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Abstract.

Objective

Motion-corrected image reconstruction (MCIR) allows for fast and efficient cardiac

magnetic resonance imaging (MRI) acquisition with predictable scan times. Since

data obtained in all phases of respiratory and cardiac motion can be exploited, the

duration of the scan is not affected by changes in heart rate or irregular breathing

patterns.

Achieving high-quality reconstructions from MCIR data typically requires iterative

optimisation algorithms with regularisation. Reconstruction time increases with the

number of motion states. This is particularly relevant in cardiac MRI, where both

cardiac and respiratory motion corrections are necessary to minimise motion artefacts.

Approach

In this work, we present a stochastic optimisation approach for cardio-respiratory

MCIR using the Stochastic Primal Dual Hybrid Gradient (SPDHG) algorithm. We

compare the convergence rates with deterministic optimisation methods.

Main Results

In phantom experiments with simulated motion, we demonstrate the improved

convergence rates of SPDHG with respect to deterministic algorithms, while

maintaining image quality. Convergence is improved both in terms of reconstruction

times and computational effort. We validate the method’s effectiveness on an in vivo

3D whole-heart cardiac MR scan. The in vivo method demonstrates that the motion
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compensation method we use allows for non-rigid deformation patterns and irregular

breathing patterns.

Significance

This study demonstrates that stochastic algorithms can converge significantly faster

than deterministic algorithms for MCIR, especially for a large number of motion

states. With the proposed approach, increasing the number of motion states reduces

the number of epochs required to reconstruct the image and therefore it is no longer

necessary to balance the competing requirements of accurate motion correction and

computational effort.

Keywords: motion-corrected image reconstruction, cardiac MRI, stochastic optimisa-

tion, MCIR, SPDHG

Submitted to: Phys. Med. Biol.

1. Introduction

Cardiac Magnetic Resonance Imaging (MRI) is a very versatile medical imaging

technique that provides a wide range of different diagnostic information. It can be

used to assess cardiac anatomy, myocardial injury such as scar and inflammation,

angiography, and fat infiltration [1, 2, 3, 4, 5]. Typically, images are obtained as multiple

2D slices. Although this yields high in-plane image quality, image resolution along the

slice direction is often poor. Full coverage of the entire heart is also often not possible.

One major challenge of 3D cardiac MRI is its long acquisition times, making it difficult

to apply it in clinical routine. The acquisition time for a 3D whole-heart acquisition with

high spatial resolution is on the order of several minutes. During this time, the heart

constantly moves due to the heartbeat and breathing. This physiological movement

can cause severe motion artefacts that make the obtained image data unsuitable for

diagnostic purposes [6]. A common approach to minimise motion artefacts is to restrict

data acquisition to a predefined respiratory (e.g., end-expiration) and cardiac (e.g., mid-

diastole) motion phase [7, 8]. This ensures that all data are acquired in the same motion

state of the heart but also strongly increases the overall examination time. In addition,

the examination time is strongly dependent on the motion pattern of individual patients,

which is challenging for clinical routine [9].

Motion correction approaches have been proposed to minimise motion artefacts

while ensuring shorter acquisition times. Data is acquired continuously rather than

restricting the data acquisition to certain motion states. In this paper, we use the

Motion Corrected Image Reconstruction (MCIR) method, first developed for MRI by

Batchelor et al. [10], but also developed for other medical imaging modalities, such as

Positron Emission Tomography (PET) [11]. In the first step, the movement of each
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voxel due to respiratory and / or cardiac motion is determined using image-registration

algorithms. In the second step, the obtained motion vector fields are used during image

reconstruction to transform all acquired data into the same reference motion state

and, therefore, obtain a single motion-corrected diagnostic magnetic resonance (MR)

image [10]. Several studies have shown that this approach leads to excellent image

quality while ensuring short and predictable scan times [12, 13, 14, 15, 16, 17].

The main limitation of the MCIR technique is the increased computation time for

image reconstruction. Especially for cardiac MRI, where both cardiac and respiratory

motion need to be corrected, a high number of motion states can be required for an

accurate motion correction. In Mayer et al. [18], 6 respiratory motion phases and 12

cardiac motion phases were used, which resulted in 72 different motion states in the

final reconstruction. Typically, this type of reconstruction process is formulated as an

inverse problem and deterministic optimisation schemes such as conjugate gradient, the

Fast Iterative Shrinkage-Threshold Algorithm (FISTA) [19], or the Primal Dual Hybrid-

Gradient (PDHG) approach [20] are used to solve it. For example, Brown et al. [21]

perform a joint PET-MR reconstruction, by relying on FISTA for MRI and PDHG

for PET, while Zhu et al. [22] use PDHG for motion-compensated pulmonary MRI.

However, using such iterative optimisation algorithms generally requires regularisation,

either for denoising or resolution enhancement [23]. This can lead to reconstruction

times of the order of hours, as in the study by Knoll et al. [24], where PDHG is used

for a joint PET-MR reconstruction on real data, regularized through Total Generalized

Variation (TGV), taking about 8 hours in total.

A common method to speed-up inverse problems is only to use a “subset” (or

“minibatch”) of the data for each update, where the problem geometry normally

determines each subset [25]. Dikaios et al. [26] extended the subset idea to motion states

for MCIR in PET, while Delplancke et al. [27] demonstrated in a proof-of-concept setting

a theoretical and practical speed-up using stochastic algorithms for MCIR in computed

tomography (CT).

In this study, we propose using a stochastic optimisation approach for MRI MCIR,

specifically the stochastic primal-dual hybrid-gradient (SPDHG) algorithm [28], which

requires very few epochs and hence shorter reconstruction times compared to commonly

used optimisation schemes. There are a range of examples in the literature of applying

SPDHG to large-scale inverse problems, for example for PET imaging [29], parallel

MRI [30] or CT [31]. This paper’s novelty consists in applying stochastic methods

to MCIR for MRI. We also compare the results of stochastic optimisation with other

deterministic methods. We first evaluate the faster convergence in phantom experiments

with simulated motion. Importantly, the simulated phantom data allows us to study

the behaviour of stochastic and deterministic methods as the number of motion states

changes. We then demonstrate stochastic optimisation methods on a cardiac 3D whole-

heart scan obtained in vivo, demonstrating the application of the approach to non-rigid

and irregular motion.

The paper is organised as follows. In Section 2, we introduce the image
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reconstruction problem and the SPDHG algorithm. We also describe the motion

correction steps and the software used. In Section 3, we give details about both the

in vivo and phantom acquisitions and the motion simulation for the phantom data.

Then, we explain how the image reconstructions will be evaluated. In Section 4, we

provide the links to data and software necessary to replicate the phantom experiments

of this study. We present our results in Section 5 and discuss them in Section 6, together

with future work, while in Section 7 we present our conclusions.

2. Method

2.1. Optimisation Algorithms

Consider the inverse problem to reconstruct an image, x ∈ X, from observed data, b ∈ Y,
related by a linear forward operator K : X → Y, where X and Y are finite-dimensional

Hilbert spaces with an inner product. To aid the reader, Table 1 summarises key

information on the FISTA, PDHG, and SPDHG algorithms, used in this report.

Algorithm Objective it minimises Function Requirements Type

FISTA [19] x∗=argminx∈X{F (x) := f(x) + g(x)} f is a smooth convex function

which has a Lipschitz continu-

ous gradient. g is a continuous

convex function which is possi-

bly non-smooth.

Deterministic

PDHG [20] x∗=argminx∈X{F (x) := f(Kx) + g(x)} Both f and g are both proper

closed and convex and their

proximal operators can be

evaluated, or at least approx-

imated, efficiently.

Deterministic

SPDHG [28] x∗=argminx∈X
∑M−1

i=0 fi(Kix) + g(x) All fi and g are both proper

closed and convex and their

proximal operators can be

evaluated, or at least approx-

imated, efficiently.

Stochastic

Table 1: Key properties of the three algorithms used in this report.

More concretely, in this article, we choose f to be the least squares function, so

fFISTA(x) = ∥Ax − b∥22 and f(S)PDHG(y) = ∥y − b∥22. The regulariser g is the total

variation (TV) function (e.g. [32]). For PDHG and SPDHG, this formulation of TV

is sometimes called “implicit” because the TV regulariser is included in the function g

and not as an additional term combined in f . “Implicit” refers to the fact that the TV

proximal is not available in closed form, but it can be calculated with a few iterations

of a denoising algorithm, for instance, using FISTA or PDHG. In this paper, we chose

the “implicit” variation, as we found that it converged more quickly with the default

step sizes. For more information on step size choices, see Section 3.5.
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2.2. SPDHG Background

In this subsection, we expand on the information in Table 1, particularly for our key

stochastic method, SPDHG. This can safely be skipped, and, in the next subsection,

we will see how stochastic algorithms, such as SPDHG, are naturally suited to motion

correction problems.

To solve the inverse problem Kx = b, we consider optimisation of the form:

x∗=argmin
x∈X

{F (x) := f(Kx) + g(x)} (1)

where f : Y → R≥0 is a data discrepancy term, measuring the distance from the data

b, and g : X → R≥0 is a regulariser, encapsulating prior knowledge of the solution. We

assume that both f and g are both proper, closed and convex and that their proximal

operators can be evaluated, or at least approximated, efficiently.

The primal-dual hybrid-gradient algorithm (PDHG) [33] takes a primal-dual

formulation of equation (1) solving instead for the saddle point

max
y∈Y

min
x∈X

{⟨Kx, y⟩Y + g(x)− f ∗(y)} (2)

where ⟨·, ·⟩Y is the inner product in the space Y and f ∗ is the convex conjugate of f ,

f ∗(y) = supx∈X{⟨x, y⟩ − f(x)}. PDHG solves the saddle point problem by alternating

in a proximal gradient ascent-like way in the dual variable y and then in a proximal

gradient descent-like way in the primal variable x.

Now consider the case that f is separable and can be written as f(y) =
∑M−1

i=0 fi(yi).

This requires that the Hilbert space Y can be expressed as product spaces Y :=
∏M−1

i=0 Yi

with elements y = (y0, ..., yM−1) and that we can define linear operators Ki : X → Yi,

where Kix = (Kx)i. The optimisation problem in equation (1) becomes

x∗=argmin
x∈X

M−1∑
i=0

fi(Kix) + g(x). (3)

Equation (3) can be expressed as a saddle point problem and solved using PDHG

with iterations:

xk+1 = proxτg (xk − τK∗ȳk) (4)

yi,k+1 = proxσif∗
i
(yi,k + σiKixk) , i ∈ {0, 1, ...,M − 1} (5)

ȳk+1 = yk+1 + θ (yk+1 − yk) (6)

where τ, σi > 0 are step sizes, θ ∈ [0, 1] is a relaxation parameter, and the algorithm

is initialised with x0 ∈ X and y0 ∈ Y with ȳ0 = y0 . Convergence is guaranteed if

σiτ∥K∥2 < 1 for all i ∈ {0, ...,M − 1}, where the choice of σi and τ greatly affects the

convergence speed.

A stochastic version of this algorithm, Stochastic Primal-Dual Hybrid-Gradient

(SPDHG), reduces the computational cost and has been shown to converge faster with

a greater number of subsets [28]. Instead of updating each dual variable, yi, in each

Page 5 of 24 AUTHOR SUBMITTED MANUSCRIPT - PMB-118141.R3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



6

iteration, only one dual variable is updated for each iteration. The iterations now look

like

xk+1 = proxτg (xk − τK∗ȳk) (7)

Select s ∈ {0, ...,M − 1} (8)

yi,k+1 =

{
proxσif∗

i
(yi,k + σiKixk) , i = s

yi,k+1, i ̸= s
(9)

ȳk+1 = yk+1 + θQ (yk+1 − yk) (10)

where Q := diag(p−1
1 I, ..., p−1

n I) and pi is the probability index i which is selected at

each iteration. Convergence is guaranteed if pi > 0 for all i (see also equation 12 in [29])

and

∥σ1/2
i τ 1/2Ki∥2 < pi ∀i ∈ {0, ...,M − 1}. (11)

2.3. Motion Corrected Image Reconstruction

In the case of MRI, the linear operator K describes the MR acquisition model and b

corresponds to the acquired raw data. The raw data in MRI is obtained in the so-

called k-space, which is the spatial Fourier domain of the image data. Without motion

correction, K can be described as

K = SFC (12)

where C describes the signal reception with multiple receiver coils, F is the Fourier

transform and S is a sampling operator defining which spatial frequencies have been

acquired (i.e., the k-space trajectory). In this paper, the raw data b is obtained along

a radial-like pattern [34], and thus F is implemented as a non-uniform Fast Fourier

transform (NUFFT) [35].

In the case of motion occurring during data acquisition, we can partition raw k-

space data into a set bi for each motion state i. There is no synchronisation between the

motion (e.g. breathing or heartbeat) and the data acquisition and therefore the data in

each motion state i are obtained at different k-space locations. This transforms K to

K =
M−1∑
i=0

Ki =
M−1∑
i=0

SiFTiC (13)

for M different motion states. Ti describes the non-rigid transformation of the image

due to the underlying motion. If we compare this with equation (3), we can see that

motion leads to a problem well-suited for SPDHG as the motion states naturally subset

the problem.

A pre-processing step is required to obtain Ti in equation (13). First, images are

reconstructed for each motion state i separately. Then, an image registration algorithm

is used to estimate the non-rigid transformation Ti between the different motion states.

More details can be found below in the Experiments section. Ti is then used in a final

MCIR to obtain a high-quality diagnostic image.
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For SPDHG to be applicable, and convergence guarantees to hold, we need that

the motion correction can be written as a linear transformation Ti. This allows for a

range of rigid and non-rigid motion.

In this paper, we compare different optimisation algorithms for minimising

equation (3), with the operators Ki for the motion-state decomposition defined as

in (13). In each iteration of PDHG or FISTA, calculating the sum in equation (3)

requires the computation of the forward model Kix for all i ∈ {0, ...,M − 1} performing

computations on all the data in each iteration, while SPDHG performs calculations on

a subset of the data, just one sampled Ki (and corresponding data bi). Because of

this difference, to ensure a fair comparison between the two approaches, convergence is

generally plotted and discussed in terms of “epochs” rather than iterations, where one

epoch corresponds to one iteration in PDHG and M iterations of SPDHG. Note that we

are minimising the same convex objective with each algorithm, so we expect the same

solution. The comparison is in how quickly, in terms of epochs, the algorithms reach

that solution.

2.4. Software

For the work presented in this article, we rely on two open source software packages:

the Synergistic Image Reconstruction Framework (SIRF) developed for synergistic PET

and MR image reconstruction, providing a platform to develop and test algorithms on

PET and MR patient data [36], and the Core Imaging Library (CIL) [37, 38], a software

package for tomographic image reconstruction, which also offers extensive optimisation

and regularisation capabilities. Thanks to the integration between the two, we can use

regularised PDHG and SPDHG optimisation methods (from CIL) to reconstruct MRI

data using acquisition models and non-rigid transformations in SIRF.

3. Experiments

3.1. Data acquisition

MR data acquisition was carried out with a Golden Radial Phase Encoding (GRPE)

sampling scheme [39, 34] which combines non-Cartesian phase encoding with Cartesian

frequency encoding. The phantom scan was performed on a 3T Siemens Verio scanner

and the in vivo scan was carried out on a 1.5T Siemens Avanto scanner. Signal receptions

were carried out with a 32-channel receive coil. The field-of-view was a cube of size 288

mm3 and an isotropic resolution of 1.5 mm3. A single echo was acquired for the phantom

scans. For in vivo scans, three echoes were acquired to perform Dixon-based fat-water

separation. For this study, we only used data from the first echo. Information about the

coil sensitivity maps was obtained from the data directly without needing an additional

coil reference scan.

All in vivo imaging was carried out in accordance with the Declaration of Helsinki.

Subjects gave their informed written consent to participate in the study. A T1 contrast
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Figure 1: Example of three simulated motion states, obtained by applying a phase shift

on the acquired raw k-space data, which results in a shift in the right-left direction.

The figures show a slice through the volumes, reconstructed using a simple least-squares

objective function without regularisation. More specifically, from the left-end side (MS0)

to the right-end side (MS2), the figures show: the untranslated phantom, the phantom

translated by half the maximum shift and the phantom translated by the maximum

shift. The yellow dashed line is placed at a fixed position along the Right-Left axis and

serves as a reference to better appreciate the effect of the translation.

agent was administered before the GRPE scan as part of the standard clinical protocol.

3.2. Motion simulation for the phantom

To study the effect of different numbers of motion states on the convergence behaviour

of the proposed SPDHG-MCIR approach, simulations were carried out. Starting from

the acquired MR raw data of a static phantom, acquisition with different numbers of

translational motion states was simulated by applying a phase factor to the acquired raw

k-space data. Based on the Fourier shift theorem, a linear phase shift in the frequency

space can describe a translational shift of the object in the image space. The shift

amplitudes had a maximum of 20 pixels (i.e. 30 mm) and were linearly spaced along

the right-left axis, as shown in Figure 1. We investigated three cases where the number

of motion states was 6, 30 and 60 (which we will refer to as 6MS, 30MS, and 60MS).

Ground-truth motion vector fields were created based on the known shifts and used in

the subsequent MCIR image reconstruction.

3.3. Motion estimation in vivo

For the GRPE trajectory used in this study, the k-space centre was acquired repeatedly.

From the k-space centre, a self-navigator was calculated as a respiratory surrogate.

External ECG signals recorded during the acquisition of MR data were used as cardiac

surrogates. Based on these surrogates, the acquired data was separated into 6 respiratory

and 12 cardiac motion states. The way this method separates the data is such that

each subset is of equal length in time, independently of any heart rate or breathing

irregularities. TV-regularised iterative image reconstruction was used to reconstruct
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Figure 2: To illustrate the effect of motion, we show a reconstruction obtained without

simulating motion (on the left) and a reconstruction obtained using 3 simulated motion

states, without motion compensation (on the right).

images of the different motion states. For cardiac-resolved images, respiratory motion

correction was applied. TV regularisation was carried out in the spatial image domain

and along the cardiac/respiratory motion dimension. A non-rigid spline-based image

registration algorithm was used to obtain 3D motion vector fields from these motion-

resolved images for both cardiac and respiratory motion. As a final step, the cardiac and

respiratory motion fields were combined into 72 cardio-respiratory motion vector fields.

More details on the motion estimation can be found in Mayer et al. [18]. Animations

showing the respiratory and cardiac motion fields are included in the supplementary

material, as figure 1 and 2, respectively.

3.4. Evaluation

We compare the convergence of SPDHG against the deterministic algorithms PDHG

and FISTA to optimise equation (3).

For the phantom data, we investigated the three cases 6MS, 30MS and 60MS. For

in vivo data, image reconstructions were performed with respiratory motion correction

(6 motion states) and with cardiorespiratory motion correction (72 motion states).

All image reconstructions were run for a large number of epochs to ensure that each

algorithm had converged.

To compare the convergence rate between SPDHG and PDHG, we use the

normalised root-mean-squared-error (NRMSE), defined as:

NRMSE =
RMSE(Ui, U)

RMSE(U, 0)
(14)

where Ui is the reconstruction at epoch i and U is the reference image. For the

phantom data, the reference was obtained by running PDHG for 200 epochs on the
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10

data with the relevant number of motion states. For in vivo data, the reference image

was reconstructed with PDHG for 800 epochs.

We define the point of convergence as the epoch in which the NRMSE fell below 5%.

This value was chosen based on visual inspection of the reconstructed images. Different

thresholds are expected to lead to a different number of epochs required to meet the

point of convergence; however, the relative difference in epochs to convergence between

PDHG and SPDHG is expected to remain similar.

3.5. Algorithm Parameter Choices

A step-size strategy was chosen for fair comparison, taking into account the functions

and operators in the optimisation objective and ensuring mathematical convergence

guarantees are met. Additionally, again for comparison purposes, we choose a step-size

strategy for PDHG and SPDHG to ensure that, in the limit where M = 1, the step

size for PDHG and SPDHG would be equal. Further adjustments to these values may

enhance convergence rates and will be discussed in the conclusions.

For PDHG, we take the dual and primal step sizes σ and τ to be equal to 1
∥K∥ ,

and choose the relaxation parameter θ = 1. This is chosen to be as large as possible

while ensuring that στ∥K∥2 < 1 and makes a default assumption that we want similar-

sized steps in the primal and dual space. Similarly, for SPDHG, we take the relaxation

parameter θ = 1, the dual step-size σi =
1

∥Ki∥ , and the primal step-size τ = mini

(
pi

∥Ki∥

)
.

This satisfies equation (11) and again encourages similar-sized steps in the primal and

dual space. We take uniform probabilities, pi =
1
M

and the indices are selected randomly

with replacement. Each motion state contains data from an equal length time period

and therefore we weight the contribution from each motion state equally. For FISTA,

we consider the same objective function as in equation (3). Given fFISTA(x) = ∥Kx−b∥22
, we take the step size to be the reciprocal of the Lipschitz constant of fFISTA, chosen

as the largest step size that is provably convergent [19].

To calculate the proximal of the Total Variation function, we use the fast

gradient projection algorithm implemented in the CCPi Regularisation Toolkit (version

22.0.0) [40].

4. Reproducibility

The results from the phantom data can be reproduced using the notebook https://

github.com/paskino/SIRF-Contribs/blob/MR_MCIR_2023/src/notebooks/implicit_

TV_simulated_motion.ipynb. This notebook uses SIRF version 3.6.0 [41], CIL ver-

sion 23.1.0 [42] and CCPi Regularisation Toolkit version 22.0.0. The notebook is

also compatible with more recent SIRF, CIL and the CCPi Regularisation toolkit ver-

sions: 3.8.0, 24.2.0 and 24.0.1 respectively, which are available at https://github.

com/SynerBI/SIRF, https://github.com/TomographicImaging/CIL and https://

github.com/TomographicImaging/CCPi-Regularisation-Toolkit. The dataset of
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11

the phantom is available on Zenodo at https://zenodo.org/record/7903282.

5. Results

5.1. Phantom

In Figure 3, we plot the objective value against epochs for 6MS, 30MS, and 60MS

for FISTA, PDHG and SPDHG on the simulated motion phantom data. We see that

SPDHG exhibits the fastest convergence compared to the deterministic algorithms. In

addition, this convergence speed increases with a larger number of motion states. Note

that a unique minimiser exists as the objective we are minimising is proper and strictly

convex. Therefore, we expect all algorithms to converge to the same point, we are just

comparing the speed at which they converge.

Figure 3: Objective value for 6, 30 and 60 motion states (MS) for the FISTA (green),

PDHG (blue) and SPDHG (orange) algorithms presented in linear (a) and log-log (b)

scale.

In Figure 4, we plot the NRMSE as defined in equation (14), for the 60MS case.

A decreasing NRMSE means that the solution obtained by the algorithm is becoming

more and more similar to the reference one. As can be seen in Figure 4, SPDHG is the

fastest algorithm to reach the arbitrary convergence threshold of 0.05, which requires

10 epochs, while FISTA and PDHG require 60 and 70 epochs, respectively. In Figure 5,

in the first and third row, we plot reconstructions of the phantom data in the 60MS

case at 10 and 70 epochs respectively, while in the second and fourth row, we present

error maps between each reconstruction and the reference image, which is shown in the

top right corner. The error maps are obtained as the absolute value of the difference

between the reference image and each reconstruction, normalised by the maximum value

in the reference image. For each reconstruction, we also show the NRMSE with respect

to the reference image, as defined in equation (14). From the figure, we can see that the
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quality of the SPDHG reconstruction at 10 epochs is already similar to that achieved

at 70 epochs. On the other hand, FISTA and PDHG at 10 epochs have clearly not

converged yet. Only by 70 epochs do the deterministic algorithms achieve good image

quality.

From a breakdown of the wall clock time per epoch for the 6MS to 60MS cases,

we observed that the time per epoch in PDHG and SPDHG was dominated by the

operators Ki in equation (13), whose direct and adjoint evaluations are required for

each iteration. The time taken for the computation of the direct and adjoint of each

motion state is about 10 seconds. This needs to be multiplied by the total number of

motion states to obtain the time taken by the operator computation per epoch. We

measured that approximately 90% of the epoch time is taken by these operators in the

case of PDHG, while this percentage is reduced to about 75% for SPDHG, confirming

the effect of reduced computational effort in the evaluation of the operator K for the

latter.

Figure 4: The NRMSE as computed in equation (14) for PDHG, SPDHG and FISTA.

Lower values indicate solutions that are closer to the reference solution U . SPDHG

reaches a threshold of 0.05 at epoch 10, while PDHG does so at epoch 70 and FISTA

at epoch 60.

The measured wall clock time per epoch of SPDHG is longer than that of PDHG,

by approximately 15% for the 6MS example, 25% for 30MS and 35% for 60MS in

our implementation. However, in Figure 4 it can be seen that, in the 60MS case,

SPDHG takes only about 20% of the epochs required by PDHG and FISTA to satisfy

the convergence criterion outlined in Section 3.4 (through equation (14)).

Therefore, SPDHG converges faster to the solution also in terms of wall clock time
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Figure 5: Phantom data reconstructions for FISTA, PDHG and SPDHG for 60MS

displayed on the axial view, obtained at 10 epochs (first row) and 70 epochs (third

row), as well as error maps (second and fourth row) showing the absolute value of the

normalised difference between each reconstruction and the reference image (shown in

the top right corner). The plots demonstrate that at 10 epochs SPDHG is already close

to convergence while the deterministic algorithms have not yet converged. Only by 70

epochs do FISTA and PDHG achieve a good reconstruction quality.

because it requires much fewer epochs than PDHG. To show this, in Table 2 we report

the reconstruction times (times for the algorithms to reach the NRMSE threshold in

Figure 4) for PDHG and SPDHG for 6, 30, and 60 motion states. For each case, we

also show the SPDHG speedup, which was obtained as a ratio between PDHG time and

SPDHG time, and therefore refers to the acceleration allowed by SPDHG with respect

to PDHG. These reconstruction times were obtained by running the experiments on a

virtual machine from the STFC (Science and Technology Facilities Council) cloud with

28 virtual CPUs, 180 GB RAM, and an NVidia RTX-4000 used only for the evaluation
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of the total variation proximal.

6MS 30MS 60MS

PDHG time 1h 10min 5h 29min 10h 50min

SPDHG time 42min 1h 22min 2h 27min

SPDHG speedup 1.65 3.98 4.43

Table 2: Reconstruction times (times for the algorithms to reach the NRMSE threshold)

for PDHG and SPDHG for 6, 30, and 60 motion states, for the phantom data. The

SPDHG speedup is obtained as a ratio between PDHG time and SPDHG time and

therefore refers to the acceleration allowed by SPDHG with respect to PDHG.

5.2. In vivo data

The points of convergence for SPDHG were 80 epochs and 20 epochs for respiratory and

cardio-respiratory motion correction, respectively. For PDHG the point of convergence

was reached after 200 epochs for both types of motion correction. As expected, the

convergence rate of SPDHG increases with the number of motion states: when 72

motion states are used (cardio-respiratory MCIR), SPDHG converges in fewer epochs,

as compared to when 6 motion states are used (respiratory MCIR).

Figure 6 shows the results of PDHG-MCIR and SPDHG-MCIR using only

respiratory motion correction. Respiratory motion correction reduces blurring,

especially in the lower parts of the heart and abdomen, because the motion amplitudes

are highest in these areas. Even for 80 epochs, small details, such as the coronary

arteries, are visible in SPDHG-MCIR. Small details are not yet visible in PDHG-

MCIR for the same number of epochs because the algorithm has not yet converged

to a satisfactory solution. Figure 7 shows the corresponding convergence curves.

The results for cardio-respiratory MCIR with 72 motion states are shown in Figure 8

in addition to the corresponding convergence curves in Figure 9. The convergence

behaviour of PDHG-MCIR does not depend on the number of motion states and is

comparable to the respiratory MCIR case shown in Figure 6. Again, we see that

SPDHG-MCIR shows faster convergence as a result of the higher number of motion

states compared to respiratory MCIR. Even for 20 epochs, fine details such as the

coronary arteries are clearly visible.

6. Discussion and Future Work

This study demonstrated that SPDHG-MCIR can converge significantly faster than

PDHG-MCIR, especially for a large number of motion states. SPDHG-MCIR was

applied for the correction of cardio-respiratory motion in a 3D whole-heart magnetic

resonance scan; however, the proposed approach can be used for any other MCIR
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Figure 6: Respiratory MCIR. Reconstructed images using PDHG-MCIR and SPDHG-

MCIR for 80 and 200 epochs are displayed on the coronal view. Respiratory MCIR

reduces blurring visible, for example, at the liver-heart interface (arrow head). In

contrast to PDHG-MCIR, for SPDHG-MCIR fine details such as the left coronary artery

(arrow) are already clearly visible at 80 epochs.

Figure 7: Convergence of respiratory MCIR in linear scale (a) and log-log scale (b).
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Figure 8: Cardio-respiratory MCIR. Reconstructed images using PDHG-MCIR

and SPDHG-MCIR for 20 and 200 epochs are displayed on the coronal view.

Cardiorespiratory MCIR improves image quality and reduces motion artefacts. Even

for 20 epochs, small details, such as the left coronary artery (arrow), are already clearly

visible for SPDHG-MCIR.

application. Typically, the number of motion states is optimised to balance accurate

motion correction, ensuring high image quality and reconstruction time, as in [22], where

the authors explain how 6 is the optimal number of motion states for respiratory motion

correction on their data. With the proposed approach, this is no longer necessary,

as increasing the number of motion states reduces the number of epochs required to

reconstruct the image.

To exploit the faster convergence, one needs a reliable stopping criterion.

Throughout this paper, we have compared reconstructions with a reference image and,

in Figure 4, we used the NRMSE with respect to this reference to suggest a convergence

threshold. In practice, a reference image will not be available. Further work could

investigate stopping criteria or consider whether a fixed number of epochs could provide

good-quality images for different acquisitions using the same MR protocol.

One limitation of this work is that we only evaluated the approach on a single in vivo
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Figure 9: Convergence of cardio-respiratory MCIR in linear scale (a) and log-log scale

(b).

dataset. Nevertheless, we used the same settings for SPDHG-MCIR for the phantom

and the in vivo datasets and achieved excellent performance in both cases. As the image

content, type of motion, matrix size and scan duration was very different between these

two datasets, we would expect that SPDHG-MCIR performs well for different patients.

While the SPDHG-MCIR provides a dramatic reduction in reconstruction time,

our current implementation needs further reductions for clinical application. An initial

investigation indicated that the computational time is dominated by the NUFFT and

non-rigid transformations calculations, as explained in section 5.1. This is consistent

with the findings by Knoll et al. In [43], where they use PDHG for TGV-regularised

brain MRI and explain how the NUFFT constitutes most of the computational effort in

their experiments, while the time taken by the regularisation is minimal in comparison.

By investing in software engineering efforts to speed up forward operator calculations,

for instance, using GPUs, we would hope to see clinically useful reconstruction times.

In the literature, [44] and [45] see up to 10x acceleration for niftyreg and NUFFT

transformations. We expect similar acceleration to be achievable for the motion

compensation.

In this study, we used a step-size strategy for the stochastic and deterministic

algorithms, which prioritised fair comparisons and mathematical convergence

guarantees, taking into account the functions and operators in the optimisation

objective. We experimented with two very different datasets, and in both cases, these

settings saw stochastic methods outperforming deterministic methods. We expect that

with further experimentation, the parameters for both deterministic and stochastic

methods could be fine-tuned to increase convergence speed, but this was out of the scope

of this study. Future work could consider the use of grid search or bayesian methods [46]

for identifying better algorithms’ parameters, or the use of adaptive step-size methods,
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as in [31].

Due to the way the in vivo data was obtained, each motion state was of equal

length in time and so, for the stochastic methods, we chose equal probability for all

motion states. Future work could also consider different methods for partitioning into

motion states, such as considering the same magnitude of change in each motion state, or

potentially different choices of probabilities. Again, we would still expect the stochastic

methods to outperform the deterministic methods.

A common approach to accelerate primal-dual methods is preconditioning, in

particular diagonal preconditioning [47, 48], which can significantly improve convergence

without affecting computational complexity. Although future work could investigate the

use of preconditioning to speed up computations, it would improve convergence of all

algorithms, and therefore we would still expect SPDHG to converge faster than the

deterministic methods.

Algorithmic improvements could lead to additional speed-up. For example, when

iteratively calculating the TV proximal, the number of required iterations could be

reduced by initialising with the result from the previous call to the TV proximal. We

could also consider only calling the TV proximal once per epoch, as suggested in [49].

To further reduce the number of required iterations, future work could also focus on

different sampling probabilities, pi [28]. While there are other stochastic algorithms in

the literature, for example, see the review paper in [25], here we considered only PDHG

and SPDHG, because they can be fairly compared. However, we expect similar speed-up

results with other stochastic algorithms.

7. Conclusion

In this study, we presented a stochastic primal-dual hybrid-gradient (SPDHG) approach

for motion-corrected image reconstruction (MCIR) in cardiac MRI. We demonstrated

its superior convergence rate compared to traditional deterministic methods, such as

PDHG and FISTA, using both phantom and in vivo data. Our results show that SPDHG

significantly reduces reconstruction times while maintaining high image quality, which is

essential for clinical applications where speed and accuracy are critical. Future work will

explore further optimisations of the algorithm, including adaptive step size strategies

and parallelisation techniques to further reduce reconstruction times.

Page 18 of 24AUTHOR SUBMITTED MANUSCRIPT - PMB-118141.R3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



REFERENCES 19

Acknowledgements

This work was funded by the UK EPSRC grants the “Computational Collaborative

Project in Synergistic Reconstruction for Biomedical Imaging” (CCP SyneRBI)

EP/T026693/1; “Collaborative Computational Project in tomographic imaging” (CCPi)

EP/M022498/1 and EP/T026677/1. This work used computational support from

CoSeC, the Computational Science Centre for Research Communities, through CCP

SyneRBI and CCPi. This work was supported by the Ada Lovelace Centre. The

authors acknowledge funding from the German Research Society (GRK 2260, BIOQIC).

This work used computational resources from STFC Scientific Computing Department’s

Cloud Operations Group.

We acknowledge helpful discussions on this project with Matthias J. Ehrhardt at

the University of Bath and Evangelos Papoutsellis at Finden Ltd.

For the purpose of open access, the author has applied a Creative Commons

Attribution (CC BY) license to any Author Accepted Manuscript version arising.

References

[1] Quinn Counseller and Yasser Aboelkassem. “Recent technologies in cardiac

imaging”. In: Frontiers in Medical Technology 4 (2023). doi: 10.3389/fmedt.

2022.984492.

[2] Emily Aherne, Kelvin Chow, and James Carr. “Cardiac T1 mapping: Techniques

and applications”. In: Journal of Magnetic Resonance Imaging 51.5 (2020),

pp. 1336–1356. doi: 10.1002/jmri.26866.

[3] Andreas Seraphim, Kristopher D. Knott, Joao Augusto, Anish N. Bhuva,

Charlotte Manisty, and James C. Moon. “Quantitative cardiac MRI”. In: Journal

of Magnetic Resonance Imaging 51.3 (2020), pp. 693–711. doi: 10.1002/jmri.

26789.

[4] Karen G Ordovas and Charles B Higgins. “Delayed contrast enhancement on MR

images of myocardium: past, present, future.” In: Radiology 261.2 (2011), pp. 358–

374. doi: 10.1148/radiol.11091882.

[5] Bharath Ambale-Venkatesh and João a. C. Lima. “Cardiac MRI: a central

prognostic tool in myocardial fibrosis”. In: Nature Reviews Cardiology 12.1 (2014),

pp. 18–29. doi: 10.1038/nrcardio.2014.159.

[6] Pedro F. Ferreira, Peter D. Gatehouse, Raad H. Mohiaddin, and David N. Firmin.

“Cardiovascular magnetic resonance artefacts”. In: Journal of Cardiovascular

Magnetic Resonance 15.1 (2013), pp. 1–39. doi: 10.1186/1532-429X-15-41.

[7] Andrew D. Scott, Jennifer Keegan, and David N. Firmin. “Motion in

cardiovascular MR imaging.” In: Radiology 250.2 (2009), pp. 331–351. doi: 10.

1148/radiol.2502071998.

Page 19 of 24 AUTHOR SUBMITTED MANUSCRIPT - PMB-118141.R3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



REFERENCES 20

[8] Tevfik F. Ismail, Wendy Strugnell, Chiara Coletti, Masa Bozic-Iven, Sebastian

Weingaertner, Kerstin Hammernik, Teresa Correia, and Thomas Kuestner.

“Cardiac MR: From Theory to Practice”. In: Frontiers in Cardiovascular Medicine

9 (2022). doi: 10.3389/fcvm.2022.826283.

[9] Christoph Kolbitsch, Claudia Prieto, Jouke Smink, and Tobias Schaeffter. “Highly

Efficient Whole-heart Imaging using Radial Phase Encoding - Phase Ordering with

Automatic Window Selection”. In: Magnetic Resonance in Medicine 66.4 (2011),

pp. 1008–1018. doi: 10.1002/mrm.22888.

[10] Philip G Batchelor, David Atkinson, P Irarrazaval, D L G Hill, J Hajnal, and D

Larkman. “Matrix description of general motion correction applied to multishot

images”. In: Magnetic Resonance in Medicine 54.5 (2005), pp. 1273–1280. doi:

10.1002/mrm.20656.

[11] Irene Polycarpou, Charalampos Tsoumpas, Andrew P. King, and Paul K.

Marsden. “Quantitative Evaluation of PET Respiratory Motion Correction Using

MR Derived Simulated Data”. In: IEEE Transactions on Nuclear Science 62.6

(2015), pp. 3110–3116. doi: 10.1109/TNS.2015.2494593.

[12] Johannes F. M. Schmidt, Martin Buehrer, Peter Boesiger, and Sebastian Kozerke.

“Nonrigid retrospective respiratory motion correction in whole-heart coronary

MRA”. In: Magnetic Resonance in Medicine 66.6 (2011), pp. 1541–1549. doi:

10.1002/mrm.22939.

[13] Holden H. Wu, Paul T. Gurney, Bob S. Hu, Dwight G. Nishimura, and Michael

V. McConnell. “Free-breathing multiphase whole-heart coronary MR angiography

using image-based navigators and three-dimensional cones imaging”. In: Magnetic

Resonance in Medicine 69.4 (2013), pp. 1083–1093. doi: 10.1002/mrm.24346.

[14] Gastao Cruz, David Atkinson, Markus Henningsson, Rene M. Botnar, and Claudia

Prieto. “Highly efficient nonrigid motion-corrected 3D whole-heart coronary vessel

wall imaging”. In: Magnetic Resonance in Medicine 77.5 (2017), pp. 1894–1908.

doi: 10.1002/mrm.26274.

[15] Christoph Kolbitsch, Mark A. Ahlman, Cynthia Davies-Venn, Robert Evers,

Michael Hansen, Devis Peressutti, Paul Marsden, Peter Kellman, David A.

Bluemke, and Tobias Schaeffter. “Cardiac and Respiratory Motion Correction for

Simultaneous Cardiac PET/MR”. In: Journal of Nuclear Medicine 58.5 (2017),

pp. 846–852. doi: 10.2967/jnumed.115.171728.
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