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Shortcomings of silhouette in single-cell 
integration benchmarking
 

Pia Rautenstrauch    1,2 & Uwe Ohler    1,2,3 

Single-cell studies rely on advanced integration methods for complex 
datasets affected by batch effects from technical factors alongside 
meaningful biological variation. Silhouette is an established metric for 
assessing unsupervised clustering results, comparing within-cluster 
cohesion to between-cluster separation. However, silhouette’s assumptions 
are typically violated in single-cell data integration scenarios. We 
demonstrate that silhouette-based metrics cannot reliably assess batch 
effect removal or biological signal conservation and propose more robust 
evaluation strategies.

Integrating single-cell data remains a key challenge because of increas-
ing dataset complexity and volume. These datasets comprise batch 
effects arising from technical factors (for example, assays and proto-
col), alongside meaningful biological variation (for example, distinct 
tissue sampling regions), requiring rigorous evaluation of integration 
methods to ensure accurate integration and interpretation. We focus 
on methods for horizontal integration (a term coined by Argelaguet 
et al.1), defined as integrating datasets using shared features (for exam-
ple, genes) aiming to remove batch effects while preserving biologi-
cal variation. Although relevant to distinct output types, we focus on 
integrated embeddings, low-dimensional data representations derived 
from integration methods.

Silhouette-based evaluation metrics, which we find are unreliable 
for horizontal integration, have become widely adopted to address this 
challenge. The metric ‘silhouette’ scores clustering quality by compar-
ing within-cluster cohesion to between-cluster separation2 and was 
developed for evaluating unsupervised clustering results of unlabeled 
data (internal evaluation). In line with its original intent, silhouette was 
taken up for determining the optimal number of clusters in single-cell 
datasets for a given embedding3,4. More recently, silhouette has been 
adapted for evaluating horizontal data integration, for instance, to score 
bio-conservation by assessing how well cell type annotations (based on 
labeled data; that is, external evaluation) from distinct batches cocluster 
in distinct embeddings5–7. From 2017 onward, silhouette-based metrics 
have also been used for scoring batch effect removal5,7–9. Here, research-
ers attempt to invert the silhouette concept to score how well cells from 
distinct batches (external labels) mix. Silhouette-based metrics for 
both bio-conservation and batch removal have been widely adopted 

across the field, as evidenced by their application in multiple large-scale 
benchmarks10–12. In Nature Portfolio journals alone, we found evidence 
for their use in 66 publications for evaluating batch removal (Extended 
Data Fig. 1 and Supplementary Table 1). Notably, these studies extend 
beyond single-cell sequencing data, encompassing spatial transcrip-
tomics and image-based single-cell modalities.

Silhouette-based metrics suffer from fundamental, largely over-
looked limitations for evaluating horizontal data integration. To expose 
these issues, we first formalize the silhouette score and its adapta-
tions for single-cell integration tasks. Using simple simulations, we 
demonstrate how the metric’s assumptions are violated under basic 
conditions, misleadingly rewarding poor integration. We then validate 
these findings in real-world datasets, proving that these issues persist 
beyond theoretical scenarios.

The silhouette coefficient for a cell i assigned to a cluster Ck , 
denoted si, is defined as follows. Given ai (the mean distance between 
a cell i and all other cells in the same cluster Ck) and bi (the mean dis-
tance between a cell i and all other cells in the nearest (neighboring) 
other cluster Cl, where l ≠ k), si is given by

si =
bi − ai

max(ai,bi)
(1)

Conventionally and if not stated otherwise, Euclidean distance is 
used. Note that si is only defined for 2 ≤ n clusters ≤ n cells − 1  and 
ranges between −1 and 1, with 1 indicating good cluster separation 
(ai ≪ bi), values near 0 indicating cluster overlap (ai = bi) and −1 indicat-
ing wrong cluster assignment (ai ≫ bi). In contrast to the use of silhou-
ette for internal clustering evaluation (unsupervised clustering), for 
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Early adoptions, which remain in use, use a simple formulation 
where all cells from a given batch are assigned to a single cluster, which 
we refer to as batch ASW (global). This approach often computes 
1 − batch ASW (global) or 1 − |batch ASW (global)|, with higher scores 
interpreted as better performance.

Luecken et al.11 acknowledged problems with differences in cell 
type composition between batches and thus introduced a modified 
version of batch ASW computed separately for each cell type. For a 
given cell type label j  with |C j| cells, the score is calculated as:

Batch ASWj (cell type) =
1

|C j|
∑
iϵ C j

1 − |si| (3)

The final batch ASW (cell type) score (batch ASW from here on) is 
obtained by averaging across the scores for all cell type labels.

When repurposing the silhouette metric for evaluating horizontal 
data integration, researchers make two key changes compared to its 
original application. First, they use label-based rather than algorithmic 

scoring data integration in the single-cell field, cells are not assigned to 
clusters in a data-driven manner, for example, by the result of a clustering 
algorithm, but by external information, such as cell type or batch labels.

For scoring bio-conservation, cell type labels serve as cluster 
assignments. First, the average silhouette width (ASW) is calculated 
across all cells (unscaled cell type ASW). Following common practice, 
we use a rescaled version:

Cell type ASW = (unscaled cell type ASW + 1)/2 (2)

Notably, a score of 0.5 corresponds to an unscaled ASW of 0, indi-
cating overlaps between cell types, an undesirable outcome. Higher 
values indicate better performance.

For scoring batch effect removal, batch labels serve as cluster 
assignments. Here, the goal is to measure cluster overlap rather than 
separation. Considering this context, researchers made the assumption 
that silhouette values si around 0 indicate a high level of batch overlap. 
Two approaches exist.
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Fig. 1 | Silhouette’s assumptions are not met in data integration contexts. 
a, Silhouette was designed to select a suitable cluster number for a single 
embedding, with cluster membership resulting from unsupervised algorithms2. 
b–d, In data integration, we compare distinct embeddings and assign cluster 
membership by external labels: cell type (b,c) or batch (d). b, Silhouette’s bias 

for compact, spherical clusters does not reflect integration quality. c, Label-
based clusters can have irregular shapes, violating silhouette’s assumptions and 
yielding unreliable scores. d, Silhouette’s focus on nearest neighboring clusters 
misses remaining batch effects if samples are partially integrated, limiting its 
sensitivity. All data shown are 2D simulated examples.
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cluster assignment. Second, they compare silhouette scores across the 
outputs of different methods (across embeddings) instead of relative 
to the output of a single method. We demonstrate how these and other 
conceptual changes inherently constrain the silhouette metric’s effec-
tiveness for assessing horizontal integration using two-dimensional 
(2D) simulated data (Fig. 1).

Concerning bio-conservation evaluation, when comparing sil-
houette scores across distinct methods’ outputs, silhouette’s inherent 

preference for compact, spherical, well-separated clusters conflicts 
with biological reality, where such geometric properties bear no 
meaningful relationship to cellular state. This manifests in the metric 
resulting in different scores for distinct but biologically equally valid 
embeddings (Fig. 1b). Additionally, label-based assignments can pro-
duce irregular cluster geometries that would never emerge from algo-
rithmic clustering (for example, batch-induced distortions), violating 
the metric’s assumption about cluster shapes. Silhouette’s behavior 
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Fig. 2 | Silhouette-based metrics are unreliable for assessing bio-
conservation and batch effect removal. a, Uniform manifold approximation 
and projections (UMAPs) of NeurIPS minimal example embeddings integrated 
with increasing success, colored by cell type and sample. b,d, Batch removal 
metrics: batch ASW, BRAS and an alternative cell-type-adjusted diversity 

score, CiLISI. Bio-conservation metrics: cell type ASW and ARI. c, UMAPs of 
healthy HLCA embeddings integrated with increasing success colored by cell 
type and dataset, shown for a consistent random 10% data subset. Suboptimal 
embeddings were obtained through batch-aware HVG selection for specified 
batch variables.
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becomes unreliable, as demonstrated by identical silhouette scores 
representing radically different scenarios (Fig. 1c).

Concerning batch effect removal, irregular cluster geometries are 
the default for batch ASW (global), where all cells from a given batch 
are forced into a single cluster regardless of cell type diversity, produc-
ing erratic scores that fail to reflect integration quality (Extended Data 
Fig. 2), which is why we generally discourage its use. Additionally, sil-
houette (Eq. (1)) considering the mean distance between a cell i and all 
other cells in the nearest (neighboring) other cluster Cl (bi) is problem-
atic in the batch removal context, affecting both batch ASW (global) 
and the cell type-adjusted batch ASW. For simplicity, consider integrat-
ing multiple datasets (samples) with a single cell type, where the aim 
is to score cluster overlap and not separation. A value for si around 0 
is attainable if a given cluster overlaps with just a single other cluster 
and could still be very distinct from all other remaining ones. Thus, 
silhouette-based batch removal metrics can result in maximal scores 
when all samples are integrated with subsets of the other samples 
despite remaining strong batch effects (Fig. 1d), which we call 
‘nearest-cluster issue’.

These limitations are also painfully obvious in real datasets. For 
simplicity, we limit our analyses to healthy samples and treat interdo-
nor variation as negligible noise. A discussion of strategies for evaluat-
ing heterogeneous sample integration can be found in Supplementary 
Note 2. We discovered the nearest-cluster issue for batch ASW in the 
context of the NeurIPS 2021 challenge13, where the benchmark data 
have a nested experimental design and intersite technical variation 
is larger than intrasite variation between samples of distinct donors. 
Choosing a single-cell RNA sequencing (scRNA-seq) subset (‘mini-
mal example’) of this data with four batches nested into two groups 
(sites), we compare metric performance on unintegrated, suboptimally 
integrated and effectively integrated and optimized (with respect to 
batch removal) integrated data with liam14 (Fig. 2a). Batch ASW fails to 
rank embeddings accurately and even favors worse embeddings with 
stronger batch effects (Fig. 2b), with the same observations applying 
to the full dataset (Extended Data Fig. 3b). Cell type ASW assigns almost 
identical scores to unintegrated and suboptimally integrated embed-
dings of the minimal example and the full data (Fig. 2b and Extended 
Data Fig. 3b), reflecting fundamental limitations in its discriminative 
power.

The violation of silhouette’s assumptions and resulting unreli-
ability is not limited to datasets with controlled nested experimental 
designs. We demonstrate this by extending our analysis to two recent 
atlas-level studies, which differ in batch effect severity, cell type com-
plexity and granularity of provided annotations: the healthy subset 
of the Human Lung Cell Atlas (HLCA)15 and the genetically diverse 
Human Breast Cell Atlas (HBCA)16. Using author-provided integrated 
embeddings, we compare those to unintegrated and naively inte-
grated embeddings (Fig. 2c and Extended Data Fig. 4a). For HLCA, 
the batch ASW metric shows limited discriminative power but ranks 
embeddings correctly (Fig. 2d), whereas, for HBCA, it inversely ranks 
embeddings, favoring the worst integration (Extended Data Fig. 4b). 
Regarding bio-conservation, cell type ASW indicates comparable 
performance for naive and integrated embeddings in HLCA (Fig. 2d). 
However, in HBCA, which has well-separated cell types and limited 
batch effects, cell type ASW retrieves the expected ranking (Extended 
Data Fig. 4b).

Single-cell integration benchmarking is an area of active 
research, which has seen large-scale coordinated efforts and typically 
includes a multitude of metrics extending beyond silhouette-based 
metrics10–12,17,18. Unanimously, it has been suggested that two classes 
of metrics should be considered to score horizontal data integration: 
batch removal and bio-conservation metrics10,11,18, which we introduce 
in detail in Supplementary Note 1. Concerning alternatives to silhou-
ette for evaluating batch effect removal robust to the nearest-cluster 
issue, we find that combining a cell-type-adjusted local mixing batch 

removal with bio-conservation metrics on a cell type level is a suc-
cessful strategy. For example, applying CiLISI (cell type integration 
local inverse Simpson’s index)19 with adjusted Rand index (ARI) leads 
to accurate rankings across datasets with the bio-conservation metric 
flagging overcorrection (Extended Data Fig. 5). It is also possible to 
‘fix’ the silhouette-based metric batch ASW to be robust to the 
nearest-cluster issue by redefining bi as the mean distance between 
a cell i and all other cells in any other cluster Cl  with l ≠ k . Changing 
Euclidean to cosine distance results in higher discriminative power. 
We call this metric batch-removal-adapted silhouette (BRAS; available 
through the scib-metrics package as of version 0.5.5; further details 
in Extended Data Figs. 3–6 and Methods, including a BRAS variant 
considering the furthest other cluster). Like CiLISI, the BRAS metric 
also accurately ranks all real and simulated scRNA-seq data (Fig. 2b,d 
and Extended Data Figs. 3b–5b and 6). The notable BRAS–CiLISI score 
divergence in HLCA embeddings (Fig. 2d) reflects their distinct 
focuses; while CiLISI evaluates (cell-type-adjusted) local batch mix-
ing, BRAS is less sensitive to local compositional differences. Metric 
selection and weighting should align with integration objectives, as 
discussed in Supplementary Note 2; a discussion on how other identi-
fied silhouette limitations affect BRAS is provided in Supplementary 
Note 4. In search for alternatives to the unreliable silhouette for 
evaluating bio-conservation at the cell type annotation level, cLISI 
exhibits low discriminative power. However, the external clustering 
metrics ARI and normalized mutual information (NMI) reliably rank 
embeddings as anticipated (Fig. 2b,d and Extended Data Figs. 3b–5b 
and 6). Details on how clustering strategies influence ARI and NMI 
can be found in Supplementary Note 3; additional metrics scoring 
other aspects of horizontal integration are presented in Supplemen-
tary Note 1.

Our investigation reveals the inadequacy of currently prevalent 
silhouette-based evaluation metrics for assessing data integration 
caused by the violation of silhouette’s underlying assumptions. Sil-
houette’s inability to handle biologically realistic, nonconvex clusters 
persists across bio-conservation and batch removal evaluation, with the 
nearest-cluster issue further compounding batch removal evaluation. 
We outline robust alternatives, including a batch removal metric adjust-
ing silhouette to be more robust to the discussed limitations, and urge 
discontinuing unadjusted silhouette-based metrics in data integration 
benchmarking. This is required to ensure reliable method assessment 
and method choice impacts downstream analyses.
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Methods
Data
Simulated data (2D). We generated datasets using scikit-learn’s 
make_blobs (Gaussian clusters, version 1.5.2)20 and custom geomet-
ric patterns to demonstrate silhouette’s original application and its 
limitations for evaluating horizontal data integration (Fig. 1).

For unsupervised clustering assessment, silhouette’s original 
application, we simulated three true clusters and applied k-means clus-
tering (k = 2, 3 or 4) to produce distinct cluster assignments (dataset 
size: 4,000 data points each).

To demonstrate limitations in the bio-conservation context, 
we generated well-separated clusters with varying intercluster 
distances and variances (dataset size: 2,000 data points each) and 
shape-distorted datasets mimicking batch effects (including an edge 
case; 6,000 data points each).

To address limitations in the batch removal context, we gener-
ated two datasets (integrated and unintegrated) with three cell types 
across two samples to demonstrate the distance and shape sensitivity 
of batch ASW (global). Additionally, we modeled increasing vertical 
offsets between groups of similar samples for a single cell type to 
demonstrate nearest-cluster limitations (dataset size: 4,000 data 
points each).

The simulated datasets include simulated sample (batch variable) 
and cell type annotations. Parameters are detailed in Simulate_2D_data.
ipynb.

Real data (NeurIPS dataset). We used a benchmarking dataset from 
the NeurIPS 2021 Multimodal Single-Cell Data Integration competition, 
specifically designed to contain nested batch effects for evaluating 
integration. In particular, Luecken et al.17 profiled bone marrow mono-
nuclear cells from multiple donors across distinct sites, with intersite 
batch effects being larger than intrasite batch effects between samples 
from distinct donors. For demonstration purposes, we only use the 
scRNA-seq data of the Multiome data accessible through the Gene 
Expression Omnibus (GEO; GSE194122), specifically a preprocessed 
AnnData object provided as a supplementary file. We further used a 
minimal data subset (minimal example) to illustrate the unreliable 
behavior of silhouette-based metrics with nested batch effects with 
four samples from four donors from two distinct sites (s1d1, s1d3, s4d8 
and s4d9) comprising 24,704 cells for our main figure panels (Fig. 2a,b), 
which we renamed to samples 1, 2, 3 and 4, respectively. We also con-
sider the full dataset comprising 69,249 cells, with results shown in 
Extended Data Fig. 3. The author-provided metainformation ‘batch’ 
and ‘cell_type’ were used as the batch (labeled ‘sample’ in figures) and 
cell type variable in our analyses.

Real data (HLCA). The core integrated HLCA15 was used, comprising 
584,944 healthy cells from five assays spanning 14 datasets and 107 
donors. The data were accessed through CellxGene (‘An integrated cell 
atlas of the human lung in health and disease (core)’; https://datasets.
cellxgene.cziscience.com/b351804c-293e-4aeb-9c4c-043db67f4540.
h5ad). The author-provided metainformation ‘dataset’ and ‘cell_type’ 
were used as the batch (labeled ‘dataset’ in figures) and cell type vari-
able in our analyses.

Real data (HBCA). We used HBCA16, comprising 51,367 healthy 
cells from one assay and 82 donors that were processed in 16 pools, 
referred to as ‘donor_id’, which presents the most fine-grained anno-
tation for sample origin available. The data were accessed through 
CellxGene (‘snRNA-seq analyses of breast tissues of healthy women 
of diverse genetic ancestry’; https://datasets.cellxgene.czisci-
ence.com/63a485bc-cac7-49d2-83ed-8e07ca4efa2a.h5ad). The 
author-provided metainformation ‘donor_id’ and ‘author_cell_type’ 
were used as the batch (labeled ‘sample’ in figures) and cell type vari-
able in our analyses.

Simulated data (scRNA-seq). Drawing inspiration from Andreatta 
et al.19 and a recommendation of the Splatter developer (https://github.
com/Oshlack/splatter/issues/99; last accessed April 10, 2025), we simu-
late five scenarios with decreasing levels of nested batch effects with 
the Splatter package21 (version 1.26.0). Each scenario was composed 
of four samples (used as batch variable in our analyses) with three cell 
types nested in two groups, meaning that the samples within a group 
were more similar to each other than between the groups. The scenarios 
were ‘strong’, ‘intermediate’, ‘mild’, ‘none’ (with no nested batch effects) 
and ‘overcorrected’ (with neither nested batch effects nor biological 
cell type signal). We first simulated data with two samples of 2,000 
cells stemming from three distinct cell types with varying proportions. 
We varied the nested batch effect for the different scenarios using the 
batch.facLoc and batch.facScale parameters. We then selected half 
of the cells of the two samples and added small noise factors to them, 
resulting in four samples nested into two groups of 1,000 cells each, 
with the total datasets comprising 4,000 cells each. The noise factor 
stemmed from another simulated data matrix without batch and cell 
type structure where we used a small library size parameter lib.scale. 
In the overcorrected scenario, we chose no differential expression 
between cell types and samples.

Data integration
Real data (NeurIPS dataset). To demonstrate the insensitivity of 
silhouette-based batch removal metrics to differing levels of nested 
batch effects, we aimed to obtain integration results with varying 
success. The data were first normalized to median total counts, loga-
rithmized and then dimensionality-reduced with principal component 
analysis (PCA). No integration (‘none’) served as a baseline. A naive, mild 
batch correction (‘suboptimal’) was achieved through batch-aware 
selection of highly variable genes (HVGs), prioritizing genes that were 
highly variable across batches, which was applied before PCA (carried 
out with scanpy22 (version 1.10.2)). To obtain different batch removal 
strengths, we used our tunable model liam14, which gave us control 
over distinct batch removal strengths. In particular, we applied liam 
(version 0.1.1) to the raw scRNA-seq data of the BMMC Multiome dataset 
with default parameters (‘effective’). Additionally, we increased batch 
removal by setting the adversarial scaling parameter to 5 (‘optimized’). 
Note that the findings related to the metrics are not specific to the 
integration models used.

Real data (HLCA and HBCA). For the HLCA and HBCA datasets, we 
applied similar integration strategies as described for the NeurIPS 
dataset, except that we relied on author-provided integrated embed-
dings for ‘effective’ and had no ‘optimized’ integration. For HLCA, we 
used the scANVI embedding (key: ‘X_scanvi_emb’); for HBCA, we used 
the integrated scRNA-seq embedding (key: ‘X_pca’) (effective). For 
HLCA and HBCA, we applied PCA to the provided normalized counts 
for no integration (‘none’). For both datasets, the ‘suboptimal’ inte-
gration involved batch-aware HVG selection before PCA, considering 
multiple batch variables for HLCA (‘dataset’, ‘donor_id’ and ‘assay’) and 
‘donor_id’ for HBCA.

Simulated 2D data and scRNA-seq data (Extended Data only). No 
integration was performed as we simulated differing levels of nested 
batch effects, which could, in turn, be interpreted as varying levels of 
success at batch effect removal.

Evaluation
Literature review for metric usage. To assess the adoption of 
silhouette-based metrics for evaluating batch effect removal in 
single-cell studies, we conducted a systematic literature review. We 
performed a comprehensive keyword search through the Nature 
advanced search interface (2010–present) using the following key-
word combinations:

http://www.nature.com/naturebiotechnology
https://datasets.cellxgene.cziscience.com/b351804c-293e-4aeb-9c4c-043db67f4540.h5ad
https://datasets.cellxgene.cziscience.com/b351804c-293e-4aeb-9c4c-043db67f4540.h5ad
https://datasets.cellxgene.cziscience.com/b351804c-293e-4aeb-9c4c-043db67f4540.h5ad
https://datasets.cellxgene.cziscience.com/63a485bc-cac7-49d2-83ed-8e07ca4efa2a.h5ad
https://datasets.cellxgene.cziscience.com/63a485bc-cac7-49d2-83ed-8e07ca4efa2a.h5ad
https://github.com/Oshlack/splatter/issues/99
https://github.com/Oshlack/splatter/issues/99
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‘batch silhouette’ and ‘single-cell’
‘silhouette batch’ and ‘single-cell’
‘ASW batch’ and ‘single-cell’
‘batch ASW’ and ‘single-cell’
‘bASW’ and ‘single-cell’
‘batch effect’ and ‘single-cell’ and ‘silhouette’

We then manually reviewed these papers to identify studies that 
used metrics adapting silhouette to score batch integration success (for 
example, batch ASW (cell type) or batch ASW (global)). All papers that 
we found to use such metrics are cataloged in Supplementary Table 1. 
The search was last updated on April 10, 2025.

Metric overview. We assessed horizontal data integration using a 
broad selection of metrics, in particular, batch ASW, iLISI, CiLISI, BRAS 
and BRAS variants for batch removal and cLISI, cell type ASW, NMI 
cluster/label and ARI cluster/label for bio-conservation.

For the simulated scRNA-seq and NeurIPS data, we used the scib 
implementations11 for these metrics (version 1.1.5), except for the 
implementations for the custom CiLISI and proposed BRAS metrics 
(detailed below).

For the HLCA and HBCA data, we used the scib-metrics (version 
0.5.5) implementations for these metrics, including our proposed 
BRAS metrics that we make available as part of this package, except 
for iLISI, for which we used the scib implementation, and our custom 
CiLISI implementation (detailed below).

All metrics were scaled to range between 0 and 1, with 1 being 
optimal. For the silhouette-based metric cell type ASW, this implies 
that original silhouette scores around 0 correspond to transformed 
scores of approximately 0.5. We used low-dimensional embeddings as 
input: PCA embeddings for simulated data, PCA or liam embeddings 
for the NeurIPS data and PCA or author-provided integrated embed-
dings for HLCA and HBCA.

Custom implementations of batch removal metrics robust to 
nested batch effects. For CiLISI, we implemented a custom version 
of CiLISI19, a cell-type-adjusted version of iLISI. First, we computed iLISI 
(range 0–1, scib implementation (version 1.1.5)) per given cell type label, 
which was summarized into a weighted mean (weighted by the number 
of cells per cell type label).

To account for nested batch effects in single-cell data, we intro-
duced BRAS, modifying the silhouette score si as described in Eq. (1). 
Specifically, we redefined bi as the mean distance between a cell i and 
all other cells in any other cluster (default in BRAS). We also tested a 
version with bi as the distance between a cell i and all other cells in the 
farthest other cluster (Extended Data Figs. 3b–5b and 6).

The modified silhouette score is computed per cell i assigned to 
a cluster Ck. Following Luecken et al.’s11 implementation, we first com-
puted si with the modification described above.

Then, for each cell type label j with |C j| cells, we define the BRAS 
score as follows:

BRASj =
1

|C j|
∑
iϵC j

1 − |si|

For the final BRAS score, we average over the set of unique cell 
labels M.

BRAS = 1
|M| ∑jϵM

BRASj

We use cosine distance as the default for BRAS, finding that it pro-
vides higher discriminative power than Euclidean distance (Extended 
Data Figs. 3b–5b and 6).We also compute batch ASW and cell type ASW 
with cosine distance.

Details on ARI and NMI cluster or label. Following Luecken et al.11, we 
optimized (Leiden) clustering with respect to the ARI and NMI metrics 
across a range of clustering resolutions and show these results in Fig. 2 
and Extended Data Figs. 3–6 (Leiden is now the current default in scib; 
in the original publication, the Louvain algorithm was used). Results 
in Fig. 2 and Extended Data Figs. 3–6 were derived with clustering 
resolutions 0–2 and step of 0.1 for the NeurIPS datasets (default scib) 
and clustering resolutions 0–2 and step of 0.2 for the HLCA and HBCA 
datasets (default scib-metrics). Results in Supplementary Figs. 1–4 were 
derived with clustering resolutions 0–2 and step of 0.1 for all datasets. 
A discussion on the potential limitations of this strategy, its impact on 
our results and alternative strategies is presented in Supplementary 
Note 3 and Supplementary Figs. 1–4.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data used in this study are publicly available. For details on data 
processing and usage, please refer to the Methods. NeurIPS data are 
available from the GEO (GSE194122). HLCA data (https://datasets.
cellxgene.cziscience.com/b351804c-293e-4aeb-9c4c-043db67f4540.
h5ad) and HBCA data (https://datasets.cellxgene.cziscience.
com/63a485bc-cac7-49d2-83ed-8e07ca4efa2a.h5ad) are available 
from CellxGene. To facilitate reproducibility, the simulated data gen-
erated in this study are available on Zenodo (https://doi.org/10.5281/
zenodo.15642298)23.

Code availability
The scripts and notebooks for data preprocessing, analyses and figure 
generation are publicly available on Zenodo (https://doi.org/10.5281/
zenodo.15642298)23. Additionally, we added the BRAS metric to the 
scib-metrics package as of version 0.5.5 (https://github.com/yoseflab/
scib-metrics).
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Extended Data Fig. 1 | Usage of silhouette-based batch removal metrics in Nature Portfolio journals. Number of articles using silhouette-based batch removal 
metrics published in Nature Portfolio journals (last updated on April 10th, 2025).
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Silhouette-based metrics for single-cell data integration evaluation (continued)
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Aim: Compare how well cells from different batches overlap in distinct embeddings? Cluster assignment: external batch labels

Unreliability with irregular cluster 
geometries

• For Batch ASW (global) and samples 
with more than one cell type, label-
based cluster assignment inevitably 
yields irregular cluster geometries

• Silhouette is unreliable in such cases 
due to violation of its assumptions

UnintegratedIntegrated

0.98 0.96Batch ASW 
(global)

Limitations in clustering evaluation

Extended Data Fig. 2 | Silhouette’s assumptions are not met in data 
integration contexts (continued). In data integration, we compare distinct 
embeddings and assign cluster membership by external labels - here: 

batch. Label-based clusters can have irregular shapes, violating silhouette’s 
assumptions and yielding unreliable scores. This issue is particularly evident with 
Batch ASW (global) when more than one cell type is present.
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Extended Data Fig. 3 | Silhouette-based metrics are unreliable for assessing bio-conservation and batch effect removal (full NeurIPS data). (a) UMAPs of full 
NeurIPS data embeddings integrated with increasing success, colored by cell type, sample, and site. (b) Extended evaluation metrics.
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Extended Data Fig. 4 | Silhouette-based metrics are unreliable for assessing bio-conservation and batch effect removal (HBCA data). (a) UMAPs of HBCA 
embeddings integrated with increasing success, colored by cell type and sample. (b) Extended evaluation metrics.
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Extended Data Fig. 5 | Silhouette-based metrics are unreliable for assessing bio-conservation and batch effect removal (simulated scRNA-seq data). (a) UMAPs 
of embeddings of simulated scRNA-seq data with nested batch effects between groups of samples with decreasing levels of batch effects between groups, colored by 
cell type and sample. (b) Extended evaluation metrics.
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a)
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Extended Data Fig. 6 | Silhouette-based metrics are unreliable for assessing bio-conservation and batch effect removal (NeurIPS data minimal example and 
HLCA data). Extended evaluation metrics. Batch removal and bio-conservation metrics (a) for NeurIPS real data minimal example and (b) HLCA (cf. Figure 2).
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