. Red asterisks in cell type labels indicate interactions 
between the respective cell types.
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idiopathic arthritis dataset53, we identified cellular interactions linked 
to disease activity and tissue localization (Supplementary Note 3 and 
Supplementary Fig. 4). Applying our framework to a dataset54 from the 
murine proximal intestine demonstrated its utility for mapping interac-
tions with nonimmune cells (Supplementary Note 3 and Supplementary 
Fig. 5). These analyses demonstrate that our approach is adaptable to 
existing datasets, provided the data acquisition followed the guidelines 
outlined in this paper (section on ‘Limitations and guidelines’).

Discussion
Here we introduce Interact-omics, a highly flexible and scalable 
cytometry-based framework for the joint mapping of cellular land-
scapes, such as the immune system, and their physical interactions. 
We demonstrate its utility in deciphering the kinetics, mode of action 
and response mechanisms of immunotherapies, and for the quanti-
tative dissection of complex, organism-wide immune interactions 
networks in vivo.

In contrast to current methods for mapping physical interactions 
of cells, Interact-omics excels in throughput, cost effectiveness, pro-
cessing times, required technical prerequisites and ease of implementa-
tion. In fact, the Interact-omics framework can be used in conjunction 
with any multicolor fluorescence flow cytometer and our analytical 
PICtR pipeline can be applied to mine cellular interactions both in 
newly acquired and pre-existing cytometry datasets. In contrast to 
recently developed technologies that map past cellular encounters 
using transgenically engineered mouse models25–28,52, Interact-omics 
can be readily applied to any cellular suspension that is compatible with 
flow cytometry analysis, and does not rely on reporter mouse lines. We 
have demonstrated that physical interactions of cells are detected on 
freeze–thawing and can be stabilized by chemical fixation, enabling 
the implementation of the Interact-omics framework for the study of 
biobanked patient material. Notably, the costs for cellular interaction 
mapping using the Interact-omics framework are orders of magnitudes 
lower when compared to single-cell genomics-based technologies, 
while its throughput is orders of magnitudes higher. This enables 
the study of cellular interactions in currently unexplored settings, 
such as high-throughput screens, extensive time course experiments, 
organism-wide studies and large patient cohorts. While the approach 
presented here is optimized for analyzing cellular interactions among 
immune cells, the Interact-omics framework can also be used for study-
ing interactions across other cell types, assuming careful panel design 
and the adaptation of sample processing strategies to minimize tech-
nical interactions. Jointly, the aforementioned features render the 
Interact-omics framework broadly applicable to any research field 
where alterations in cellular frequencies and interactions may place 
decisive roles. These encompass, but are not limited to, basic immunol-
ogy, autoimmune diseases, cancer research, infectious diseases, drug 
development and personalized medicine.

While the Interact-omics framework focuses on quantifying 
cellular interactions at ultra-high scale, consequences of cellular 
interactions can be derived by including flow-based readouts, such 
as activation and exhaustion markers, phosphorylation status of 
signal transducers, or by complementing it with lower throughput 
single-cell genomics-based methods for cellular interaction mapping, 
such PIC-seq24 or others19–23.

Furthermore, we have demonstrated the utility of the 
Interact-omics workflow for the characterization of cellular states 
and interactions induced by immunotherapies, including CAR-T cells 
and bispecific antibodies. Our data illustrate how kinetics and mode  
of action of immune therapies can be quantified at ultra-high precision 
and cellular resolution. Owing to its high scalability and low costs,  
the Interact-omics workflow can be readily implemented into large- 
scale screens to identify or prioritize candidate immunotherapy drugs. 
Using blinatumomab as a model, we demonstrated how Interact-omics 
enables systematic identification of cellular mechanisms underlying 

therapy response, validating known biomarkers and revealing novel 
interaction-based parameters. With its scalability, rapid turnaround 
and low costs, Interact-omics provides an ideal foundation for devel-
oping companion diagnostics and advancing personalized immuno-
therapy approaches.

The extremely high throughput of the Interact-omics framework 
enables the quantitative dissection of complex interaction networks 
across entire organ systems and organisms. In this context, we have 
mapped cellular interaction networks in response to virus infection 
in mice across distinct time points and immune organs. This approach 
revealed organ-specific shifts in single-cell landscapes and cellular 
interaction networks underlying antiviral immune responses and 
identified fundamental differences in cellular interaction dynamics 
between primary and secondary lymphoid organs. Our data confirmed 
previously known and identified new cellular interaction patterns and 
provides a quantitative framework for a systems-level understanding of 
how complex cellular interaction networks cooperate across immune 
organs to jointly orchestrate immune responses. In the future, the 
Interact-omics framework could be of great utility to decipher funda-
mental principles of multilayered immune cell crosstalks underlying 
complex (patho-) physiological processes, such as age-related decline 
of the immune system or cancer immunity.

Collectively, the Interact-omics approach represents a highly 
versatile and scalable cytometry-based framework that can be readily 
implemented for the joint mapping of cellular immune landscapes and 
their physical interactions with a wide range of applications across a 
variety of research fields.

Limitations and guidelines
The presented approach uses flow cytometry to measure both single-cell 
and PIC landscapes. As physical interactions can be of biological and 
technical nature, experimental conditions that affect the formation 
of cellular interactions need to be carefully chosen and controlled. 
This includes sample preparation and processing, but also cytometric 
parameters (Supplementary Fig. 1). Particular attention should be paid 
to maintaining consistent cell concentrations during sample handling 
and ensuring stable flow rates across experimental groups. Lower cell 
concentrations and slower flow rates can help minimize technical inter-
actions. Early fixation can be used to stabilize interactions.

Given the impact of experimental conditions, we strongly recom-
mend using case-control studies where samples from all experimen-
tal groups are treated uniformly. Reporting relative enrichments of 
cellular interactions compared to controls is essential for accurate 
interpretation.

For in vivo experiments, we have demonstrated that cells with a 
strong affinity to interact can artificially interact if they are brought into 
proximity during sample preparation, even if they were physically sepa-
rated in vivo. Therefore, while these interactions may be biologically 
meaningful, this should be taken into consideration when interpreting 
the results, and pooling of organs or samples should be avoided to 
prevent artificial interactions. For novel in vivo settings, users of our 
framework may consider colabeling strategies (Supplementary Notes 
2 and 3) to assess interactions that may form ex vivo.
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Methods
Animals
Unless otherwise stated, animal experiments were conducted under 
German law and approved by Regierungspräsidium Karlsruhe (approval 
numbers DKFZ299, G-55/20, G-56/20) or the Landesamt für Gesundheit 
und Soziales in Berlin (LAGeSo, G0016/20). Mice were maintained in 
individually ventilated cages under specific pathogen free conditions in 
the animal facility of the DKFZ (Heidelberg, Germany) or at the Charité 
animal facility (FEM, Berlin, Germany) with ad libitum access to water 
and food (22 ± 2 °C, 45–65% humidity, 12 h light–dark cycle). Mice used 
in LCMV experiments were 7 weeks old; all other mice were between 6 
and 20 weeks old. CD45.1 mice were obtained from in house breeding 
at DKFZ (Z110I02, B6.SJL-Ptprca Pepcb/BoyJ) or from Charles Rivers 
(B6.SJL-PtprcaPepcb/BoyCrl). For experiments with antigen-specific 
T cells, cells were isolated from B6.Cg-Tg(TcraTcrb)425Cbn/J (OT-II) or 
LCMV-TCRtg P14 (ref. 58) and SMARTA59 mice expressing the congenic 
markers CD45.1 or CD90.1. All mice were female.

Human samples
All analyses were conducted according to the Declaration of Helsinki 
and in accordance with local ethical guidelines; written informed con-
sent of patients was obtained. Usage of samples from patients treated 
with blinatumomab in this study was approved by the ethics committee 
of Charité Universitätsmedizin Berlin (reference number EA2/147/23). 
PBMC samples from healthy blood donors were obtained as buffy coats 
from the blood donation center IKTZ Heidelberg or ZTB Berlin. Mono-
nuclear cells were isolated by Ficoll (GE Healthcare) density gradient 
centrifugation and stored in fetal calf serum (FCS) 10% DMSO in liquid 
nitrogen until usage. For the blinatumomab response analysis (below), 
BM samples from 42 patients with a B-ALL relapse were assessed. Sam-
ples were directly collected before the start of the blinatumomab 
course and processed as part of routine diagnostics by Ficoll density 
gradient centrifugation and minimal residual disease quantification. 
Remaining cells were stored in FCS 10% DMSO in liquid nitrogen for 
research purposes. Good response to blinatumomab (n = 18) is defined 
as minimal residual disease negativity directly after a blinatumomab 
course (28 days) and all subsequent time points. Nonresponse to bli-
natumomab (n = 4) is defined as leukemic cell persistence (based on 
morphological or minimal residual disease evaluation) without any 
reduction after a blinatumomab course. The remaining 20 patient 
samples could not be unequivocally assigned to these response states 
(good response versus nonresponse) or had no residual disease at the 
start of the blinatumomab course. The median age of patients in the 
study was 9.5 years. Data on sex were collected from patients of the 
B-ALL cohort. However, given that the patient cohort analyzed here 
was not part of a clinical trial, sex-specific considerations were not 
explicitly integrated into the study design. The distribution of male 
to female participants was, however, balanced (57% male, 43% female).

Isolation of murine immune cells
For isolation of antigen-specific T cells, the spleen and various LNs 
(including inguinal, axial, submandibular and mesenteric) were care-
fully extracted. Tissues were homogenized using a 40-μm filter (Falcon) 
and a syringe plunger in cold Roswell Park Memorial Institute (RPMI) 
medium (Sigma Aldrich) with 2% FCS (Gibco by Life Technologies). 
Subsequently, single-cell suspensions from spleens were treated with 
erythrocyte lysis solution (ACK buffer, containing 0.15 M NH4Cl, 1 mM 
KHCO3 and 0.1 mM Na2EDTA in water from Lonza) for a duration of 
5 min. For some readouts, these suspensions were combined with 
the LN samples or maintained separately. CD4 and CD8 T cells were 
purified using either the Dynabeads Untouched Mouse CD4 Cells 
Kit (Invitrogen) or the murine CD4 T cell isolation kit and the murine 
CD8 T cell isolation kit (Miltenyi) according to the manufacturer’s 
instructions. Purified fractions were stained for further purification 
using fluorescence-activated cell sorting (FACS) (below). For in vivo 

experiments, femurs, spleen and various LNs were dissected and 
kept separate on ice. LNs and spleens were individually processed as 
described above. Femurs were flushed using FACS buffer and homog-
enized using a 40-μm filter (Falcon) and a syringe plunger.

Ex vivo murine cocultures
Cultures containing OT-II CD4 T cells were incubated at 37 °C with 
5% CO2 in U-bottom plates in 200 μl of Dulbecco’s Modified Eagle’s 
Medium GlutaMAX (DMEM GlutaMAX, Gibco), supplemented with 
10% heat-inactivated FCS (Gibco), sodium pyruvate (1.5 mM, Gibco), 
l-glutamine (2 mM, Gibco), l-arginine (1×, Sigma), l-asparagine (1×, 
Sigma), penicillin–streptomycin (100 U ml−1, Sigma), folic acid (14 μM, 
Sigma), minimum essential medium, nonessential amino acids  
(1×, ThermoFisher), MEM vitamin solution (1×, ThermoFisher) and 
β-mercaptoethanol (57.2 μM, Sigma). Next 5 × 104 OT-II cells were incu-
bated with 1 × 105 splenocytes containing various antigen-presenting cell 
populations in presence or absence of OVA peptide (323–339, InvivoGen).

For murine CAR-T in vitro assays, GFP-expressing CD19 specific 
CAR-T cells were generated as previously described60, thawed and 
washed with PBS. Next, cells were transferred to 10% FCS RPMI 1640 
containing 0.05 μg ml−1 IL-15 (Peprotech) and 0.1% β-mercaptoethanol. 
To recover from freezing procedures, cells were incubated under the 
same conditions as described above before the coculture assay. Fro-
zen murine splenocytes were thawed and incubated together with 
CAR-T cells at a ratio of 1/2 target/effector ratio (CAR-T cells/spleno-
cytes) for 0.5 to 3 h. Subsequently, cells were collected, washed with 
FACS buffer, stained with surface markers and analyzed.

Ex vivo human cocultures
Cryopreserved PBMCs were thawed in a water bath at 37 °C, transferred 
to 10% FCS RPMI 1640 and washed twice. After each washing step, cells 
were centrifuged at 350g for 5 min. Next, 2 × 105 cells were plated in 
10% FCS RPMI 1640 and cultured short term for up to 5 h in 200 μl of 
RPMI 10% FCS. CytoStim (Miltenyi) was used in concentrations recom-
mended by the manufacturer at 37 °C for 2 h before collection.

For experiments using a blinatumomab analog (InvivoGen), a con-
centration of 50 ng ml−1 was used. The incubation period ranged from 
0.25 to 5 h at 37 °C and 5% CO2 in 96-well U-bottom plates. For experi-
ments assessing the stability of blinatumomab-induced interactions 
on cryopreservation, cells were either incubated for 2 h in presence 
of the compound and stained with surface antibodies and fixed with 
4% paraformaldehyde (PFA) (ThermoFisher) or frozen in Bambanker 
freezing medium (Nippon Genetics), thawed after 18 h and treated in 
the same way as the nonfrozen cells.

For in vitro benchmarking experiments, human PBMCs were 
treated with CytoStim as described above; control groups were left 
untreated. Then, cells were split into two groups each and stained with 
CD45-APC-Fire810 or CD45-PE-Fire640, respectively. After mixing the 
labeled groups, cells were incubated for 0–4 h at 4 °C (200,000 cells per 
well in 50 μl during staining and acquisition) or processed at seeding 
densities of 25,000 to 250,000 cells per well in 96-well plates (in 50 μl 
during staining and acquisition). Subsequently, cells were gathered, 
washed with FACS buffer, stained with surface markers, fixed with 2% 
PFA (except the nonfixed control) and analyzed.

For measuring phosphorylated CD247, human PBMCs were seeded 
at 100,000 cells per well in 200 μl and treated for 1 h with blinatu-
momab (160 ng ml−1) or CytoStim as described above. Following the 
stimulation period, cells were fixed immediately by adding CytoFix 
buffer (15 min, 4 °C). Cells were washed and resuspended in 200 μl 
of 2.5× Perm/Wash buffer, incubated for 30 min at 37 °C and stained 
overnight at 4 °C before analysis.

In vivo mouse experiments
Five days before infection, 1 × 104 LCMV-specific T cells (SMARTA; 
expressing congenic marker CD90.1) and CD8+ T cells (P14; expressing 
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congenic marker CD45.1) were administered intravenously into 
C57BL/6J in 300 μl of balanced salt solution, resulting in an approxi-
mate seeding of 1 × 103 cells per mouse61. The viral infection was induced 
intraperitoneally using 200 PFU of the LCMV Armstrong strain62. Mice 
were euthanized on day 3 and/or day 7 post-infection, and various tis-
sues including the spleen, mesenteric LNs and bones were dissected 
and processed for spectral flow cytometry analysis.

For the in vivo benchmarking experiment, LCMV-specific CD4 
T cells were transferred into C57BL6 (CD45.2) hosts 5 days before 
infection as described above. CD45.1 (B6.SJL-PtprcaPepcb/BoyCrl) 
and CD45.2 hosts were infected intraperitoneally as described above, 
and spleens were harvested on day 7 post-infection. Spleens were  
split into four equal pieces and mixed across CD45.1/CD45.2 hosts 
for joint tissue homogenization. Mixed samples were processed for 
spectral flow cytometry analysis.

Flow cytometry, cell sorting and image-enabled flow 
cytometry
Unless otherwise stated, cell suspensions were resuspended in 2% 
FSC PBS (FACS buffer, 0.5 mM EDTA optionally) for performing flow 
cytometric stainings (Supplementary Tables 2–13). For ex vivo read-
outs with bispecific engagers and antigen-specific T cells, cells were  
gathered, centrifuged 5 min at 350g and stained with surface marker 
panel master mixes using FACS buffer and addition of Brilliant Stain 
buffer (BD) according to the manufacturer’s recommendation. Cells 
were stained for 30 min on ice in 96-well V-bottom plates, followed by 
washing with FACS buffer, centrifugation for 5 min at 350g and resus-
pension in 200 μl of FACS buffer. For more time-consuming in vivo 
experiments, cells were labeled with fixable dead cell exclusion dyes fol-
lowed by fixation of obtained single-cell suspensions with cold 2% PFA 
PBS for 15 min at room temperature. Cells were washed, centrifuged 
for 5 min at 350g and then stained overnight at 4 °C. After washing and 
centrifugation for 5 min at 350g, cells were filtered through a 35-μm 
cell strainer and kept on ice until flow cytometric analysis. For flow 
cytometric analysis, a Cytek Aurora (Cytek Biosciences) or LSR Fortessa 
(BD) equipped with five lasers was used. For sorting of naive T cells  
in ex vivo setups, FACSAria Fusion or FACSAria II sorters equipped  
with 70-μm nozzles were used. For imaging cytometry, image-enabled 
cell sorting using the BD CellViewTM Imaging Technology29 or  
an ImageStream (Cytek) was used. For image-enabled cell sorting, 
PBMCs were incubated for 2 h with CytoStim, stained with surface 
markers followed by fixation with 2% PFA PBS as described above  
and operated using a 100-μm sort nozzle, with the piezoelectric trans-
ducer driven at 34 kHz and automated stream setup by BD FACSChorus  
Software, and a system pressure of 20 psi. For the ImageStream  
experiment, data were acquired using the Cytek INSPIRE software.

Image-enabled flow cytometry analysis
For image-enabled flow cytometric analysis, radiofrequency images 
underwent processing as previously described29. The raw image TIFF 
files were imported into ImageJ and processed with the BD CellView 
plugin. The corresponding FCS files were loaded into FlowJo (BD), and 
cells were gated as living CD45+ cells. Using the flowCore63, CytoML64 
and flowWorkspace65 packages, the generated FlowJo workspace was 
loaded into R (≥v4.3.0) for further processing. Subsequently, images 
were converted to JPG format, and channels containing the light-loss, 
FSC and side scatter parameters were kept for downstream analysis. 
Four replicates, each comprising 1,000 images, were manually cat-
egorized as singlet, doublet, triplet or higher-plex multiplets, and the 
categories were used to train a decision tree-based classification model 
using Rpart66 and caret67. As features for the model, the image-based 
features, the conventional flow cytometry parameters and the FSC 
ratio, defined by the quotient of FSC-A and FSC-H, were used. Feature 
importance in the model was determined to identify relative contribu-
tions of each variable in making accurate predictions.

Otsu30 thresholding, which minimizes intragroup variance, was 
applied to a histogram of the FSC ratio divided into at least 1,000 bins, 
effectively separating the data into two categories based on whether 
their FSC ratio is above or below the threshold.

Louvain clustering was performed for n = 100 iterations (resolu-
tion 1) on all or a subset of the following features: image-based param-
eters, conventional flow parameters and the FSC ratio. Consensus 
clustering solutions were calculated using soft least squares Euclidean 
consensus partitions as implemented in the clue68 package. Data were 
visualized in uniform manifold approximation and projection (UMAP)55 
embeddings using the same input features as used for clustering. UMAP 
embeddings were computed across 15 nearest neighbors and a mini-
mum Euclidean distance of 0.1, and populations were annotated based 
on cell-type-specific markers and their combinations. Furthermore, 
Louvain clustering was performed for n = 100 iterations with different 
resolution parameters and variation in cluster labels between impor-
tant features including image-based parameters and conventional flow 
parameters was assessed using the adjusted rand index.

For ImageStream-based analyses, ImageStream fluorescence 
intensity values (based on the sum of the pixel intensities in the mask 
as selected by ImageStream, background subtracted) were compen-
sated and transformed using FlowJo (v.10.10) and IDEAS (v.6.2). Data 
were processed using PICtR (below). Interacting populations were 
solely annotated based on mutually exclusive marker expression, 
since forward scatter properties are not acquired by ImageStream. For 
conventional gating, gates were selected in FlowJo.

For cell segmentation from brightfield images, the cyto2 model 
from the Python package CellPose69 was used with a cell pixel diameter 
of 20. To remove cellular debris, events that met any of the following 
criteria were excluded: major axis length <15 pixels or >40 pixels,  
circularity <0.7, area <100 pixels or >1,000 pixels. Area and major  
axis length were computed using the Python package scikit-image70. 
Circularity was calculated using the formula 4×π×area

perimeter2
, with perimeter  

values also obtained from scikit-image. This filtering process excluded 
approximately 4% of the detected objects.

Identification and analysis of PICs with PICtR
Benchmarking. Benchmarking was performed on the imaged-enabled 
flow cytometry data with n = 3,865 manually classified events across 
n = 4 replicates. Several thresholding methods based on the FSC ratio 
were used to define a cutoff of events with a high or low FSC ratio (Sup-
plementary Table 14). Otsu30, IsoData71, Intermodes72, RenyiEntropy73, 
Li74, Shanbhag75, Huang76 and Mean77 algorithms were used as imple-
mented in the R package autothresholdr78, and the Triangle79 algo-
rithm was ported from the ImageJ implementation in Java. k-means 
clustering was used with k = 2 for thresholding and Gaussian mixture 
models were computed as implemented in the R package mclust80. 
Performance of the methods was evaluated based on the annotation 
of the image-enabled flow cytometry data and reported as F1 scores, 
where 1 indicates a perfectly accurate reproduction of the manual 
ground-truth classification.

Next, different clustering algorithms (Supplementary Table 15) 
were evaluated regarding their ability to discriminate single and inter-
acting cells considering conventional flow cytometry features (forward 
scatter, side scatter, cell type markers CD45, CD3, CD19, HLA-DR and 
CD33, and the FSC ratio). Candidates were selected based on their 
popularity in the single-cell and flow cytometry fields or based on 
their performance on high-dimensional single-cell flow and mass 
cytometry data as evaluated by Weber and Robinson81. Louvain31 and 
Leiden82 clustering (implemented through igraph) were used on a 
shared nearest neighborhood graph with k = 5 nearest neighbors, 
HDBSCAN83,84 (hierarchical density-based spatial clustering of applica-
tions with noise) was used on a UMAP embedding with k = 15 nearest 
neighbors and Phenograph85 was used with Louvain or Leiden cluster-
ing. FlowSOM86 (Spectre implementation), FlowMeans87, Rclusterpp88,89 
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and Immunoclust90 were used directly on the features. Each method 
was run for n = 100 iterations and the performance was reported as  
F1 scores based on the ground-truth classification.

Flow cytometric data preprocessing. For full-spectrum flow cyto-
metry data, raw FCS files were spectrally unmixed using the inbuilt 
unmixing function of the SpectroFlo (Cytek Biosciences) software. FCS 
files were imported into FlowJo (BD) to assess unmixing by visualizing 
N × N plots. Axes were adjusted wherever needed and parameters for 
logicle91 or generalized bi-exponential transformation of data were 
defined for every surface marker individually. PeacoQC92 was used as 
an automatic quality control mechanism for cytometry data where 
needed. The populations of interest were exported using channel 
values defined by the inbuilt export function of FlowJo. Raw and pro-
cessed cytometry data for key experiments are provided at https://doi.
org/10.5281/zenodo.10637096 (ref. 93).

PICs toolkit in R (PICtR). Usage and processing of reduced exemplary 
data are provided in a vignette.

The workflow starts by importing compensated and transformed 
cytometry data (CSV files) into R (≥v.4.3.0). BPCells94 is used for 
bit-packing compression on a high-performance computing cluster 
to manage extensive data. For each measured event, the FSC ratio, 
defined by the ratio of FSC-A and FSC-H, is calculated and scaled to 
transform the data into a similar range as recorded marker expression 
values. For the downstream analysis, the measured marker expression 
values, forward scatter, side scatter and the determined FSC ratio 
parameter are used as features. Next, the data are sampled using an 
atomic sketching approach as implemented in Seurat v.5 (ref. 32). This 
approach is particularly effective in preserving rare events, including 
cellular interactions.

Sampled data are further processed with the Seurat workflow. For 
the datasets in this paper, n − 1 principal components were chosen for 
dimensionality reduction, however, the number of components can be 
adjusted. The resulting principal component space is used to construct 
a shared nearest-neighbor graph across the 20 nearest neighbors and to 
determine the UMAP embeddings using 30 neighbors and a minimum 
cosine distance of 0.3 for the manifold approximation. Furthermore, 
the shared nearest-neighbor graph is used as input for Louvain clus-
tering. Other clustering methods are provided as alternatives. For 
cells not included in the initial sketching process, cluster labels are 
determined using linear discriminant analysis as implemented in the 
R package MASS95.

Clusters that contain interacting cells are selected based on 
the FSC ratio distribution. By default, a discriminating threshold is 
obtained using the Otsu method, but alternative thresholding methods 
are also available. Next, the fraction of cells above and below the FSC 
ratio threshold is determined per cluster. Finally, based on the pre-
dicted cluster labels from linear discriminant analysis, interacting cells 
within the entire dataset are identified. Interacting cells are subjected 
to PCA, shared nearest-neighbor graph construction, clustering and 
UMAP analysis to obtain a refined characterization.

Annotation of PICs. Clusters of single cells are annotated based on 
known cell identity markers and expert knowledge. Similarly, clusters 
identified as interacting cell populations are annotated based on the 
combination of mutually exclusive surface markers (for example, 
evaluated through marker enrichment modeling56). For example, 
coexpression of the B cell marker CD19 and the T cell markers CD3 
and CD4 within an interacting cluster indicates an interaction of a B 
and CD4+ T cell.

Of note, interacting cell clusters that express markers from only 
one cell identity might represent homotypic cellular interactions (for 
example, interactions between two B cells). Since alternative expla-
nations, such as preceding cytokinesis, cannot be ruled out, clusters 

such as these should be excluded from downstream analysis to avoid 
low-confidence annotations.

Adjustment of counts of PICs. Frequencies of interactions are 
reported as the frequency among all live, high-quality events or the 
frequency among all interacting cells. Alternatively, interaction fre-
quencies are normalized by taking the frequency of the respective 
interaction partners into account: fA denotes the fraction or rate of cell 
type A, and analogously, fB denotes the fraction or rate of cell type B. 
Furthermore, let fAB denote the fraction or rate of interacting cells  
of types A and B. To assess the number of such interacting cells, we 
introduce the enrichment term eAB =

OAB

EAB
 where OAB = fAB denotes  

the observed and EAB denotes the expected rate of interacting cells. 
The expected rate is given by the harmonic mean H(fA,fB) of the  
two singlet rates:

H (x, y) = 2
1
x
+ 1

y

= 2xy
x+y

. We thus get for the enrichment eAB:

eAB =
fAB

( 2fAfB
fA+fB

)
(1)

Of note, the harmonic mean of a list of numbers tends strongly toward 
the least element of the list. In our case with two entries, in case fA ≫ fB, 
we get:

EAB = H (fA, fB) =
2fAfB
fA + fB

≈ 2fAfB
fA

= 2fB (2)

The frequency of expected interactions between two cell types 
with strongly different abundance is thus given by the less abundant 
cell type. Still, even for the more abundant cell type A, EAB increases 
with increasing fA:

∂EAB
∂fA

=
2fB (fA + fB) − 2fAfB

(fA + fB)
2 = 2fAfB

(fA + fB)
2 > 0∀fA > 0∀fB > 0 (3)

Blinatumomab response analysis
BM aspirates obtained from 42 relapsed B-ALL patients were thawed 
in a water bath at 37 °C, transferred to 10% FCS RPMI 1640 and washed 
twice. After thawing, each sample was split into two. One half of the 
sample was cultured in 200 μl of RPMI 1640 (10% FCS) supplemented 
with 50 ng ml−1 blinatumomab analog (InvivoGen) for 1 h at 37 °C and 
5% CO2 in a 96-well U-bottom plate. The other half of the sample was 
cultured in RPMI 1640 (10% FCS) without blinatumomab supplementa-
tion for 1 h at the same conditions. After the incubation, cells were col-
lected, washed with FACS buffer, stained with the surface marker panel 
and analyzed. Raw FCS files and CSV files were processed as described 
above. To analyze whether certain features are associated with the two 
response groups (good responders and nonresponders) the mean 
value for each feature in the dataset (singlet frequency, interacting cell 
frequencies and fold changes of interacting cells after blinatumomab 
treatment), was calculated for both groups. Subsequently, the fold 
change for each feature was computed as the ratio of the mean value 
in the good responder group to that in the nonresponder group. Fur-
thermore, a two-sided t-test was performed for each feature to test 
for significance between groups. Before performing the correlation 
analysis, a feature selection was conducted to refine the dataset for 
more targeted analysis. This selection was based on the results of 
a univariate analysis, by which features were selected based on an 
abs(t-value) threshold greater than 1.5. For these selected features, 
a correlation matrix was computed using the function cor() from the 
stats package. Afterward, the distance matrices were created, and a 
hierarchical clustering was performed on the rows and columns of 
the correlation matrix separately.
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Statistics and reproducibility
Numerical data were processed with R (≥v.4.3.0) or Python v.3.12.5; 
see Supplementary Table 16 for details. Two sample groups were com-
pared by parametric tests (two-tailed Welch t-tests), or nonparamet-
ric tests (two-sided Wilcoxon rank sum tests or estimated marginal 
means57) depending on the distribution of the underlying data points as  
evaluated by Shapiro–Wilk tests. Analysis of variance was used for  
multiple groups after evaluation of the distribution of the under lying 
data points by Shapiro–Wilk tests. Details about adjustments for  
multiple comparisons can be found in the respective figure legends. 
No statistical method was used to predetermine sample size.

Where applicable, PeacoQC or FlowAI96 were used to exclude 
low-quality flow cytometry events and cells were gated according to 
the provided gating strategies. Furthermore, cells were removed when 
high autofluorescence or signal anomalies suggested a low-quality 
event. For the B-ALL cohort (n = 42), we compared patients who could 
unequivocally be categorized into good responders (n = 18) and non-
responders (n = 4) to explore mechanisms underlying therapy response 
among patients with residual disease. The remaining 20 patient sam-
ples were therefore excluded from the downstream analysis. Data 
points were excluded from the downstream analysis if a population of 
cells was not detectable across all conditions and the excluded popula-
tions are noted in the respective figure legends. Clusters of PICs without 
a cell type exclusive marker combination might represent homotypic 
interactions and were excluded from the downstream analysis.

The investigators were not blinded to allocation during experi-
ments and outcome assessment. Mice, murine samples and PBMC 
samples from healthy blood donors were randomly allocated to groups. 
The B-ALL experiments were not randomized since all patient samples 
were measured in the presence and absence of blinatumomab.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Raw and processed cytometry data for key experiments are available on 
Zenodo at https://doi.org/10.5281/zenodo.10637096 (ref. 93). Source 
data are provided with this paper.

Code availability
PICtR is available as an open-source R package available on GitHub  
at github.com/agSHaas/PICtR. Code to reproduce key analysis results  
is available on GitHub at github.com/agSHaas/ultra-high-scale- 
cytometry-based-cellular-interaction-mapping/.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Technical aspects of cytometry-based cellular 
interaction mapping. a. Performance of different classification methods based 
on the FSC ratio as measured by the F1 score. Manual image annotation served as 
the ground truth; see Methods for details. n = 4 technical replicates are shown in 
the scatter plot; bars indicate the mean F1 score. Error bars indicate the standard 
deviation. b. Dot plot displaying the forward scatter area (FSC-A) and forward 
scatter height (FSC-H) properties of ground truth singlets; the Otsu threshold 
of the FSC ratio is shown as a diagonal line. The bar plots show all ground truth 
singlets split into correctly classified and misclassified events according to 
the FSC ratio threshold and are colored by marker expression. n = 4 technical 
replicates; error bars indicate the standard deviation. c. Gating strategy to select 
Lymphocytes and live cells using scatter properties and a live-dead (LD) marker. 
This gating strategy was employed throughout the manuscript. d-g. Louvain 
clustering performed on the top important features from the feature importance 
analysis (see Fig. 1c) and cell type markers. d. Annotated UMAP representation. 
e. UMAP embedding from panel d with cells exceeding the Otsu threshold of 
the FSC ratio highlighted in blue (top) or cells colored by their ground truth 
annotation (bottom). f. Relative frequency of singlets and interacting cells in 
each population classified according to the FSC-ratio. Error bars indicate the 
standard deviation. g. Relative frequency of cells in each population based 
on the ground truth annotation. Error bars indicate the standard deviation. 

h-k. Louvain clustering performed on cell type markers only. h. Annotated 
UMAP representation. i. UMAP embedding from panel h with cells exceeding 
the Otsu threshold of the FSC ratio highlighted in blue (top) or cells colored 
by their ground truth annotation (bottom). j. Relative frequency of singlets 
and interacting cells in each population classified according to the FSC-ratio. 
Error bars indicate the standard deviation. k. Relative frequency of cells in 
each population based on the ground truth annotation. Error bars indicate the 
standard deviation. l. Feature plots showcasing cell type marker expression in the 
UMAP embedding from Fig. 1f. m. Heatmap depicting normalized mean feature 
expression (rows) within merged clusters derived from Louvain clustering 
(columns, on conventional flow parameters) across replicates. Populations are 
the same as in Fig. 1f. n. Histogram colored by the ground truth annotation and 
split by the identified singlet and multiplet clusters in Fig. 1f. The Otsu threshold 
is shown. o. Performance of different clustering methods evaluated regarding 
their ability to resolve singlet and interacting populations. All algorithms were 
used for n = 100 iterations on conventional flow parameters including forward 
scatter parameters, side scatter parameters, cell type markers and the FSC ratio, 
see Methods for details. n = 4 technical replicates are shown in the point plot; 
bars indicate the mean F1 score. Error bars indicate the standard deviation. 
Abbreviations: UMAP: uniform manifold approximation and projection, CD33: 
myeloid marker, CD19: B cell marker, CD3: T cell marker.
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Extended Data Fig. 9 | Cluster frequencies of single and interacting cell 
landscapes of LCMV-infected mice. a. Heatmap of single cell cluster frequencies 
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are ordered based on hierarchical clustering (for reasons of readability, the 
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