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Abstract
Background  Induced pluripotent stem cell-derived fibroblasts (iFBs) hold promise for autologous disease modelling, 
but their ability to replicate tissue-specific fibroblast characteristics remains unclear. Fibroblasts exhibit significant 
heterogeneity, with distinct subtypes playing critical roles in organ function and integrity. This study investigates 
whether iFBs can acquire tissue-specific transcriptional profiles through co-culture with cells from different germ 
layers, including skin (keratinocytes), heart (cardiomyocytes), gut (intestinal cells), and lung (bronchial epithelial cells).

Methods  iFBs were co-cultured directly or indirectly with organ-specific cell types, followed by bulk RNA sequencing 
and pathway analysis. Transcriptional profiles were compared to primary fibroblasts using principal component 
analysis (PCA), large single-cell databases of over 20,000 cells for single-cell deconvolution and targeted qPCR 
validation. Statistical significance was assessed via one-way ANOVA.

Results  Transcriptomic analysis revealed that iFBs exhibit transcriptional plasticity, adopting molecular phenotypes 
aligned with their co-culture environment across all germ layers. Paracrine signalling induced transient tissue-specific 
changes in indirectly co-cultured iFBs, but sustained interactions were required for stable adaptations. Pathway 
analysis highlighted functional shifts, such as TGF-β activation in cardiac iFBs and ECM remodelling in dermal iFBs. 
However, single-cell deconvolution showed incomplete tissue specification, with iFBs retaining mixed fibroblast 
subpopulations.

Conclusions  These findings demonstrate that iFBs can adopt tissue-specific transcriptional profiles, supporting their 
potential for modelling fibrotic microenvironments in 3D in vitro systems. However, the partial and transient nature of 
these adaptations underscores the need to validate whether transcriptional changes translate to functional fibroblast 
behaviours, such as ECM dysregulation or aberrant TGF-β signalling, in complex tissue models. Optimising co-culture 
conditions to stabilise these phenotypes will be critical for leveraging iFBs in fibrosis research, drug screening, and 
personalised disease modelling.
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Introduction
Human-based (disease) models, including organoids, 
bioengineered 3D tissue models and organ-on-chip set-
ups, aim to bridge the gap between traditional 2D cell 
cultures, animal-based in vivo models and the physi-
ological complexity of native human tissues and organs. 
As such, human-based models offer a controlled envi-
ronment to investigate cell-cell interactions, extracellu-
lar matrix (ECM)– cell interactions, and tissue-specific 
functions while minimising interspecies-related differ-
ences inherent to animal studies. Achieving high levels of 
biomimicry requires the integration of all tissue-relevant 
cell types to accurately replicate the complex (patho) 
physiological interactions that occur in vivo [1].

Fibroblasts, which are present in all connective tis-
sues, are crucial for maintaining structural integrity and 
homeostasis by synthesising and remodelling ECM and 
orchestrating cellular responses during injury repair, 
inflammation, and other stress-related processes [2]. 
Fibroblasts are highly heterogenous and exist in distinct 
subtypes contributing to crucial roles in organ integrity 
and cellular interactions [3]. This heterogeneity, in which 
fewer than 20% of fibroblast-enriched genes overlapped 
between four organs (heart, skeletal muscle, intestine, 
and bladder), reflects their diverse functions across 
organs, including structural support, fibrosis, immune 
modulation, and tissue repair [4]. Dermal fibroblasts for 
example contribute to skin homeostasis by participating 
in wound healing and producing different ECM compo-
nents relative to cardiac fibroblasts which regulate myo-
cardial structure and contribute to electrical conduction 
in the heart [5, 6].

Organ-specific fibroblasts play a crucial role in devel-
oping complex 2D and 3D disease models, particularly in 
the context of autologous human-based systems. How-
ever, the limited availability of primary fibroblasts from 
certain organs (e.g., the heart) has made induced plu-
ripotent stem cell (iPSC)-derived fibroblasts (iFBs) an 
essential alternative. iFBs have been successfully applied 
in a wide range of contexts, both as standalone models 
and within co-culture systems [7, 8]. These cells offer dis-
tinct advantages for patient specific disease modelling, 
by ensuring donor-donor variability and allogeneic inter-
actions do not confound experimental readouts. This is 
particularly important in immunological contexts, where 
the influence of genetic differences between donors can 
confound experimental outcomes [9].

However, the ability of iFBs to replicate the tissue-
specific characteristics and functional plasticity of native 
fibroblasts remains underexplored. A key challenge has 

been the lack of specific markers to define fibroblast 
identity and function. A recent review of over 3,000 stud-
ies highlighted the difficulty in identifying specific fibro-
blast markers [10]. Despite advances in single-cell RNA 
sequencing, the absence of reliable markers makes it dif-
ficult to determine whether generated iFBs are univer-
sal precursors or organ-specific subtypes, limiting their 
application in complex disease models.

To address these challenges, this study investigates 
whether iFBs can acquire tissue-specific transcrip-
tional profiles when co-cultured with cells from three 
germ layers: cardiomyocytes (mesoderm), keratinocytes 
(ectoderm), and bronchial and intestinal epithelial cells 
(endoderm). Using a direct co-culture setup, we ana-
lysed transcriptional changes in iFBs by bulk RNA-Seq, 
comparing them to independently cultured iFBs and 
assessing the impact of direct versus indirect co-culture, 
where cell contact is eliminated in the latter. Our findings 
demonstrate that iFBs exhibit transcriptional plastic-
ity, responding dynamically to co-culture environments 
across all germ layers. This suggests their potential for 
integration into complex human-based models but high-
lights the necessity of sustained interaction for stable tis-
sue-specific adaptations.

Materials and methods
Human tissue material and maintenance
Adult stem cell (ASC)-derived jejunal cells (intesti-
nal cells) were expanded as organoids in EIF medium 
(Advanced DMEM/F12, Primocin™ at 100  µg/ml, Glu-
taMAX at 1x, HEPES at 10mM, Y-27632 at 10µM, B27 
supplement at 1x, NAC at 1mM, EGF at 50ng/ml, Gas-
trin I at 10nM, TGF-β inhibitor (A83-01) at 0.5µM, WNT 
Surrogate-Fc Fusion Protein at 0.5nM, Rspo3-Fc Condi-
tioned Medium at 1 µg/ml, Noggin at 50ng/ml, IGF-I at 
100ng/ml, FGF-2 at 50 ng/ml, and Prostaglandin E2 at 
1µM) and then seeded at 750 000 cells/cm2 onto tran-
swells pre-coated with Matrigel diluted at a ratio of 1:50, 
to form monolayers for terminal differentiation.

Keratinocytes were cultivated in EpiLife (Thermo-
Scientific, USA) supplemented with Human Keratino-
cyte Growth Supplement (ThermoScientific, USA) on 
untreated tissue-culture plastics at an initial cell density 
of 10 000 cells/cm2. Normal human bronchial epithelial 
cells (NHBE) and lung fibroblasts (NHLFb) were pur-
chased from Epithelix (Switzerland). NHBEs were cul-
tured in PneumaCult Ex Plus (STEMCELL Technologies, 
Canada) on untreated tissue-culture plastics at an initial 
cell density of 20 000 cells/cm2. Human intestinal fibro-
blasts were purchased from ScienCell (USA). Human 
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cardiac fibroblasts (306v-05a, Cell Applications Inc) were 
kindly obtained as a gift from Prof. Sophie van Linthout 
(Berlin Institute of Health Center for Regenerative Thera-
pies, Germany). All primary fibroblasts were cultured 
in Fibroblast growth medium (FGM: DMEM (Sigma, 
D6546) supplemented with 10% FBS, 2mM L-glutamine 
and 400U/ml Penicillin/Streptomycin) at an initial cell 
density of 5 000 cells/cm2.

iPSC maintenance and iFB generation
iPSCs were cultured in E8 MDC-HomeBrew medium 
(Technology Platform Pluripotent Stem Cells of the 
Max Delbrück Center, Germany). Cells were passaged 
using TrypLE Express (Gibco, USA) and plated in cul-
ture medium supplemented with 1.2 µg/mL iMatrix-511 
(NP892-011, Reprocell, Japan) for adhesion and 10µM 
Y-27,632 (1254, Tocris, UK). Medium was refreshed daily.

iPSCs were differentiated into iFBs by adapting a previ-
ously published protocol [11] after being seeded at 2 × 104 
cells/cm2 on iMatrix-511 in E8 medium with 10µM 
Y-27,632. The next day, differentiation began in CnT-PR-
F (CellnTEC, Switzerland), 10% FBS, 25ng/mL BMP4, 
transitioning to Fibroblast Growth Medium (FGM) on 
Day 4. From Days 6–10, 10µM SB-43,125 was added to 
prevent myofibroblast transition. Basic iFB characterisa-
tion is found in Fig. 1.

Generation of iPSC-derived cardiomyocytes
At ~ 90% iPSC confluence, cardiac differentiation was 
initiated in RPMI-1640 + B27 (1:50) (without insulin) 
(Gibco, USA) with CHIR99021 (Tocris, UK) (8µM Day 
0; 4µM Day 1), followed by 5µM IWR-1 (Tocris, UK) on 

Day 3. On Day 7, cells were switched to RPMI-1640 + B27 
(with insulin). Spontaneous contractions typically began 
around Days 8–10. All media from Days 0–7 contained 
30µM L-ascorbic acid (Sigma-Aldrich, USA).

Co-culture of iFBs setup
Preparation of iFBs
On day 10 post-differentiation initiation, iFBs were pas-
saged using 0.25% trypsin-EDTA for 5 min at 37 °C. Fol-
lowing detachment, cells were collected in FGM, counted 
using a hemocytometer, and resuspended in culture 
medium. For co-culture experiments, iFBs were seeded 
at 3 000 cells/cm2 onto the Matrigel-coated basal side 
of inverted transwell inserts (Corning, USA). Cells were 
allowed to adhere and settle for 45  min at 37  °C in a 
humidified incubator with 5% CO₂. The inserts were then 
placed into standard culture wells containing FGM sup-
plemented with 10µM Y-27,632 for submerged culture. 
Cells were maintained under these conditions for 24  h 
prior to the introduction of organ-specific cell types.

Direct co-culture setup
The following day, keratinocytes, NHBEs, iPSC-derived 
cardiomyocytes, or ASC-derived jejunal cells (Fig. S1) 
were seeded on the apical side of the same transwell 
insert at an appropriate cell density for each cell type. 
This configuration allowed cells to be placed in close 
proximity on opposite sides of the same porous mem-
brane, allowing localised signalling, thereby constituting 
a direct co-culture system. Direct co-cultures were main-
tained for 7 days in respective media (RPMI-1640 + B27 
with insulin for cardiac, EpiLife for dermal, PneumaCult 

Fig. 1  (A) Immunofluorescence staining against pluripotency markers OCT4 and NANOG expressed in iPSCs. (B) Brightfield progression of iPSC to iFB 
from day 0 to day 4. (C) Immunofluorescence staining against vimentin and alpha smooth actin (ASMA). (D) Relative quantification of vimentin and PDG-
FRA transcript expression in iPSC vs iFB. All data are presented as mean ± SEM 
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ExPlus for pulmonary, EIF for intestinal). iFBs were then 
collected for analysis; control iFBs were maintained sepa-
rately but in the same media for direct comparison.

Indirect co-culture setup
For indirect co-culture, iFBs were seeded on a Matrigel-
coated plate at a cell density of 3 × 104 cm2; a transwell 
with organ-specific cells was placed above. After 7 days, 
some co-cultures were harvested, while others had the 
insert removed and were cultured for another 7 days to 
assess the persistence of co-culture effects.

Harvesting of cells
After the specified culture period, iFBs were harvested 
by gentle scraping. The cells from multiple wells were 
pooled, washed with PBS, and processed immediately or 
stored at − 80 °C for subsequent analyses. All experiments 
were performed in triplicate to ensure reproducibility.

RNA quantification
The quantity and quality of the RNA samples were 
assessed using the following methods. Preliminary 
quality control was performed on 1% agarose gel elec-
trophoresis to test RNA degradation and potential con-
tamination. Sample purity and preliminary quantitation 
were measured using Bioanalyzer 2100 (Agilent Technol-
ogies, USA) and it was also used to check the RNA integ-
rity and final quantitation.

Library construction, quality control and sequencing of the 
library
For library preparation, we used the Novogene NGS 
RNA Library Prep Set (PT042). The mRNA present 
in the total RNA sample was isolated with magnetic 
beads of oligos d(T)25 (Vazyme, China). This method is 
known as polyA-tailed mRNA enrichment. Subsequently, 
mRNA was randomly fragmented and cDNA synthesis 
proceeds using random hexamers and the reverse tran-
scriptase enzyme. Once the synthesis of the first chain 
was finished, the second chain was synthesised with the 
addition of an Illumina buffer (non-directional library 
preparation). With this and together with the presence 
of dNTPs, RNase H and polymerase I from E. Coli, the 
second chain was obtained by Nick translation. Resulting 
products underwent purification, end-repair, A-tailing 
and adapter ligation. Fragments of the appropriate size 
were enriched by PCR, where indexed P5 (​A​A​T​G​A​T​A​C​G​
G​C​G​A​C​C​A​C​C​G​A​G​A (5’-3’)) and P7 (​C​G​T​A​T​G​C​C​G​T​C​
T​T​C​T​G​C​T​T​G-P7’ (5’-3’)) primers were introduced with 
final products purified.

The library was checked with Qubit 2.0 (Invitrogen, 
USA) and real-time PCR (Thermo Fisher Scientific, USA) 
for quantification and bioanalyzer Agilent 2100 for size 
distribution detection. Quantified libraries were pooled 

and sequenced on the Illumina Novaseq X platform, 
according to effective library concentration and data 
amount using the paired-end 150 strategy (PE150).

RNA-seq and principal component analysis
Reads were mapped against the human genome v. 
GRCh38 (​h​t​t​p​​:​/​/​​w​w​w​.​​n​c​​b​i​.​​n​l​m​​.​n​i​h​​.​g​​o​v​/​​p​r​o​​j​e​c​t​​s​/​​g​e​n​​o​m​e​​
/​a​s​s​​e​m​​b​l​y​/​g​r​c​/​h​u​m​a​n​/), p7 using the STAR aligner [12] v. 
2.7.3a (​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​​a​l​e​x​​d​o​​b​i​n​/​s​t​a​r​/​r​e​l​e​a​s​e​s). Gene 
counts were obtained through featureCounts program 
[13] v. 2.0.3 (​h​t​t​p​​:​/​/​​s​u​b​r​​e​a​​d​.​s​​o​u​r​​c​e​f​o​​r​g​​e​.​n​e​t). Counts 
were log-normalised using the rlog function from the 
DESeq2 package [14] v. 1.38 (​h​t​t​p​​s​:​/​​/​b​i​o​​c​o​​n​d​u​​c​t​o​​r​.​o​r​​g​/​​p​
a​c​k​a​g​e​s​/​D​E​S​e​q​2​/). Principal components were ​c​a​l​c​u​l​a​t​e​
d using the R function prcomp, and Pearson correlation 
coefficients were calculated between the samples using 
the principal components.

Pathway enrichment analysis
Selected KEGG pathways were retrieved using the keg-
gList() and keggGet() functions from the KEGGREST R 
package. Gene symbols were extracted and standardised 
to uppercase. Ensembl gene IDs from the expres-
sion matrix were mapped to HGNC symbols using the 
biomaRt package (hsapiens_gene_ensembl dataset). Dif-
ferential expression results were obtained from a custom 
pipeline built with the Rseasnap package (​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​
.​c​​o​m​/​​b​i​h​e​​a​l​​t​h​/​R​s​e​a​s​n​a​p). For each group comparison, 
genes with|log₂ fold change| ≥ 1 and adjusted p-value 
(padj) ≤ 0.05 were selected. For each pathway, the top 10 
DEGs were identified and visualised in heatmaps using 
the pheatmap package.

Single-cell semiprofiler
Single-cell deconvolution of bulk RNAseq data was done 
as according to Wang et al. [15]. This approach allowed 
us to estimate deeply the composition of cell types 
within complex tissue samples by leveraging reference 
single-cell transcriptomic data. As our reference single-
cell transcriptomic data, we utilised the comprehensive 
dataset from the Tabula Sapiens project, which provides 
a high-resolution single-cell transcriptomic atlas across 
multiple human tissues [15].

To tailor this reference dataset to our specific analysis, 
we applied filtering criteria to isolate and retain only cells 
annotated as fibroblasts. Additional filtering was applied, 
selecting up to 2,000 cells per subtype with at least 1,000 
cells, and removed low-quality cells (expressing < 200 
genes or genes detected in < 5 cells) to construct a refined 
fibroblast-specific reference matrix. As we lacked single-
cell RNA-seq data from our own samples, this curated 
dataset served as a biologically relevant reference under 
the assumption that primary fibroblast subtype diversity 
is broadly representative of our iFB populations (Fig. S4).

http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/
https://github.com/alexdobin/star/releases
http://subread.sourceforge.net
https://bioconductor.org/packages/DESeq2/
https://bioconductor.org/packages/DESeq2/
https://github.com/bihealth/Rseasnap
https://github.com/bihealth/Rseasnap
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The resulting fibroblast-specific single-cell profiles 
were integrated into the scSemiProfiler model to estimate 
the relative abundance and heterogeneity of fibroblast 
populations within our iFB bulk RNA-seq samples.

Targeted gene expression via RT-qPCR
For targeted gene expression analysis, markers were 
selected due to their expression in organ-resident fibro-
blasts. For example, POSTN and TBX20 mark cardiac 
fibroblasts involved in ECM remodelling and heart devel-
opment; KRT14 and MMP2 are indicative of dermal 
identity; NPNT and HHIP reflect pulmonary fibroblast 
functions linked to lung matrix interactions; and BMP4, 
FBLN1, and CXCL12 serve as markers for intestinal 
fibroblasts, with CXCL12 reflecting broader fibroblast 
activity.

Total RNA was extracted from iFBs. Briefly, models 
were lysed in PureLink RNA Mini Kit lysis buffer (Invi-
trogen, USA). RNA was isolated according to the manu-
facturer’s protocol. Total RNA was quantified, and cDNA 
was synthesised, using iScript™ cDNA Synthesis Kit (Bio-
Rad Laboratories, USA). The subsequent RT-qPCR was 
performed using SYBR Green I Master Mix (Bio-Rad 
Laboratories, USA). 18 S served as a housekeeping gene 
control. Primer sequences are listed in Supplemental 
Table 1.

Statistical analysis
Statistical analysis was performed with RStudio Version 
2024.09.1 + 394 and GraphPad Prism 10 (Version 10.4.1) 
software. Values are expressed as means ± SEM from at 
least three biological replicates. A one-way ANOVA was 
used for the comparison of > two parametric groups. 
P <.05 were considered statistically significant.

Results
iPSC-derived fibroblasts exhibit mesenchymal features and 
loss of pluripotency
To confirm the generation of fibroblast-like cells from 
iPSCs, we performed morphological and molecular char-
acterisation across early stages of differentiation. Immu-
nofluorescence staining confirmed the expression of 
canonical pluripotency markers OCT4 and NANOG in 
undifferentiated iPSCs, indicating a robust starting plu-
ripotent population (Fig. 1A). Upon initiation of differen-
tiation, iPSCs underwent marked morphological changes 
between day 0 and day 4, adopting an elongated, spindle-
shaped morphology characteristic of mesenchymal cells 
(Fig. 1B).

Consistent with a mesenchymal transition, immuno-
fluorescence analysis at day 10 revealed high expression 
of vimentin and α-smooth muscle actin (ASMA), both 
markers associated with fibroblast identity and cytoskel-
etal reorganisation (Fig. 1C). At the transcriptional level, 

qPCR analysis demonstrated a significant upregulation 
of vimentin and PDGFRA, two key fibroblast-associ-
ated genes, in iFBs compared to undifferentiated iPSCs 
(Fig. 1D). These data confirm successful downregulation 
of pluripotency and acquisition of fibroblast-like charac-
teristics prior to co-culture.

Co-cultured iFB RNAseq analysis
To assess transcriptional responses of iFBs in differ-
ent microenvironments, iFBs were co-cultured with 
human keratinocytes (KCs), bronchial epithelial cells 
(NHBE), myocardial cells (iPSC-CMs), and intestinal 
cells (Fig.  2A). Each co-culture was maintained in cell-
specific media, with corresponding medium-only con-
trols. Following co-culture, iFBs were subjected to bulk 
RNA-sequencing. PCA-based correlation and expression 
heatmaps (Fig. 2B, Fig. S4) revealed clustering of co-cul-
tured iFBs with primary fibroblasts from their respective 
dermal, cardiac, and pulmonary tissues, indicating tran-
scriptional alignment and similarity. This clustering was 
consistent across three independent iPSC lines.

To validate transcriptional adaptations, we performed 
a head-to-head comparison of co-cultured iFBs with tis-
sue-derived fibroblasts, selecting key markers based on 
their known relevance to specific organ environments. 
Targeted qPCR analysis (Fig. 2C) showed varying degrees 
of organ specificity, consistent with Fig. 2B and Fig. S3A. 
POSTN, MMP2, and NPNT were preferentially upregu-
lated in cardiac, dermal, and pulmonary iFB co-cultures, 
respectively. In contrast, HHIP and KRT14 were broadly 
induced across multiple co-culture conditions. As a rep-
resentative sample, HHIP was tested in both primary car-
diac and lung fibroblasts, with no significant difference in 
gene expression found between them (Fig. S3B). BMP4 
and FBLN1 exhibited strong induction in intestinal co-
cultures but were also significantly elevated in other 
contexts. For example, FBLN1 was also upregulated in 
dermal conditions, and BMP4 showed increased expres-
sion across all co-culture conditions compared to con-
trols (Fig. 2C).

Pathway enrichment analysis
Pathway analysis of differentially expressed genes 
revealed that iFBs respond to co-culture conditions with 
distinct transcriptional adaptations (Fig.  3, Fig. S3A), 
though overall pathway enrichment was modest across 
the pathways examined. Compared to iFBs maintained 
in tissue-specific basal medium alone, co-cultured iFBs 
exhibited significant alterations in key signalling path-
ways associated with tissue-specific fibroblast function.

In cardiac co-cultures, genes within the TGF-β signal-
ling pathway were significantly upregulated. Calcium sig-
nalling components were also elevated. Wnt signalling 
showed strong context-specific modulation: cardiac iFBs 
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Fig. 2  (A) Schematic representation illustrating culture conditions leading to iFB differentiation, followed by co-culture configurations for cardiac, dermal, 
pulmonary, and intestinal cells on the apical side of the transwell with fibroblasts seeded on the underside of the transwell. (B) PCA correlation heatmap 
comparing RNA-seq datasets of iFBs with cardiac (cFB), dermal (dFB), and normal human lung fibroblasts (NHLFs), and intestinal fibroblasts demonstrat-
ing tissue-specific transcriptional adaptations. (C) Expression of organ-specific fibroblast markers across all four iFB-co-cultures relative to independently 
cultured iFBs in fibroblast maintenance medium, FGM, measured via qPCR. All data are presented as mean ± SEM, n = 3 per cell line per condition. One-
way ANOVA was performed, *P <.05, **P <.01, ***P <.001, P****<0.0001
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upregulated WNT7A, LGR5, and SOX17, while dermal 
iFBs exhibited a general downregulation of these Wnt 
related genes.

The ECM receptor interaction pathway was notably 
enriched in dermal iFBs, with a diverse expression pro-
file suggesting robust ECM remodelling activity. In con-
trast, pulmonary iFBs, while clustering near primary lung 
fibroblasts in global transcriptional space (Fig. 2, Fig. S4), 
exhibited limited activation of canonical pathways asso-
ciated with lung fibroblast identity.

Distinct pathway activation patterns were also 
observed between intestinal and pulmonary iFBs, despite 
their shared endodermal origin. PI3K-Akt pathway com-
ponents were significantly upregulated in intestinal 
co-cultures (Fig. S2C), and fibroblasts derived from intes-
tinal and pulmonary co-cultures clustered separately in 
PCA analysis and volcano plot (Fig. 2B, Fig. S2B), indicat-
ing transcriptional divergence.

Single-cell deconvolution
To further characterise the transcriptional profiles of 
iFBs, we applied scSemiProfiler to deconvolute bulk 
RNA-seq data and infer single-cell-like transcriptomes 
(Fig.  4). This analysis generated inferred single-cell-like 
transcriptomes, which were subsequently compared to a 
reference atlas of over 20,000 fibroblast single-cell RNA-
seq profiles from the Tabula Sapiens database [15, 16]. 

Across all co-culture conditions, iFBs exhibited heteroge-
neous transcriptional identities, comprising a mixture of 
fibroblast subtypes rather than converging on a uniform, 
tissue-specific signature.

Compared to their iFB Medium Control counter-
parts, direct co-culture with tissue-specific cells led to 
an increased representation of relevant fibroblast sub-
types—cardiac, dermal, intestinal (small and large), and 
pulmonary (distal, medial, proximal), and a concurrent 
reduction in “Other” fibroblasts, defined as 21 reference 
fibroblast types not targeted in this study (e.g., bladder, 
liver, pancreas). Cardiac and dermal co-cultured iFBs 
adopted a tissue-specific fibroblast subtype of above 25% 
each after 7 days of co-culture. iFBs with intestinal co-
culture displayed an increased proportion of both large 
(purple) and small (red) intestinal fibroblasts, without 
appearing to distinctly favour one over another. Large 
intestinal fibroblasts and pulmonary distal fibroblasts 
only appeared visibly present in their respective iFB 
intestinal and pulmonary co-cultures. All iFB popula-
tions retained mixed transcriptomic contributions from 
both targeted and non-targeted fibroblast lineages.

Direct vs. indirect co-culture
In indirect co-culture systems utilising transwell 
inserts to physically separate iFBs from organ-specific 
cells (Fig.  5A), we observed persistent morphological 

Fig. 3  Heatmaps depicting differentially expressed (DE) genes across key KEGG pathways in iFBs. Groups include iFBs co-cultured with iPSC-derived car-
diomyocytes (coculture_ipsc_cm), keratinocytes (coculture_kc), NHBEs (coculture_nhbe), and ASC-derived jejunal cells (coculture_jejunum) compared 
to the expression of independently cultured iFBs in the respective basal medium of co-culture e.g. EpiLife, PneumaCult ExPlus
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adaptations in cardiac and dermal iFBs when comparing 
co-cultured versus medium-only controls (Fig. 5B). These 
changes were accompanied by detectable transcriptional 
shifts, with some changes substantially attenuated com-
pared to direct co-culture conditions where iFBs interact 
with neighbouring cells across a shared transwell mem-
brane (Fig. 5C).

For instance, in direct co-culture, MMP2 and FBLN1 
transcript levels approached those of primary fibroblasts 
(MMP2 fold-change = 0.86, FBLN1 fold-change = 1.06, 
relative to primary fibroblasts), whereas in indirect co-
culture they remained lower (MMP2 fold-change = 0.42, 
FBLN1 fold-change = 0.28, relative to primary fibro-
blasts). Markers such as POSTN, TBX20, and HHIP 
however retained elevated expression under indirect con-
ditions relative to isolated iFBs without co-culture.

Some transcriptional responses to indirect co-cul-
ture were not maintained upon removal of the para-
crine stimulus. For example, TBX20 expression declined 
from a fold-change of 0.77 during co-culture to 0.26 
post-removal, suggesting transient effects. Morphologi-
cal changes were more pronounced between the differ-
ent media controls than between the culture conditions 
(Fig. 5B).

Discussion
This study set out to determine whether iFBs can acquire 
transcriptional tissue-specific traits through co-culture 
with epithelial and mesoderm cells from different organs. 
Using a transwell-based co-culture system, we explored 
the transcriptional plasticity of iFBs with the ultimate 
aim of assessing their suitability for integration into com-
plex, human-based models of high biomimicry. Our data 

demonstrate that iFBs exhibit notable transcriptional 
plasticity in response to co-culture with cells from all 
three distinct germ layers, clustering alongside their pri-
mary fibroblast counterparts in the PCA heatmap. This 
responsiveness was consistent across multiple iPSC lines, 
suggesting that co-culture indeed contextually tune iFBs, 
potentially bypassing the need for lineage-specific differ-
entiation protocols. Although fibroblast plasticity is well-
established [17, 18] this finding demonstrates that iFBs 
acquire transcriptional traits of mesodermal, ectodermal, 
and endodermal fibroblasts when exposed to diverse tis-
sue-specific microenvironments.

To evaluate the fidelity of this plasticity, we assessed 
the expression of markers enriched in organ-resident 
fibroblasts. While several organ-specific markers, such 
as POSTN (cardiac FB) and MMP2 (dermal FB), showed 
tissue-paired upregulation, others, including BMP4 and 
FBLN1, were induced across multiple co-culture condi-
tions, despite their intestinal fibroblast associations [19, 
20]. This pattern may reflect either shared fibroblast 
programs or generalised responses to juxtacrine/para-
crine signals [3, 20]. These observations are consistent 
with the known limitations of classical fibroblast mark-
ers [20] which often lack strict tissue exclusivity due to 
overlapping roles in ECM remodelling, wound repair, and 
inflammation. For instance, the widespread induction 
of BMP4 across conditions, despite its role in intestinal 
mesenchyme development [19] points to a conserved 
epithelial-mesenchymal signalling that transcends tissue 
boundaries. Collectively, these findings emphasise iFB 
flexibility in diverse microenvironments and highlight 
the ongoing challenge of defining truly lineage-restricted 
fibroblast markers.

Fig. 4  The stacked bar plot represents the proportional distribution of fibroblast subtypes across iFB conditions, as inferred from SemiProfiler against a 
reference set of over 20,000 primary fibroblast single-cell RNA sequencing profiles. “Other Fibroblasts” (a heterogeneous pool spanning various organs 
such as liver, uterine, and mammary tissues)
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Fig. 5 (See legend on next page.)
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Building on these observations, we investigated 
whether iFB transcriptional plasticity translates into 
pathway-level differences across co-culture conditions. 
Fibroblasts behaviour is finely tuned to their organ of 
origin and varies considerably across both organ-specific 
and intra-organ subtypes [3, 21]. In cardiac co-cultures, 
for example, genes in the TGF-β pathway were upregu-
lated, in line with the central role of cardiac fibroblasts in 
myocardial repair [22] alongside elevated calcium signal-
ling genes supporting cardiomyocyte electrophysiology 
and excitation-contraction coupling [23].

In contrast, iFBs cultured in non-cardiac environments 
exhibited distinct and sometimes opposing transcrip-
tional programmes. Wnt signalling was modulated in 
a context-dependent manner: cardiac co-cultured iFBs 
upregulated WNT7A, LGR5, and SOX17, genes associ-
ated with cardiac development and regeneration [24–26] 
whereas downregulated Wnt-related components in 
dermal iFBs may be indicative of a quiescent fibroblast 
state focussing on skin barrier maintenance over active 
regeneration [27, 28]. Dermal iFBs also displayed broad 
expression in the ECM receptor interaction pathway, 
underscoring the complex and diverse roles of dermal 
fibroblasts in ECM remodelling across fibroblast popula-
tions in the skin [29].

Pulmonary iFB co-cultures presented a more complex 
picture. iFBs co-cultured with NHBEs clustered with pri-
mary lung fibroblasts at a global level (Fig.  2B, Fig. S4), 
but failed to activate canonical lung pathways such as 
TGF-β/Smad [30], suggesting that tissue-specific traits 
may be underrepresented in our setup. Interestingly, 
despite their shared endodermal origin, intestinal and 
pulmonary iFBs exhibited divergent pathway activation 
profiles. This divergence likely reflects organ-specific 
physiological demands: lung fibroblasts prioritise struc-
tural maintenance and immune modulation to sustain 
barrier integrity in a relatively low-turnover environ-
ment, whereas intestinal fibroblasts promote PI3K-Akt 
pathway activity to support rapid epithelial renewal and 
mucosal repair in the intestine’s high-renewal niche [31].

The modest pathway enrichment across co-culture 
conditions may reflect a relatively quiescent iFBs state, 
absent of activating cues. For example, pulmonary fibro-
sis-associated markers like CTHRC1 were not induced 
[32] suggesting that pro-inflammatory, mechanical or 
injury-related cues are necessary to reveal key tissue-spe-
cific features.

To reconcile global and pathway-level discrepancies, 
we applied scSemiProfiler to deconvolute bulk RNA-
seq data against Tabula Sapiens fibroblast references. 
Rather than adopting uniform organ-specific fibroblast 
signatures, iFBs showed mixed identities, enriched for 
tissue-relevant but not exclusive fibroblast signatures. 
Co-culture reduced this heterogeneity, but did not elimi-
nate it, suggesting that this residual diversity may reflect 
aspects of physiological fibroblast diversity both across 
and within tissues. For instance, intestinal co-cultures 
included fibroblasts resembling both small and large 
intestine, even when biased toward a small intestine 
(jejunum). This aligns with prior observations that indi-
vidual organs can harbour multiple resident fibroblast 
subtypes [3, 20].

The persistent heterogeneity likely stems from both 
biological and technical constraints that limit full lin-
eage commitment. Factors including epigenetic iner-
tia, inter-line iPSC variability, limited culture duration 
and suboptimal media, likely impede complete lineage 
specification. Moreover, it should be noted that while 
our direct co-culture facilitates close cellular commu-
nication, the presence of the transwell membrane likely 
limits classical juxtacrine signalling. Given that fibroblast 
identity exists along a continuum [17, 18] achieving fully 
functional, tissue-specific populations will require more 
complex environmental cues, potentially involving matri-
ces, mechanical inputs, or extended co-culture durations. 
In addition to the need for broader marker panels, func-
tional assays (e.g., ECM composition) will also be needed 
to accurately assess inter- and intra-organ fibroblast 
identity and function.

While iFBs exhibit transcriptional plasticity in response 
to their environment, it remained unclear whether these 
changes represent stable or transient lineage adaptions. 
To address this, we tested whether a paracrine-only indi-
rect co-culture setup could induce and sustain tissue-
specific gene expression. iFBs are often utilised in either 
direct 2D or 3D co-cultures that enable cell-cell contact 
and better mimic in vivo conditions [6, 33] or in indirect 
co-cultures where physical separation between fibro-
blasts and other cells facilitates cell-type specific down-
stream analyses such as immunofluorescence or Western 
blot [34, 35].

Our data indicate that although markers like POSTN, 
TBX20, and HHIP remain elevated in indirect co-cultures 
relative to isolated medium-only iFBs, the transcriptional 

(See figure on previous page.)
Fig. 5  (A) Scheme of direct and indirect co-culture systems, illustrating the transwell configuration for indirect co-culture. (B) Representative bright-field 
images of iFBs after 7 days of indirect co-culture and 7 days post-co-culture with cardiac, dermal, pulmonary, and intestinal cells. (C) Transcript expres-
sion of organ-specific markers measured via qPCR. “Indirect” refers to transwell co-culture conditions where iFBs were continuously exposed to paracrine 
signals. “Indirect (removed)” indicates iFBs that were co-cultured indirectly, then removed from co-culture and cultured alone for an additional 7 days prior 
to analysis. Abbreviations: NHLFb– normal human lung fibroblast; cFB– cardiac fibroblast; dFB– dermal fibroblast. Data are presented as mean ± SEM, n = 3 
cell lines per condition. One-way ANOVA was performed, *P <.05, **P <.01, ***P <.001, P****<0.0001
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effects of indirect co-culture were generally less pro-
nounced compared to direct co-cultures. Moreover, 
contrary to findings in primary mouse fibroblasts [36] 
many transcriptional alterations in iFBs diminish after 
stimulus removal (e.g. TBX20 fold-change with indirect 
co-culture = 0.77, TBX20 fold-change after co-culture 
removal = 0.26), implying that continuous paracrine 
signalling is required to sustain tissue-specific gene 
expression.

We also observed media-dependent morphological 
variation, suggesting that media composition exert a 
strong influence on fibroblast morphology and possibly 
molecular state, though without affecting iFB identity 
(Figs. 2B and 4; Fig. S2). Together, these findings under-
score the dynamic plasticity of iFBs and suggest that 
achieving stable, tissue-specific fibroblast phenotypes 
will likely depend on direct cell-cell contact and pro-
longed environmental cues. This is an important consid-
eration for modelling chronic diseases such as fibrosis 
and wound healing, where long-term maintenance of 
fibroblast identity is essential.

Conclusion
Developing human-based model systems remains essen-
tial for capturing the physiological relevance of human 
tissues and enabling the study of tissue repair, immune 
modulation, fibrosis and other context-dependent fibro-
blast behaviours. We demonstrate that iFBs can partially 
adopt tissue-specific transcriptional profiles matching 
primary cardiac, dermal, pulmonary and intestinal fibro-
blasts, with pathway analyses and single-cell deconvolu-
tion revealing incomplete specification. While paracrine 
signalling cues induce transient changes, highlight-
ing iFB plasticity, sustained interactions appear neces-
sary for stable phenotypes. These findings underscore 
the need to validate functional ECM remodelling and 
contractile capacities in 3D or dynamic models to con-
firm their relevant use in complex tissue models. Addi-
tionally, future studies should also explore whether iFBs 
display enhanced regenerative or therapeutic potential 
in vivo, for example through functional assays such as 
wound healing models. Crucially, our single differentia-
tion protocol yields iFBs adaptable across multiple organ 
contexts, providing a practical platform for patient-spe-
cific disease modelling without the need for multiple lin-
eage-specific methods. Finally, although iFBs have been 
regularly incorporated into multicellular systems, to our 
knowledge this is the first demonstration that they tran-
scriptionally adapt to distinct microenvironments in a 
context-dependent manner.
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