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Abstract

INTRODUCTION: Structural magnetic resonance imaging (MRI) often lacks diagnos-

tic, prognostic, and monitoring value in Alzheimer’s disease (AD), particularly in early

disease stages. To improve its utility, we aimed to identify optimal atrophy markers for

different intended uses.

METHODS: We included 363 older adults; cognitively unimpaired individuals who

were negative or positive for amyloid beta (Aβ) and Aβ-positive patients with sub-

jective cognitive decline, mild cognitive impairment, or dementia of the Alzheimer

type. MRI and neuropsychological assessments were administered annually for up to

3 years.

RESULTS: Accelerated atrophy of medial temporal lobe subregions was evident

already during preclinical AD. Symptomatic disease stages most notably differed in

their hippocampal and parietal atrophy signatures. Atrophy–cognition relationships

varied by intended use and disease stage.
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DISCUSSION:With the appropriatemarker,MRI can detect abnormal atrophy already

during preclinical AD. To optimize performance, atrophymarkers should be tailored to

the targeted disease stage and intended use.

KEYWORDS

imaging biomarker, longitudinal atrophy, magnetic resonance imaging, medial temporal lobe,
parietal lobe

Highlights

∙ Subregional atrophy markers detect ongoing atrophy in preclinical Alzheimer’s

disease (AD).

∙ Subjective cognitive decline in preclinical AD links tomanifest atrophy.

∙ Optimal atrophymarkers differ by the disease stage and intended use.

1 BACKGROUND

Aside from accumulations of amyloid beta (Aβ) and neurofibrillary tan-
gles (NFTs) of hyperphosphorylated tau, neurodegeneration is a patho-

logical hallmark of Alzheimer’s disease (AD).1 Structural magnetic

resonance imaging (MRI) is commonly used for assessing gray matter

atrophy as a downstream biomarker of neurodegeneration, offering

advantages like non-invasiveness, good accessibility, and robust asso-

ciations with clinical phenotypes.2,3 MRI-based atrophy assessments

typically rely on quantitative measures of gray matter volume or corti-

cal thickness, either globally or in regions of interest (ROIs), including

the hippocampus or the “AD signature cortex.” While often applied

across disease stages, these generic markers tend to lack sensitivity to

subtle changes in early disease stages, particularly compared to fluid

biomarkers or molecular imaging.1,4–6 This limitation is critical, as pre-

clinical and early prodromal disease stages are increasingly recognized

as key windows for effective disease-modifying intervention.7,8

Atrophy assessment at a given AD stage may be improved by

guiding marker selection by the spatiotemporal progression of under-

lying pathology. Previous studies have demonstrated that NFTs tend

to co-localize with subsequent hotspots of neurodegeneration.3,9–11

The medial temporal lobe (MTL) is among the earliest brain regions

affected by AD-related NFTs and its subregions—including hippocam-

pal subfields, the amygdala, and cortical structures—exhibit varying

degrees and timelines of NFT accumulation.10,12–15 This makes MTL

subregional volumetry a promising approach for providing fine-grained

insights into earlyADprogression. In fact, previous researchhas shown

that MTL subregions particularly vulnerable to early NFT deposition

(e.g., the [trans-]entorhinal cortex) exhibit atrophy as early as preclin-

ical AD when measured both through absolute markers as well as

their longitudinal rates of chan.16–25 With disease progression, NFTs

increasingly occur in medial and posterior parietal structures, where

atrophy has been described in prodromal and fully manifest AD.10,26,27

Although this previous research suggests that NFT progression pat-

terns are reflected in the timeline of MTL and parietal subregional

atrophy, the transferability of these findings to real-world memory

clinic settings is unknown, requiring validation through prospective

studies conducted in such specialized centers. Notably, patients with

subjective cognitive decline (SCD, i.e., individuals subjectively expe-

riencing memory impairment while performing within normal ranges

on standard neuropsychological inventories) were often underrepre-

sented in relevant previous studies, despite their potential as early

intervention targets given their early presentation to primary and

secondary care.

A biomarker’s performance may not just vary by disease stage,

but also by intended use. Intended uses for biomarkers are manifold

and include diagnosis, prognosis, and disease monitoring.1,8,28 Thus,

developing sensitive atrophy markers for different intended uses and

disease stages requires detailed knowledge of each candidatemarker’s

properties beyond its earliest point of abnormality, including rates of

change and relationships with neuropsychological inventories along

the disease course.1 Although MTL and parietal subregional atrophy

markers have been linked to cognitive decline inAD (e.g., seeChauveau

et al.,17 Xie et al.,29 and Eskildsen et al.30), no study has systematically

examined their associations with a broad range of neuropsychological

measures across disease stages and intended uses.

1.1 The present study

This study aims to thoroughly characterize MTL and parietal subre-

gional atrophy markers in a prospective, memory clinic–based cohort,

addressing different intended uses in a disease stage–dependent

manner. First, we assess the progression of the investigated atro-

phy markers across clinical disease stages, using both cross-sectional

and longitudinal recordings to distinguish accumulated and ongoing

atrophy. Our sample spans National Institute on Aging–Alzheimer’s

Association (NIA-AA) clinical stages 1–4,1 including a group of SCD

patients (clinical stage 2) to investigate a potential atrophy signature

of subjectively experienced cognitive decline in preclinical AD. Sec-

ond, we examine how the analyzed atrophy markers develop across
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data-driven, continuous disease stages. By integrating clinical and

demographic data, this approach enables the investigation of AD

progression beyond clinical staging, which is especially valuable in

early disease stages, when phenotypical changes are subtle and sin-

gle biomarkers may be less reliable.31 Finally, we investigate the

dynamic coupling of atrophymarkers and scores onvarious established

neuropsychological inventories for different potential uses, including

diagnosis, prognosis, andmonitoring at different clinical disease stages.

2 METHODS

2.1 Participants and clinical disease staging

We included data from 363 participants enrolled in the DZNE Longi-

tudinal Cognitive Impairment and Dementia Study (DELCODE).32 This

sample comprised cognitively unimpaired individuals (CU) who were

Aβ negative (CU Aβ–, n = 165) as well as Aβ-positive participants rep-
resenting clinical AD stages 1–4 according to the NIA-AA criteria.1

Specifically, this included Aβ-positive CU (CU Aβ+ [stage 1], n = 30)

andmemory clinic referralswith subjective cognitive decline (SCDAβ+
[stage2],n=78),mild cognitive impairment (MCIAβ+ [stage3],n=51),

andmild dementia of the Alzheimer type (DATAβ+ [stage 4], n= 39).33

The full inclusion criteria are detailed in the SupplementaryMethods.

Participants underwent baseline and annual follow-up assessments

including MRI and neuropsychological testing. Given our particular

interest in MTL subregions, study visits were only considered if these

data were available (see Figure S1 in supporting information for an

overview of follow-up availabilities). This resulted in an average of 3.34

(standard deviation [SD] = 0.81) total assessments per subject with an

average follow-up interval of 1.08 (SD=0.26) years between study vis-

its. DELCODE was registered with the German Clinical Trials Registry

(DRKS; DRKS00007966) prior to inclusion of the first participants.

2.2 Fluid biomarkers

Data on Aβ-positivity were preferentially obtained from lumbar cere-

brospinal fluid (CSF; available in n = 224, 61.71%, see Supplementary

Methods for details on CSF sampling). A threshold for Aβ-positivity
of ≤ 0.08 was calculated through two-component Gaussian mixture

modelling of Aβ42/Aβ40 ratios (Mesoscale Diagnostics LLC). If CSF

was unavailable, we calculated individual probabilities of Aβ-positivity,
ranging from 0 to 1 (least to most likely to be Aβ-positive in CSF).

These probabilities were obtained using a binomial logistic regression

model, predicting Aβ-positivity in CSFwith age, apolipoprotein E geno-
type, plasma phosphorylated tau 181 concentration (Simoa assays;

Quanterix), and plasmaAβ42/Aβ40 ratios (Lumipulse G System assays;

Fujirebio Inc.34) included as predictors.35 A positivity cutoff of> 0.639

was determined using the Youden index, applying a cost ratio of 1.5:1

for false negatives versus false positives. This decision was guided by

evidence suggesting Aβ42/Aβ40 ratios to become abnormal earlier in

CSF than in the peripheral blood, making specificity a higher priority

RESEARCH INCONTEXT

1. Systematic review: Previous research has highlighted

several shortcomings in the current routine use of

structural brain magnetic resonance imaging (MRI)

for Alzheimer’s disease (AD). Especially given recent

advances in disease-modifying treatments, enhancing

sensitivity to early disease stages and establishing robust

correlations with both current and future cognitive

impairment are essential.

2. Interpretation: Our findings indicate that specific,

anatomically fine-grained atrophymarkers exhibit abnor-

mal reductions already before the manifestation of

cognitive impairment. As the disease progresses, differ-

ent atrophymarkers are best suited for distinct purposes,

including AD diagnosis, prognosis, and monitoring. These

results provide a framework for selecting the most infor-

mativeMRI readouts based on the targeted disease stage

and intended use.

3. Future directions: Future research should validate these

findings in independent cohorts and explore the opti-

mal combination of structural MRI markers with other

biomarkers for specific applied scenarios.

than sensitivity.36 Themodel is further described in the Supplementary

Methods.

2.3 Neuropsychological testing

We included a broad range of measures from the DELCODE neu-

ropsychological testing battery, targeting different cognitive domains.

This included tests of episodic memory (Free and Cued Selective

Reminding Test–Free + Total Recall [FCSRT-9637], Wechsler Memory

Scale IV [WMS-IV38] Logical Memory Delayed Recall, Alzheimer’s Dis-

ease Assessment Scale-Cognitive subscale [ADAS-Cog39] delayed and

immediate word recall, Face Name Associative Recognition Task), lan-

guage (sum of animals and groceries verbal fluency, FCSRT Naming),

executive functions (Symbol-Digit Modalities Test [SDMT 40], time dif-

ference of the Trail Making Test Parts B and A [TMT B–A], a Flanker

task41, ADAS-Cog Number Cancellation), working memory (WMS-R

Digit Span), and visuospatial functions (clock drawing and copying,

ADAS-Cog Figure Savings and Copying). In addition, we assessed mea-

sures of clinical functioning (Clinical Dementia Rating Sum of Boxes

scale [CDR-SB42], Functional Activities Questionnaire [FAQ43]), neu-

ropsychiatric symptoms (Neuropsychiatric Inventory–Questionnaire

[NPI-Q44]), and cognitive composite scores (ADAS-Cog13, Mini-

Mental State Examination [MMSE45], Preclinical Alzheimer Cognitive

Composite [PACC-546]). If visual inspection of the data indicated that

test score distributions strongly deviated from normality, we applied
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pre-normalization using latent process modeling implemented in the

“lcmm” R package.47 Cognitive test scores were z-standardized to par-

ticipants without manifest cognitive impairment, that is, the CU and

SCD groups, and, if needed, inverted so that lower scores represented

worse performance across inventories.

2.4 MRI acquisition

MRI data were collected on 3 Tesla Siemens MRI system, includ-

ing a T1-weighted, 3D whole-brain magnetization prepared rapid

gradient echo sequence (MPRAGE; echo time/repetition time

[TE/TR] = 437/2500 ms, inversion time = 1100 ms, 7◦ flip angle,

1 mm isotropic resolution) and a T2-weighted turbo spin-echo (TSE;

TE/TR = 354/3500 ms, 120◦ flip angle, 0.5 × 0.5 × 1.5 mm resolution)

sequence. To optimally visualize MTL subregions, TSE images were

oriented orthogonally to the longitudinal axis of the hippocampus and

were limited to a slab covering theMTL.48

2.5 MRI processing

Several research questions addressed by this study require the longi-

tudinal assessment of subregional atrophy markers. When performing

longitudinal segmentations, processing images individually may intro-

duce unrelated noise. Hence, the current study uses pipelines that

minimize and homogenize noise acrossmeasurements by usingwithin-

subject templates.49

MTL subregional volumes were derived using a newly devel-

oped longitudinal implementation of the automated segmentation of

hippocampal subfields (ASHS13,50) algorithm, using subject-specific

templates. This pipeline can be applied to both T1- (T1-ASHS) and

T2-weighted images (T2-ASHS). This flexibility is crucial because dif-

ferent structures are best segmented on different image modalities;

for example, hippocampal subfields on T2-weighted and the amyg-

dala on T1-weighted images.51,52 Technical details of this pipeline are

summarized in the Supplementary Methods and were described in a

previous publication from our group.2 T2-ASHS was used with the

Penn ABC 3T atlas, delineating hippocampal subfields (cornu ammonis

[CA] 1–3, dentate gyrus, subiculum) as well as the extrahippocampal

MTL cortices (entorhinal cortex, Brodmann area [BA] 35 [approxi-

mately corresponding to Braak’s transentorhinal cortex50], BA36, and

parahippocampal cortex).20,53 To reduce the number of ROIs, we com-

bined the CA2, CA3, and dentate gyrus labels into a single CA23DG

label, as these regions are less affected by early AD-related NFTs.54

Hippocampal subfieldswere only segmented in the anterior hippocam-

pus (combining hippocampal head and body), while its posterior-most

portion was segmented as hippocampal tail. T1-ASHS with an updated

version of thePMC-T1 atlaswas used to generate segmentations of the

amygdala.19,51 We also conducted standard cross-sectional T2-ASHS

segmentation of baseline images to evaluate the comparability of lon-

gitudinally derived volumeswith those generated using the established

T2-ASHS algorithm.

Average cortical thicknesses of the granular retrosplenial cortex

(isthmus of the cingulate gyrus), inferior parietal cortex, posterior cin-

gulate cortex, and the precuneus were generated from T1-weighted

imagesusingFreeSurfer’s longitudinal stream (v7.1.1,Desikan–Killiany

atlas, http://surfer.nmr.mgh.harvard.edu/).49

Gray matter volumes were adjusted for their relationship with total

intracranial volume in all CU Aβ-participants included in DELCODE.55

All structural measures were z-standardized to the CU Aβ– group.

Pipeline availabilities are indicated in Figure S2 in supporting informa-

tion.

2.6 Data-driven disease staging

A data-driven disease progression model was trained to capture dis-

ease progression on a continuous scale, closely following a previous

analysis of DELCODE data.56,57 Briefly, the model was trained on all

available longitudinal CSF Aβ42/Aβ40 ratios and phosphorylated tau

181 concentrations, as well as PACC-5 and ADAS-Cog13 sum scores.

While the previously reported model included entorhinal and hip-

pocampal volume, we retrained an otherwise analogous model in the

same sample, this time excluding atrophy markers to avoid circularity

in our analyses. Using this model, we estimated a continuous disease

stage, expressed in years, for each participant’s baseline study visit in

reference to the entire DELCODE sample. To simplify interpretation

of the arbitrarily scaled disease stages, we adjusted the original values

for age, sex, and years of education and applied linear transformation

to introduce a clinical reference point by setting the median of the CU

Aβ+ group to zero.

2.7 Statistical analyses

Statistical analyses were performed in R v4.2.2.58 The threshold for

statistical significance was P ≤ 0.05. Two-way intraclass correlations

tested agreement between baseline volumes from longitudinal and

cross-sectional T2-ASHS. We used analysis of covariance (ANCOVA)

to test for effects of study site on scaled atrophy markers within each

clinical disease stage. ANCOVAs were also used to compare baseline

atrophy markers across clinical disease stages. Post hoc comparisons

comprised contrasts of all clinical stages against the CU Aβ– group

and contrasts of consecutive clinical stages (e.g., MCI Aβ+ vs. SCD

Aβ+). We investigated whether longitudinal trajectories of atrophy

markers differed by clinical stage through linear mixed effects mod-

els with participant-level random slopes and intercepts, applying the

aforementioned contrasts.

Next, analysis of variance was used to test for differences in data-

driven disease stage between consecutive clinical disease stages at

baseline. To model atrophy trajectories along data-driven disease

stages, we estimated longitudinal stages by adding years since base-

line to each individual’s estimated baseline stage. These projected

stages were used in linear mixed-effects models to predict each atro-

phy marker. Cubic B-splines (df = 3) were used to capture non-linear

http://surfer.nmr.mgh.harvard.edu/
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mean trajectories, and the first derivatives of the resulting curveswere

examined to assess slope changes with disease progression.

Finally, we analyzed the longitudinal relationships of regional struc-

ture and cognitive measures using bivariate latent growth curve

models (LGCMs), implemented in the “OpenMx”Rpackage.59,60 Bivari-

ate LGCMs allow for the estimation of change in two longitudinally

recorded variables and the relationships thereof. Models were spec-

ified and fitted for each pairing of structural and cognitive variables

as visualized in Figure S3 in supporting information. An acceptable

model fit was defined by a comparative fit index (CFI) > 0.90 and a

root mean square error of approximation (RMSEA) < 0.08. Wald tests

(criticalZ=1.96)wereused toensure sufficient variance in latent inter-

cepts and slopes to test for covariance. Likelihood ratio testswere used

to freely estimate covariance parameters of interest, each reflecting

different intended uses for structural MRI markers. This included the

baseline–baseline (diagnosis and case finding), baseline–slope (prog-

nosis), and slope–slope (disease monitoring) pairwise associations

of structural and cognitive variables. We also investigated if these

relationships differed among clinical stages (CU Aβ–, preclinical AD
comprising CU Aβ+ and SCD Aβ+, and symptomatic AD comprising

MCIAβ+andDATAβ+). To this end,multigroupmodelswereestimated

in which the parameter of interest was freely estimated within each

group, constraining all other parameters to be equal across groups.

Group-wise parameters were tested against 0 within each group using

likelihood ratio tests.

All analyses controlled for baseline age and sex. Years of education

was included as a covariate when predicting cognitive scores. Models

including disease time were not corrected for demographics as they

were regressed out of this metric.

3 RESULTS

An overview of participant characteristics is provided in Table 1. Intra-

class correlation coefficients of baseline volumes generated using the

standard cross-sectional and newly developed longitudinal T2-ASHS

pipelines were excellent, supporting their comparability (n = 272,

mean intra-class correlation = 0.94, SD = 0.02; range = 0.90–0.97,

all PFDR < 0.001; P values were corrected across all eight ROIs;

Figure S4 in supporting information). There were no statistically sig-

nificant effects of site on atrophy markers (Table S1, Figure S5 in

supporting information).

3.1 Baseline assessments reveal atrophy of early
Braak regions in preclinical AD with SCD

The first main analysis aimed to identify potential baseline differences

of atrophy markers among clinical disease stages using ANCOVAs

(Figure 1A,C, see also Tables S2 and S3 in supporting information for

details on ANCOVA results and post hoc comparisons, respectively).

We applied false discovery rate (FDR) correction to P values for the

effect of clinical stage across atrophy markers (13 comparisons in

total), as well as within post hoc comparisons for each atrophy marker

(seven comparisons per marker). Atrophy markers from Aβ-positive
groups were first compared to those of CU Aβ– participants and there
were no significant differences for the CU Aβ+ group. Meanwhile, vol-

umesof the amygdala (b=−0.70, t=−3.75,PFDR < .001), the entorhinal

cortex (b = −0.44, t = −2.75, PFDR = 0.015), and all hippocampal ROIs

(all b≤−0.36, t≤−2.14,PFDR ≤0.047)were significantly reduced in the

SCD Aβ+ group. The same regional volumes were reduced inMCI Aβ+
participants, though these effects were numerically stronger than in

the SCDAβ+ group (all b≤−0.59, t≤ −2.97, PFDR ≤ 0.011). In addition,

MCIAβ+participants exhibited significantly reduced cortical thickness

in the precuneus (b=−0.62, t=−2.53, PFDR =0.028) and in the inferior

parietal cortex (b=−0.51, t=−2.45,PFDR =0.035). All structuralmark-

ers included in the post hoc analysis were significantly reduced in DAT

Aβ+ patients (all b≤ −0.80, t≤ −3.18, PFDR ≤ 0.011). Analyzing further

contrasts representing consecutive clinical stages, we observed signif-

icant differences across comparisons (SCD Aβ+ vs. CU Aβ+, MCI Aβ+
vs. SCDAβ+, DATAβ+ vs.MCIAβ+). Theseweremainly focused on the

amygdala, hippocampal ROIs, the precuneus, and the inferior parietal

cortex.

Clinical disease stage had a non-significant effect on BA36 and

parahippocampal cortex volume, as well as on posterior cingulate

cortical thickness. Thesemodels were not passed to post hoc analysis.

3.2 Longitudinal MRI reveals accelerated atrophy
in preclinical AD

Incorporating data from follow-up MRI assessments, we tested if clin-

ical disease stages differed in their associated longitudinal trajectories

of atrophy markers using linear mixed effect models. Random slopes

showed insufficient variance when predicting posterior cingulate cor-

tical thickness and were therefore omitted from this specific model.

Estimated slopes (i.e., annual rates of change of atrophy markers) are

displayed by clinical disease stage in Figure 1B and Figure 1D summa-

rizes the results of their pairwise comparisons (see also Tables S4–6

in supporting information; FDR correction was performed among all

seven planned contrasts per atrophy marker). In CU Aβ– participants,

a significant decline was observed across markers except for entorhi-

nal volume and posterior cingulate cortical thickness. Decline was

further amplified in several regions within the different Aβ-positive
groups. While no significant effects were observed for the CU Aβ+
group in the cross-sectional analysis, there was an accelerated vol-

umetric decline over time in the amygdala (b = −0.07, t = −2.99,
η2partial = 0.03, PFDR = 0.007), entorhinal cortex (b = −0.07, t = −3.01,
η2partial = 0.04, PFDR = 0.007), and BA35 (b = −0.07, t = −2.73,
η2partial = 0.03, PFDR = 0.016). The SCD Aβ+ group exhibited an

even more pronounced decline relative to the CU Aβ– group, par-

ticularly in parietal subregions (precuneus: b = −0.10, t = −3.10,
η2partial = 0.04, PFDR = 0.005; inferior parietal cortex: b = −0.15,
t = −3.89, η2partial = 0.06, PFDR < 0.001). Additional regions within

the medial temporal lobe (amygdala, subiculum, entorhinal cortex, and

BA36) also showed significantly faster decline in the SCD Aβ+ group.
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TABLE 1 Characteristics of the analyzed sample.

Diagnostic group

Missing CUAβ– CUAβ+ SCDAβ+ MCI Aβ+ DATAβ+ Total

n (%) n= 165 n= 30 n= 78 n= 51 n= 39 N= 363

NIA-AA clinical

disease stage

n.a. 1 2 3 4

Baseline age, years 0 (0) 68.14 (5.05) 71.23 (6.51) 73.07 (5.55) 73.75 (4.82) 74.74 (6.58) 70.95 (6.04)

Sex, female n.a. 106 (64.24%) 12 (40.00%) 29 (37.18%) 27 (52.94%) 19 (48.72%) 193 (53.17%)

Education level, years n.a. 14.55 (2.78) 14.27 (3.14) 14.50 (2.98) 14.08 (3.32) 12.97 (2.86) 14.28 (2.96)

Baseline data-driven

disease stage, years

33 (9.09%) −3.61 (3.26) −0.92 (3.35) −0.27 (2.63) 2.32 (2.16) 5.34 (2.31) −0.93 (4.17)

Number of

assessments

n.a. 3.56 (0.70) 3.67 (0.66) 3.17 (0.83) 3.18 (0.87) 2.72 (0.76) 3.34 (0.81)

Source of Aβ status,
probabilistic modela

n 79 (47.88%) 8 (26.67%) 33 (42.31%) 11 (21.57%) 8 (20.51%) 139 (38.29%)

Pipeline availability

T1-ASHS n.a. 148 (89.70%) 27 (90.00%) 76 (97.44%) 50 (98.04%) 37 (94.87%) 338 (93.11%)

T2-ASHS n.a. 151 (91.52%) 28 (93.33%) 61 (78.21%) 32 (62.75%) 18 (46.15%) 290 (79.89%)

FreeSurfer n.a. 165 (100.00%) 30 (100.00%) 78 (100.00%) 51 (100.00%) 39 (100.00%) 363 (100.00%)

Cognitive test scoresb

PACC-5 37 (10.19%) 0.23 (0.54) −0.16 (0.74) −0.36 (0.71) −1.28 (0.72) −3.52 (1.35) −0.30 (1.11)

MMSE 1 (0.28%) 29.57 (0.71) 29.20 (1.06) 29.17 (1.04) 27.84 (1.60) 23.51 (3.36) 28.56 (2.34)

ADAS-Cog13 9 (2.48%) 5.34 (3.01) 6.92 (4.22) 8.19 (3.93) 16.50 (6.63) 30.22 (7.66) 10.08 (8.86)

CDR-SB 7 (1.93%) 0.05 (0.21) 0.26 (0.85) 0.51 (0.76) 1.36 (0.96) 4.29 (1.95) 0.80 (1.54)

Abbreviations: Aβ, amyloid beta; ADAS-Cog13, Alzheimer’s Disease Assessment Scale-Cognitive subscale sum score; ASHS, automated segmentation of hip-

pocampal subfields; CDR-SB, Clinical Dementia Rating Sum of Boxes; CSF, cerebrospinal fluid; CU, cognitively unimpaired; DAT, dementia of the Alzheimer’s

disease type; MCI, mild cognitive impairment; MMSE, Mini-Mental State Examination; n.a., not applicable; NIA-AA, National Institute on Aging–Alzheimer’s

Association; PACC-5, Preclinical Alzheimer Cognitive Composite; SCD, subjective cognitive decline.
aCorresponds to the number of participants withmissing CSF data. Aβstatus was directly determined fromCSF Aβ42/Aβ40 ratios where available.
bRaw scores are displayed.

Comparing SCD Aβ+ and CU Aβ+ participants, the only significant

difference was in the rate of thinning in the inferior parietal cortex

(b = −0.15, t = −2.74, η2partial = 0.03, PFDR = 0.009). A similar pat-

tern to that observed in SCD Aβ+ individuals was found in the MCI

Aβ+ group, with an additional acceleration of thinning in the retros-

plenial cortex (b = −0.06, t = −2.67, η2partial = 0.03, PFDR = 0.027). In

DATAβ+participants, nearly all structures, except for the hippocampal

tail and CA1, showed accelerated atrophy. Compared toMCI Aβ+ par-

ticipants, structural decline in DAT Aβ+ individuals progressed more

rapidly in extrahippocampal and parietal regions, while hippocampal

subfields and the amygdala showed no significant differences.

3.3 Data-driven disease staging offers detailed
insights into subregional atrophy progression

Independent of discrete clinical staging, we next analyzed the evo-

lution of regional atrophy markers in relation to continuous, data-

driven disease stages. The disease progression model used to derive

individual stages is illustrated in Figure S6 in supporting informa-

tion. We found that baseline stage increased with clinical progression

(i.e., with each successive clinical disease stage), except that there

was no significant difference between CU Aβ+ and SCD Aβ+ partic-

ipants (b = 0.65, PFDR = 0.308; otherwise range [b]: 2.58–3.02, all

PFDR < 0.001; Figure 2A, four FDR-corrected comparisons). Linear

mixed effectsmodelswithB-splineswere used to capture non-linearity

in the longitudinal trajectories of atrophy markers with data-driven

disease stage. Figure2B–Dshow the fitted slopes and their first deriva-

tives. As expected in a sample of older adults, progressive atrophy (i.e.,

negative first derivatives)wasevident alreadyat early stagesbelow the

CU Aβ+ group median, which was set to be zero. Within the MTL, the

amygdala exhibited the most pronounced decline across data-driven

disease stages. Interestingly, the first derivatives of the fitted curves

indicate that atrophy rates of hippocampal subfields and the amyg-

dala stabilized toward later stages. Atrophy rates in the MTL cortex

and parietal lobe were low in early stages but accelerated in stages

primarily observed in symptomatic individuals, with particularly sharp

increases in the precuneus and inferior parietal cortex.
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(A)

(B)

(C) (D)

F IGURE 1 Baseline and longitudinalMTL and parietal subregional atrophymarkers across the clinical AD continuum. A, Boxplot diagrams of
baseline graymatter volumes and average cortical thicknesses across ROIs and clinical disease stages, grouped bymeta-region. B, Annual change
of of atrophymarkers across ROIs and clinical disease stages, grouped bymeta-region. The shown slopes were estimated from linear mixed effects
models. Error bars denote 95% confidence intervals. Asterisks highlight significant slopes, that is, significant change over time. C,Matrix displaying
estimates from analysis of covariance post hoc group comparisons of baseline atrophymarkers. The striped pattern indicates markers with
non-significant main effects of clinical disease stage (not passed to post hoc tests). D, Estimates from pairwise stage comparisons of longitudinal
atrophymarker slopes. *P< 0.05. **P< 0.01. ***P< 0.001. Aβ, amyloid beta; BA, Brodmann area; CA, cornu ammonis; CA23DG, cornu ammonis 2,
3, and dentate gyrus; CU, cognitively unimpaired; DAT, dementia of the Alzheimer’s disease type; FDR, false discovery rate; IPC, inferior parietal
cortex; MCI, mild cognitive impairment; MRI, magnetic resonance imaging;MTL, medial temporal lobe; ROI, region of interest; SCD, subjective
cognitive decline; SUB, subiculum.
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(A)

(C)

(D)

(B)

F IGURE 2 Non-linear changes inMTL and parietal subregional atrophymarkers along continuous, data-driven disease stages. A, Boxplot
diagrams of baseline data-driven disease stages by clinical disease stage, centered to themedian of the CUAβ+ group. B, Cubic B-splines and their
first derivatives were used to assess the development of atrophymarkers across data-driven disease stages. The estimated trajectories with
bootstrapped confidence intervals are also shown in (C), where they are clustered bymeta-region. D, For each atrophymarker, the predicted
curves are plotted along with the observed participant-level trajectories. ***P< 0.001. Aβ, amyloid beta; AMY, amygdala; BA; Brodmann area; CA,
cornu ammonis; CA23DG, cornu ammonis 2, 3, and dentate gyrus; CU, cognitively unimpaired; DAT, dementia of the Alzheimer’s disease type;
ERC, entorhinal cortex; HC, healthy control; IPC, inferior parietal cortex; MCI, mild cognitive impairment; MTL, medial temporal lobe; PCC,
posterior cingulate cortex; PHC, parahippocampal cortex; PRE, precuneus; ROI, region of interest; RSC, retrosplenial cortex; SCD, subjective
cognitive decline; SUB, subiculum; TAIL, hippocampal tail.

3.4 Structural and cognitive changes covary
uniquely at different clinical disease stages

Finally, we analyzed longitudinal measures of regional brain struc-

ture and cognition to identify their potentially disease stage–specific

couplings. To this end, bivariate LGCMs were fitted both in the

whole sample and in subsamples representing different clinical dis-

ease stages. Due to their non-normal distributions, ADAS-CogDelayed

Word Recall, ADAS-Cog Figure Copying, ADAS-Cog13, CDR-SB, Clock

Copying, Clock Drawing, FAQ, MMSE, and NPI-Q scores were pre-

normalized using latent process modelling (Supplementary Results,

Figures S7 and S8 in supporting information). Most models showed

adequate fit and variance structures. However, FCSRT Naming SDMT,

TMT B–A, Flanker, WMS-R Digit Span, Clock Copying, and NPI-Q

scores, as well as posterior cingulate cortical thicknesses, had insuffi-

cient slope variances and are therefore not reported. Additional details

on model fit are reported in the Supplementary Results and Figures S9

and S10 in supporting information. The estimates for all covariance

parameters of interest are visualized in Figure 3. We applied FDR cor-

rection across all statistical tests performed in each analyzed group (3

parameters of interest ⨉ 14 test scores ⨉ 12 atrophy markers = 504

comparisons per group).

As expected, all significant covariance estimates were positive,

indicating that structural decline was linked to worsening cognition.

However, no consistent covariance pattern emerged across clinical

disease stages, with each group showing distinct associations between

subregional atrophymarkers and individual test scores.

Clinical disease stage-specific covariance matrices revealed that

significant estimates were more frequent and descriptively higher

in the symptomatic group (MCI Aβ+ and DAT Aβ+) compared to

the CU Aβ– and preclinical (CU Aβ+ and SCD Aβ+) groups, reflect-
ing stronger structure-cognition coupling at later clinical stages.
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(A)

(B)

(C)

F IGURE 3 Estimates from bivariate LGCMs capturing the disease stage–specific cross-sectional and longitudinal relationships of subregional
atrophymarkers and neuropsychological test scores. The covariance parameters of interest represented the (A) baseline–baseline, (B)
baseline–slope, and (C) slope–slope pairwise associations of atrophymarkers and neuropsychological test scores. Aβ, amyloid beta; ADAS-Cog,
Alzheimer’s Disease Assessment Scale-Cognitive subscale; AMY, amygdala; BA, Brodmann area; CA, cornu ammonis; CA23DG, cornu ammonis 2,
3, and dentate gyrus; CSD-SB, Clinical Dementia Rating Sum of Boxes scale; ERC, entorhinal cortex; FAQ, Functional Activities Questionnaire;
FCSRT, Free and Cued Selective Reminding Test; FDR, false discovery rate; IPC, inferior parietal cortex; LGCM, latent growth curvemodel; MMSE,
Mini-Mental State Examination;MTL, medial temporal lobe; PACC-5, Preclinical Alzheimer Cognitive Composite; PHC, parahippocampal cortex;
PRE, precuneus; RSC, retrosplenial cortex; SUB, subiculum; TAIL, hippocampal tail;WMS-IV,WechslerMemory Scale IV.

Structure-cognition relationships were numerically weaker in cross-

sectional analyses (baseline-baseline, Figure 3A) than in analyses

where structure was assessed cross-sectionally and cognition longi-

tudinally (baseline-slope, Figure 3B). Covariances were numerically

largestwhenboth structureandcognitionwereassessed longitudinally

(slope-slope, Figure 3C), suggesting that brain structure and cognition

are more closely linked through their changes over time than through

their baselinemeasures.

A notable shift was observed in regional patterns comparing

baseline–slope and slope–slope associations: When brain structure
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is considered longitudinally instead of cross-sectionally, significant

covariances are increasingly focused on the structures in theMTL cor-

tices and the parietal lobe. This pattern occurred across groups butwas

most pronounced in symptomatic participants.

In preclinical stages, the FCSRT-96 and PACC-5 demonstrated

the most consistent associations across covariance parameters and

regions, with the FCSRT-96 showing more widespread and significant

structural correlates than other episodic memory measures. Signifi-

cant slope–slope associations were also observed in models including

the ADAS-Cog13. Functional decline was linked to thinning in the

precuneus and inferior parietal cortex, while sign associations with

language, executive functioning, or visuospatial scores were rare.

In symptomatic groups, cross-sectional associations between struc-

tural and cognitive measures were notably broad, with only parahip-

pocampal cortex and BA36 volumes showing limited associations.

Baseline–slope relationships were primarily centered on MTL struc-

tures across cognitive domains, while slope–slope covariances focused

on the MTL cortex and parietal lobe, encompassing cognitive domains

beyond episodic memory and cognitive composites.

4 DISCUSSION

This study provides a detailed characterization of MTL and parietal

subregional atrophy along the AD continuum, revealing abnormally

accelerated atrophy in MTL subregions already during preclinical dis-

ease stages. Notably, the presence of SCD in preclinical AD was

associated with a widespread pattern of manifest MTL atrophy. Inde-

pendent of clinical staging, the examined atrophy markers uniquely

developedwithin a data-driven disease staging framework, with amyg-

dalar volume showing the earliest decline. Finally, we found that

associations between atrophy markers and neuropsychological test

scores varied by clinical disease stage and intended use.

Overall, the atrophy patterns identified using both clinical and

data-driven AD staging mirrored the Braak staging framework of

NFT progression, with the MTL being affected prior to the parietal

cortex.10,14 Our results thus align with previous findings on the co-

localization of NFTs and atrophy, as well as with studies on MRI

signatures of early AD, further supporting the use of structural MRI as

a biomarker for AD-related neurodegeneration.3,9–11,24,25,61 The addi-

tional insights generated by our study as well as its limitations are

discussed in the following.

4.1 Accelerated atrophy is detectable in
preclinical AD

Our study underscores the value of subregional atrophy assessments,

particularly when targeting early disease stages. For instance, our

longitudinal data suggest that in preclinical AD, atrophy spares the pos-

terior MTL (parahippocampal cortex, hippocampal tail), while anterior

structures deteriorate earlier. Another example, now at the level of

anatomical substructures, is given by our longitudinal analyses across

clinical disease stages: here, abnormal atrophy first emerged in the

anterior MTL cortices (entorhinal cortex, BA35, BA36) and amygdala

at clinical stage 1 (CU Aβ+), before hippocampal subfields showed

accelerated atrophy at clinical stage 2 (SCD Aβ+). While the MTL cor-

tices are known as early hotspots of AD-related NFTs and atrophy, the

amygdala has been underrepresented in relevant research.62 Along-

side our findings, only few studies suggest that amygdalar volume may

be more sensitive to early AD than the commonly used hippocampal

volume.63,64 Interestingly, hippocampal and amygdalar atrophy rates

stabilized toward later data-driven disease stages and did not dif-

fer between DAT Aβ+ and MCI Aβ+ participants, indicating reduced

sensitivity in manifest AD.

Crucially, our study reinforces the relevance of distinguishing clin-

ical stages 1 (CU Aβ+) and 2 (SCD Aβ+) as manifest MTL atrophy as

well as accelerated atrophy rates of the inferior parietal cortex and the

precuneus were only observed in the SCD Aβ+ but not the CU Aβ+
group. These findings align with studies linking SCD in preclinical AD

to elevated biomarkers of AD proteinopathy and an elevated risk of

progression to cognitive impairment.32,65–68

4.2 Cross-sectional and longitudinal atrophy
markers provide distinct insights into disease
progression

Our findings show that cross-sectional and longitudinal atrophy mark-

ers provide distinct, yet complementary, insights into accumulated and

ongoing regional atrophy, respectively. For example, in SCD Aβ+ par-

ticipants, precuneus and inferior parietal cortical thickness appeared

normal cross-sectionally but showed accelerated atrophy over time

in longitudinal assessments. Meanwhile, significant accumulated atro-

phy of these regions was evident in the subsequent MCI Aβ+ stage.

While most findings align with this pattern of accelerated decline

(ongoing atrophy) preceding cross-sectional reductions (accumulated

atrophy), some results deviate from this trend. For example, our cross-

sectional analyses identified reduced volumes in hippocampal subfield

CA1 at the SCD Aβ+ stage while no clinical disease stage was linked

with longitudinally accelerated CA1 atrophy rates. Importantly, we

believe it is not paradoxical that atrophy rates in BA35, BA36, and the

parahippocampal cortex accelerate during preclinical stages despite

the absence of significant cross-sectional abnormalities before the

DAT Aβ+ stage. This can be attributed to the high inter-individual

macro-anatomical differences in these structures, adding variance

to absolute volumetric measures unrelated to neurodegeneration.50

Longitudinal within-subject volumetric analyses account for this vari-

ance, making them better suited to capture subtle atrophy in these

structures.49

4.3 Brain structure and cognition show disease
stage–specific couplings

Covariance patterns between MRI markers and neuropsychological

test scores consistently linked atrophy to cognitive decline, though

associations varied by disease stage and covariance parameter.
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Building on prior reports of varying sensitivities of cognitive inven-

tories with AD progression, we found that relationships of subregional

atrophy markers and neuropsychological test scores varied by clinical

disease stage.69,70 Overall, we observed stronger and more significant

atrophy–cognition associations in symptomatic compared to preclin-

ical AD participants. This finding likely reflects greater intra- and

interindividual variability in atrophy and cognitive performance in

symptomatic AD. It also suggests that early cognitive decline may be

more driven by factors beyond atrophy, such as functional alterations

or synaptic dysfunction.

The analyzed covariance parameters of atrophy markers and neu-

ropsychological test scores represent three distinct uses for biomark-

ers: baseline–baseline covariances are relevant for diagnostic and

case-finding purposes, baseline–slope covariances reflect the prognos-

tic value of an atrophy marker, and slope–slope covariances indicate

an atrophy marker’s suitability for monitoring disease progression.

Generally, we observed the strongest covariances among slope–slope

associations, suggesting that regional brain structure and neuropsy-

chological test scores are most closely linked in their longitudinal

changes, aligning with previous studies.71–73 The complex interplay

of disease stage and intended use can be illustrated by the associa-

tions of CA1 volume and FCSRT-96 scores. The two variables covaried

at baseline in both preclinical and symptomatic AD, with stronger

covariance in the latter. Regarding prognosis, lower baseline CA1 vol-

ume predicted FCSRT-96 decline only in symptomatic AD. Meanwhile,

longitudinal changes in both variables covaried significantly in both

groups, with stronger coupling in preclinical AD. These results sug-

gest that CA1 atrophy related to FCSRT-96 performance emerges

mainly during preclinical AD. In symptomatic AD, accumulated CA1

atrophy predicts further decline. However, this later decline appears

to be primarily coupledwith ongoing atrophy in otherMTL subregions,

including the amygdala and subiculum.

Our results capture established anatomo–clinical relationships and

highlight their dynamic fluctuations with disease progression. For

example, cognitive decline was linked to emerging parietal atro-

phy more strongly in symptomatic than in preclinical AD, aligning

with reports of increasing parietal NFT pathology as the disease

progresses.10,74 In addition, the significant slope–slope relationships

of FCSRT-96 and verbal fluency scores with MTL volumes in pre-

clinical AD complement the established role of the MTL in episodic

and semantic memory.61,75,76 Interestingly, the FCSRT-96 stood out

for its consistent associations with MTL structure, aligning with prior

studies linking it to early tau burden in preclinical AD and highlight-

ing its value among PACC-5 subtests for distinguishing preclinical AD

from healthy aging over time.46,77 In contrast, many episodic mem-

ory measures (e.g., ADAS-Cog Delayed Word Recall, WMS-IV Logical

Memory Delayed Recall), showed weak associations with MTL struc-

ture. Among cognitive composites, the MMSE was largely unrelated

to the analyzed atrophy markers in preclinical AD, while significant

associations were found for the ADAS-Cog13 and PACC-5. These

composites were designed to specifically capture AD-related cogni-

tive decline and emphasize episodic memory, which may explain their

relatively early associations withMTL atrophy.

While focusing on AD, our study also provides insights into brain

structure–cognition relationships in healthy aging (CU Aβ–). Contrast-
ing earlier studies, we found no widespread longitudinal relationships

betweenMTL structure and cognition, particularly episodicmemory.78

This may reflect a lag between atrophy and cognitive decline, as indi-

cated by broader associations of baseline MTL structure with future

cognitive decline.

4.4 Limitations

Our results should be interpreted given the following limitations.

First, our study is strongly motivated by an assumed local association

between NFT pathology and atrophy. However, due to lacking regional

NFT markers, we were unable to directly evaluate this assumption.

Varying regional vulnerability, comorbid pathologies (e.g., TDP-43,

α-synuclein), and distant NFT effects may have contributed to our

findings.9 Future studies should investigate the pathobiological pro-

cesses underlying our results, such as through the use of biomarkers

and biological disease staging. Second, our analyses of structure–

cognition relationships cannot answer questions of possible mediating

or moderating mechanisms, including functional alterations and neu-

roinflammatory responses. Third, disparities in sample sizes across

diagnostic groups may have led to underpowered analyses, empha-

sizing the importance of the reported effect sizes. Finally, future

studies should aim to replicate our findings in independent, more

diverse cohorts that include data on race and ethnicity, whichwere not

collected here due to German data protection laws.

5 CONCLUSION

Our study offers detailed insights into the dynamics of anatomically

detailed atrophy markers within the MTL and parietal lobe across the

AD continuum. We show that abnormalities on structural MRI do not

necessarily appear imminent to cognitive impairment onset. Instead,

accelerated volumetric decline in the entorhinal cortex, BA35, and

the amygdala was observed already in preclinical AD. However, these

markers appear less effective during symptomatic stages, when dis-

ease progression leads to more pronounced atrophy in hippocampal

and parietal subregions.Wedemonstrate that atrophy–cognition asso-

ciations are disease stage–specific and vary by the intended use of

an atrophy marker. Crucially, these associations were highly hetero-

geneous even within broader brain regions and cognitive domains,

such as among MTL subregions and episodic memory tests. These

results indicate that achieving optimal use of structural MRI for atro-

phy assessment—whether in research, clinical practice, or intervention

trials—requires markers that are tailored to context-specific factors,

including the intended use and the targeted disease stage.
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