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Abstract

Plain language summary

Background Anxiety is a common yet often underdiagnosed and undertreated comorbidity
in multiple sclerosis (MS). While altered fear processing is a hallmark of anxiety in other
populations, its neurobehavioral mechanisms in MS remain poorly understood. This study
investigates the extent to which neurobehavioral mechanisms of fear generalization
contribute to anxiety in MS.

Methods We recruited 18 persons with MS (PwMS) and anxiety, 36 PwMS without anxiety,
and 23 healthy persons (HPs). Participants completed a functional MRI (fMRI) fear
generalization task to assess fear processing and diffusion-weighted MRI for graph-based
structural connectome analyses.

Results Consistent with findings in non-MS anxiety populations, PwMS with anxiety exhibit
fear overgeneralization, perceiving non-threating stimuli as threatening. A machine learning
model trained on HPs in a multivariate pattern analysis (MVPA) cross-decoding approach
accurately predicts behavioral fear generalization in both MS groups using whole-brain fMRI
fear response patterns. Regional fMRI prediction and graph-based structural connectivity
analyses reveal that fear response activity and structural network integrity of partially
overlapping areas, such as hippocampus (for fear stimulus comparison) and anterior insula
(for fear excitation), are crucial for MS fear generalization. Reduced network integrity in such
regions is a direct indicator of MS anxiety.

Conclusions Our findings demonstrate that MS anxiety is substantially characterized by fear
overgeneralization. The fact that a machine learning model trained to associate fMRI fear
response patterns with fear ratings in HPs predicts fear ratings from fMRI data across MS
groups using an MVPA cross-decoding approach suggests that generic fear processing
mechanisms substantially contribute to anxiety in MS.

Multiple sclerosis (MS) is a chronic
autoimmune disease that affects the brain
and spinal cord, leading to muscle weakness,
tiredness, and cognitive difficulties. Anxiety is
common in people with MS, but the brain
mechanisms behind it are not fully
understood. This study imaged the brain of
people with MS responding to learned signals
of fear/threat. People with MS and anxiety
tended to respond to non-threatening situa-
tions as if they were threatening. A compu-
tational model was generated based on brain
activity from healthy individuals that predicted
this pattern in people with MS, suggesting
similar fear processing occurs in healthy
individuals and people with MS. These find-
ings could help clarify how anxiety in MS may
involve general brain mechanisms of threat
processing, which could support improved
detection and treatment in the future.

Multiple Sclerosis (MS) is frequently accompanied by anxiety', with a higher
lifetime prevalence of anxiety disorders (ADs) in persons with MS (PwMS;
35.6%) than the general population (29.6%; e.g.,”). While anxiety can nega-
tively impact neurocognitive function in MS’, reduce quality of life’, and may
even be a prodrome of MS’, it is often underdiagnosed and undertreated”.
The mechanisms underlying anxiety in MS remain poorly understood,
and there is ongoing debate as to whether it rather follows a cognitive
reaction to MS progression or whether it is actively promoted by MS-driven
pathology (such as degeneration of neural fear processing regions or
inflammation and subsequent demyelination of anxiety-related white
matter [WM] pathways; refs. 7-9). Specific components of anxiety, like

altered fear processing—a key feature of ADs'*—can be effectively studied
using fear conditioning tasks, as shown in studies of anxiety in the general
population and psychiatric patients ("' provides an overview); however,
these have rarely been investigated in MS. In basic fear conditioning, a
neutral stimulus is paired with an aversive unconditioned stimulus (US; e.g.,
an electric shock) and becomes a conditioned threat stimulus (CS+) that
elicits fear on its own after repeated couplings. Another stimulus, never
coupled with the US, becomes a safety cue (CS—). A more complex task with
high real-world relevance is the generalization gradient paradigm, which
demonstrates how individuals generalize fear from aversive to non-aversive
stimuli. In this task, stimuli are selected from a perceptual continuum
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(e.g., comprising a large ring as CS+, a small ring as CS—, and rings of
intermediate diameter also never coupled to the US but perceptually brid-
ging the gap between the CS+ and the CS— as generalization stimuli; GS).
Individuals with panic disorders", generalized anxiety disorder”’, and
posttraumatic stress disorder' exhibit less steep declines in fear responses to
GS that are increasingly dissimilar from the CS+ compared to HPs. This
results in flatter gradients, indicating fear overgeneralization. Across neu-
roscience and psychiatric studies'', hippocampal functioning appears
pivotal importance for fear generalization, as it mediates the comparison of
stimulus representation to the CS+; if this comparison is inaccurate or
biased, overgeneralization is promoted.

Thus, motivated by the importance of anxiety in MS, the scarcity of
research on its mechanisms, and insights gained from fear conditioning
tasks into the pathophysiology of anxiety in the general population and
psychiatric cohorts, we employed a validated functional MRI (fMRI) fear
generalization gradient task'’ combined with diffusion-weighted imaging
(DWI) MRI to study fear generalization at behavioral, functional and
structural level in MS.

18 PWMS with anxiety (PWMSA), 36 PwMS without anxiety
(PWMSNA), and 23 healthy persons (HPs) were studied. We com-
puted behavioral generalization based on shock-risk ratings to test
the hypothesis that PWMSA exhibit fear overgeneralization similar to
individuals with anxiety but without MS, as observed in non-MS
studies (e.g.,''). We tested the hypothesis that fear generalization
recruits overlapping neural processing systems across groups by
employing a multivariate pattern analysis (MVPA) cross-decoding
approach'®, evaluating whether a machine learning (ML) algorithm,
trained on rating and fMRI fear response data from HPs, could
predict risk ratings of PWMSA and PWMSNA based on their fMRI
data. Finally, we related patients’ behavioral fear generalization to
graph-based structual brain network parameters (e.g.,'”’) derived from
DWI, to test our hypothesis that network integrity of generic fear
generalization areas reflects behavioral generalization in MS.

These analyses show that, similar to individuals with anxiety but
without MS, PwMSA tend to overgeneralize fear, responding to non-
threatening cues as if they pose a threat. A machine learning model trained
on HPs successfully predicts behavioral fear generalization in both MS
groups using whole-brain fMRI patterns. Further analysis of regional fMRI
data and structural brain networks indicates that increased activity and
network integrity in partially overlapping brain regions, such as hippo-
campus involved in comparing fear stimuli and anterior insula linked to fear
reactivity, corresponds to stronger fear generalization in PwMS. Moreover,
lower structural network integrity in these regions corresponds with greater
anxiety symptoms in PwMS.

Materials and methods

Participants

58 PwMS and 33 HPs were recruited through Charité outpatient clinics and
advertisements. Participants underwent clinical assessments and MRI scans
within a two-week period. Inclusion criteria for PWMS included age 18-65
years, relapsing-remitting or secondary progressive MS according to the
revised McDonald criteria®, stable or no immunomodulatory treatment for
the past six months, and the mental and physical capability for study par-
ticipation. Exclusion criteria encompassed other neurological and immune-
mediated disorders or psychiatric disorders other than ADs and depressive
disorders, relapses or steroid treatment during the last four weeks, and MRI
contraindications. Where applicable, inclusion and exclusion criteria for
HPs were identical. Applying these criteria yielded 54 PwMS. Twenty-nine
HPs met the criteria, but only 23 fulfilled rating criteria for behavioral task
ratings and are thus referenced throughout, as HPs were only included in
analyses involving these ratings.

Inclusion and ethics
All participants provided informed consent in accordance with the
Declaration of Helsinki. The study protocol was approved by the

ethics committee of Charité—Universititsmedizin Berlin (EA1/209/
19). The study population included adult participants of diverse
gender identities and age groups, and efforts were made to ensure
inclusivity and representativeness. No vulnerable populations were
targeted or excluded. All methods were carried out in accordance
with relevant guidelines and regulations.

Clinical assessment

The study physician assessed clinical disability using the Expanded Dis-
ability Status Scale (EDSS™') and evaluated the presence of neurological,
psychiatric, and immune-mediated diseases, occurrence of relapses, use of
steroids, immunomodulators, or antidepressants, and MRI-related con-
traindications. Anxiety was assessed using the trait scale of the German
version of the STAI (STAI-T; ref. 22), which measures the stable propensity
to experience anxiety. A cutoff of > 41 points (**) classified anxiety, resulting
in 18 PWMSA and 36 PWwMSNA. Information processing capacities were
assessed by measuring the average time required for risk rating during the
fMRI task (see below). Self-report data were collected with the Beck
Depression Inventory II (BDI-II**) and the Modified Fatigue Impact Scale
(MFIS®).

fMRI fear generalization task

We implemented an fMRI task based on the paradigm developed by Lissek
et al.” to study neurobehavioral fear generalization in MS. The task com-
prised three stages: pre-acquisition (assessing baseline responses to stimuli
in a neutral, unconditioned state), acquisition (during which participants
learned the association between US — and CS+, and the absence of US - CS-
associations), and generalization (assessing responses to stimuli following
conditioning). Throughout all stages, participants were instructed to rate the
perceived risk of shock as quickly as possible upon presentation of the rating
cue. Fig. 1 outlines key task features. Additional details, such as shock
application and the calibration procedure used to individuals adjust shock
intensity (i.e., US) prior to MRI, are provided in the Supplement (see “fMRI
fear generalization task” in “Supplementary methods”).

MRI sequences

All MR images were acquired with the same 3 Tesla whole-body tomograph
(Magnetom Prisma, Siemens, Erlangen, Germany) and 64-channel head
coil. Acquisition of anatomical MRI scans comprised a saggital T1-weighted
and FLAIR sequence. Functional scans were acquired using a T2*-weighted
multi-band Echo-Planar-Imaging (EPI) Blood-Oxygen-Level-Dependent
(BOLD) sequence from the Human Connectome Project26. Additionally,
two spin-echo EPI reference volumes with opposing phase encoding
directions were acquired prior to the first fMRI run with matching readout
and geometry for conducting a distortion correction of fMRI scans. DWI
data required were acquired with a multi-shell DWI MRI sequence from the
Human Connectome Projectzs. Also, for DWI distortion correction, we
acquired pairs of spin-echo EPI reference volumes with opposing phase-
encoding directions with matching readout and geometry. For details, see
“MRI sequences” in “Supplementary methods” in the Supplement.

Processing of anatomical MRI scans

This comprised a manual lesion mapping using FLAIR scans, a combined
spatial normalization and segmentation of T1-weighted images to the
anatomical standard space defined by the Montreal Neuological Institute
(MNTI";) with SPM12 (Wellcome Trust Centre for Neuroimaging, Institute
of Neurology, University College London, London, UK), and a determi-
nation of a gray matter (GM) group mask covering the entire brain (see
“Processing of anatomical MRI scans” in “Supplementary methods” in the
Supplement).

fMRI preprocessing and brain activity modeling

We linearly coregistered the EPI reference volume with posterior-to-
anterior encoding direction and the fMRI scans of each run to the space of
the EPI reference volume with anterior-to-posterior encoding direction
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Fig. 1 | fMRI fear generalization task. The fMRI task comprises three consecutive
stages: Pre-acquisition (two runs), acquisition (one run), and generalization (two
runs). a depicts the stimuli displayed to the participants: five ring-shaped stimuli
(i.e., the CS+, a ring-shaped CS— [CS,—], and three GS) and a square-shaped CS—
(CSs—). During pre-acquisition, all six stimuli were shown in eight trials per run
each, but none was ever paired with the shock. During acquisition, the CS+, CS,—
and CS,— were shown in 15 trials each, and the CS+ co-terminated with an electrical
shock (US) in twelve trials. The generalization stage was identical to pre-acquisition
except that four trials were included additionally in which the CS+ co-terminated
with a shock to prevent fear extinction. Prior to task onset, the participants were
instructed that they might learn to predict the occurrence of a shock if they attend to
the depicted stimuli. b illustrates two trials of a generalization run. Across stages,
trials were composed of time bins with two seconds duration. Each trial started with

r

the presentation of a CS or GS (two bins duration) and was followed by an ITI of one
to three bins (average: two bins) duration. Additionally, one of four different
arrowheads (a green one pointing up, yellow - left, red - right and blue - down) was
shown in the middle of the screen during a bin. The bin-wise structure served two
purposes. First, the appearance of a green arrowhead signaled the participant to rate
the perceived risk of shock (ranging from minimal to moderate to maximal) for the
currently depicted ring- or square-shaped stimulus as quickly as possible using an
MRI-compatible response box. Second, the participants were instructed to focus the
center of the arrowheads to minimize their head motion. For further details, see
Supplement. Abbreviations: CS+ conditioned stimulus, CS— safety cue, fMRI
functional MRI, GS generalization stimulus, ITI inter-trial-interval, US uncondi-
tioned stimulus.

with SPM12. Afterwards, we conducted a distortion correction of the fMRI
scans per run with the FSL-routine top-up”**’ based on the EPI reference
volumes. Next, the fMRI scans of a run were realigned to correct for head
motion. After averaging the realigned scans, the mean image was linearly
coregistered to the T1-weighted scan, and the parameters determined were
used to linearly coregister the full series of fMRI scans to the T1-weighted
scan. By then, applying the deformation field computed for the T1-weighted
image during the combined normalization and segmentation of T1-
weighted scans to the coregistered fMRI scans, these were mapped to MNI
space. Finally, a spatial smoothing (8 mm full-width at half maximum
Gaussian kernel) and a temporal high-pass filter (128's cut-off) were
performed.

Following", modeling of brain activity voxel timeseries during the
two generalization runs was then conducted based on the preprocessed
scans per participant in a run-wise fashion with a General Linear Model
(GLM) and a design matrix including eight regressors reflecting the
timing of task components, five of which were regressors of interest—one
for each ring-shaped stimulus (i.e., the CS+, GS1 - 3, and the CS,—).
Additionally, it contained a regressor for the CS;—, one for trials where
the CS+ was paired with the US, and one for the button presses per-
formed for risk rating. Besides these regressors reflecting the timing of
task components, another six regressors (derived from the realignment of
fMRI scans during preprocessing) were included in the design matrix,
reflecting the participants’ head motion. Except for the regressor coding
button presses, boxcar regressors coding ones for the two-time bins per
trial presenting CS or GS and zeros for the ITI time bins were determined
first for the eight regressors reflecting task components. For button
presses, the boxcar regressor coded ones for the period from the onset of
the rating bin to the time of the button press and zeros for the remaining
time. After these boxcar regressors were defined, they were convolved
with the hemodynamic response function to account for the temporal
characteristics of the BOLD response. The full design matrix of all
fourteen regressors was then analyzed with the GLM to compute the
neural responsivity to each regressor. Voxel-wise regression coefficient
maps for each of the five regressors of interest per participant and gen-
eralization run were entered into the fMRI analyses as training and test
patterns for a Support Vector Regression (SVR) model. Based on the

inclusion criteria defined for risk ratings and the availability of fMRI data,
all 230 patterns were available for the 23 HPs, 130 for the 13 PwWMSA, and
finally 305 for the 31 PWMSNA.

Preprocessing of DWI scans, tractography, and graph-based
connectivity modeling

We first linearly coregistered the EPI reference volume (posterior to anterior
encoding direction) as well as the DWI scans to the space of the EPI
reference volume (anterior to posterior encoding direction). Distortion
correction of the DWT scans was then performed using FSL based on the two
EPI reference volumes. Next, we corrected for head motion and eddy
current-induced artefacts using FSL.

A probabilistic Anatomically Constrained Tractography (ACT; ref. 30)
was performed using algorithms from Mrtrix3*', FSL, and SPM12 on multi-
shell multi-tissue DWT scans. Specifically, we estimated diffusion basis
functions from the individuals’ multi-shell, multi-tissue DWI scans and
computed fiber orientation densities, which were deconvolved with the
basic functions using the constrained spherical deconvolution approach in
Mrtrix3. We then created a GM/WM boundary map for each participant
from their MPRAGE scans to define physiologically plausible regions as
start and stop points for the streamline tracing algorithm in Mrtrix3. This
boundary (segmented GM maps from the previous step) was coregistered to
the participants’ DWTI scans, and ACT was performed. In this process,
streamline length was limited to 250 mm, the fiber orientation distribution
cutoff for streamline termination was set to 0.06, and 10 million streamlines
were computed per participant.

We subsequently performed inverse normalization of the Neuro-
morphometrics brain atlas (defined in MNI space) to coregister it to the
same space as the participants’ DWI scans using SPM12. The structural
connectivity matrix, reflecting the number of streamlines connecting pairs
of regions in the coregistered Neuromorphometrics brain atlas, was com-
puted using Mrtrix3.

Finally, these matrices were entered into the Brain Connectivity
Toolbox™ to compute, individually for each region in the Neuromorpho-
metrics brain atlas and each participant, three regional connectivity mea-
sures relevant across various brain disorders, including MS (e.g.,”). These
measures included: regional degree (indicating the number of connections
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between a region and its neighboring regions), betweenness centrality
(quantifying how often a region lies on the shortest paths between other
region pairs), and clustering coefficient (reflecting the extent to which
neighboring regions of a given region are also interconnected).

Statistical analysis

Behavioral fear generalization. We tested our hypothesis that PWMSA
exhibit behavioral overgeneralization of fear based on the risk ratings for
all ring-shaped stimuli acquired across the two generalization runs. Three
quality assurance steps were conducted beforehand: We (i) included only
those participants fulfilling rating criteria, ensuring they fully engaged
with and understood the task. Specifically, we constrained the analysis to
participants who showed variation in their ratings (i.e., did not rate the
same risk for all stimuli), provided at least half of all 40 possible ratings for
ring-shaped stimuli across both generalization runs, and rated a risk
probability increasing from the CS,— to the CS+. This resulted in a
selection of 13 PWMSA, 31 PWMSNA, and 23 HPs. Next, we confirmed
(ii) that the proportion of participants exposed to the smallest or largest
ring as the CS+ was similar across groups to exclude effects of physical
stimulus properties and (iii) that the task successfully induced fear by
evaluating behavioral fear responses during pre-acquisition and acqui-
sition (see “Statistical analysis” in the Supplement and Supplementary
Fig. 1 for details on steps [ii] and [iii]).

To mathematically characterize behavioral fear generalization gra-
dients for each participant individually (see “Statistical analysis” in “Sup-
plementary methods” in the Supplement for details), we modeled their risk
ratings with logistic regression, a key method for the analysis of choice data
in judgment and decision-neuroscience’ and computed the so-called point
of indifference (PI) as subject-specific fear generalization measure. The PI
corresponds to the point in a parametric stimulus space, for which the
preference for all options is identical”’. Thus, here, the PI corresponds to the
point on the stimulus continuum ranging from the CS,— to the CS+, for
which the logistic model computed a rated risk probability of 0.5.

Finally, we tested group differences in the PIs using multiple regression.
A dichotomous group vector served as covariate of interest (CI). The cov-
ariates of no interest (CNI) for the comparison PwWMSA vs. PWMSNA
included: Average rating time (to control for information processing speed),
log-transformed volume of hyperintense lesions in FLAIR scans, disease
duration, disease type (i.e., relapsing remitting vs. secondary progressive
MS), age, sex, use of interferon P (y/n; due to their ability to induce
depression and anxiety’’;) and antidepressants (y/n). For the group com-
parisons, including HPs, average rating time, sex, age, and the log-
transformed lesion volume served as CNI. Permutation testing with 20,000
iterations of the CI vector and a one-sided significance threshold of & = 0.05
(assuming generalization in PWMSA > PWMSNA > HP) was employed for
inference. Cohen’s f* is reported as effect size measure (f* > 0.02, 0.15, and
0.35 correspond to a weak, moderate, and strong effect). See “Statistical
analysis” in “Supplementary methods” in the Supplement for an analysis
additionally modeling fatigue and depression as CNI (Supplemen-
tary Fig. 2).

Neural substrates of behavioral fear generalization. We employed an
MVPA cross-decoding ML approach'®****" to test our hypothesis that fear
generalization recruits overlapping neural processing systems in HPs and
PwMS with and without anxiety. Briefly, MVPA studies assume that
patterns of neural activity reflect the structure of mental representations
and use ML algorithms to determine whether these patterns vary sys-
tematically along a continuous response variable, such as fear ratings
(e.g.."). The principle behind cross-decoding is that ‘if an ML algorithm
trained on patterns from one context performs well when tested on
patterns acquired in another, then the representations of the variable of
interest are similar across both contexts™.

Here, an SVR algorithm implemented in Matlab (MathWorks,
Natick, Massachusetts, USA) during training learned to associate 230
fMRI fear response (i.e., regression coefficient) patterns of persons

neither affected by MS nor anxiety (ie., of HPs) with the associated
perceived risk. Consistent with the analysis of behavioral fear general-
ization, perceived risk was computed by the subject-specific logistic
regression models based on the ratings for the different ring-shaped
stimuli (i.e., the labels shown as orange dots in Fig. 3). In testing, we used
the HP-derived SVR model for predicting the true perceived risk
(modeled by logistic regresion) based on the 130 voxel patterns derived
from PWMSA and the 305 voxel patterns from PWMSNA. The correla-
tion between true perceived risk and that predicted by SVR served as
accuracy measure. Default SVR hyperparameters predefined by
MATLAB were used. Permutation testing (20,000 permutations of
training labels) was used for statistical inference in one-sided tests.
Bootstrapping tested the accuracies’ robustness against (i.e., indepen-
dence of) variations in the specific distribution of patterns and labels
(1000 resamplings of the HPs’ training data), which was expressed in
terms of the 95% accuracy confidence intervals (Clgsy,) computed across
the 1000 accuracies obtained per patient group. Potential effects of
demographic and disease-related nuisance factors on accuracy were
tested in the Supplement (see “Statistical analysis” in “Supplementary
methods”) by repeating this analysis with fMRI patterns adjusted
for CNL

To evaluate the contribution of individual brain regions in both MS
groups, we repeated the whole-brain GM analysis based on activity of
coordinates located in the intersection of individual GM regions defined by
the brain atlas and the GM group mask per atlas region. 10,000 permuta-
tions per region were performed for inference (one-sided tests). The sig-
nificance threshold was adjusted for family-wise error (FWE) with the
Bonferroni method (i.e., by dividing the a-level for a single test [0.05] by the
number of regions [i.e., 120], yielding 4.2 - 10~*). To evaluate regional neural
substrates of altered fear processing in PWMSA, we tested for regions
showing group differences in accuracy for PWMSA vs. PWMNSA using a
Fisher Z-test” and an FWE-corrected threshold.

Structural brain connectivity, behavioral fear generalization, and
anxiety in MS. We tested our hypothesis that network integrity of generic
fear generalization areas described in basic and neuropsychiatric research
(e.g.,'*",) reflects behavioral generalization in MS, based on data of the 12
PwMSA and 30 PwWMSNA fulfilling the rating criteria and having a
complete DWI data set.

The three connectivity indices (regional degree, betweenness centrality,
and clustering coefficient), computed separately for each region in the
Neuromorphometrics brain atlas, were used as CI in linear regression
analyses modeling patients’ PIs. These analyses were conducted separately
for each of the 142 regions and each connectivity measure across all 42
patients. CNI was as in analyses of group differences in behavioral gen-
eralization for PWMSA vs. PWMSNA. Permutation testing (20,000 per-
mutations) was applied for two-sided significance testing, with Bonferroni
correction for FWE. In a post-hoc analysis, connectivity parameters found
significant above were tested for their ability to directly characterize MS-
related anxiety using data from all 17 PWwMSA and 35 PwMSNA with
available DWT scans. Here, a dichotomous group vector served as the CI,
and CNI was as in the prior analysis, except information processing speed
was excluded as rating data were only available for 42 patients, and we aimed
to utilize the full DWI dataset of 52 PwMS. To assess the potential influence
of information processing speed, we also conducted a complementary
analysis constrained to the 42 patients with available rating data, including it
asa CNI. Permutation testing (20,000 permutations) was used for inference,
with Bonferroni correction for FWE in one-sided tests. The Supplement (see
“Statistical analysis” in “Supplementary methods”) additionally includes
analyses incorporating fatigue and depression as CNIL

Results

Clinical and demographic participant characteristics

Forty MS patients received immunomodulatory treatment. The MS groups
did not differ in any of these treatments. Four patients received
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Fig. 2 | Behavioral fear generalization. a depicts the ring-shaped stimuli presented.
b shows behavioral risk rating data for six exemplary participants (from left to right:
for two PWMSA, two PWMSNA, and two HPs) as blue dots. The diameter and color
intensity of blue dots reflect the frequency with which each of the five ring-shaped
stimuli was rated as minimal risk (i.e., 0), moderate risk (0.5), or maximal risk (1)
across the two generalization runs. The dashed orange line depicts the logistic
regression model used to mathematically characterize the risk ratings or general-
ization gradients, respectively, the orange dot shows the PI derived from this model.
Smaller PI values (i.e., located closer to the CS,—) indicate more pronounced fear

generalization. ¢ depicts the logistic regression models/the PI of all 67 participants
(PWMSA n =13, PWMSNA n = 31, HPs n = 23) separated by group. Finally,

d illustrates the results of multiple regression analyses testing the differences in PI
between all three pairs of groups. The depicted PI values are corrected for effects of
CNI (and might thus slightly differ across group comparisons). Abbreviations: CNI
covariates of no interest, CS,— ring-shaped safety cue, HPs healthy persons, PI point
of indifference, PWMSA persons with multiple sclerosis and anxiety, PWMSNA
persons with multiple sclerosis without anxiety.

antidepressants. All groups were comparable in terms of demographic
parameters, and both MS groups were comparable in terms of information
processing capacities, GM fraction, T2-weighted lesion volume, disease
duration, relapsing or secondary progressive disease type, and clinical dis-
ability. In line with the high prevalence and frequent comorbidity of anxiety,
depression, and fatigue in MS*, PwMSA had higher scores on both para-
meters compared to the other two groups, while PWMSNA had higher
scores than HPs. See Supplementary Data 1 for details.

Behavioral fear generalization

PwMSA exhibit stronger fear generalization (i.e., smaller PI scores)
than PWMSNA (t=—-2.11, p=0.020, f 2=0.13) and HPs (t=—2.95,
p=0.003, f =0.29). PWMSNA demonstrated stronger generalization
than HPs at a relaxed significance level of @ =0.1 (¢t = —1.63, p =0.050, f
220.06; Fig. 2).

Neural substrates of behavioral fear generalization

An HP-derived SVR model predicted perceived risk ratings with significant
accuracy in both patient groups based on fMRI response patterns. The
accuracy was highly robust to variations in the distribution of patterns and
labels (PWMSA: r=0.59 [i.e., 35% of the variance in the ratings were
explained], p < 5- 10, Clgse, = [0.38 0.67]; PWMSNA: r = 0.58 [34% of the
variance], p <5107, Clgse, = [0.43 0.62]; see Fig. 3A). A supplementrary
analysis (see “Statistical analysis” in “Supplementary methods” in the
Supplement), which adjusted fMRI patterns for demographic and disease-
related CNI, demonstrated that the accuracy remained highly significant.
Fig. 4 provides an overview of the contributions of individual atlas regions to
risk prediction for both MS groups. Notably, accuracy did not differ between
the two groups for any of these regions.

Structural brain connectivity, behavioral fear generalization, and
anxiety in MS

We found significant (positive) associations between the PIs and the clus-
tering coefficient of the left inferior temporal gyrus (f = 4.40, ppwg = 0.012, f
?=0.61), and left hippocampus (f = 4.00, prwg = 0.043, f> = 0.50). A post-
hoc analysis showed that the clustering coefficient of the left inferior tem-
poral gyrus was significantly lower in PWMSA compared to PWMSNA
(t=—2.44, prwe = 0.016, f> = 0.14; Fig. 5). This effect remained significant
when information processing speed was included as a CNI (= —2.28,
pewe = 0.028, £ = 0.16. Incorporating fatigue and depression as additional
CNI demonstrated that the observed effects were comparably robust to both
factors (Supplementary Fig. 3).

Discussion
Anxiety is a prevalent and important comorbidity in MS"*’, yet the
underlying neurobehavioral mechanisms remain poorly understood. Using
an fMRI fear generalization task and DWI, our study shows that fear gen-
eralization in MS relies to a substantial degree on generic mechanisms.
We found that PWMSA overgeneralize fear behaviorally, exhibiting less
steep decline in fear responses to stimuli increasingly dissimilar to CS+ than
PwMSNA and HPs. This aligns with findings in various ADs"™". Our
results remained significant for PWMSA vs. HPs and marginally significant
for PWMSA vs. PWMSNA (p = 0.068) after controlling for depression and
fatigue (Supplementary Fig. 2), suggesting specificity to anxiety. Our work
extends Ellwardt et al.’s study', which first used a fear conditioning para-
digm in MS but focused on electroencephalographic measures character-
izing the entire measurement period rather than key parameters for
individual CS and compared patients with normal anxiety levels to HPs and
thus did not study anxiety in MS. Additionally, the application of
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Fig. 3 | Predicting perceived risk of shock based on brain activity distributed
across the entire GM. a Training phase of the SVR-based cross-decoding model
using data from two randomly selected HPs and one of two available generalization
runs per HP. The model was exclusively trained on HPs’ data, using voxel-wise
regression coefficient maps b computed for each of the five ring stimuli (i.e., CS-,
GS3, GS2, GS1, CS+) as described in the Methods section “fMRI preprocessing and
brain activity modeling”. For space reasons, only three of the five maps (bcs,., bgsa»
and bes ) are depicted here. The corresponding “Label” graphs in 3 A depict the
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perceived risk of shock for each stimulus, modeled via logistic regression, with values
indicated by orange dots. b Illustration of the testing procedure. ¢ Prediction
accuracy for the patterns of PWMSA (# = 13) and PWMSNA (n = 31). Abbreviations:
CS+ conditioned stimulus, CS— safety cue, GM gray matter, GS1 generalization
stimulus 1, GS2 generalization stimulus 2, GS3 generalization stimulus 3, HPs
healthy persons, PWMSA persons with multiple sclerosis and anxiety, PWMSNA
persons with multiple sclerosis without anxiety, SVR support vector regresion.

transcranial magnetic stimulation during their task complicated the results’
interpretation, as observed effects could reflect fear processing or
stimulation.

By showing that an SVR model trained to associate fMRI patterns and
fear ratings in HPs predicted fear rating in PWMSNA (explaining 34% of the
variance) in an MVPA cross-decoding analysis, the study demonstrates that
generic neural mechanisms are important drivers of fear ratings in MS.
Moreover, the model’s ability to generalize to PWMSA (35% explained
variance) indicates that a common fear processing system accounts for the
full range of generalization—from low levels in HPs to overgeneralization in
PwMSA. These findings (of more than one third of the variance in fear
ratings in both patient groups explained by generic fear mechanisms)
suggest that anxiety in MS may arise from a combination of generic and MS-
specific mechanisms. Importantly, the functional nature of these processes,
amenable to modulation via neuropsychiatric interventions®, points to
possible avenues for treating anxiety in MS.

MVPA analyses conducted per atlas region separately for both patient
groups revealed significant accuracy in (amongst others) anterior insula,
hippocampus, and lateral orbitrofrontal cortex, particularly in PWMSNA.
These regions align with a generic fear generalization model”, in which
hippocampal stimulus matching determines the deployment of excitatory
or inhibitory fear processes. Hippocampus compares incoming stimuli (e.g.,
the GS1) to threat-related memories (e.g., the CS+). High similarity acti-
vates a representation of the threat-related stimulus (i.e., pattern comple-
tion), engaging threat excitation areas (including the anterior insula).

Conversely, low similarity (ie., pattern separation) engages the ven-
tromedial prefrontal cortex (vimPFC) to inhibit fear and signal safety. While
vmPFC was not identified, lateral OFC, an area able to impair vmPFC safety
signaling", was, which potentially provides an explanation for this absence.
Please note that the discrepancy between regional prediction accuracies (few
significant regions, max r = 0.44) and whole-GM accuracies (rpwmsa = 0.59,
rpwmsna = 0.58) is compatible with a similar discrepancy found by Liu
et al.*. Who could explain it with the distributed nature of fear processing
only reflected by whole-GM prediction. The lack of significant regional
accuracy differences between PWMSA and PWMSNA supports the idea that
a single neural system is underlying fear generalization across the full
spectrum of (over-)generalization.

Finally, we examined how structural connectivity of local networks
reflects behavioral generalization in MS. This is essential due to frequent
white matter (WM) pathology-induced disconnections in MS and the
distributed nature of fear processing, which is naturally vulnerable to
such disconnections*. Aligning with Lissek’s model”, our analysis
revealed that stronger connectedness among network neighbors (i.e.,
higher clustering coefficients) of left hippocampus and inferior temporal
gyrus correlated with less fear overgeneralization. This underlines the
importance of intact cross-regional information flow in these neigh-
borhoods as a protective mechanism against fear overgeneralization. To
assess whether these differences characterize MS-related anxiety directly,
we conducted a post-hoc analysis comparing the clustering coefficients of
these regions between PWMSA and PwWMSNA. A significant difference
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Fig. 4 | Predicting the perceived risk of shock based on activity of individual brain
regions. The heatmap in a depicts the accuracies (i.e., Pearson correlation coeffi-
cients r between true and predicted labels) separately for the individual atlas regions
and patient groups. Elements shown in yellow-orange correspond to areas sig-
nificant according to permutation testing and the FWE-corrected significance
threshold. Please note that due to the resampling procedure in permutation testing,
an extreme correlation must not always be less probable than a slightly less extreme
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for the whole brain, a shows the tractography generated by Mrtrix3 for an arbitrarily
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by the number of streamlines connecting pairs of regions that resulted from mapping
the Neuromorphometrics brain atlas to that tractography. ¢ Shows the clustering
coefficients for the regions in the atlas for two arbitrarily selected MS patients derived
from such matrices. The diameter of the spheres depicts the regions’ clustering
coefficients for each of the two individuals. Labeled regions shown in orange
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(n = 35) in left inferior temporal gyrus found in the post-hoc analysis. Abbreviations:
PI point of indifference, PWMSA persons with multiple sclerosis and anxiety,
PwWMSNA persons with multiple sclerosis without anxiety.

was found for left inferior temporal gyrus. Adjusting for fatigue and
depression suggested that these findings are largely specific to anxiety
(Supplementary Fig. 3).

An aspect that should be discussed is the possibility that the identified
generic mechanisms—or alterations in regions known to contribute to generic
fear processing—might represent risk factors for developing both anxiety and

MS, with fear generalization emerging as an expected behavioral concomitant.
However, given that these mechanisms and regions have been identified
across many studies analyzing HPs (e.g,””'*”,), and considering the pre-
valence of MS (of e.g., 35 per 100,000 individuals globally in 2020 according
to*), this possibility does not challenge the notion that these mechanisms are
indeed generic. Furthermore, given, for example, the strong negative link
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between behavioral fear generalization and clustering coefficient in hippo-
campus or inferior temporal gyrus found in our structural connectivity ana-
lysis—which included only PwMS across a wide range of behavioral
generalization and structural connectivity levels—it appears unlikely that e.g,,
lower connectivity in such regions is a strong risk factor for developing MS.

Our study has some limitations. The number of participants might be
considered moderate, but the 54 PwMS included here were pre-calculated
based on data from one of our studies (Meyer-Arndt et al.”’), which
investigates fMRI activity differences between PwMS with and without
depression during processing of affectively negative and neutral pictures. As
we also measured (but did not analyze) STAI-T in Meyer-Arndt et al.”, we
could compute an effect size and thus a sample size for associations between
brain activity in the affective picture task and STAI-T as a reference for this
fear conditioning study. As pre-calculated, we included 54 PwMS, but this
fixed number could not account for multi-paradigm data loss (i.e., insuffi-
cient rating behavior and missing DWT scans). Consequently, to the extent
that an affective picture task can provide an effect/sample size for a fear
conditioning task, one might argue that our study is slightly underpowered.
However, first, moderate to strong effects were found across analyses, and
the sample size was thus not too small for supporting our hypotheses.
Second, on practical grounds, our study can be considered large compared
to existing MS fMRI studies using cognitive tasks: according to a recent
review by Rocca et al.”® the 44 PwMS and 23 HPs included in the crucial
fMRI analyses exceed the sample sizes used in 81% of the reviewed cognitive
studies.

Furthermore, the inclusion of only a single visit could be noted, as a
longitudinal design would have allowed exploration of changes in fear
generalization/anxiety ratings alongside structural and functional MRI
alterations. However, the choice of a cross-sectional design was predefined
by the grant module funding the project, which had a three-year duration.
This limited timeframe, especially given partial overlap with the COVID-19
pandemic, posed a risk to successful multi-visit participant acquisition.

Another point is the use of STAI-T instead of, e.g., DSM criteria for
ADs assessed by structured interviews, as the latter might have provided
more fine-grained measures of anxiety. However, we chose STAI-T as it has
been shown (i) to be highly sensitive to anxiety across ADs", (i) to reflect
neural fear conditioning responsivity*’, and (iii) because the heterogeneity of
ADs would have complicated the acquisition of a homogeneous group of
PwMSA during the project’s three-year funding period.

Further, we focused on predicting risk from responses to ring-shaped
CS acquired in generalization runs because evaluating responses to square-
shaped CS or fMRI response differences between generalization and pre-
acquisiton would have been incompatible with the parametric CS con-
tinuum approach. While tractography in MS might be sensitive to lesions™,
we mitigated this by using a modern multi-shell DWT sequence’, which is
considered robust to increased isotropic diffusion in lesions™.

In conclusion, our study demonstrates that anxiety in MS is char-
acterized by fear overgeneralization. Much of the perceived fear in PWMS
can be explained by generic functional fear processing mechanisms, without
invoking MS-specific factors.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability

The data supporting the findings of this study are subject to a confidentiality
agreement, and participants did not provide consent for public release of
their raw data. Therefore, only highly processed or aggregated data are
available through the Zenodo data and code repository (**; https://zenodo.
org/uploads/16218570). Available data include the clinical and demo-
graphic participant characteristics, specifically the information processing
speed metrics depicted in Supplementary Data 1; the source data for Sup-
plementary Data 1 are provided in ref. 52 (https://zenodo.org/uploads/
16218570). For the behavioral fear generalization analysis, the data

underlying Fig. 2b, ¢ are provided in ref. 52 (https://zenodo.org/uploads/
16218570). Regarding the neural substrates of behavioral fear general-
ization, the repository includes raw behavioral data and run-specific SPM
fMRI regression coefficient maps resulting from “fMRI preprocessing and
brain activity modeling“. These files allow full replication of the statistical
parameters depicted in Figs. 3 and 4, and the source data are provided in
ref. 52 (https://zenodo.org/uploads/16218570). For the analysis of structural
brain connectivity, behavioral fear generalization, and anxiety in MS,
structural connectivity matrices are available in ref. 52 (https://zenodo.org/
uploads/16218570), one of which is illustrated in Fig. 5b. These matrices are
required to compute clustering coefficients, betweenness centrality, and
regional degree, with Fig. 5c displaying clustering coefficients for two
arbitrarily selected participants. Supplementary analyses are also supported
by available data. The frequencies underlying the analysis of participants
exposed to either the smallest or largest ring as the CS+ are provided. In
addition, raw behavioral data and code required to replicate the fear
induction analysis shown in Supplementary Fig. 1 are included in ref. 52
(https://zenodo.org/uploads/16218570).

Code availability

The analyses of behavioral data were conducted with in-house code utilizing
standard functions included in Matlab (2021b). The analyses of fMRI data
were conducted with in-house code also written in Matlab or its statistics
and machine learning toolbox respectively. Parts of this code make use of
SPM12 routines for basic neuroimaging file (i.e., read and write) operations.
All in-house routines used for behavioral and fMRI data analyses are
available online via the Zenodo data and code repository (*’; https://zenodo.
org/uploads/16218570). Further data processing steps were conducted with
freely available neuroimaging software packages. First, preprocessing of
structural and functional MRI scans and parts of the preprocessing of the
DWI scans were conducted with SPM12 and FSL (6.0.7.17; https://fsL.fmrib.
ox.ac.uk/fsl/docs/#/). Other parts of DWI scan preprocessing were con-
ducted with Mrtrix3 (https://www.mrtrix.org/). The graph-based analyses
of the brain’s structural connectome were conducted with the Brain Con-
nectivity Toolbox (https://sites.google.com/site/bctnet/; release 3rd of
March 2019) for MATLAB. These freely available software packages can be
received from their respective websites.
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