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Abstract  
Innate immune cells constitute the majority of the tumor microenvironment (TME), 
where they mediate both natural anti-tumor immunity and immunotherapy responses. 
While single-cell T- and B-cell receptor sequencing has provided fundamental insights 
into the clonal dynamics of human adaptive immunity, the lack of appropriate tools has 
precluded similar analysis of innate immune cells. Here, we describe a method that 
leverages somatic mitochondrial DNA (mtDNA) mutations to reconstruct clonal lineage 
relationships between single cells across cell types in native human tissues. We jointly 
sequenced single-cell transposase-accessible chromatin and mtDNA to profile 
n=124,958 cells from matched tumor, non-involved lung tissue (NILT), and peripheral 
blood of early-stage non-small cell lung cancer (NSCLC) patients, as well as n=93,757 
cells from matched tumor and peripheral blood of ovarian cancer patients. Single-cell 
concomitant profiling of lineage and cell states of thousands of immune cells resolved 
clonality across cell types, tissue sites, and malignancies. Clonal tracing of innate 
immune cells demonstrates that TME-resident myeloid subsets, including macrophages 
and type 3 dendritic cells (DC3), are clonally linked to both circulating and 
tissue-infiltrating monocytes. Further, we identify distinct DC-biased and 
macrophage-biased myeloid clones, enriched in the tumor and NILT, respectively, and 
find that their circulating monocyte precursors exhibit distinct epigenetic profiles, 
suggesting that myeloid differentiation fate may be predetermined before TME 
infiltration. These results delineate the clonal pathways of intratumoral myeloid cell 
recruitment and differentiation in human cancer and suggest that remodeling of the 
tumor myeloid compartment may be peripherally programmed. 
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Introduction 
The TME is a dynamic ecosystem that maintains a close connection to the 

peripheral immune system through the bloodstream. Circulating immune cells 
continually infiltrate the TME, where their capacity to differentiate and expand shapes 
anti-tumor immunity and therapy response. Lineage tracing methods such as T cell 
paired single-cell RNA and TCR sequencing (scRNA/TCR-seq) have advanced 
understanding of the expansion potential, tissue distribution, and clonal dynamics of 
immune populations in patients1,2. For example, we and others have applied 
scRNA/TCR-seq to show that peripherally expanded, tumor-specific CD8+ T cell clones 
replace dysfunctional exhausted T cells in the tumor, which is essential to immune 
checkpoint blockade response3–5. However, similar lineage-tracing approaches have not 
been feasible for non-adaptive immune populations due to the absence of somatic 
recombination events during their development. 

Innate immune cells, including myeloid cells, are among the most abundant 
immune cell types in the TME6. These cells are ontogenically diverse, consisting of both 
tissue-resident and circulating bone marrow-derived tissue-infiltrating compartments7. 
Detailed phenotypic and quantitative maps of innate immune populations across tissue 
sites and cancer types have delineated their phenotypic diversity,8–11 and there is 
growing recognition that ontogeny plays a key role in shaping their function within the 
TME12,13. However, due to the inability to connect cellular phenotype and lineage within 
native human tissues, several open questions remain. First, do innate immune cells 
have an intrinsic tissue site preference for infiltration, differentiation, or expansion? 
Second, do innate immune cells face clonally selective pressures in the TME, 
analogous to those experienced by T and B cells, or does their presence in tumors 
depend on broader cellular features independent of clonality? Finally, what specific 
lineage relationships connect the diverse innate immune constituents within the TME, 
and what are their ontogenetic origins? 
​ Somatic mtDNA variants have been established as an endogenous lineage 
marker with the high mutation rate of mtDNA compared to nuclear DNA, favoring the 
accumulation of distinguishing mutations within cell lineages over time14,15. Recent 
advancements in single-cell sequencing have enabled the detection of mtDNA 
mutations16–19, enabling unbiased, simultaneous lineage and epigenetic profiling of 
thousands of clonotypes across cell types, tissue sites, and cancer types. Therefore, to 
address these fundamental questions regarding innate immune cell clonality and 
ontogeny, we performed mitochondrial single-cell Assay for Transposase Accessible 
Chromatin by sequencing (mtscATAC-seq) on 218,715 cells from tumor, non-involved 
lung tissue (NILT), and/or peripheral blood mononuclear cells (PBMCs) from patients 
with lung or ovarian cancer. We developed a computational framework, termed Mitotrek, 
to bolster the accuracy of lineage tracing analyses from mtDNA by prioritizing the fidelity 
of clonal assignments over detection sensitivity. By mapping the lineage relationships of 
myeloid cells across tissue sites, we found no evidence of clonal selection or tissue 
infiltration bias. However, we identified distinct clones biased towards dendritic cell (DC) 
or macrophage cell states, along with associated epigenetic signatures that differentiate 
monocytes within these groups. Overall, our work provides a clonally resolved view of 
the human innate immune response to cancer, with the potential to inform the 
development of myeloid-targeted immunotherapies. 

3 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 21, 2025. ; https://doi.org/10.1101/2025.07.16.665245doi: bioRxiv preprint 

https://paperpile.com/c/TMmlqb/MGMT+za6W
https://paperpile.com/c/TMmlqb/VbnDo+dbEzd+FnzSY
https://paperpile.com/c/TMmlqb/K1Qi
https://paperpile.com/c/TMmlqb/nXvs
https://paperpile.com/c/TMmlqb/zfrMQ+ZjCtE+QTHvu+qgks4
https://paperpile.com/c/TMmlqb/ofObj+GIBdn
https://paperpile.com/c/TMmlqb/jzLU3+qMZrw
https://paperpile.com/c/TMmlqb/QutP6+8lTdC+IAjvg+Ch6FO
https://doi.org/10.1101/2025.07.16.665245
http://creativecommons.org/licenses/by/4.0/


Liu et al. 2025 

 
Development of Mitotrek to recover single-cell clonal fractions 

To establish a lineage tracing method applicable to donor-matched solid tissue 
and blood samples and to clonally link immune cells across tissue sites, we applied 
mtscATAC-seq to profile five patients with early-stage non-small cell lung cancer 
(NSCLC) who had undergone therapeutic lobectomy (Figure 1A; Table S1 and 
Methods). Three patients diagnosed with adenocarcinoma (SU-L-002, SU-L-004, and 
SU-L-005) were treatment-naïve, whereas one patient with squamous cell carcinoma 
(SU-L-001) had undergone neoadjuvant chemotherapy. A fifth patient (SU-L-003) had a 
neuroendocrine tumor and was receiving olaparib (PARP inhibitor) at the time of surgery 
for concurrent tubo-ovarian carcinosarcoma. For each patient, we collected tumor 
resections, non-adjacent NILT (not involved by tumor on pathological analysis), and 
peripheral blood samples. Fresh samples were dissociated, and single-cell ATAC and 
mtDNA genome-sequencing libraries were generated, enabling simultaneous recovery 
of chromatin accessibility profiles and mtDNA genotypes from individual cells. 

 In total, we obtained mtscATAC-seq profiles from 83,371 immune, malignant, 
and stromal cells from tumor and NILT, and 46,678 mtscATAC-seq profiles from the 
peripheral blood. Across all samples, we recovered 10,584 high-confidence somatic 
mtDNA mutations that are present at low pseudobulk frequencies (<1%) as determined 
by mgatk,17 a computational pipeline to process mitochondrial reads and generate 
heteroplasmy estimation from mtscATAC-seq data (Figure S1A). Importantly, somatic 
mtDNA variants have been demonstrated to arise in hematopoietic stem cells16 and to 
serve as  particularly useful lineage markers to study immune dynamics, including in the 
innate immune system20. In contrast, mtDNA variants with >1% pseudobulk frequencies, 
accounting for 0.76% all variants detected by mgatk, are broadly distributed across cell 
types and tissue sites, likely representing early-developmental/zygotic mutations21 not 
informative for resolving more recent immune lineage relationships (Figure S1B). 
Notably, despite their relatively high pseudobulk frequencies, these variants may exhibit 
low heteroplasmy or be absent in cells that genuinely belong to the associated lineages 
due to random genetic drift from cell divisions22, limiting their utility in reconstructing 
clonal relationships. Thus, we excluded variants with >1% pseudobulk frequencies from 
downstream analysis. 

Analysis of heteroplasmy distributions revealed that mtDNA variants detected at 
high allele frequencies in solid tissue cells were more frequently shared among cells, 
including from other lineages, compared to cells from the matching patient PBMC 
sample, likely due to both technical artifacts (e.g., uptake of ambient mtDNA during 
single-cell capture23) and biological phenomena (e.g., horizontal mitochondrial transfer 
events24) that are unlikely to reflect bona fide clonal relationships (Figures S1C-S1H). 
Notably, such issues have not been reported in prior mtDNA-lineage tracing studies of 
PBMCs or bone marrow, indicating they may be unique challenges in solid tumor 
profiling18,20,25. To mitigate such spurious lineage inferences, we developed a 
computational framework, Mitotrek, which assigns cells to high-confidence clones by 
prioritizing clonal accuracy over sensitivity (Methods). Briefly, Mitotrek: 1) reformats 
cell-by-variant heteroplasmy data into a binary "positive-unlabeled" matrix using 
empirically defined thresholds to account for measurement noise from genetic drift22 and 
variable sequencing depth; 2) discards variants detected in >20% of cells within a 
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sample, which are likely to generate artifactual linkages, and 3) excludes cells assigned 
to multiple clones to avoid contamination by non-informative variants of technical or 
biological origin. We decided to not explore subclonal structure due to the difficulty 
establishing true clonal hierarchy and therefore collapsed potential subclonal 
relationships to single clones by merging highly correlated variants (Figure 1B; 
Methods). We benchmarked Mitotrek on full-length scRNA-seq data from single-colony 
hematopoietic stem and progenitor cells (HSPCs) with known clonal identities16, 
achieving assignment accuracies of 91.3% and 85.3% for two independent donors 
(Figures 1C, 1D, S1I, and S1J). Given the conservative premises of Mitotrek, clone 
assignment rates were lower (39.9% and 55.1%) compared to the original study (~80%) 
which relied solely on the presence of clone-defining variants. These results establish 
Mitotrek as a high-accuracy framework for resolving clonal relationships at single-cell 
resolution in solid human tissues, with an intentional trade-off in detection sensitivity. 
 
Constructing multi-modal atlases of NSCLC and ovarian cancer 
We next constructed a single-cell epigenetic atlas of NSCLC by iteratively clustering 
scATAC-seq profiles from tumor and NILT samples. We identified 53 cell clusters, 
including: 9 malignant clusters (based on enrichment in tumor samples), 6 lung 
epithelial clusters (EPCAM, KRT18), 2 stromal clusters (VWF, PECAM1, COL1A2, 
FBLN1), 15 T cell clusters (CD3D, CD8A, CD4), 4 NK cell/ILC clusters (NCR1), 15 
myeloid clusters (CD14, LYZ, HLA-DQA1, KIT), 1 B cell cluster (MS4A1, PAX5), and 1 
plasma cell cluster (TNFRSF17, Figures 1E and S2A). All non-malignant cell type 
annotations contained cells from multiple donors, consistent with interpatient 
heterogeneity26, and cell-type assignments aligned with surface markers used for 
enrichment (Figures 1F and S2B). Cell-type distributions in tumor and NILT samples 
matched previous transcriptomic and proteomic datasets, including enrichment of B and 
plasma cells and depletion of NK cells in the tumor relative to NILT8,27 (Figures 1G). In 
patient-matched PBMCs, we recovered all major immune populations, with the 
expected absence of tissue-resident myeloid subsets (e.g., macrophages, mast cells), 
and additionally identified circulating HSPCs (Figures S2C-F). The comprehensive 
coverage of broad immune cell types across tissue sites enabled unbiased downstream 
lineage analysis. 

Applying Mitotrek to the NSCLC dataset, we recovered 5,146 clones comprising 
29,010 cells (23.2% of cells passing scATAC QC filters). Of these, 3,190 clones (62%) 
contained ≥3 cells and 573 clones (11%) contained ≥10 cells. The number of clones 
recovered per patient ranged from 440 to 2,146 and was highly correlated with the 
number of recovered cells per patient (R=0.90, Figure S2G). Clone assignment rates 
were consistent across cell types and tissue sites, ranging from 15–26% in tumor/NILT 
and 20–32% in PBMC (Figures S2H and S2I). There was no significant correlation 
between cell type abundance and clone assignment rate (P>0.07 for tumor/NILT; 
P>0.92 for PBMC), suggesting that cell type-intrinsic properties play a key role in 
shaping clonal structure. Globally, cells within the same clone were significantly more 
likely to share a cell type than randomly grouped cells across all tissues (Figure 1H), 
reflecting lineage fidelity and supporting the validity of Mitotrek-assigned clones. A 
clone-level cell type association analysis identified 226 clones (20% of clones with ≥5 
cells) with cell-type compositions that significantly deviate from the background 
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distribution (Padj<0.05, Figure 1I), capturing key expansion and differentiation events 
across immune, stromal, and epithelial compartments (Figure 1J). Together, these 
results demonstrate the utility of our lineage-embedded NSCLC atlas in uncovering 
biologically meaningful patterns of cell behavior and fate differentiation across tumor, 
NILT, and PBMC compartments. 

NSCLC is generally characterized by a high tumor mutational burden and highly 
vascularized microenvironment and thus is associated with strong immune 
infiltration28,29. In contrast, ovarian cancer typically exhibits a more immunosuppressive 
TME, marked by dense stromal barriers and inhibitory factors derived from ascitic 
fluid30. To complement the NSCLC dataset and investigate whether distinct TMEs 
influence immune clonal architecture, we generated mtscATAC-seq data from primary 
tumor samples of five ovarian cancer patients, three of whom (SU-O-002, SU-O-004, 
SU-O-005) had matched peripheral blood samples (Figure S3A; Table S1). SU-O-005 
had undergone neoadjuvant chemotherapy, while other patients were treatment-naive. 
In total, we profiled 52,154 immune, malignant, and stromal cells from ovarian tumors 
and 41,603 PBMCs using mtscATAC-seq (Figure S3B). Iterative clustering of the 
tumor-derived cells identified 40 distinct clusters based on chromatin accessibility 
profiles, including 13 malignant clusters (EPCAM, KRT18), 2 stromal clusters (VWF, 
PECAM1, COL1A2, FBLN1), 10 T cell clusters (CD3D, CD8A, CD4), 3 NK/ILC clusters 
(NCR1), 10 myeloid clusters (CD14, LYZ, HLA-DQA1, KIT), 1 B cell cluster (MS4A1, 
PAX5), and 1 plasma cell cluster (TNFRSF17, Figure S3C). Annotated stromal and 
immune cell types comprised cells from multiple donors, whereas malignant clusters 
were donor-specific, reflecting the interpatient heterogeneity of ovarian tumor subtypes 
in the dataset (Figures S3D and S3E; Table S1). Overall, we recovered all major 
immune cell types previously reported in single-cell studies spanning 24 ovarian tumor 
samples, supporting the broad cell-type coverage of our dataset (Figure S3F)31,32. 
Applying Mitotrek to the ovarian cancer data, we recovered 4,560 clones comprising 
20,713 cells (22% of cells passing scATAC QC filters) across donors and tissue sites. Of 
these, 2,389 clones (53%) contained ≥3 cells, and 287 clones (6%) contained ≥10 cells. 
The number of clones recovered per patient ranged from 61 to 1,487 (Figure S3G). 
Consistent with our observations in the NSCLC dataset, clone counts were strongly 
correlated with the number of cells recovered per patient (R = 0.93), and clone 
assignment rates were uniform across both cell types and tissue sites (Figures S3H 
and S3I). All together, the lineage-embedded NSCLC and ovarian tumor datasets 
provide a robust framework for dissecting lineage dynamics across distinct TMEs. 
 
Immune clonal landscapes across distinct tissue sites reveals a diverse clonal 
repertoire of tissue-infiltrating myeloid cells 

As mtscATAC-seq enables a measure of clonal diversity across all cell states, we 
assessed the relative clone sizes of both immune and tumor cells derived from NSCLC 
and ovarian cancer samples. Specifically, using the Mitotrek, we quantified the 
distribution of clone fractions by cell type, reasoning that high per-clone fractions reflect 
cell type-specific clonal expansion events (Figures 2A and S5A). Overall, tumor cells 
and adaptive immune cells, including T cells, B cells, and plasma cells, comprised the 
largest clones observed in both lung and ovarian tumors (Figures 2B and S4A). Among 
the 247 clones composed of ≥80% of a single cell type (≥3 cells per clone) detected in 
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lung tumors, defined here as cell type-specific clones, 20.6% were dominated by tumor 
cells, 11.3% by CD8+ T cells, 5.7% by regulatory CD4+ T cells (Treg), 47.8% by other 
CD4+ T cells, and 5.3% by B/plasma cells. Collectively, these populations comprised 
over 90% of the cell type-specific clones in lung tumors. In ovarian tumors, of 1,293 cell 
type-specific clones, 40.9% were dominated by tumor cells, 18.1% by CD8⁺ T cells, and 
18.6% by B/plasma cells. Strikingly, only 2.1% and 1.3% were dominated by Treg and 
other CD4⁺ T cells, respectively, suggesting that clonally expanded CD4⁺ T cells are 
more prominent in the lung TME than in ovarian tumors. 

Consistent with previous reports of adaptive-like, oligoclonal NK cell responses in 
human cytomegalovirus infection20,33–36, we observed expanded NK cell clones in NILT 
and peripheral blood. While NK cells were rarely detected in most tumors, one ovarian 
tumor (SU-O-005) exhibited substantial NK infiltration. These NK cells lacked chromatin 
accessibility at CD3D and CD8A loci but showed accessibility at NCR1 and GNLY, 
confirming their NK identity (Figure S4D). Clonal analysis revealed an oligoclonal 
architecture resembling adaptive lymphocytes (Figure S4E). Notably, expanded NK 
clones were absent from matched peripheral blood, indicating a tumor-restricted NK 
response (Figures S4F and S4G). CD8⁺ T cell clonal expansion was also observed in 
this tumor, suggesting that NK- and T cell-mediated responses can co-occur. Together, 
these findings highlight distinct clonal expansion patterns across immune cell types and 
support a role for adaptive-like NK cell responses in human tumors. 

The clonal patterns among innate immune cells were similar between NSCLC 
and ovarian cancer. Myeloid populations, including monocytes, macrophages, and DCs, 
exhibited smaller clone fractions, compared to adaptive immune cells. Among clones 
with a substantial number (≥5) of myeloid cells detected in lung tumors, the mean 
myeloid fraction was 58.5%. In contrast, clones with a substantial number of CD4+ T 
cells, CD8+ T cells, and B/plasma cells exhibited higher mean fractions of 78.7%, 
78.3%, and 62.1% of the corresponding cell types (Figure S4B). Similar patterns were 
observed in ovarian tumors (Figure S4C). These data provide direct evidence that 
sustained clonal expansion of human myeloid cells following bone marrow egress is 
limited, compared to lymphoid cell types, which clonally expand following antigen 
recognition. 

We next compared the clonal landscape of lung tumors to the paired normal lung 
tissue environment. Overall, clone fraction distributions revealed reduced clonal 
expansion in NILT relative to tumors, as expected (median dominant cell-type fraction 
per clone 48.3% vs 94.7%, Figure S5C). We classified clones with ≥10 cells based on 
their enrichment in tumor versus NILT (Figure S5B). Of 33 tumor-enriched clones, 16 
comprised predominantly of tumor cells, collectively accounting for 37.2% of 1,104 cells 
assigned to these clones. The remaining 17 tumor-enriched clones were dominated by 
CD4⁺ T cells, CD8⁺ T cells, or B/plasma cells (Figure 2C). These adaptive immune 
clones were largely absent from NILT and PBMCs, with 91.5% of constituent cells 
detected in tumors, 4.4% in NILT, and 4.1% in PBMCs. In contrast, 128 NILT-enriched 
clones included a broader range of cell types and had higher representation at other 
tissue sites (16.9% in tumor and 23.2% in PBMCs, Figure 2D). For example, 13 and 15 
clones consisted predominantly of invariant NK/T cells and monocytes, respectively, 
which were minimally observed in tumor-enriched clones. Notably, NILT-enriched clones 
showed greater cellular heterogeneity (mean dominant cell type fraction: 53.6%) than 
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tumor-enriched clones (85.2%, Figure S5C), consistent with reduced clonal expansion 
in the normal lung tissue environment. 

Among the 186 clones that were not preferentially enriched in either the tumor or 
NILT, 80 are dominated by CD4+ T cells and 27 by CD8+ T cells (Figure S5D). Despite 
their high cell type purity, these clones were detected in large numbers across tumor, 
NILT, and peripheral blood (36.7% in NILT, 39.1% in tumor, and 24.2% in PBMC). This 
observation aligns with previous reports demonstrating concordance between peripheral 
and intratumoral T cell clone sizes3,4. Notably, B cell/plasma cell–dominated clones 
showed a distinct pattern. While some were restricted to either the tumor or NILT, none 
spanned multiple compartments including peripheral blood. These results underscore 
tissue context-specific immune clonal dynamics in NSCLC, suggesting that while T cell 
clones may exhibit either local or systemic distributions, B/plasma cell clones remain 
locally confined. Our tumor-NILT enrichment analysis of immune clones implicitly 
excluded circulating immune cells that may have failed to infiltrate the lung tissues. To 
identify such clones, we assessed clone enrichment in PBMCs (Figure S5E). Among 14 
peripheral blood-enriched clones, 10 were dominated by CD8+ T cells and 2 by NK cells 
from a single donor (SU-L-005). Although the majority of cells from these clones were 
detected in PBMCs (66.0%), smaller fractions were present in tumor (25.3%) and NILT 
(8.8%), indicating their ability to infiltrate tissue. Together, these results provide a 
comprehensive view of the clonal composition of immune cells across the human TME 
and periphery, highlighting cell type- and tissue-specific patterns of immune clonal 
expansion in human tumors. 
 
Inter-cell type clonal relationships reveal broad tissue distribution of bone 
marrow-derived myeloid cells 

Next, we systematically quantified lineage relationships and differentiation 
patterns between cell types within and across tissue sites. We aggregated all 
clonotypes for each pair of cell types (including self-self pairs) and measured the 
fraction of clones shared across all distinct cell pairs corresponding to each cell type 
combination (Figures 2E and S6A; Methods). We reasoned that two cell types were 
more related (i.e. diverged more recently from the time of sampling) if they frequently 
shared clonotypes. Across all tissue samples, we identified three broad patterns of cell 
type lineage relationships: 1) innate immune cells, including monocytes, macrophages, 
DCs, and NK cells, consistently exhibited high levels of clone sharing, suggesting that 
they originated from recent hematopoietic output without substantial clonal bottlenecks 
prior to tissue infiltration, 2) adaptive immune cells and tumor cells showed high levels 
of intra-cell type clone sharing, reflecting histories of clonal selection and expansion, 
and 3) stromal cells, including endothelial cells, fibroblasts, and non-tumor epithelial 
cells, displayed intermediate levels of clone sharing, consistent with their distant 
embryonic origins relative to HSPC-derived immune cells. We repeated this analysis on 
PBMCs and observed similar clone-sharing patterns among innate and adaptive 
immune cells (Figure S6B). We noted exceptions to these general trends:  
non-regulatory CD4+ T cells exhibited minimal intra-cell type clone sharing, compared to 
other adaptive immune cells across tissue sites (0.6%–0.8% in CD4+ T cells, vs. 
1.8%–3.8% in Treg, 1.6%–2.3% CD8+ T cells, 3.4%–3.8% B cells, and 3.0%–6.7% 
plasma cells). This indicates greater clonal diversity of CD4+ T cells despite the clonal 
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expansion of select clones. B and plasma cells exhibited higher levels of clone sharing 
in lung tumors (2.1%), compared to NILT (0.6%). Endothelial cells demonstrated 
particularly high intra-cell type clone sharing in lung and ovarian tumors, but not in NILT, 
consistent with the angiogenic processes indispensable for tumor formation. 

We next quantified the lineage relationships between cell types across 
patient-matched lung tumors, NILT, and/or peripheral blood samples. Among adaptive 
immune cells, only CD8+ T cells consistently exhibited a high degree of clone sharing 
across tissue sites, suggesting that peripheral expansion during anti-tumor immune 
response is unique to this population (Figures 2F and S6C). In contrast, B and plasma 
cells across different tissues were clonally distinct, supporting the notion that B 
cell-mediated immunity is locally orchestrated, which has been recently noted in the 
context of influenza infection37. Among myeloid cells, we observed the greatest degree 
of clone sharing across tissue sites, suggesting that these cells readily infiltrate and 
differentiate in tissue following bone marrow myelopoiesis and egress. Indeed, 
myeloid-dominated clones that span multiple tissue sites were the most frequently 
detected in the NSCLC dataset (27% myeloid clones compared to 8% CD8+ T cell 
clones and 16% CD4+ T cell clones, Figure 2G). Together, these findings emphasize 
the distinct clonal dynamics of adaptive and innate immune cells in anti-tumor immunity, 
highlight the systemic nature of CD8+ T cell responses in contrast to the locally 
restricted nature of B cell responses, and reveal the extensive tissue infiltration and 
differentiation capacity of bone marrow-derived myeloid cells. 
 
Intratumoral DC3s are epigenetically and clonally linked to circulating monocytes 

It has been reported that specific subpopulations of circulating myeloid cells give 
rise to tumor-resident mononuclear phagocyte (MNPs) populations that critically shape 
the TME13,38,39. In particular, human DC3s have been identified as a CD1c⁺ dendritic cell 
subset distinct from cDC2s and to be enriched in NSCLC tumors, and have been 
suggested to uniquely prime tissue-resident CD8⁺ T cells27,40–43. These studies 
consistently identified a shared expression of monocyte and macrophage gene 
programs in DC3s in addition to the DC program. However, the epigenetic and 
ontogenic relationships between human DC3s and other MNPs remain undefined. 

Given our observation of broad tissue distribution of bone marrow-derived 
myeloid cells, we sought to understand the differentiation trajectories of circulating 
myeloid populations and clonally link them to those in the TME. To achieve higher 
granularity for myeloid cell type annotation, we first iteratively re-clustered 21,676 
myeloid cells from lung tumor, NILT, and peripheral blood in the NSCLC cohort into 13 
distinct clusters (Figures 3A, 3B, and S7A-C; Methods). Monocyte clusters included 
CD14+ classical monocytes and CD16+ non-classical monocytes, in both tissues and 
peripheral blood. Macrophage clusters included alveolar macrophages (AMΦ), 
interstitial macrophages (IMΦ), and two populations of monocyte-derived macrophages 
(MoMΦ1 and MoMΦ2), characterized by accessibility at monocyte-associated gene loci, 
such as CD14, EREG, and VCAN. MoMΦ1 were epigenetically similar to alveolar 
macrophages, whereas MoMΦ2 were characterized by increased accessibility at SPP1 
and MERTK. DC clusters included circulating DCs, cDC1, cDC2, mature DC enriched in 
regulatory molecules (mregDC)9,44,45, and DC3s, recently identified as the dominant DC 
population in human lung tumors27. Given that DCs comprised a minor fraction of 
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myeloid cells in peripheral blood relative to lung tumors and NILTs (4.4% vs. 27.4%, 
respectively), we were unable to fully resolve DC subtypes in blood and thus grouped 
circulating DCs as a single population. We validated the myeloid annotations using 
gene signatures derived from joint single-cell transcriptomic and proteomic profiling of 
human lung myeloid cells from 35 NSCLC tumors and 29 patient-matched NILTs 
(Figures S7D and S7E)27. Although prior studies reported subtle transcriptomic 
differences between tumor- and NILT-derived cells, we observed no corresponding 
differences in chromatin accessibility, with cells of the same type exhibiting similar 
epigenetic profiles across tumor and non-tumor tissues (Figures S7A-E). Overall, the 
recovered myeloid cell type profiles were consistent with previous characterizations of 
human lung tumors and NILTs. 
​ Despite extensive transcriptomic and proteomic characterization of lung myeloid 
cells, the corresponding epigenetic landscape remains understudied. We first used 
ArchR46 to identify differentially accessible regions (DARs) specific to each myeloid cell 
subtype. Although the subtypes exhibited distinct epigenetic profiles, hierarchical 
clustering grouped them into three broader categories reflecting their myeloid lineage 
(Figure 3C). IMΦ cells were an exception, clustering with DC subtypes rather than other 
macrophages; however, due to their rarity across donors (96% of IMΦs originated from 
a single donor), they were excluded from downstream analyses. To identify key 
epigenetic regulators defining myeloid identity, we performed transcription factor (TF) 
motif enrichment analysis on DARs associated with each subtype (Figures S7F and 
S7G). In monocytes, CCAAT/enhancer-binding protein (CEBP) motifs were the most 
differentially active, compared to other MNPs, consistent with prior work establishing 
CEBPα and CEBPβ as essential for monocyte development47,48. These factors are 
rapidly downregulated during monocyte-to-macrophage differentiation49, highlighting 
their role in maintaining monocyte-specific identity. In macrophages, DARs were 
strongly enriched for AP-1 family TF motifs (Figures S7F and S7G), in line with reports 
showing increased accessibility and 3D chromatin looping at AP-1 binding sites during 
monocyte-to-macrophage differentiation50,51. In addition, motifs associated with other 
regulators of macrophage differentiation and metabolism, including the retinoid X 
receptor, MiT-TFE family, liver X receptor alpha, and peroxisome proliferator-activated 
receptor families, were also more accessible in macrophages52–59. In DCs, we observed 
specific increases in accessibility at binding sites for canonical DC lineage-defining TFs 
such as BCL11A, IRF4/8, RUNX, CBFB, and ETV6 (Figures S7F and S7G)60–62. 
Notably, DCs exhibited the highest accessibility of NF-κB family motifs, reflecting 
NF-κB’s critical role in DC maturation and antigen presentation63. Motifs associated with 
Sp/Krüppel-like factors and early growth response proteins were accessible in both 
macrophages and DCs but not in monocytes, suggesting these factors promote general 
monocyte maturation independent of terminal differentiation fate64–67. 

We next analyzed DARs enriched in DC3s compared to other MNPs. Unlike 
cDC2s, DC3 DARs exhibited significantly greater accessibility in monocytes and 
macrophages (Figures S7H and S7I), suggesting that DC3s may be derived from 
monocytes and retain monocytic epigenetic features. Indeed, CD14⁺ monocyte DARs 
were more accessible in DC3s than in other DC subtypes (Figures 3I and S7J). TF 
motif analysis of DC3-enriched DARs revealed increased accessibility for motifs 
associated with monocyte and macrophage TF families, including AP-1, Maf, and 
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MiT-TFE (Figures 3D-F). Using chromVAR, we further inferred per-cell TF activity, 
highlighting concurrent activation of monocyte-, macrophage-, and DC-associated TF 
programs in DC3s (Figures 3G, 3H, and S7K). Notably, CD14⁺ monocytes, but not 
CD16⁺ monocytes, displayed anticorrelated accessibility of monocyte- versus 
DC-associated TF motifs (Figures S7L and S7M), suggestive of transitional states 
during monocyte-to-DC differentiation in this population. Collectively, these findings 
demonstrate that DC3s harbor monocytic epigenetic features indicative of a shared 
ontogeny distinct from classical DCs. 
​ To reconstruct lineage relationships between DC3s and other immune subsets 
independent of epigenetic profiles, we analyzed clonal frequency correlations across 
immune subtypes, reasoning that ontogenically related populations are also clonally 
related. As expected, lineage proximity between circulating and tissue-infiltrating 
monocytes was recapitulated (Figure 3J). Strikingly, DC3s clustered closely with 
monocytes and MoMΦs (Figures 3K and 3L), whereas cDC2s were less clonally 
correlated with monocytes (Figure S7N). For example, a clone defined by 3068G>A 
mutation showed 35 CD14+ monocytes in the peripheral blood, 41 CD14 monocytes in 
the tissue, and 13 DCs in the tumor and NILT, likely reflecting continuous infiltration and 
differentiation (Figure 3M). These results provide direct evidence that DC3s are clonally 
related to circulating monocytes, reinforcing their distinct ontogeny from classical DCs 
despite phenotypic similarities. Finally, to test whether our findings were lung-specific, 
we analyzed 8,528 myeloid cells from ovarian tumors, identifying CD14⁺ monocytes, two 
MoMΦ populations, and two DC populations corresponding to DC3s and cDC2s (Figure 
S8A and S8B). Consistent with the findings in NSCLC, ovarian tumor-infiltrating DC3s 
showed enrichment for AP-1, Maf, MiT-TFE, and other monocyte- and 
macrophage-associated TF motifs (Figures S8C-E), and chromVAR analysis confirmed 
their distinct epigenetic profile (Figures S8F-H). In an ovarian cancer patient with 
sufficient sampling, intratumoral DC3s were again most clonally related to circulating 
monocytes (Figure S8I and S8j), suggesting that the presence of epigenetically 
monocyte-like DC3s is tumor-agnostic. 
 
Biased monocyte differentiation fates peripherally reprogram the tumor myeloid 
compartment 
​ While circulating monocytes have the capacity to differentiate into either 
macrophages or DCs as they infiltrate inflamed tissue52,56,62,68,69, it is not clear whether 
differentiation fates are entirely dictated by the tissue environment or there is 
cell-intrinsic bias in the context of human cancer. To address this question, we next 
asked whether myeloid clones displayed tissue-specific differentiation preferences by 
comparing their frequencies across lung tumor, NILT, and peripheral blood (Figures 4A, 
4B, S9A, and S9B). Overall, clone frequencies were highly correlated across sites, and 
the largest clones in tumors and NILT were also detected in blood, indicating infiltration 
from circulation without tissue site-specific expansion biases. However, within clones, 
monocytes were proportionally more abundant in NILT, whereas differentiated 
macrophages and DCs were enriched in tumors (Figures 4C, 4D, and S9C). These 
observations suggest that the TME promotes monocyte differentiation, likely driven by 
elevated inflammatory cues69. 
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​ To identify the specific myeloid subtypes that monocytes preferentially 
differentiate into within the TME, we analyzed clone compositions by subtype (Figures 
4E, 4F, and S9D). Both CD14⁺ and CD16⁺ monocytes were less represented in tumors 
compared to NILTs, while SPP1⁺ MoMΦ2 and DC3s were preferentially enriched in 
tumors. Notably, MoMΦ1 was more abundant in NILTs. These clone-level observations 
align with prior donor-matched NSCLC studies reporting, in overall fractions, monocyte 
enrichment in NILTs, DC3 enrichment in tumors, and variable enrichment of MoMΦs 
depending on their specific subtypes8,27,45,70. 

If differentiation were purely driven by the tissue environment, the same clone 
would display different myeloid subtype compositions between tumor and NILT. To test 
this, we clustered clone-level subtype compositions stratified by tissue site (Figure 4G). 
Interestingly, we observed clone-intrinsic lineage biases, with clones consistently 
favoring differentiation toward either DCs or macrophages, independent of tissue site. 
DC-biased clones were enriched for DC3s in tumors and consisted primarily of 
monocytes in NILTs, with minimal macrophage representation across sites. In contrast, 
macrophage-biased clones exhibited distinct behaviors depending on the MoMΦ 
subtype: MoMΦ1-biased clones were depleted of monocytes and enriched for MoMΦ1 
cells in NILTs (Figure 4I), whereas MoMΦ2-biased clones almost exclusively consisted 
of MoMΦ2 cells in tumors. These findings suggest that monocytes possess intrinsic 
biases in both differentiation fate and site preference. 
We next grouped myeloid cells derived from DC-biased and macrophage-biased clones 
to compare their epigenetic profiles. Across tissue sites, cells from the two groups 
clustered distinctly based on epigenetic profile, even within the same myeloid subtype 
such as CD14+ monocytes in both tissue and periphery (Figures 4J-l). Remarkably, 
even prior to tissue infiltration, circulating CD14⁺ monocytes from the two groups were 
epigenetically distinct in peripheral blood, with monocytes within each group showing 
greater similarity to one another than to those in the other group (Figures S9E and 
S9F). Analysis of TF motif accessibility revealed functional distinctions between the 
CD14⁺ monocytes of these groups. DC-biased monocytes exhibited enrichment of 
proinflammatory regulatory programs, while macrophage-biased monocytes showed 
enrichment of immunosuppressive programs. In the peripheral blood, motifs for NFκB 
family members, IRF family members, STAT2, and BLIMP-1 were differentially 
accessible in DC-biased monocytes, consistent with their known roles in regulating 
innate immune responses, antiviral defense, and antigen presentation71,72 (Figures 
S9G). Upon tumor infiltration, IRF family and BLIMP-1 motifs remained differentially 
accessible in DC-biased monocytes, while ID3/ID4 motifs additionally became 
selectively accessible in this population, further supporting their antitumor potential73 
(Figures S9H). Conversely, circulating macrophage-biased monocytes displayed 
increased accessibility of Maf family motifs, critical regulators of macrophage 
differentiation, along with motifs associated with immunosuppressive TFs such as NRF2 
and RUNX1/274–77. 

Because motif enrichment alone does not fully resolve TF identity among 
homologous family members, we further analyzed gene body accessibility of TFs across 
monocyte populations (Figures S9I and S9J), reasoning that functionally active TFs are 
more likely to exhibit both motif and gene body accessibility. We found that IRF1, IRF3, 
and BLIMP-1 were differentially accessible in DC-biased monocytes in both peripheral 
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blood and tissue. STAT2 was only differentially accessible in circulating DC-biased 
monocytes, while IRF7 was only differentially accessible in tissue-infiltrating DC-biased 
monocytes, suggesting their roles are upstream and downstream of tumor infiltration, 
respectively. In macrophage-biased monocytes, NFE2 and MAF (encoding cMaf) were 
differentially accessible in circulation. Notably, cMaf is a key transcriptional regulator of 
macrophage immunosuppressive phenotypes, promoting IL10 expression and 
suppressing proinflammatory IL12 through direct binding of cis-regulatory elements78–80. 
Taken together, these findings suggest that circulating monocytes exhibit intrinsic 
epigenetic biases that predispose them to differentiate into either DCs or macrophages 
within the TME, contributing to their distinct functional roles in shaping the antitumor 
innate immune response. 
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Discussion 
Here, we performed mtscATAC-seq on 218,715 cells across 23 matched tumor, 

non-involved tissue, and peripheral blood samples from patients with lung and ovarian 
cancers to generate a clonally resolved map of the human innate immune response to 
cancer. To ensure the accuracy of clonal tracing, we developed Mitotrek, a tailored 
analysis framework that prioritizes clonal assignment fidelity (over sensitivity or 
resolution), which enabled the delineation of clonal relatedness across and between cell 
types in solid tumors and tissues. By applying this approach to patient-matched 
samples from multiple tissue types, we simultaneous profiled epigenetic states and 
clonal relationships of tens of thousands of immune cells per patient, while mitigating 
technical and biological sources of false-positive lineage connections. The validity of 
this approach was demonstrated using a published dataset with ground-truth lineage 
information, enabling robust characterization of the clonal landscape of tumor-infiltrating 
innate immune cells in human samples. 

Using Mitotrek, we assessed the clonal diversity of immune cell types across 
tumor, non-tumor tissue, and peripheral blood, revealing distinct patterns of expansion 
between innate and adaptive compartments. Innate immune cells in tumors consistently 
exhibited high clonal diversity without evidence of tissue-specific selection, suggesting 
they are primarily derived from a diverse pool of circulating precursors and do not 
clonally expand in the TME. In contrast, adaptive immune cells and tumor cells 
exhibited the highest levels of clonal expansion, with the largest clones accounting for 
the majority of these populations, consistent with the role of antigen-driven selection in 
shaping the adaptive immune repertoire. Clonotype sharing across tissue sites further 
revealed that myeloid populations were highly related, supporting a model in which 
tissue myeloid cells are replenished by a common reservoir of bone marrow-derived 
precursors circulating through the body. Epigenetic profiling of myeloid populations in 
human lung tissue and peripheral blood provided insights into the regulatory landscape 
of DC3s. Compared to classical dendritic cells, DC3s exhibited increased chromatin 
accessibility at monocyte-associated regulatory elements, implicating transcription 
factors central to monocyte and macrophage biology. These findings corroborate 
previous transcriptomic and proteomic studies linking DC3s to monocytes27,40,41,43. Clone 
frequency correlation analysis revealed that DC3s, but not cDC2s, were clonally related 
to monocytes in both circulation and tissue. A recent study in mice showed that DC3s 
arise from bone marrow progenitors shared with monocytes81. While the clonal 
resolution of our dataset cannot rule out this possibility, the relative rarity of DC3s in 
peripheral blood and their abundance in tumor lesions strongly suggest that human 
DC3s in tumors differentiate directly from monocytes upon tissue infiltration. 

A key finding of our work is that phenotypically diverse tumor-infiltrating myeloid 
cells were clonally related to distinct subsets of circulating monocytes. Importantly, 
clones were consistently biased toward either DC or macrophage fates in both tumor 
and non-involved tissue. Both DC-biased and macrophage-biased myeloid clones 
contained monocytes, suggesting that this bifurcation in differentiation fate had occurred 
downstream of common dendritic progenitor-granulocyte myeloid progenitor bifurcation 
in bone marrow myelopoiesis. These differentiation biases were accompanied by 
distinct chromatin accessibility patterns, detectable even in peripheral blood monocytes 
prior to tissue infiltration. Specifically, macrophage bias was linked to increased 
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accessibility of AP-1 family transcription factors, c-Maf, and NRF2. Interestingly, a 
recent study identified a macrophage subset defined by FOSL2 (an AP-1 factor) activity 
and derived from circulating monocytes as strongly associated with glioma 
malignancy38, supporting our observation that AP-1–enriched monocytes are 
predisposed to macrophage differentiation within the tumor microenvironment. Our 
results suggest that the tumor myeloid compartment may be peripherally programmed, 
posing an alternative to the view that intratumoral monocyte differentiation is primarily 
driven by local environmental cues. 

The DC- or macrophage-bias observed in circulating monocytes may reflect 
systemic reprogramming of myelopoiesis by tumor-derived signals. Tumors are known 
to secrete cytokines that act distally on HSPCs, altering the output and fate of bone 
marrow-derived myeloid cells82. Supporting this, DC-biased monocytes exhibited 
increased chromatin accessibility at IRF, STAT2, and NF-κB motifs, suggesting priming 
by type I interferons, TNF-α, and IL-1 signaling83,84. These findings imply that the tumor 
may enable epigenetically pre-condition monocytes in the periphery, shaping their 
differentiation trajectory before tissue infiltration and contributing to the observed fate 
biases within the TME. 

Several limitations of our study should be addressed in future work. First, our 
findings are based on a relatively small cohort of patients with lung and ovarian cancers. 
Although we deeply profiled each patient and observed consistent patterns across 
patients and cancer types, validation in larger cohorts and additional tumor types will be 
important to establish the generalizability of our conclusions. Second, our approach 
does not capture the temporal dynamics of monocyte infiltration and differentiation. 
Longitudinal sampling or integration with temporally resolved data will be necessary to 
definitively establish the sequence of events that shape the tumor myeloid 
compartment. Lastly, our current approach collapses subclonal relationships. Future 
strategies with the ability to resolve subclonal architectures would provide a clearer view 
and stronger evidence for the differentiation dynamics we propose. 

In summary, our study provides a high-resolution clonal and epigenetic atlas of 
the human tumor myeloid compartment, offering new insights into the fundamental 
biology of innate immunity and potential avenues for therapeutic intervention. The clonal 
differentiation fate biases we observed in tumor-infiltrating monocytes have important 
implications for myeloid-targeted immunotherapies. DC3s and tumor-associated 
macrophages may represent attractive targets for augmenting antitumor immunity, as 
they appear to be pre-programmed for proinflammatory and immunosuppressive 
functions, respectively. Strategies that selectively deplete monocytes biased toward a 
macrophage fate while preserving those poised for dendritic cell differentiation may tip 
the balance toward a DC3-rich tumor microenvironment, potentially enhancing tumor 
antigen presentation and T cell priming. More broadly, our results highlight the power of 
mitochondrial lineage tracing for dissecting the clonal dynamics of immune cells in 
human cancers and reveal new opportunities for harnessing the innate immune system 
in cancer immunotherapy. 
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Methods 
 
Human subjects 
Fresh ovarian tumors, lung tumors, NILT samples, and peripheral blood were collected 
at the time of surgery by Stanford Tissue Procurement Shared Resource facility with the 
appropriate written informed consent and institutional IRB approval. Summary statistics 
and patient history are available in Supplementary Table 1. For the early-stage NSCLC 
dataset, exclusion criteria included previous systemic treatment or radiotherapy. For the 
ovarian cancer dataset, exclusion criteria included tumors of non-ovary or unknown 
origin. 
 
Tissue processing 
All tumor and adjacent healthy tissues were procured following surgical resection. 
Samples were dissociated and viably cryopreserved for downstream library preparation 
and sequencing. In brief, solid tumor specimens on ice were minced to pieces of 
<1 mm3 and transferred to 5 ml of digestion medium containing DNase I (100 µg/ml) 
and collagenase P (2 mg/ml) in Advanced DMEM/F-12. Minced tissue was transferred 
into C-tubes for use in the gentleMACS Octo Dissociator system at 37 °C at 20 rpm for 
20 min. After digestion, the cell suspension was filtered through a 70-μm filter, which 
was washed with an additional 10 ml of DMEM/F-12 and centrifuged the sample at 400g 
at 4°C for 5 min. Any residual undigested tissue was further digested for an additional 
20-min incubation with additional digestion medium. After centrifugation, the 
supernatant was discarded, and the pellet was resuspended in 500 µl of ACK red blood 
cell lysis buffer and incubated for 1 min on ice, followed by the addition of ice-cold PBS. 
The cell count and viability were determined by trypan blue staining by using a 
Countess II FL automated cell counter, before proceeding to cell-sorting. 
 
Fluorescence-Activated Cell Sorting (FACS) 
Cells were classified into peri-tumoral T cells (CD45⁺CD3⁺), other peri-tumoral 
lymphocytes (CD45⁺CD3⁻), and malignant or stromal cells (CD45⁻CD3⁻). The antibodies 
used included anti-human CD45 conjugated to V500 (clone HI30, 560779, lot 7172744, 
BD Biosciences) and anti-human CD3 conjugated to fluorescein isothiocyanate (FITC) 
(clone OKT3, 11-0037-41, lot 2007722, Invitrogen), both diluted at 1:200. Live/dead 
staining was performed using propidium iodide (P3566, Invitrogen) at a final 
concentration of 2.5 μg/mL. Cell sorting was conducted on a BD FACSAria™ III cell 
sorter (BD Biosciences). 
 
Preparation of mtscATAC-seq libraries 
For the generation of mtscATAC-seq libraries, we adapted the 10x Genomics 
scATAC-seq platform NextGEM v1.1 kits. In brief, mtscATAC-seq was performed with 
modifications to the “Nuclei Isolation for Single Cell ATAC Sequencing” (CG000169 Rev 
D) user guide, where we fix and permeabilize cells to retain mitochondria and mtDNA 
within their host cell by removing Tween 20 as part of the lysis buffer.19 For the library 
preparation we follow the “Chromium Next GEM Single Cell ATAC Reagent Kits v1.1” 
(CG000209 Rev F), user guide with only minor modifications as described and 

16 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 21, 2025. ; https://doi.org/10.1101/2025.07.16.665245doi: bioRxiv preprint 

https://paperpile.com/c/TMmlqb/Ch6FO
https://doi.org/10.1101/2025.07.16.665245
http://creativecommons.org/licenses/by/4.0/


Liu et al. 2025 

highlighted below and otherwise refer the reader to the original and highly detailed 
workflow by 10x Genomics19. 
 
Sequencing and upstream processing of mtscATAC-seq data 
All libraries were sequenced on an Illumina Novaseq 6000 device using a 
10x16x151x151 read configuration to accommodate the 10x ATAC cell barcode in the i5 
piece of the read. Libraries were sequenced to a target of 30,000–35,000 reads/cell as 
previously recommended19. Raw .bcl files were converted into per-sample .fastq files 
using Illumina bcl2fastq.  
 
Initial processing of mtscATAC-seq data was performed using the CellRanger-ATAC 
Pipeline v.2.0.0 by mapping scATAC-seq reads with cellranger-atac count to the 
GRCh38 reference genome, hardmasked for regions that would otherwise interfere with 
mapping to the mitochondrial genome (as previously detailed17). The outputs included 
fragments files for downstream epigenomics analyses and .bam files for mtDNA 
genotyping.  
 
Mitochondrial genotyping was performed on these fragment files with mgatk in tenx 
mode using the barcodes identified as cells by CellRanger (i.e. cells passing ATAC 
filter). Only cells with at least 10x coverage of the mitochondrial genome were included 
in the analysis, achieving a median coverage of 30x-70x across experiments. 
 
scATAC-seq QC, dimensionality reduction and clustering 
CellRanger output fragment files were loaded and converted to Arrow files using the 
createArrowFiles function in ArchR. Quality control metrics were computed for each cell, 
and only cells with TSS enrichments greater than 4 were kept for all samples. Cells 
were also filtered based on the number of unique fragments sequenced using a cut-off 
of 1000. Doublet scores for all cells were computed using the ArchR functions 
addDoubletScores with k=10, knnMethod=”LSI”, and LSIMethod=1. 
 
Sample groupings were defined based on cell types, tissue sites, and disease status 
(eg. all cells, lung tumor and NILT samples from patients with NSCLC in Figure 1; 
myeloid cells, all samples from patients with NSCLC in Figure 3). An ArchR project was 
then created for each of the sample groupings and doublets were filtered with 
filterDoublets with a filter ratio of 1. For each ArchR project, dimensionality reduction 
was performed with addIterativeLSI using default parameters to embed ATAC-data in 
latent semantic indexing (LSI) space. Next, clustering was performed with addClusters 
using default parameters. 
 
Annotation of mtscATAC-seq dataset 
An iterative clustering approach was used to annotate cells, where after each round of 
clustering, select clusters with relatively high epigenetic similarity (eg. T and NK cells) 
are merged and reclustered to achieve desired granularity and higher clustering 
accuracy. For the NSCLC lung tumor/NILT data sample grouping and ovarian tumor 
sample grouping, clusters were annotated based on gene score of known marker 
genes, including EPCAM, KRT18 (epithelial and tumor cells), VWF, PECAM1 
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(endothelial cells), COL1A2, FBLN1 (fibroblasts), CD3D, CD4, FOXP3, CD8A, KLRD1, 
NCR1 (T and NK cells), MS4A1, PAX5 (B cells), TNFRSF17, VOPP1 (plasma cells), 
CD14, LYZ (monocytes), APOC1, CD163 (macrophages), HLA-DQA1, ZBTB46 (DCs), 
CLEC4C (PDCs), TPSAB1, KIT (mast cells). 
 
9 initial clusters in the lung tumor/NILT data annotated as epithelial or tumor cells were 
grouped and reclustered, resulting in 22 clusters. 9 clusters were annotated as tumor for 
satisfying the following criteria 1) highly patient specific and 2) enriched over four-fold in 
tumor compared to NILT. The other 13 clusters were annotated as lung epithelial 
subtypes based on high gene score of following signatures AGER, PDPN, CLIC5 
(alveolar type 1), SFTPB, SFTPC, SPTPD, MUC1, ETV5 (alveolar type 2), FOXJ1, 
TUBB1, TP73, CCDC78 (ciliated), KRT5, KRT17, MIR205HG (basal), MUC5B, 
SCGB1A1, BPIFB1, PIGR, SCGB3A1 (secretory). 
 
6 initial clusters in the lung tumor/NILT data annotated as T/NK cells were further 
divided into 19 clusters. 5 initial clusters in the ovarian tumor data annotated as T/NK 
cells were further divided into 13 clusters. These T/NK clusters were annotated using 
known marker genes, including CD3D (broad T), CD8A (CD8+ T), CD4 (CD4+ T), GNLY, 
NCR1 (NK/ILC), FOXP3 (Treg). To support the marker gene-based annotation, cells were 
projected to human PBMC reference data using the Azimuth application 85. The 
Azimuth-predicted cell types were dominated by CD4+ T, CD8+ T, Treg, NK, and ILC, 
which are all associated with distinct clusters and consistent with the mark-gene based 
annotations. One cluster in the lung data is marked by the gene score pattern of 
CD3D+, CD8A-, CD4-, CD56+ and high gene score of NK signature (GNLY, PRF1, 
GZMB, KLRB1, CCL3, KLRF1, NCR1), which was defined as invariant NKT cells. 
 
Gene signature scoring 
Gene scores for individual genes are computed as implemented in ArchR. When 
computing the composite gene score for a gene signature, gene scores of individual 
genes in the signature were z-score normalized across all cells, and each cell is then 
scored by taking the mean z-scaled gene scores in the gene signature. 
 
Peak calling and motif analysis 
For the NSCLC myeloid epigenetic analysis, peak calling was performed as 
implemented in ArchR. Both level1 (monocyte, macrophage, DC) and level 2  (eg. 
CD14+ monocyte, DC3, MoMΦ1, etc) cell type annotation was used as grouping in 
addReproduciblePeakSet() to identify regulatory elements associated with both broad 
myeloid cell types as well as subtypes. Differential peak analysis was performed using 
getMarkerFeatures. TF motifs enriched in peak sets are identified using 
peakAnnoEnrichment. Per-cell TF motif activities were calculated using chromVAR86. 
 
Mitochondrial genotyping and clone calling 
By default, mgatk calls high-confidence heteroplasmic variants by selecting variants 
with strand correlation>0.65 and variance-mean ratio>0.01. In this study, most donors 
have multiple samples from different tissue sites. Given that the default mgatk filters are 
already conservative, an union approach to selecting high-confidence heteroplasmic 
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variants is employed to increase sensitivity, where if a variant passes the default mgatk 
filters in any sample, then it is considered a valid, informative variant in all other 
samples from the same donor (eg. if a variant is determined to be high quality in the 
lung tumor sample, it is unlikely to be spurious if it is also observed in the peripheral 
blood sample from the same donor). We noted one polymorphic and highly homologous 
region (CCCTCCC in GRCh38 chrM:307-314) that led to spurious connections under 
the relaxed filtering criteria and explicitly disregarded variants from this region. This 
mitochondrial variant processing procedure for clone calling outputs a cell by variant 
heteroplasmy matrix combining all samples for each donor and is implemented in the 
mitotrek.processing module. 
 
Clone is then called for each donor using mitotrek.core.assign_cell_to_clones. Variants 
present in >20% cells from a donor (likely technical or homoplasmic) or less than 3 cells 
are removed. The heteroplasmy matrix is then binarized with a cutoff of 0.07 based on 
the rationale that exact heteroplasmy levels are not reliable given the stochasticity from 
mitochondrial genome distribution during cell division and variance in per-cell 
mitochondrial genome coverage. The heteroplasmy cutoff value is chosen based on 
benchmarking experiments using published data (Supplemental Figure 2g-h). 
 
To convert mitochondrial variants to clones, an undirected weighted graph is 
constructed in which vertices are variants and edges are defined by the Pearson 
correlation coefficient between two variants across cells, computed from the binarized 
heteroplasmy matrix. After removing edges with weights less than 0.5, each connected 
component in the graph was treated as a distinct clonotype. Most resulting connected 
components contained only one variant, whereas highly correlated variants (ie. 
frequently co-occuring in cells) were grouped into one connected component. For 
clones defined by a single variant, any cell positive for the associated variant in the 
binarized heteroplasmy matrix is assigned to the clone. For clones defined by multiple 
variants, a cell is required to be positive for all associated variants. Finally, cells 
assigned to multiple clones are discarded. 
 
Benchmarking Mitotrek clone assignment 
Full-length scRNA-seq via the Smart-seq2 technology of single-cell derived colonies 
from two donors published by Ludwig et al.16 was downloaded as .fastq data from the 
Gene Expression Omnibus (accession GSE115214). Mitochondrial genotyping was 
performed using mgatk and cells with at least 100x mitochondrial genome coverage 
were retained for downstream analysis. Clones were called using 
mitotrek.core.assign_cell_to_clones with a binarization cutoff threshold set from 0.01 to 
0.15. For each ground truth clone label (established in the experimental protocol by 
physical separation of the clones), the predicted clone label was determined by taking 
the mode of called clones among cells in the ground truth clone to compute accuracy, 
which is implemented in mitotrek.core.clone_calling_accuracy. 
 
Clone sharing analysis 
We consider two mutually exclusive sets of cells  and  (eg. two cell types). There are 𝐴 𝐵
N clones  containing at least one cell in . Note that each clone  𝑐

1
,  𝑐

2
,  ...,  𝑐

𝑁
𝐴∪𝐵  𝑐

𝑖
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belongs to a set which contains all clones detected in donor . We summarize the 𝑃
𝑗
 𝑗

clone counts in the two groups as a  matrix  where  and  correspond to 𝑁×2 𝑋 𝑋
𝑖,1

𝑋
𝑖,2

number of clone  cells in  and , respectively. The fraction of clones shared between  𝑐
𝑖

𝐴 𝐵
the two groups is computed as 

 where  and  for all  
𝑐

𝑖

∑ 𝑋
𝑖,1

×𝑋
𝑖,2

𝑃
𝑗

∑ 𝐷
𝑗,1

×𝐷
𝑗,2

𝐷
𝑗,1

=
𝑐

𝑗

∑ 𝑋
𝑗,1

𝐷
𝑗,2

=
𝑐

𝑗

∑ 𝑋
𝑗,2

𝑐
𝑗
∈ 𝑃

𝑗

The numerator computes the number of observed cell pairs between two groups that 
share a clone. The denominator is a normalization factor that represents all possible cell 
pairs between two groups, accounting for only cell pairs within the same donor, since 
cross-donor cell pairs are not valid. 
 
Quantification and statistical analysis 
Statistical analysis of single-cell sequencing data was performed in python (v3.9.4) and 
R (v4.0.5). Statistical analysis of flow cytometry data was performed in GraphPad Prism 
(v9.0) 
 
Code Availability 
The chromVAR analysis software for epigenetic analysis of scATAC-seq data is 
available on Github (https://github.com/GreenleafLab/ArchR). The mgatk software for 
processing sequencing data for single-cell mitochondrial variant calling is available on 
Github (https://github.com/caleblareau/mgatk). The Mitotrek software developed in this 
work for clone calling using single-cell mitochondrial variant data is available on Github 
(https://github.com/vincent6liu/mitotrek). Any additional custom code used for 
computational data processing and analysis are available from the authors upon 
request. 
 
Data Availability 
Raw sequencing and processed chromatin accessibility and mtDNA mutation calls are 
available at the Gene Expression Omnibus accession GSE302113 with reviewer access 
token udwbeuumxvcrpod. 
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Figure 1: Creating a lineage-embedded atlas of NSCLC from mitochondrial DNA 
with Mitotrek 
 
(A) Schematic of simultaneous single-cell epigenetic profiling and clone tracing in 
patients with early-stage lung adenocarcinoma. The chromatin accessibility profile and 
mitochondrial mutations are recovered from each cell. Created with BioRender.com. 
 
(B) Schematic of clone calling from mitochondrial variants. For each patient, 
mitochondrial variants from cells across all samples are used to assign cells to 
high-confidence clones via a stringent filtering procedure. To prioritize accuracy over 
sensitivity, a minimum heteroplasmy threshold is required for a variant to be considered 
present in a cell. Highly correlated variants, which could result from bona fide subclonal 
structure, were collapsed. Cells assigned to multiple clones are discarded. 
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(C and D) Benchmarking Mitotrek using single-cell data from single-cell derived HSPC 
colonies in two independent donors. Clone assignment rates across tested values for 
the hyperparameter heteroplasmy binarization threshold, which considers heteroplasmy 
value below the threshold as not detected. Highest clone assignment rate was achieved 
at 0.07, which is chosen as the default value for the processing of all other samples in 
this study.  
 
(E) Uniform manifold approximation and projection (UMAP) of 83,371 cells in lung tumor 
and non-involved lung tissue (NILT). Cell types denoted by color are inferred after 
iterative sub-clustering of each of the myeloid, lymphoid, and epithelial compartments. 
 
(F) UMAP of cells colored by tissue type (top) and patient identity (bottom). 
 
(G) Normalized bar plot showing cell type composition for each patient, partitioned by 
tumor and non-involved lung. 
 
(H) Distribution of the proportion of cells within each clone (≥3 cells) that share the most 
common cell type for that clone compared to permuted data from the same samples. 
N=number of clones, Kruskal-Wallis test.  
 
(I) Clone associations with cell type. P-values represent the Benjamini-Hochberg 
adjusted Kruskal-Wallis test against overall cell type proportions for clones with at least 
5 cells. Clones shown in a) are highlighted in red.  
 
(J) Representative clones capturing clonal expansion (tumor, CD8+ T, NK, epithelial) or 
differentiation (B/plasma, monocyte/macrophage) events in tumor and NILT. For each 
clone, cells from the clone’s donor are highlighted with shaded circles, and cells 
assigned to that clone are colored by their cell type. 
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Figure 2: Cross-tissue clonal landscape of tumor-infiltrating immune cells 
 
(A) Cumulative fractions of clones stratified by cell type for cells from lung tumor (top) 
and NILT (bottom). Clones with ≥5 cells are considered for this analysis. 
 
(B) Cell types of single cells belonging to the same clone. The top five most abundant 
clones with the most common cell type >70% for each patient in the indicated sample 
are shown. Each bar is colored by cell types of single cells within the clone. 
 
(C and D) Clones enriched in tumor (C) and in NILT (D), as determined by p-value<0.05 
from Benjamini-Hochberg adjusted Fisher’s exact test against overall tissue site 
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distribution for clones with at least 10 cells in tumor and NILT. Each column represents a 
unique clone. 
 
(E) Heatmaps showing the fraction of all cell pairs belonging to the same clone and 
consisting of two cell types within lung tumor (left) and NILT (right). Pairs were restricted 
to cells from the same donor.  
 
(F) Heatmap showing the fraction of all cell pairs belonging to the same clone and 
consisting of a lung tumor cell type and a NILT cell type. 
 
(G) Comparison and overlap of clones (≥3 cells for the indicated cell type) for myeloid, 
CD8+ T, and CD4+ T. Myeloid consists of monocyte, macrophage, and DC. N=number of 
clones considered for each cell type.  
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Figure 3: Intratumoral DC3s are epigenetically and clonally related to monocytes 
 
(A) UMAP of myeloid cells from PBMC, lung tumor, and NILT samples of patients with 
lung adenocarcinoma (LUAD).  
 
(B) Column-scaled gene accessibility scores and detection frequencies for the indicated 
genes.  
 
(C) (Left) Heatmap showing marker peaks for all myeloid cell types. The color indicates 
column-scaled, mean-adjusted number of reads detected in each peak. (Right) 
Representative transcription factors (TF) motifs that are significantly enriched for 
monocyte, macrophage, and DC.  
 
(D, E, and F) Differentially active TF motifs between DC2 and DC3 (D) and DC2 and 
CD14+ monocytes (E and F). DC3-up TFs motifs with increased accessibility from (D) 
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are highlighted in red in (F). P-values are calculated using the Benjamini-Hochberg 
adjusted Kruskal-Wallis test.  
 
(G and H) Average chromVAR motif deviation scores for monocyte and macrophage TF 
motifs highlighted in (C). Kruskal-Wallis test.  
 
(I) Chromatin accessibility tracks for the CEBPB locus for the indicated cell types.  
 
(J) Cell type-cell type clone frequency correlation across clones (≥5 cells across all 
samples). Color denotes correlation value, computed using Pearson’s ρ (upper half) and 
Kendall’s τ (bottom half). Text labels of circulating PBMC cell types are colored pink.  
 
(K) Scatterplots comparing clone frequencies of circulating CD14+ monocyte and tissue 
CD14+ monocyte (left), DC3 (middle), and tissue CD8+ T cell (right). Significantly 
different clones with P<0.05 adjusted Fisher’s exact test are highlighted red.  
 
(L) 231 distinct cell type pairs ordered by clone frequency correlation. DC3-monocyte 
interactions are highlighted in red.  
 
(M) representative clones consisting of DC3 and monocytes. For each clone, cell types 
with at least two cells are highlighted.  
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Figure 4: Divergent clonal myeloid differentiation fate in human tissues 
 
(A) Monocyte, macrophage, and DC proportions of largest myeloid clones (≥10 cells), 
split by tumor and NILT. 
 
(B) Scatterplots comparing clone frequencies of circulating myeloid cells with those in 
tumor (top) and NILT (bottom) myeloid cells. Contours visualize density.  
 
(C) Scatterplots comparing clone frequencies of monocytes (left) and macrophage/DC 
(right) between NILT and tumor.  
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(D) Distribution of the cell type fraction within each myeloid clone (≥5 cells), split by 
tissue site. Kruskal-Wallis test.  
 
(E) Cumulative fraction of clone sizes for the indicated myeloid cell types, split by tissue 
site. AUC corresponds to the overall clone size for the indicated cell type and tissue 
site. Kruskal-Wallis test.  
 
(F) Summary of AUC differences between tumor and NILT for all myeloid cell types. A 
positive value indicates the cell type has larger clone sizes in lung tumor compared to 
NILT.  
 
(G) Heatmaps showing cell type proportions split by tumor and NILT for DC-biased (top) 
and MΦ-biased (bottom) clones. Only clones detected in both tissue sites or clones with 
at least 3 cells are used to identify cell-type biased clones.  
 
(H and I) Distribution of cell type fraction within DC3-biased (H) and MoMΦ1-biased (I) 
clones. Kruskal-Wallis test.  
 
(J, K and L) Contour plots, representing cell density of DC3-biased clones (top row, red) 
and MoMΦ-biased clones (bottom row, blue), projected onto the UMAP. All myeloid cells 
are shown in (J), tissue monocytes are shown in (K), and MΦ/DC are shown in (L).  
 
(M) Schematic illustrating divergent clonal differentiation fate for myeloid cells. 
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Supplemental Figure 1: Benchmarking Mitotrek using ground-truth data 
 
(A) Distribution of mgatk-nominated variants along the mitochondrial genome, averaged 
across cells and colored by patient. 
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(B) Pseuboulk heteroplasmy for all variants detected by mgatk in across all samples. 
Variants with >1% pseudobulk heteroplasmy are excluded from downstream analysis. 
1% is chosen as the conservative threshold after observing the overall heteroplasmy 
distribution. 
 
(C) UMAP embeddings of tumor-infiltrating immune cells from matched primary 
(ovarian) and metastatic (omentum) tumors, and PBMCs from HGSC patient SU-O-005. 
 
(D) Distribution on the UMAP of cells from indicated samples. Cells from the primary 
ovarian tumor were sorted by CD45 to separate tumor-infiltrating immune cells.  
 
(E and F) Heteroplasmy levels of the indicated tumor-specific mitochondrial variants in 
tumor-infiltrating immune cells processed together with tumor cells.  
 
(G and H) Mutations projected onto UMAP embeddings across samples. Tumor-specific 
variants are indiscriminately detected at lower heteroplasmy levels in all cells from the 
same sample, suggesting mitochondrial transfer and/or technical artifacts (ambient 
mtDNA).  
 
(I and J) Heatmap showing the heteroplasmy levels of variants (rows) that are identified 
as clone markers to group cells (columns) in each Mitotrek clone. Position of each 
variant and the base pair change are shown.  
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Supplemental Figure 2: NSCLC data summary and cell type annotation 
 
(A) For cell types annotated in tumor and NILT samples, column-scaled gene 
accessibility scores and detection frequencies for the indicated genes.  
 
(B) For tumor and NILT samples, bar plots indicating (left) relative proportions of 
markers used for sorting that were detected in each cell type (certain samples were not 
sorted, and select sorted samples were merged during single-cell capture, due to 
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sample-specific considerations to optimize single-cell yield) and (right) relative 
proportions of cells from each patient detected in each cell type. 
 
(C) UMAP of 41,587 PBMCs from patients with lung tumors. 
 
(D) UMAP of cells colored by patient identity.  
 
(E) For cell types annotated in PBMC samples, column-scaled gene accessibility scores 
and detection frequencies for the indicated genes.  
 
(F) For PBMC samples, bar plots indicating (left) relative proportions of markers used 
for sorting that were detected in each cell type (certain samples were not sorted, and 
select samples were additionally sorted using CD56 to enrich innate lymphocytes and 
myeloid cells) and (right) relative proportions of cells from each patient detected in each 
cell type. 
 
(G) Clone size distributions for patients with NSCLC. 
 
(H) Bar plots summarizing relative proportions of cells assigned to clones across cell 
types in tumor/NILT and blood. No significant cell-type bias was observed. 
 
(I) Fraction of cells passing ATAC filters that are successfully assigned to clones.
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Supplemental Figure 3: Ovarian cancer data summary and cell type annotation 
 
(A) Schematic summarizing patient and sample information for the ovarian tumor data.  
 
(B) UMAP of 52,154 cells in ovarian tumors. Cell types denoted by color are inferred 
after iterative sub-clustering of each of the myeloid, lymphoid, and stromal 
compartments. 
 
C) For cell types annotated in ovarian tumor samples, column-scaled gene accessibility 
scores and detection frequencies for the indicated genes.  
 
(D) UMAP of cells colored by patient identity. 
 
(E) For ovarian tumor samples, bar plots indicating (left) relative proportions of markers 
used for sorting that were detected in each cell type (certain samples were not sorted, 
and select sorted samples were merged during single-cell capture, due to 
sample-specific considerations to optimize single-cell yield) and (right) relative 
proportions of cells from each patient detected in each cell type. 
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(F) Normalized bar plot showing cell type composition for each patient. 
 
(G) Clone size distributions for patients with ovarian cancer. 
 
(H) Bar plots summarizing relative proportions of cells assigned to clones across cell 
types in ovarian and blood. No significant cell-type bias was observed. 
 
(I) Fraction of cells passing ATAC filters that are successfully assigned to clones. 
Peripheral blood samples were obtained from three patients. Created with 
BioRender.com. 
 

 

34 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 21, 2025. ; https://doi.org/10.1101/2025.07.16.665245doi: bioRxiv preprint 

https://doi.org/10.1101/2025.07.16.665245
http://creativecommons.org/licenses/by/4.0/


Liu et al. 2025 

Supplemental Figure 4: Additional clonal landscape analyses 
 
(A) All clones with at least 10 cells detected in ovarian tumor samples. Each column 
represents a unique clone. 
 
(B and C) Clones with ≥5 cells of the indicated cell type are considered, and distribution 
of the indicated cell type’s clone fraction is plotted. For myeloid cells, monocytes, 
macrophages, and DCs are grouped. For CD4+ T cells, Tregs and other CD4+ T cells are 
grouped. N represents the number of clones considered for each indicated cell type. 
Analysis of lung tumor clones are displayed in (B) and ovarian tumor clones in (C). 
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(D) Expression of NK and CD8+ T markers distinguish them on UMAP.  
 
(E) Representative clones capturing clonal expansion events of NK cells (top row) and 
CD8+ T cells (bottom row) in SU-O-005. For each clone, cells from the clone’s donor are 
highlighted with shaded circles, and cells assigned to that clone are colored by their cell 
type. 
 
(F) Scatterplots comparing clone frequencies of circulating cells with those infiltrating 
the tumor. The largest clones are locally expanded and minimally detected in the 
periphery. Significance is determined by Benjamini-Hochberg adjusted Fisher’s exact 
test.  
 
(G) Cumulative fraction of clone sizes for the indicated lymphoid cell types, split by 
tissue site. AUC corresponds to the overall clone size for the indicated cell type and 
tissue site. Kruskal-Wallis test.  
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Supplemental Figure 5: Comparative clonal analysis across tissue sites in NSCLC 
 
(A) Cumulative fractions of clones stratified by cell type for cells from NILT samples. 
Clones with ≥5 cells are considered for this analysis. 
 
(B) Enrichment of clones in NILT or tumor. Significance is determined by 
Benjamini-Hochberg adjusted Fisher’s exact test against overall tissue site distribution 
for clones with at least 10 cells in tumor and NILT. 
 
(C) Comparison of dominant cell type fraction distribution between clones enriched in 
NILT and in tumor. Kruskal-Wallis test. 
 
(D and E) Heatmaps showing the fraction of all cell pairs belonging to the same clone 
and consisting of two cell types within ovarian tumor (E) and PBMC (F). Pairs were 
restricted to cells from the same donor.  

 

37 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 21, 2025. ; https://doi.org/10.1101/2025.07.16.665245doi: bioRxiv preprint 

https://doi.org/10.1101/2025.07.16.665245
http://creativecommons.org/licenses/by/4.0/


Liu et al. 2025 

Supplemental Figure 6: Additional cross-tissue clonal analysis 
 
(A and B) Heatmaps showing the fraction of all cell pairs belonging to the same clone 
and consisting of two cell types within ovarian tumor (A) and PBMC (B). Pairs were 
restricted to cells from the same donor.  
 
(C) Heatmap showing the fraction of all cell pairs belonging to the same clone and 
consisting of a PBMC cell type and a solid tissue cell type.  
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Supplemental Figure 7: NSCLC myeloid annotation and epigenetic analysis 
 
(A) UMAP of myeloid cells from PBMC, lung tumor, and NILT samples of patients with 
NSCLC, colored by their original cluster assignments.  
 
(B) Myeloid annotation scheme. Monocyte clusters separated clearly into CD14+ and 
CD16+ subsets, which were annotated without further subclustering. Macrophages and 
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DCs were subclustered to achieve higher granularity and annotated based on 
subclustering results.  
 
(C) UMAP of cells colored by tissue sites.  
 
(D and E) Gene scores of published signatures derived from single-cell RNA and 
proteomic data.  
 
(F) TF motifs enriched in the marker peaks of three major MNP cell types.  P-values are 
calculated from the Benjamini-Hochberg adjusted Wilcoxon signed-rank test.  
 
(G) Summary of TFs whose motifs are enriched in broad MNP cell types. A -log10Padj>20 
cutoff was used.  
 
(H) Differentially accessible genomic regions in DC3 vs DC2.  
 
(I) Normalized sum accessibility of genomic regions significantly more accessible in 
DC3 compared to DC2 in indicated cell types.  
 
(J) Normalized sum accessibility of genomic regions significantly more accessible in 
CD14+ monocytes compared to other myeloid subtypes.  
 
(K) Average chromVAR motif deviation scores for DC TFs highlighted in Figure 3C. 
Kruskal-Wallis test.  
 
(L) Statistical significance of monocyte-DC TF motif accessibility correlation in all 
myeloid subtypes. CD14+ monocytes in tissue and circulation display the most 
significant negative correlation between monocyte and DC TF motif accessibilities. 
 
(M) Monocyte and DC TF activities are negatively correlated only in CD14+ monocytes 
but not in CD16+ monocytes. 
 
(N) Monocytes share more clonotypes with DC3 than with DC2.  
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Supplemental Figure 8: Ovarian myeloid epigenetic analysis 
 
(A) UMAP of myeloid cells from ovarian tumor samples.  
 
(B) Column-scaled gene accessibility scores and detection frequencies for the indicated 
genes.  
 
(C, D, and E) Differentially active TF motifs between DC2 and DC3 (C) and DC2 and 
CD14+ monocytes (D and E). DC3-up TF motifs from (D) are highlighted in red in (E). 
P-values are calculated using the Benjamini-Hochberg adjusted Kruskal-Wallis test.  
 
(F, G, and H) Average chromVAR motif deviation scores for the indicated monocyte-, 
macrophage-, and DC-associated TFs. 
 
(I) Cell type-cell type clone frequency correlation across clones (≥5 cells across all 
samples). Color denotes correlation value, computed using Pearson’s ρ. Text labels of 
circulating PBMC cell types are colored pink. 
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(J) Scatterplots comparing clone frequencies of circulating CD14+ monocyte and tissue 
CD14+ monocyte (left), DC3 (middle), and tumor CD8+ T cell (right). Significantly 
different clones with P<0.05 adjusted Fisher’s exact test are highlighted red.  
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Supplemental Figure 9: Epigenetic comparison of DC- and macrophage-biased 
myeloid clones 
 
(A) Monocyte and DC proportions of largest myeloid clones (≥10 cells) in PBMC 
samples of patients with NSCLC.  
 
(B) Scatterplots comparing clone frequencies of myeloid cells in tumor with those in 
NILT. Contours visualize density.  
 
(C) Representative clones capturing myeloid cell type distribution across tissue sites. 
For each clone, cells from the clone’s donor are highlighted with shaded circles, and 
cells assigned to that clone are colored by their cell type.  
 
(D) Cumulative fraction of clone sizes for the indicated myeloid cell types, split by tissue 
site. AUC corresponds to the overall clone size for the indicated cell type and tissue 
site. Kruskal-Wallis test.  
 
(E and F) Epigenetic similarity as measured by distance in the LSI space within and 
between DC3-biased and macrophage-biased monocytes in circulation (E) and in tissue 
(F). Kruskal-Wallis test.  
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(G and H) Differentially active TF motifs between DC3-biased and macrophage-biased 
monocytes in peripheral blood (G) and in tissue (H). P-values are calculated using the 
Benjamini-Hochberg adjusted Kruskal-Wallis test.  
 
(I and J) Joint comparison of TF gene body accessibility and inferred genome-wide TF 
activity to nominate TFs driving differential fate outcomes of monocytes in circulation (I) 
and in tissue (J). Select TFs that are both more accessible and motif accessibility are 
indicated in black, while TFs that only have increased motif accessibility are indicated in 
grey. 
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