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Purpose: To develop and validate MRSegmentator, a retrospective cross-modality deep learning 
model for multiorgan segmentation of MRI scans. 

Materials and Methods: This retrospective study trained MRSegmentator on 1,200 manually 
annotated UK Biobank Dixon MRI sequences (50 participants), 221 in-house abdominal MRI 
sequences (177 patients), and 1228 CT scans from the TotalSegmentator-CT dataset. A human-
in-the-loop annotation workflow leveraged cross-modality transfer learning from an existing CT 
segmentation model to segment 40 anatomic structures. The model’s performance was evaluated 
on 900 MRI sequences from 50 participants in the German National Cohort (NAKO), 60 MRI 
sequences from AMOS22 dataset, and 29 MRI sequences from TotalSegmentator-MRI. 
Reference standard manual annotations were used for comparison. Metrics to assess 
segmentation quality included Dice Similarity Coefficient (DSC). Statistical analyses included 
organ-and sequence-specific mean ± SD reporting and two-sided t tests for demographic effects. 

Results: 139 participants were evaluated; demographic information was available for 70 (mean 
age 52.7 years ± 14.0 [SD], 36 female). Across all test datasets, MRSegmentator demonstrated 
high class wise DSC for well-defined organs (lungs: 0.81–0.96, heart: 0.81–0.94) and organs 
with anatomic variability (liver: 0.82–0.96, kidneys: 0.77–0.95). Smaller structures showed 
lower DSC (portal/splenic veins: 0.64–0.78, adrenal glands: 0.56–0.69). The average DSC on the 
external testing using NAKO data, ranged from 0.85 ± 0.08 for T2-HASTE to 0.91 ± 0.05 for in-
phase sequences. The model generalized well to CT, achieving mean DSC of 0.84 ± 0.12 on 
AMOS CT data. 

Conclusion: MRSegmentator accurately segmented 40 anatomic structures on MRI and 
generalized to CT; outperforming existing open-source tools. 
 
Published under a CC BY 4.0 license. 

MRSegmentator accurately segmented 40 anatomical structures on MRI and CT across three 
external datasets. 



 
 

 

Abbreviations 

AI = Artificial Intelligence, AMOS = Abdominal Multi-Organ Segmentation, DSC = Dice 
Similarity Coefficient, HD = Hausdorff Distance, NAKO = German National Cohort (Nationale 
Kohorte), T2 HASTE = T2-weighted Half-Fourier Acquisition Single-shot Turbo spin Echo, 
UKBB = UK Biobank, VC = Vessel Consistency 

Key Points: 

• In this retrospective study of 50 participants with whole-body MRI, MRSegmentator 
achieved mean Dice similarity coefficients (DSC) of 0.91 ± 0.05 for Dixon in-phase and 0.85 ± 
0.08 for T2-HASTE sequences. 

• Across 60 Multimodality Abdominal Multi-Organ Segmentation Challenge MRI and 300 
CT scans, mean DSCs were 0.79 ± 0.11 and 0.84 ± 0.12, respectively, demonstrating cross-
modality generalizability. 

• Class-wise performance peaked in well-defined organs (DSC, lungs: 0.96; heart: 0.94) 
and varied for small structures (DSC, portal/splenic veins: 0.64; adrenal glands: 0.56). 

Automated segmentation of anatomic structures in medical imaging enables precise organ 
volumetry, facilitates anatomic context for AI-based diagnosis, and supports quantitative 
imaging biomarker extraction (1). Recent deep learning advances have led to robust CT 
segmentation models like TotalSegmentator-CT, which segments 104 anatomic structures (2), 
however, comparable whole-body tools for MRI segmentation remain limited. 

MRI segmentation poses distinct technical challenges. Unlike CT’s standardized Hounsfield 
units, MRI signal intensities vary across scanners and protocols, and motion or field 
inhomogeneities artifacts are common (3). Anisotropic voxels and lower spatial resolution 
further complicate consistent segmentation. Despite these challenges, MRI’s higher soft-tissue 
contrast and absence of ionizing radiation make it preferred for longitudinal studies and tissue 
characterization. 

Current MRI segmentation solutions are predominantly organ-specific, focusing on individual 
structures like the kidneys, prostate, or spleen (4–6). While these specialized models achieve 
high accuracy for their target organs, the need to run multiple models for different structures 
limits clinical workflow integration and adds computational overhead. Recent multiorgan 
approaches have been proposed (7–9), but their generalizability across MRI sequences and 
external datasets remains unclear. The growing availability of large-scale MRI repositories, such 
as the UK Biobank Imaging Study, creates opportunities for developing more comprehensive 
segmentation tools that work across multiple protocols and anatomic regions. 

To address this need, we have developed MRSegmentator, an nnU-Net based (10), cross 
modality image segmentation model that segments 40 anatomic structures in both MRI and CT 
images. Our approach combines cross-modality learning from CT data (11) with a human-in-the-
loop annotation workflow to accelerate image annotation and address MRI-specific challenges. 
We evaluate the model’s performance across diverse MRI sequences using three external 
datasets and demonstrate its ability to handle anatomic variants. 



 
 

 

Materials and Methods 
This retrospective study was conducted in accordance with the Declaration of Helsinki and 
received approval from the local ethics committee (EA4/062/20) with a waiver of patient 
consent. 

Datasets 
Six datasets of 3D MRI or CT images were used (Fig 1). Training data included UK Biobank 
(UKBB), an in-house dataset, and the TotalSegmentator-CT dataset. For testing, we use MRI 
scans from the National German Cohort (NAKO), the Multimodality Abdominal Multi-Organ 
Segmentation Challenge (AMOS22), and the TotalSegmentator-MRI dataset. We created our 
own annotations for the in-house, UKBB, and NAKO datasets, selecting as many participants as 
we could annotate within a two-month timeframe each. The AMOS and both TotalSegmentator 
datasets included their own annotations. 

UK Biobank Dataset 
The UKBB is a large biomedical database containing genetic and health information from half a 
million UK participants (12). We accessed the MRI subset (datafield 20201-2, October 2023), 
which contains whole-body MRI scans from 69,571 participants. For our study, we selected 
1,200 sequences from 50 randomly selected participants. Each participant’s MRI data are divided 
into six 3D sections from the shoulders to the knees, with in-phase (IN), opposed-phase (OPP), 
fat-only (F), and water-only (W) images obtained using the Dixon technique for each segment. 

This dataset is highly standardized, with consistent image size, voxel spacing, and subject 
positioning within each region. Each sequence consists of 44 to 72 axial slices spaced 3 to 4.5 
mm along the z-axis. Access to the UKBB dataset for scientific research is available upon 
request at https://www.ukbiobank.ac.uk/. 

In-house Dataset 
We screened our in-house data for participants with kidney tumors or cysts. From the resulting 
690 participants, we randomly selected 180. We also excluded scans from three participants due 
to poor image quality. Some participants had multiple sequence types, resulting in a final dataset 
of 221 axial abdominal MRI sequences from 177 participants. Tumor size is less than 7 cm in 
213 scans and up to 13 cm in the remaining eight scans. The dataset has an approximately equal 
distribution of T1, T2-weighted fat-saturated (T2fs), and postcontrast T1-weighted fat-saturated 
(T1fs) sequences. Images were acquired on Siemens Magnetom Avanto 1.5T and Vida 3T 
scanners with different signal intensity distributions and matrix sizes. 

After acquisition, the sequences were exported and resized to a uniform voxel spacing of (1) 
mm, resulting in sequences consisting of 100 to 450 slices along the z-axis. 

TotalSegmentator-CT Dataset 
TotalSegmentator-CT (2) is a whole-body CT segmentation model that was released together 
with a publicly available dataset of 1,228 CT examinations with a wide range of different 



 
 

 

pathologies, scanners and acquisition protocols. To enable cross modality segmentation 
capabilities, we included the TotalSegmentator-CT dataset to the training data. From the 117 
segmented structures, we selected a subset of 40 classes, consistent with the classes annotated for 
MR images (Fig 2). The dataset is available at https://zenodo.org/records/10047292. 

NAKO Dataset 
The German National Cohort (NAKO) is a population-based prospective cohort study 
investigating the causes of the development of major chronic diseases in the German population 
(13). The study includes whole-body MRI scans of 30,868 participants from the general 
population (14). We obtained a subset of 900 MRI sequences from 50 participants (25 women, 
25 men). For each subject, the data included T1-weighted 3D VIBE two-point Dixon sequences 
(in phase (IN), opposed phase (OPP), water only (W), fat only (F)) and T2-weighted HASTE 
sequences (Table 1). 

The Dixon sequences consist of four 3D sections from the shoulders to the knees, and the T2 
HASTE scans consist of two sections from the shoulder to the sacrum. We stitched the MRI 
stations for each participant and modality using a self-developed open-source utility 
(https://github.com/ai-assisted-healthcare/AIAH_utility) based on SimpleITK, resulting in 250 
whole-body MRI sequences across contrast types. The stitched Dixon sequences have a matrix 
size of (320,260,316) with voxel spacing of (1.4,1.4,3.0) mm and the stitched T2-weighted 
HASTE sequences have a matrix size of (320,260,80) with voxel spacing of (1.4,1.4,6.0) mm. 
Note that stitching is only done to increase the interpretability of results and is not required for 
inference (see also Fig S1). 

AMOS22 Dataset 
The Multimodality Abdominal Multi-Organ Segmentation Challenge (AMOS22) was held at the 
MICCAI conference in 2022 (11). The accessible training and validation sections include 300 
CT and 60 MRI sequences/patients from multicenter, multivendor, multimodality and 
multidisease patients, each with voxel-level annotations of 15 abdominal organs. We excluded 
the classes 'prostate', as it is not part of our target classes, and 'bladder', which we believe to be 
incorrectly annotated in the AMOS scans. (Fig S5). The specific sequence and scanner types are 
not disclosed in the AMOS paper. The dataset is available here: 
https://zenodo.org/records/7262581. 

TotalSegmentator-MRI Dataset 
TotalSegmentator-MRI (9) is a whole-body MRI segmentation model developed by D’Antonoli 
et al and is the successor of TotalSegmentator for CT images. Given the similar names of the two 
models, the image modality will be specified when referring to both models. The model was 
released together with an openly available dataset that consists of 298 MRI sequences, of which 
D’Antonoli et al marked 30 as test data. We excluded one test sequences (focused on the brain) 
due to incomplete header information. This dataset includes sequences from different MRI 
scanners, covering multiple body regions, and including different sequence types in axial, 
sagittal, and coronal planes. It contains annotations for 59 anatomic structures; for our analysis, 



 
 

 

we selected the 40 structures that correspond to the segmentation targets of MRSegmentator. The 
dataset is publicly available at https://zenodo.org/doi/10.5281/zenodo.11367004. 

Target Anatomical Structures 
Our datasets comprise MR images spanning from the shoulders to the knees. The anatomic 
structures selected for segmentation were chosen based on their inclusion in the 
TotalSegmentator-CT target classes, visibility and delineability in MRI, clinical relevance, and 
consistent presence across the dataset. To improve segmentation robustness, anatomically similar 
structures were consolidated where MRI differentiation was challenging. For example, vertebrae 
were grouped into a single "spine" class, and lung lobes were merged due to poor tissue contrast 
and anisotropic voxel spacing. After this consolidation, 40 structures across five regions were 
finalized: the chest (heart, lungs, esophagus), gastrointestinal tract (liver, spleen, pancreas, 
gallbladder, stomach, intestines, colon), retroperitoneum (kidneys, adrenal glands, urinary 
bladder), musculoskeletal system (spine, sacrum, hips, femurs, gluteal and iliopsoas muscles), 
and vessels (aorta, vena cava, portal/splenic vein, iliac arteries/veins) (Fig 2). 

Annotation Strategy 
We developed a four-stage human-in-the-loop annotation workflow to create high-quality 
segmentations. 

1. Presegmentation: First, we generated initial segmentations by applying the 
TotalSegmentator-CT model (2) to the MRI scans. To improve performance of the 
TotalSegmentator-CT model on MRI scans, we used preprocessing steps including intensity 
inversion and histogram equalization (15). For UK Biobank data, we segmented water-only 
sequences and propagated labels to the remaining Dixon sequences. While some structures like 
kidneys required only minor corrections, others such as muscles and bones needed complete 
reannotation due to poor initial segmentation quality. 

2. Manual annotation: One radiology resident with one (LX) and two radiologists with eight 
(KKB, LCA) years of experience in diagnostic radiology, refined and reviewed the 
presegmentations using MONAI Label (16) and 3D Slicer (17). Overall, 40 different classes 
were created, which are detailed in Figure 2. 

3. Model training: An nnU-Net (10) model was repeatedly trained, each time 50 new MRI 
sequences were annotated, enabling the generation of more refined labels, which were reviewed 
and refined again by the radiologists. This was repeated until the full training dataset of 1,200 
UKBB sequences and 221 in-house sequences was annotated. Once the annotation process was 
complete, we trained the final nnU-Net with fivefold cross-validation on the fully annotated 
images, resulting in the final MRSegmentator model. This final training was performed using the 
3 d_fullres_no_flipping configuration of nnU-Net V2 (https://github.com/MIC-DKFZ/nnUNet) 
with an increased batch size of eight. Other training parameters were kept at default values.  

4. Test data annotation: After the MRSegmentator model was trained, the test data were 
manually annotated by the radiology resident and quality checked and refined by one of two 
board-certified radiologists. 



 
 

 

Statistical Analysis 
We assessed segmentation performance using three metrics: Dice Similarity Coefficient (DSC), 
95th percentile Hausdorff Distance (HD), and a novel vessel consistency (VC) metric. DSC and 
HD were calculated per structure and sequence type, comparing model output against manual 
annotations. For thin, elongated structures like blood vessels, where DSC and HD can be 
misleading, we introduced VC as a complementary measure. VC is defined as the proportion of 
segmentations containing exactly one single connected component for a given class c: 

 

The VC provides additional information about anatomic plausibility of vessel segmentations, 
putting emphasis on the continuity of the vessel segmentation (Fig S2). We further quantified 
under-and over-segmentation relative to the reference standard for each NAKO MRI sequence. 
To assess the impact of including the CT scans to the training pool we trained a second model on 
MR images only and compare the results. To evaluate potential demographic effects on 
segmentation quality, we analyzed the relationship between DSC and participant characteristics 
in the NAKO dataset, which offered balanced demographics (25 men, 25 women). Sex-based 
differences in segmentation performance were assessed using independent two-sided t tests, 
while age-related effects were evaluated using Pearson’s correlation coefficient, both 
implemented in SciPy version 1.10.0 (18). With 50 participants (1:1 male-to-female ratio), our 
study achieved a power of 0.41 to detect medium-sized sex-based differences (19). 

At the time of writing only one openly available whole body MRI segmentation algorithm 
exists (TotalSegmentator-MRI), therefore, for model comparison, we evaluated MRSegmentator 
against TotalSegmentator-MRI on matching anatomic structures across all test datasets. All 
metrics are reported as mean ± SD unless otherwise specified. To adjust for multiple 
comparisons, we reported the false discovery rate (FDR) using the Benjamini-Hochberg 
procedure and an FDR < 0.05 was considered significant. 

Data Availability 
To facilitate research applications and further development, we have made MRSegmentator’s 
code and trained weights are publicly available at https://github.com//hhaentze/MRSegmentator. 

Results 
Participant Characteristics 
We used three datasets for testing. Exclusion criteria are illustrated in Figure 1. The NAKO 
dataset included 30,868 participants, from which we randomly selected 50 (median age, 52.5 
years; interquartile range (IQR): 12.75 years; 25 men, 25 women), yielding a total of 900 MRI 
sequences. The AMOS22 dataset included 60 MRI sequences and 300 CT scans from diverse 
patient populations (MRI: median age, 50 years; age range, 22–85 years; male-to-female ratio 
1.2:1; CT: median age, 54 years; age range, 14–95 years; male-to-female ratio, 1.7:1). 
Individual-level demographic data were not available for AMOS22 so we report aggregated 
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statistics as published in the original dataset description. The TotalSegmentator-MRI dataset 
contained 298 MRI sequences, from which we selected 30 sequences assigned to the test set by 
D’Antonoli et al.; one was excluded due to missing header information, resulting in 29 MRI 
sequences (median age, 60.5 years; IQR, 23.75 years; 9 men, 11 women, age and gender 
unknown for 9 scans). Detailed participant demographics are provided in Table 1. 

Segmentation Performance 
On NAKO data, MRSegmentator achieved averaged DSCs ranging from 0.85 ± 0.08 for T2-
HASTE sequences to 0.91 ± 0.05 for T1-weighted Dixon in-phase sequences (Table 2). 
Performance on the AMOS dataset yielded mean DSC scores of 0.79 ± 0.11 for MRI and 0.84 ± 
0.12 for CT. The highest DSCs were observed for well-defined organs (lungs: 0.96, heart: 0.94, 
Fig 3) and organs with anatomic variability (liver: 0.96, right kidney: 0.95, left kidney: 0.93). 
Small structures proved most challenging, particularly the portal/splenic vein (0.64) and adrenal 
glands (0.56 for AMOS). 

Vessel Consistency analysis of NAKO GRE examinations demonstrated high reliability for 
major vessels. The aorta and inferior vena cava were consistently segmented as single connected 
structures (VC: 100% (200/200) and 92% (184/200), respectively; Table 3). Iliac veins showed 
higher consistency (left: 0.95 (189/200), right: 0.85(170/200)) than arteries (left: 0.69 (137/200), 
right: 0.60 (119/200)), while the portal/splenic vein typically appeared as multiple components 
(VC: 0.40 (79/200)). A second model, which we trained without CT scans, showed equal 
performance for NAKO MRI but reduced DSC scores in the AMOS CT set (0.59 vs 0.84). 
Demographic analysis revealed superior segmentation quality in males (DSC = 0.89 ± 0.02) 
compared with females (DSC = 0.87 ± 0.02) in NAKO GRE sequences (P = .009), with the 
largest differences in adrenal glands (ΔDSC = 0.13/0.10) and duodenum (ΔDSC = 0.11). 
Participant age positively correlated with DSC (r = 0.37, FDR = 0.009; Fig S6). 

Comparison with TotalSegmentator-MRI 
Across NAKO and AMOS22 datasets, MRSegmentator outperformed TotalSegmentator-MRI 
(NAKO: 0.91 ± 0.05 vs 0.83 ± 0.07; AMOS: 0.79 ± 0.11 vs 0.75 ± 0.12; FDR < 0.001 each) and 
lower HD values (NAKO: 7.5 ± 14.8 mm vs 15.1 ± 20.3 mm; AMOS: 8.4 ± 7.0 mm vs 10.0 ± 
8.7 mm; FDR < 0.001 each) for all classes. The performance difference was most pronounced in 
abdominal organs (liver: 0.96 vs 0.89, spleen: 0.91 vs 0.84, pancreas: 0.82 vs 0.73) and blood 
vessels (aorta: 0.93 vs 0.85, inferior vena cava: 0.86 vs 0.78) (Fig S4). 

On the TotalSegmentator-MRI test set, overall DSCs were comparable (0.74 ± 0.21 vs 0.75 ± 
0.22, FDR = 0.017), with MRSegmentator excelling in abdominal organ and vessel 
segmentation, while TotalSegmentator-MRI demonstrated better performance in musculoskeletal 
structures. 

Failure Cases and Sequence-specific Performance 
Despite robust overall performance, we could identify specific failure patterns. Left-right 
confusion occurred occasionally in the pelvic region, evidenced by large HDs for femurs (left: 
37.8 mm, right: 18.9 mm) and left iliopsoas muscle (left: 19.6 mm, right 6.0 mm). In the kidney 



 
 

 

tumor subset, MRSegmentator accurately segmented kidneys with tumors larger than 7 cm (n = 
8, Fig 4), though some oversegmentation occurred with irregular tumor borders. The model 
showed inconsistent performance in postnephrectomy cases, correctly identifying single kidneys 
in validation data but occasionally misclassifying colon as kidney in test data. On average, the 
model’s errors were more often due to undersegmentation than oversegmentation (Table 4). 
Segmentation failures were least frequent in in-phase sequences. In water-only sequences, the 
model tended to oversegment, while in fat-only sequences, it often failed to capture structures 
completely. The highest variability was observed in T2-Haste, where undersegmentation fraction 
quartiles ranged from 0.07 to 0.29 (Fig 5). 

Discussion 
This retrospective study addressed the lack of comprehensive whole-body MRI segmentation 
tools by developing MRSegmentator, an nnU-Net-based cross-modality model trained on CT and 
MRI to segment 40 anatomic structures. Evaluated on three external datasets, MRSegmentator 
achieved mean Dice Similarity Coefficients (DSCs) of 0.91 ± 0.05 on NAKO Dixon in-phase 
sequences and 0.79 ± 0.11 on AMOS22 MRI, outperforming the only other available whole-
body MRI model (TotalSegmentator-MRI DSC 0.83 ± 0.07 on NAKO and 0.75 ± 0.12 on 
AMOS22; FDR < 0.001). Vessel consistency exceeded 92% for major vessels, and objective 
cross-modality training yielded robust generalizability. 

Comparison with existing methods shows that MRSegmentator achieves competitive 
performance against specialized single-organ models. Our spleen and liver segmentation 
accuracy (DSC: 0.95, 0.96) matches dedicated models (0.96, 0.95) (20,21), while multiorgan 
performance for abdominal structures performance (DSC for liver, spleen, kidneys, pancreas: 
0.96, 0.91, 0.94, 0.82 for NAKO MRI; 0.96, 0.95, 0.95, 0.81 for AMOS MRI) approaches that of 
recent organ-specific approaches, such as reported by Kart et al (0.98, 0.96, 0.98, 0.89) (5). 
Given the widespread adoption of the nnU-Net architecture, observed performance variations are 
primarily attributable to differences in training data. Incorporating CT scans into the training 
pipeline improved segmentation accuracy on CT images (DSC 0.59 to 0.84) but did not 
demonstrably affect MR image segmentation quality. We could not observe evidence that 
multimodality training improves single-modality inference, as reported in studies like the AMOS 
challenge (11). Notably, MRSegmentator’s ability to process both MRI and CT images with a 
single model (CT DSC: 0.84), achieving segmentation quality on par with TotalSegmentator-CT, 
the current state of the art in multiorgan segmentation in CT, offers practical advantages over 
modality-specific solutions, potentially streamlining clinical and research workflows. This 
versatility may outweigh slightly inferior performance compared with specialized models. 

Since the initial submission of this work, new whole-body MRI segmentation models have 
emerged, including TotalSegmentator-MRI. On the NAKO dataset, MRSegmentator achieves 
higher DSC values across all structures and sequences, though annotation bias may contribute to 
this advantage, as the same radiologists annotated both the training and test data. However, on 
the AMOS dataset, where no such bias exists, MRSegmentator still outperforms across all 
classes. When tested on the TotalSegmentator-MRI dataset, where annotation practices may 
favor their model, MRSegmentator maintains a comparable overall DSC (0.74 vs 0.75) while 



 
 

 

demonstrating superior segmentation performance for 17 structures, particularly abdominal 
organs and blood vessels. 

That said, TotalSegmentator-MRI supports a broader range of structures, particularly femoral 
muscle groups such as the quadriceps femoris and sartorius. For studies focused on 
musculoskeletal anatomy, it thus provides valuable additional segmentations. Rather than 
declaring one model superior, these results highlight that MRSegmentator excels in abdominal 
segmentation, while TotalSegmentator-MRI offers a broader selection of muscle classes. Both 
models have distinct strengths depending on the research application. 

To address the limitations of the voxel-based metrics DSC and HD, we introduced the vessel 
consistency metric, which revealed that large vessels such as the aorta are consistently 
segmented as single structures (VC: 1.0), whereas smaller vessels such as the portal/splenic vein 
often appear fragmented (VC: 0.40). This metric provides insights not captured by traditional 
DSC measurements, particularly relevant for elongated structures. We observed gender 
differences in performance, with higher accuracy in male subjects (ΔDSC = 0.02, FDR = 0.009), 
likely reflecting anatomic differences in muscle mass and organ positioning rather than technical 
limitations. Both the TotalSegmentator-CT and in-house datasets are male-dominated and have a 
more diverse participant pool than our UKBB data. On the other hand, metrics like DSC tend to 
be less accurate for smaller structures, and women generally have smaller body volumes, which 
may also explain the observed differences. While we highlight these metric differences, further 
research is needed to assess their clinical relevance. The model showed robust performance on 
pathologic cases, successfully segmenting kidneys with large tumors, while occasionally 
struggling with postoperative anatomy. Training models to detect rare pathologies and missing 
structures is challenging due to limitations in available data. One potential solution is to integrate 
synthetic MRI data designed to include these specific structures (22). The model occasionally 
confused left and right structures, likely due to nnU-Net’s patch-wise design limiting global 
context. A whole-image postprocessing step could help mitigate this but would need to address 
edge cases and metadata inconsistencies. 

MRSegmentator will allow researchers to obtain biomarkers relevant for various research 
questions and clinical tasks. For instance, total kidney volume has been shown to correlate with 
glomerular filtration rate, a key indicator in polycystic kidney disease (23). Additionally, iliac 
artery tortuosity may serve as a predictor of biologic age (24), while the fat fraction within the 
autochthonous muscles can assist in stratifying the risk of incidental, non-traumatic vertebral 
fractures in the lower thoracic spine among elderly patients (25). 

Our study had several limitations. First, the human in the loop may have introduced annotation 
bias, however strong performance on fully independent external datasets suggests minimal 
impact. Second, the UK Biobank training data, while numerous in sequences (1,200), represents 
only 50 unique participants, potentially limiting anatomic variety. This limitation is partially 
mitigated by including diverse in-house and TotalSegmentator-CT data. Third, the observed 
gender-based performance differences highlight the need for more balanced training datasets. 

In conclusion, objective cross-modality segmentation with MRSegmentator provided 
reproducible, high-accuracy delineation of whole-body anatomy on MRI. The capability of 
segmenting CT and MR images, makes it a valuable tool for researchers and clinicians. We will 



 
 

 

continue to work on MRSegmentator by focusing on expanding the range of supported anatomic 
structures and pathologic conditions while maintaining the model’s cross-modality capabilities. 
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Figure 1: Study workflow with training and evaluation data. For training, data were obtained 
from the UK Biobank (UKBB), an in-house dataset and the TotalSegmentator-CT dataset. For 
evaluation data were used from the National German Cohort (NAKO), the Abdominal Multi-
Organ Segmentation challenge (AMOS) and the TotalSegmentator-MRI dataset. 

 



 
 

 

 
 
Figure 2: Sample segmentation output of MRSegmentator for all 40 classes. This includes 
spine, sacrum, hips, femurs, heart, aorta, inferior vena cava, portal/splenic vein, iliac arteries and 
veins, left and right lungs, liver, spleen, pancreas, gallbladder, stomach, duodenum, small bowel, 
colon, left and right kidneys, adrenal glands, urinary bladder, and muscles, specifically, gluteal 
muscles, autochthonous muscles, iliopsoas muscles. The model was trained on diverse datasets 
including UK Biobank, in-house clinical data, and CT scans, using a human-in-the-loop 
annotation approach. It demonstrates robust performance across various MRI sequences and can 
also segment CT images. 



 
 

 

 
 
Figure 3: Class-wise Dice Similarity Coefficients (DSC) obtained by the MRSegmentator on 
the four gradient echo modalities of the dataset from the German National Cohort (NAKO). The 
box plots show the distribution of DSC values for each of the 40 anatomic structures segmented 
by the model. The boxes represent the interquartile range (IQR), with the median DSC marked 
by the horizontal line within each box. The whiskers extend to the minimum and maximum 



 
 

 

values within 1.5 times the IQR, and any outliers beyond this range are represented by single 
points. The left kidney segmentations with a DSC of zero are false positives for a single patient 
who’s left kidney was removed. 

 

 
 
Figure 4: The first row depicts manually annotated kidneys (red) and tumors (blue) in eight 
different MRI scans. The second row shows the corresponding kidney segmentations generated 
by MRSegmentator. The model accurately localizes and segments the kidneys even in the 
presence of large tumors, demonstrating its robustness in handling pathologic cases. In the fourth 
sample, the missing right kidney due to a previous nephrectomy is correctly not segmented by 
the model. 

 

 



 
 

 

 
 
Figure 5: Segmentation failure types across different MRI sequences from the German 
National Cohort (NAKO). The box plots illustrate the distribution of failure fractions for 40 
target structures across 50 selected participants from the NAKO dataset, categorized by MRI 
sequence type. Segmentation errors are measured relative to the reference standard, 
distinguishing between under-segmentation and over-segmentation. Under-segmentation is 
generally more prevalent, except in water-only sequences, where over-segmentation is more 
common. The highest under-segmentation rates are observed in T2-HASTE and fat-only 
sequences. Abbreviations: GRE: Gradient Echo, T2 HASTE: T2-weighted Half-Fourier 
Acquisition Single-shot Turbo spin Echo. 

Table 1: Data Composition of Training and Test Sets 

 In-House UKBB  TotalSegmentator-CT 

Nr. 
Participants 

177 (M:121, F:56) 50 (M:19, F: 31) 1228 (M: 716, F:510) 

Nr. Scans 221(M:150, F:71) 1200 (M:456, F: 744) 1228 (M: 716, F:510) 

Age [years] 37–83 (median = 62) 40-691 15–98 (median = 65) 

Scanner Types 1.5 and 3 Tesla MRI 1.5 Tesla MRI 20 different models 



 
 

 

Sequences 

Test Data 

T1 (n = 90) 

T2fs (n = 64) 

T1fs (n = 67) 

IN (n = 300) 

OPP (n = 300) 

W (n = 300) 
F (n = 300) 

CT (n = 1228) 

 NAKO (MRI) AMOS2 TotalSegmentator-
MRI3 

Nr. 
Participants 

50 (M:25, F:25) MRI: 60 (M: 55, F: 45) CT: 300 (M: 314, F: 
186) 

 - 

Nr. Scans 900 (M:450, F:450) MRI: 60 (M: 55, F: 45) CT: 300 (M: 314, F: 
186) 

29 (M: 9, F:11, n.a.: 9) 

Age [years] 26–69 (median = 52.5) MRI: 22–85 (median = 50) CT: 14–94 
(median = 54) 

14–78 (median 60.5) 

Scanner Types 3 Tesla MR MRI: 3 different models CT: 5 different 
models 

13 different models 

Sequences T1 GRE IN (n = 
200) 

T1 GRE OPP (n = 
200) 

T1 GRE W (n = 
200) 

T1 GRE F (n = 200) 

T2 HASTE (n = 100) 

MRI (n = 60)  

CT (n = 300) 

MRI (n = 29) 

 

 Training 
Data 

  Test Data   

 In-House UKBB TotalSegmentator-
CT 

NAKO 
(MRI) 

AMOS2 TotalSegmentator-
MRI3 

Nr. 
Participants 

177 (M:121, 
F:56) 

50 (M:19, 
F: 31) 

1228 (M: 716, 
F:510) 

50 (M:25, 
F:25) 

MRI: 60 (M: 
55, F: 45) CT: 
300 (M: 314, 
F: 186) 

NA 

Nr. Scans 221(M:150, 
F:71) 

 1200 
(M:456, 
F: 744) 

1228 (M: 716, 
F:510) 

900 
(M:450, 
F:450) 

MRI: 60 (M: 
55, F: 45) CT: 
300 (M: 314, 
F: 186) 

29 (M: 9, F:11, 
n.a.: 9) 

Age [years] 37–83 
(median = 

 40-691 15–98 (median = 
65) 

26–69 
(median = 

MRI: 22–85 
(median = 50) 

14–78 (median 
60.5) 



 
 

 

62) 52.5) CT: 14–94 
(median = 54) 

Scanner 
Types 

1.5 and 3 
Tesla MRI 

1.5 Tesla 
MRI 

20 different 
models 

3 Tesla 
MR 

MRI: 3 
different 
models CT: 5 
different 
models 

13 different 
models 

Sequences T1 (n = 
90) 

T2fs (n = 
64) 

T1fs (n = 
67) 

IN (n = 
300) 

OPP (n 
= 300) 

W (n = 
300) 

F (n = 
300) 

CT (n = 1228) T1 GRE 
IN (n = 
200) 

T1 GRE 
OPP (n 
= 200) 

T1 GRE 
W (n = 
200) 

T1 GRE 
F (n = 
200) 
T2 
HASTE (n 
= 100) 

MRI (n = 
60)  
CT (n = 300) 

MRI (n = 29) 

Note.—(1) We did not have the social-demographics metadata of the UK Biobank data. 
Generally, the UK Biobank targets healthy individuals between the ages of 40 and 69. (2) Age 
and sex of the participants of the dataset from the Abdominal Multi-Organ Segmentation 
challenge (AMOS) are given for all 600 images, of which 360 are publicly available with manual 
annotations. Specific sequence and scanner types are not disclosed in the AMOS paper. (3) The 
TotalSegmentator-MRI paper reports their demographic information on an examination level, 
not a participant level. Abbreviations: UKBB: UK Biobank, NAKO: German National Cohort, 
GRE: Gradient Echo, T2 HASTE: T2-weighted Half-Fourier Acquisition Single-shot Turbo spin 
Echo. 

Table 2: Comparison of DSC and HD between MRSegmentator and TotalSegmentator-
MRI 

Dataset  DSC HD [mm] 

 MRSeg1 TotalSegMRI2 MRSeg1 TotalSegMRI2 

NAKO in-phase (40 classes) 0.91 ± 0.05 0.83 ± 0.07 7.5 ± 14.8 15.1 ± 20.3 

NAKO opposed-phase (40 classes) 0.88 ± 0.05 0.82 ± 0.06 8.4 ± 15.0 12.7 ± 17.4 

NAKO water only (40 classes) 0.87 ± 0.05 0.81 ± 0.06 8.5 ± 15.0 13.1 ± 16.3 



 
 

 

NAKO fat only (40 classes) 0.88 ± 0.06 0.80 ± 0.07 8.3 ± 14.8 15.6 ± 20.6 

TotalSegmentator-MRI data (40 classes) 0.74 ± 0.21 0.75 ± 0.22 16.1 ± 21.7 15.9 ± 21.5 

NAKO T2 HASTE (24 classes) 0.85 ± 0.08 0.75 ± 0.10 8.5 ± 7.0 14.1 ± 9.5 

NAKO in-phase (24 classes)3 0.90 ± 0.06 0.82 ± 0.08 6.2 ± 7.2 11.3 ± 8.1 

AMOS MRI (13 classes) 0.79 ± 0.11 0.75 ± 0.12 8.4 ± 7.0  10.0 ± 8.7 

AMOS CT (13 classes)4 0.84 ± 0.12 0.84 ± 0.11 8.6 ± 11.7 8.1 ± 10.2 

NAKO in-phase (13 classes)3 0.88 ± 0.09 0.78 ± 0.12 4.3 ± 3.6 10.1 ± 6.0 

We compared (1) MRSegmentator and (2) the TotalSegmentator-MRI model on data from the 
German National Cohort (NAKO), the Abdominal Multi-Organ Segmentation challenge 
(AMOS) and the TotalSegmentator-MRI dataset. We reported the Dice Similarity Coefficient 
(DSC), where larger values indicate better performance, and Hausdorff-distance (HD), where 
smaller values indicate better performance. Both metrics are accompanied by their standard 
deviation. Significant higher values are highlighted in bold. All false discovery rates (FDR) were 
smaller than 0.001 except the comparisons on the TotalSegmentator-MRI data with FDR = 0.017 
for the DSC and FDR = 0.787 for the HD. (3) The NAKO T2 and the AMOS data have fewer 
annotated classes. To allow a fair comparison to the NAKO GRE sequences we additionally 
report the results for the classes-subset on the in-phase sequences, as a representative for the 
GRE scans. (4) For the AMOS CT dataset we use TotalSegmentator-CT instead of 
TotalSegmentator-MRI as a baseline model. Abbreviations: GRE: Gradient Echo, T2 HASTE: 
T2-weighted Half-Fourier Acquisition Single-shot Turbo spin Echo. 

Table 3: Vessel Consistency 

Vessel VC Fraction Of Samples With More Than 
One Component 

Average Number Of Components If 
Segmented Incorrectly 

Aorta 1.00 
(200/200) 

0.00 (0/200) — 

Inferior vena 
cava 

0.92 
(184/200) 

0.08 (16/200) 2.06 ± 0.25 

Portal/splenic 
vein 

0.40 
(79/200) 

 0.60 (121/200) 2.60 ± 0.87 

Iliac arteries left 0.69 
(137/200) 

0.32 (63/200) 2.60 ± 0.85 

Iliac arteries 
right 

0.60 
(119/200) 

0.41 (81/200) 2.54 ± 0.88 

Iliac veins left 0.95 
(189/200) 

0.06 (11/200) 2.18 ± 0.40 

Iliac veins right 0.85 
(170/200) 

0.15 (30/200) 2.13 ± 0.43 



 
 

 

Vessel consistency (VC) refers to the proportion of segmentations where a given vessel class is 
represented by a single connected component. A higher VC indicates that the model effectively 
treats the vessel as a unified entity. For the gradient echo (GRE) sequences of the German 
National Cohort (NAKO), MRSegmentator did not fail to segment any structure; therefore, the 
fraction of samples with multiple components is directly related to the inverse of the VC. The 
final column presents the average number of components detected when multiple components 
were identified. For example, segmentations of the portal/splenic vein exhibit a VC of 40% 
(79/200), indicating that, in 60% (121/200) of cases, multiple components are detected. The 
average number of components observed in these cases is 2.6, suggesting a high degree of 
fragmentation in the segmentations for this vessel class. 

Table 4: Segmentation Failure Types in External NAKO Data 

MRI Sequence Under-segmentation Fraction Over-segmentation Fraction 

GRE in-phase 0.08 (0.10) 0.07 (0.06) 

GRE opposed-phase 0.09 (0.11) 0.10 (0.06) 

GRE water-only 0.08 (0.11) 0.10 (0.07) 

GRE fat-only 0.09 (0.13) 0.09 (0.06) 

T2 HASTE 0.11 (0.21) 0.07 (0.10) 

Segmentation failure types across different MRI sequences from the German National Cohort 
(NAKO). Segmentation failures are measured relative to the reference standard, distinguishing 
between under-and over-segmentation. The table reports the median and interquartile range of 
segmentation failures across 40 target structures across all participants. Under-segmentation is 
generally more prevalent, except in water-only sequences, where over-segmentation is more 
common. The highest under-segmentation rates are observed in T2-HASTE and fat-only 
sequences. Abbreviations: GRE: Gradient Echo, T2 HASTE: T2-weighted Half-Fourier 
Acquisition Single-shot Turbo spin Echo. 

  



 
 

 

 


