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1. Study cohort 
 

1.1 The lungNENomics project cohort 
The majority of samples used in this study are from the lungNENomics project cohort, a multi-

national mixed retrospective and prospective cohort of over 400 lung neuroendocrine tumour 

patients, established by L.F-C and M.F of the Computational Cancer Genomics Team.  

 

Fresh-frozen and formalin-fixed, paraffin-embedded (FFPE) tumour tissues, fresh-frozen 

adjacent normal lung tissue, and whole blood were collected at diagnosis during surgical 

resection from 12 contributing centres. Patients provided informed consent for tissue collection 

and its use in histopathological and molecular analyses (including somatic and germline whole-

genome sequencing), as well as for the collection of de-identified clinical data. This study was 

approved by the International Agency for Research on Cancer Ethics Committee (project 

number 19-07).  

 

In total, 201 patients from the lungNENomics cohort underwent molecular analysis for this 

study. WGS was performed for 72 patients, RNA sequencing for 179, and DNA methylation 

array profiling for 191. All three types of omics data were generated for 60 patients, while an 

additional 109 were covered by both RNA sequencing and DNA methylation array profiling. 

For 41 patients, multi-region samples were available (intra-tumoural heterogeneity, ITH, 

samples). These patients had between two and seven tissue samples from different tumour 

regions analysed. Four patients underwent spatial transcriptomics (see section 4), and 64 

underwent spatial proteomics (see section 10). 

 

1.1.1 Central pathology review 

Where FFPE material was available, samples underwent blinded central pathology review by 

six pathologists (L.B., S.L., A.M-L., M.G.P., G.P., and J-M.V.). A detailed description of 

sample review and the subsequent outcome can be found in Mathian et al. 20231. Briefly, i) 

pathologists were instructed to follow the guidelines in the WHO Classification of Thoracic 

Tumours 5th edition2 for the classification as typical or atypical pulmonary carcinoid: mitotic 

count and presence or absence of necrosis, ii) each pathologist assigned a diagnosis of typical 

or atypical per patient, and iii) a final diagnosis was made based on the majority vote. 

 

Central pathology review was performed on 187 of the 201 patients, and 10 additional patients 

from Fernandez-Cuesta et al. 20143 (see section 1.3). This resulted in a different diagnosis 

from that reported by the contributing centre in 55 cases. As the FFPE slides reviewed by the 

central pathology team were not necessarily the same slides used for initial diagnosis, it was 

decided that the review classification could only be used to upgrade (from typical to atypical) 

but not downgrade tumours. A final ‘type’ label was therefore assigned to each patient based 

on their initial and central pathology review diagnosis as follows: initial typical + review 

typical = typical; any initial diagnosis + review atypical = atypical; any initial diagnosis + 

review undetermined/insufficient tissue = carcinoid; initial atypical + review typical = 

carcinoid; any initial diagnosis + review ‘AC NETG3 LCNEC’ = NET G3. Samples that were 

not reviewed by central pathology (n = 14) were labelled ‘carcinoid’.  

  

1.1.2 DNA and RNA extraction 

Unless otherwise stated, whole-genome sequencing, RNA sequencing, and DNA methylation 

array data were generated from fresh-frozen tissue. Frozen tissue samples were evaluated by 

the study pathologist (S.L), those with at least 70% tumour content were selected for 

downstream DNA and RNA extraction.  
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DNA extraction was performed using the Gentra Puregene Tissue Kit (158667, Qiagen, 

samples extracted between 2018 and 2020), or the DNAdvance Tissue Kit (A48705, Beckman 

Coulter, samples extracted from 2021 onwards), following the manufacturer’s instructions. All 

DNA samples were quantified using the fluorometric method (Qubit dsDNA BR Assay Kit, 

Life Technologies) and assessed for purity (260/280 and 260/230 ratios) by NanoDrop 

(Thermo Scientific). RNA extraction was performed using the miRNeasy Mini Kit (217004, 

Qiagen, samples extracted between 2018-2020), or the RNAdvance Tissue Kit (A32646, 

Beckman Coulter, samples extracted from 2021 onwards), following the manufacturer’s 

instructions, and then treated with DNase I for 15 min at 30°C. RNA concentration and sample 

purity (260/280 and 260/230 ratios) were assessed using NanoDrop (Thermo Scientific). DNA 

and RNA integrity were checked with a TapeStation 4200 system using, respectively, Genomic 

DNA ScreenTapes and Reagents, and RNA ScreenTapes and Reagents, Agilent Technologies. 

 

1.2 Publicly available datasets  
Additional datasets used in this study were obtained from the following publications: Peifer et 

al. 20124 (accession number: EGAS00001000925), Fernandez-Cuesta et al. 20143 

(EGAS00001000650), George et al. 20155 (EGAS00001000925), George et al. 20186 

(EGAS00001000708), Alcala et al. 20197 (EGAS00001003699), Laddha et al. 20198 

(GSE118131), Miyanaga et al. 20209 (GSE142186), and Dayton et al. 202310 

(EGAS00001005752). Data type and sample numbers are provided in the relevant data 

processing sections.  

 

1.3 Lung NET and lung NEN cohorts 
To maximise our ability to characterise rare lung neuroendocrine tumours (lung NETs), the 

201 samples from the lungNENomics cohort were combined with 115 lung NET samples from 

previous Computational Cancer Genomics team members publications (Fernandez-Cuesta et 

al. 2014, Alcala et al. 2019 and Dayton et al. 2023), and two previously published lung NETs 

studies (Laddha et al. 2019 and Miyanaga et al. 2020) which clustered with LCNEC (supra-

carcinoids, see Section 6.1). Unless otherwise stated, all analyses were performed on this 

combined study cohort, subsequently referred to as the lung NET cohort (Supplementary 

Table S1). To investigate associations with lung neuroendocrine carcinomas, the lung NET 

cohort was combined with 73 large cell neuroendocrine carcinomas (LCNEC) from George et 

al. 2018 to form the lung NEN cohort. See Supplementary Fig. S1, and Supplementary 

Tables S1-S3 for a summary of the lung NET and lung NEN cohorts.     

 

1.3.1 Examination of technical and clinical features of lung NET and lung NEN cohorts  

Technical and clinical features of interest were assessed for their statistically significant 

relationship with one another. Technical features examined were sample source (study), omics 

group (data type availability), whole-genome sequencing batch, RNA sequencing batch, DNA 

methylation array batch, Sentrix ID and Sentrix position, and tumour purity estimated by i) 

study pathologist (S.L.), ii) whole-genome sequencing (see Section 2.11), and iii) RNA 

sequencing (see Section 3.6). Clinical features examined were sex (inferred, see Sections 2.3, 

3.3 and 5.3), age category (continuous age values were cut into three groups: (15.9 – 40.7], 

(40.7 – 65.3], (65.3 – 90.1]), type (see Section 1.1.1), tumour location, stage, recurrence, 

smoking status, history of asbestos exposure, history of cancer, history of radiation exposure, 

and history of neuroendocrine genetic disorder. Unless otherwise stated, the associations 

between categorical variables were assessed with Fisher’s exact tests, and between continuous 

and categorical variables with linear regression. Variables were grouped by theme (categorical 

technical, continuous technical, categorical clinical, and continuous clinical) for statistical 
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analysis then adjusted for multiple testing within each group using the Benjamini & Hochberg 

method11. Results can be found in Supplementary Table S2.  

 

1.3.2 Survival analysis of lung NET and lung NEN cohorts 

Clinical features were also tested for their association with patient survival. Cox proportional 

hazards models were used to estimate the hazard ratio of each feature with regard to overall 

and event-free survival. For the lung NET cohort, clinical features tested were inferred sex, age 

category, type, tumour location, stage, recurrence, smoking status, history of asbestos 

exposure, and history of cancer. Insufficient sample numbers were available to test history of 

radiation exposure or history of neuroendocrine genetic disorder. For LCNEC samples, clinical 

features tested were sex, age category, stage and smoking status, no other variables were 

available.  

 

For overall survival, death from disease or unknown cause was considered an event, whilst 

death from non-disease related known causes, and survival, were labelled as ‘no event’. For 

event-free survival, death from disease or unknown cause, or tumour recurrence (at the primary 

site or elsewhere) were considered events, whilst no recurrence during the study period was 

labelled ‘no event’, patients who had no reported tumour recurrence but who died of an 

unrelated cause were censored on the date of unrelated death and labelled ‘no event’. Patients 

were censored on the date of most recent follow up, or day of unrelated death, time from date 

of diagnosis to event or censor was calculated in months. Results can be found in 

Supplementary Table S3.   

 

2. Whole-genome sequencing  
 

2.1 Sample preparation and sequencing of the lungNENomics cohort 
Whole-genome sequencing (WGS) was performed by the Centre National de Recherche en 

Génomique Humaine (CNRGH, Institut de Biologie François Jacob, Commissariat à l'énergie 

atomique et aux énergies alternatives) on 106 fresh-frozen lung NETs and their matched 

adjacent normal tissue or blood samples (from 72 patients). Following extraction, genomic 

DNA (1 µg) was used to prepare a library for whole-genome sequencing, using the TruSeq 

DNA PCR-Free Library Preparation Kit (20015963; Illumina), according to the manufacturer’s 

instructions. After quality control and normalisation, libraries were sequenced to a target depth 

of 60x for tumour tissues and 30x for matched normal tissue or blood on a HiSeqX5 platform 

(Illumina) as paired-end 150 bp reads. Sequence quality parameters were assessed throughout 

the sequencing run and standard bioinformatics analysis of sequencing data was based on the 

Illumina pipeline to generate FASTQ files for each sample.  

 

2.2 Data processing 
WGS reads were mapped to the reference genome GRCh38 (with ALT and decoy contigs) by 

the CNRGH platform. In summary, the workflow consists of four steps: read mapping 

(software BWA; v0.7.15-r1140), duplicate marking and reads sorting (software sambamba; 

v0.6.8-pre1).  

 

Alignment (CRAM) files from previously published WGS datasets were processed following 

the same procedure using our in-house version of the workflow 

(https://github.com/IARCbioinfo/alignment-nf v1.0; n = 26 lung NETs from Fernandez-Cuesta 

et al. 2014; and n = 4 lung NETs and n = 2 LCNECs from Dayton et al. 2023).  
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2.3 Sex inference from whole-genome sequencing data 
Sample sex was predicted from WGS using the sex determination step in PURPLE, as 

described in:  

https://github.com/hartwigmedical/hmftools/blob/master/purple/README.md#1-sex-

determination. Two lung NET samples were found to be discrepant between clinically reported 

sex and WGS-predicted sex, S01060_B_TU (lungNENomics) and S01539 (Fernandez-Cuesta 

et al. 2014); however inspection of X and Y chromosome coverage, obtained from the PURPLE 

implementation of COBALT, indicated these samples had low coverage over the Y 

chromosome (Supplementary Fig. S22).  

 

2.4 Small variant calling 
We called somatic single nucleotide variants (SNVs) using Mutect2 from GATK (v4.2.0), and 

Indels and multi-nucleotide polymorphisms (MNPs) using both Mutect2 and Strelka2 

(v2.9.10), retaining only Indels and MNPs detected by both methods to avoid false discoveries 

that are more common in these variants, as previously described in Alcala et al. 202412. 

Germline variants were called with Strelka2 only (v2.9.10). See workflows 

https://github.com/IARCbioinfo/mutect-nf release v2.3 and 

https://github.com/IARCbioinfo/strelka2-nf release v1.2a. We checked using mutational 

signature decomposition that no known artefactual signatures were present (see Section 2.11). 

Note that no MNPs were present in the intersection of Mutect2 and Strelka2 calls.  

 

2.5 Structural variant calling 
We called somatic and germline structural variants using our workflow 

https://github.com/IARCbioinfo/sv_somatic_cns-nf v1.1, which uses an ensemble approach 

combining three structural variant callers (DELLY, Manta, and SvABA; see Di Genova et al. 

202213). In addition, we created a panel of normal SVs from the germline SVs detected in the 

normal samples by the three callers, and filtered out somatic SVs whose breakpoints both fall 

within a 100bp region of a germline SV in more than 1% of normal samples. 

 

2.6 Copy number variant calling 
Copy number variants (CNVs) were called using PURPLE using our Nextflow pipeline 

iarcbioinfo/purple-nf v1.1, using a list of high-quality somatic small variants to improve the 

calls. Additionally, PURPLE estimated tumour purity, ploidy (including whole-genome 

duplication status, WGD, and microsatellite stability status, MSI). Following Mangiante et al. 

202314, we rounded negative copy number estimates greater than -0.50 to 0 (6 out of 12443 

segments) and removed those less than or equal to -0.5 (2 out of 12449 segments, less than 

0.02%). Copy number values by segment and by gene are provided in Supplementary Tables 

S18 and S19. We computed CNV profiles using aCNViewer and ran GISTIC2 (v2.0.23) 

through the aCNViewer wrapper with confidence of 0.99 and broad event length of 0.7. MSI 

statuses were confirmed using MSIsensor-pro15 (v1.2.0) in tumour-normal pair mode, which 

detected no sample with more than 0.5% of altered MSI sites. Sample purity, ploidy, WGD and 

MSI statuses and copy number values for significantly altered broad and focal events are 

provided in Supplementary Table S17. 

 

2.6.1 Timing of amplifications 

Amplifications were timed based on the allelic fractions of small variants and their amounts 

using R package mutationtimeR.  
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2.7 Shattered regions detection 
Spearman correlation between SV and CNV break counts was 0.57 across all samples, 

indicating good concordance between SV and CNV calls. We detected shattered chromosomal 

regions consistent with chromothripsis or chromoplexy using the svpluscnv R package 

(v0.9.1), which combines somatic CNV segment breakpoints (see Section 2.6) and structural 

variant breakpoints to identify regions with clustered breakpoints. We combined three sets of 

parameters to detect shattered regions. We used thresholds corresponding to (i) intermediate 

concordant evidence from the two types of variants (at least three CNV breaks and three SV 

breaks within a region), (ii) strong evidence from SVs but lower evidence from CNVs (at least 

one CNV and 20 SV breaks in a region), and (iii) strong evidence from CNVs but lower 

evidence from SVs (at least 20 CNVs and one SV in a region). We then used a threshold of 

seven CNV breaks to separate high- and low-confidence regions following recent practices14. 

Results are provided in Supplementary Table S17. 

 

2.8 Copy number, and small and structural variant burden computation 
We computed mutational burdens for each type of alteration. For small variants and SVs, they 

correspond to the total number of such variants in each sample. For CNVs, we separated 

amplified and deleted segments, counting only those with an integer copy number different 

from 2 in autosomes and sex chromosomes in females, and different from 1 in Y chromosomes, 

and excluding samples with whole-genome duplication (according to software purple) in order 

to focus on arm-level and focal copy number changes. We tested the differences in burdens for 

small variants and SVs using pairwise t-tests on log10(burden+1) values because of the spread 

of the burden distribution across several orders of magnitude. For deletions and amplifications, 

we compared the proportion of the genome either amplified or deleted, and favoured non-

parametric tests (permutation tests; lmp function from R package lmPerm) because of the skew 

in the distribution of mutational burdens and the number observations tied at zero. In order to 

test simultaneously the differences between molecular groups and histological types, we 

computed models where the histological type variable was nested within the molecular group 

variable, using either linear (for small variants and SVs) or permutation models with function 

lmp (for deletions and amplifications). Results are presented in Supplementary Table S20. 

 

In order to assess whether the burdens of the different types of variants were high or low, we 

compared them to that of common cancers using data from the Pancancer Analysis of Whole 

Genomes (PCAWG) consortium16, following14. We downloaded the PCAWG somatic variant 

data following the instructions at https://docs.icgc-argo.org/docs/data-access/icgc-25k-

data#open-release-data---object-bucket-details (release of August 2016 for metadata: sample 

sheet v1.4 and specimen histology v9), keeping only samples from the white list, and cohorts 

with at least 30 samples. Burdens were computed as described above for our own cohorts, 

taking the median value for each cohort to compare with that of lung NET molecular groups 

(results are provided in Supplementary Figure. S8). 

 

2.9 Driver mutation detection  
Identification of cancer driver genes was performed with IntOGen17. IntOGen combines 

multiple driver detection methods to distinguish signals of positive selection from neutral 

mutagenesis across a cohort of tumours. The IntOGen pipeline was run on small variants and 

Indels identified in the lung NET cohort (n = 102 individual patients with WGS data, see 

Section 2.1). The ten drivers which passed a filter of being expressed at > 1 TPM in 80% of 

the lung NET cohort were included for further analysis; excluded drivers were FAM47C, FAT4, 

and MUC16. A list of driver genes and altered samples are provided in Supplementary Table 

S23.  
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2.10 Evolutionary trajectory inference 
Recurrent evolutionary trajectories were identified using the R package revolver. We used as 

input all samples with WGS data available, including all regions sequenced whenever 

available, and used driver small variant and CNV alterations along with their inferred clonality. 

For CNVs, we considered all segments with a copy number between X-0.2 and X+0.2 to be 

clonal with copy number X, and otherwise to be subclonal. In order to separate the effect of 

WGD from that of focal amplifications, following what is performed by programs ACNViewer 

and GISTIC2, we considered amplifications and deletions relative to the ploidy of the sample, 

and in order to reduce noise in the trajectory calling, we removed from the analyses samples 

with uncertain WGD status (i.e., samples with ploidy confidence intervals including several 

ploidy values). Note that samples without any detected driver (small variant or CNV) are not 

taken into account by the algorithm, thus leading to 49 patients included in the analysis. Drivers 

with less than two alterations were also removed, leading to 18 driver events for 227 variants. 

Significant driver-to-driver trajectories were assessed using Fisher’s exact test, and q values 

were computed using the Benjamini-Hochberg method. 

 

2.11 Mutational signatures detection 
We computed SBS, DBS, INDEL, CNV, and SV signatures using SigProfilerExtractor 

(v1.1.21) on the lung NEN cohort (n = 111 samples with WGS available). We tested from one 

to five de novo signatures with 250 replicates, and the optimal number of signatures was 

selected automatically by SigProfilerExtractor as the best compromise between maximising 

average signature stability and minimising mean sample cosine distance. For SBS, DBS, 

INDEL, and CNV signatures, COSMIC signatures were available, and each de novo signature 

was decomposed into COSMIC v3.3 signatures using default parameters. De novo signatures 

could be decomposed into 11 COSMIC signatures. For CNVs, we used rounded copy number 

estimates as done by default for PURPLE by subprogram SigProfilerMatrixGenerator, joining 

consecutive segments with similar rounded copy numbers to avoid over segmentation. For SVs, 

we used Signal signatures18, as no COSMIC signatures are available. All results are reported 

in Supplementary Table S21. To confirm that no tumour presented a homologous 

recombination deficiency (HRD, absence of signatures SBS3, ID6, and SV3), we ran R 

package R CHORD19 (v.0.9.1), which combines single base substitutions, indels, and structural 

variant information to identify HRD (Supplementary Table S22). Statistical differences 

among molecular groups and among histological types were conducted using fisher’s exact test 

to test for an enrichment in presence/absence of certain signatures, and using linear regression 

model of the log10 number of alterations with age, sex, type and molecular groups as 

covariables to test for differences among samples where the signature is present 

(Supplementary Table S21). 

 

We also performed signature variability analyses (Sigvar) as recently described20. We 

computed the mean within-sample signature diversity statistic (Gini-Simpson index; 

Supplementary Fig. S21, Supplementary Table S21) and compared the values between 

groups using t-tests. 

 

To compute the signature most likely to be responsible for each small variant driver (Extended 

Data Fig. 2e), we assigned to each driver a mutation class (among the 96 SBS classes for SNVs 

and among the 83 ID classes for indels) and then computed the probability that a mutation of 

that class was generated by each mutational signature given the relative attributions of the 

signatures in the focal sample, following Morrison et al.20. The resulting probabilities were 

summed across samples from each group to produce Extended Data Fig. 2e. 
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2.12 Neoantigen detection  
Neoantigens were detected using pVACtools21 as implemented within our nextflow pipeline 

hla-neo-nf (https://github.com/IARCbioinfo/hla-neo-nf). The level of immunoediting was 

estimated by the ratio of nonsynonymous to synonymous mutation rate (dN/dS) within 

neoantigen-rich regions, obtained using the SOPRANO method22. The diversity of HLA 

regions was computed using the Grantham distance (function HLADiversityScore from R 

package HLAdivR). 

 

2.13 Identification of pathogenic germline small variants  
Small variants were called from germline WGS using Strelka2 (v2.9.10). VCF files were then 

annotated for their pathogenicity using the software InterVar23 (v2.2.1). We selected variants 

labelled 'likely pathogenic' and 'pathogenic' from column ‘InterVar: InterVar and Evidence’, 

which resulted in 805 likely pathogenic/pathogenic germline variants for 102 patients 

(Supplementary Table S26). Variants were further filtered for relevance to cancer using an 

in-house gene list compiled from i) the National Center for Tumor Diseases/German Cancer 

Consortium (NCT/DKTK) Molecularly Aided Stratification for Tumor Eradication Research 

(MASTER) trial24, and ii) peer-reviewed journal articles covering exome/genome sequencing 

of lung neuroendocrine neoplasms3–9,25–28. The MASTER trial aimed to investigate the clinical 

value of exome/genome sequencing in cancer care and included the evaluation of germline 

variants associated with genetic cancer predisposition syndromes. As such, 142 genes 

associated or potentially associated with cancer predisposition were selected based on expert 

opinion, in-house lists, and peer-reviewed literature, for germline analysis. To this we added 

89 genes reported in the literature as being recurrently altered (two or more samples altered) in 

lung neuroendocrine neoplasms (Supplementary Table S26).  

 

2.14 Identification of damaging small and structural variants 
 

2.14.1 Filtering for damaging small variants 

Small variant calls for all samples were combined into a single dataset, annotated with 

ANNOVAR (v2020-06-08), and filtered to retain only likely damaging alterations as follows: 

(i) variants on chromosome M were removed, (ii) variants not labelled "exonic", 

"exonic;splicing", "splicing", and "ncRNA_exonic;splicing" (annotation column 

Func.ensGene) were removed, (iii) variants labelled "synonymous SNV" (annotation column 

ExonicFunc.ensGene), and (iv) variants labelled "silent" (function coding_change.pl), were 

removed, and finally (v) variants in non-protein coding or lncRNA genes were removed.  

 

Variants were subsequently categorised with maftools (v2.10.05) into Frameshift Indel, In-

frame Indel, lncRNA, Missense, Nonsense, Nonstop, Splice Site and Translation Start Site 

using labels provided in maftools column Variant_Classification. Variants labelled as 

‘Unknown’ were manually examined for changes to amino acid sequence and re-categorised 

(n = 4) or discarded (n = 1) as appropriate. All damaging small variants are provided in 

Supplementary Table S15.   

 
2.14.2 Filtering for damaging structural variants  

We followed the approach from Mangiante et al. 2023 to classify SVs as damaging based on 

their type, and position of the breakpoints (in exon, introns, or intergenic regions). See script 

at https://github.com/IARCbioinfo/sv_somatic_cns-

nf/blob/929dc35e14f6c9813747a7c7d223aa2fb2f32fe8/aux_scripts/SV_annotation.R. All 

damaging structural variants are provided in Supplementary Table S16.   
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2.15 Enrichment testing of damaging small variants 
Genes affected by at least one damaging small variant within the lung NET cohort were tested 

for enrichment for epigenetic regulatory genes using a gene list compiled by Halaburkova et 

al.29 (Supplementary Table S24). The list of genes which were never affected by a damaging 

small variant in the lung NET cohort was used as background, and enrichment was tested using 

Fisher’s exact test. Genes that were affected by both damaging and non-damaging small 

variants were only retained in the test list and were excluded from background.  

 

2.16 Genomic hallmarks of cancer analysis 
 

2.16.1 Datasets required  

The dataset of the 10 hallmarks of cancer given in Hanahan et al. 202230 used for this study 

and the corresponding genes that cause their acquisition through mutation were downloaded 

from the Catalogue of Somatic Mutations in Cancer (COSMIC, v99 GRCh38). This dataset 

was filtered to only contain cell types associated with human malignant cancers. 

 

The dataset used for the genomic hallmarks of cancer analysis (Supplementary Table S25) 

was created by combining three data frames: Damaging small variants, ParetoTI analysis, and 

hallmarks of cancer from COSMIC. The resulting combination of these data frames gave us 

the hallmarks of cancer affected by each damaging mutation for a given sample, as well as the 

corresponding molecular group. 

 

2.16.2 Distribution of hallmarks affected per patient 

Using the previously mentioned dataset, a data frame in wide format was created, attributing 

to each sample the presence or absence of an effect from a damaging small variant for a given 

hallmark (Supplementary Table S25). Distributions of hallmarks affected per patient were 

obtained by computing row sums using the rowSums R function from the base package (v4.4.1) 

and plotting the results, grouped by molecular group, in a violin plot (ggplot2 package v3.5.1). 

The resulting four distributions were statistically compared two by two using Mann-Whitney 

U tests (wilcox.test function from the stats package v4.4.1), and significantly different 

distributions were annotated on the violin plot. 

 

The same analysis was performed to compare histological types (typical versus atypical) within 

molecular groups and overall. As there were no typical tumours with WGS data within the sc-

enriched group, this molecular group was excluded so as to not drive an increase in the number 

of hallmarks acquired in atypical samples overall. 

 

2.16.3 Genomic hallmark profiles 

An average genomic hallmark profile was created for each molecular group using the same 

data frame in wide format as in the previous section. Such a profile represents the proportion 

of patients for which each hallmark is affected by damaging SNVs. These proportions (one 

proportion per hallmark, ten per profile) were obtained by dividing the column sums (colSums 

function from the base package v4.4.1) by the number of samples for a given molecular group. 

Each profile was plotted as a bar plot (ggplot2 package v3.5.1). 

 

To statistically compare each proportion between molecular groups, logistic regression models 

were used (one per hallmark; glm function from the stats package v4.4.1) to evaluate the 

association between each molecular group and a given hallmark. Ca A1 was used as the 

reference for each model. Corresponding forest plots were obtained for each model using the 

forest_model function from the forestmodel package (v0.6.2). However, hallmarks 
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‘angiogenesis’ and ‘proliferative signalling’ were not evaluated using such a model, as their 

proportions in the sc-enriched group were respectively 0 and 1 (which both introduce a null 

variance in a logistic regression model). Consequently, these two hallmarks were statistically 

evaluated between molecular groups using a Fisher’s exact test on each molecular group pair 

(fisher.test function from the stats package v4.4.1). Hallmarks with significant differences 

compared with Ca A1 were annotated on each bar plot. All statistical results are provided in 

Supplementary Table S25). 

 

2.16.4 Euler diagram of genes involved in hallmark acquisition 

A Euler diagram was created showing how many genes are involved in hallmark acquisition 

per molecular group, as well as how many are shared between molecular groups. The Euler 

function from package eulerr (v7.0.2) was used to create and plot the diagram. Genes that affect 

hallmarks in at least two patients were annotated on the diagram. 

 

3. Bulk RNA sequencing 
 

3.1 Sample preparation and sequencing of the lungNENomics cohort 
RNA sequencing (RNA-seq) was performed at the Cologne Center for Genomics on 246 lung 

neuroendocrine tumours (from 180 patients). Following extraction, 1 µg total RNA was used 

for library preparation with the TruSeq mRNA stranded sample preparation kit (20020595; 

Illumina). After poly-A selection (using poly-T oligo-attached magnetic beads), mRNA was 

purified and fragmented using divalent cations under elevated temperature. RNA fragments 

underwent reverse transcription using random primers, followed by second strand 

complementary DNA (cDNA) synthesis with DNA Polymerase I and RNAse H. After end 

repair and A-tailing, indexing adapters were ligated. Products were then purified and amplified 

(14 PCR cycles) to create final cDNA libraries. After library validation and quantification 

(TapeStation, Agilent Biotechnologies), equimolar amounts of the library were pooled. The 

pool was quantified using a KAPA Library Quantification Kit (KK4835; Peqlab) and the 

7900HT Sequence Detection System (Applied Biosystems). The pool was sequenced using an 

Illumina NovaSeq 6000 and a paired-end 100 nt protocol.  

 

3.2 Data processing  
Reads were trimmed for the adapter sequence using Trim Galore (v0.6.5 for expression 

quantification, and v0.4.2 for alternative splicing analyses), then mapped to reference genome 

GRCh38 (using annotation gencode v33) with STAR software (v2.7.3a). Reads were realigned 

locally using ABRA2 (workflow https://github.com/IARCbioinfo/abra-nf release v3.0), and 

base quality scores were recalibrated using GATK (workflow 

https://github.com/IARCbioinfo/BQSR-nf release v1.1). Expression was quantified for each 

sample, generating a raw read count table with gene-level quantification for each gene of the 

comprehensive gencode gene annotation file (v33), as well as a table with Transcripts per 

Million (TPM), and Fragments per Kilobase per Million (FPKM), using StringTie software 

(v2.1.2) (Nextflow pipeline accessible at https://github.com/IARCbioinfo/RNAseq-transcript-

nf release v2.2). Quality control was performed at each step. FastQC software (v0.11.9; 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to check raw reads 

quality and RSeQC software (v3.0.1) was used to check alignment quality.  

 

FASTQ files from previously published RNA-seq datasets were processed following the same 

procedure (n = 66 lung NETs from Fernandez-Cuesta et al. 2014; n = 51 small cell lung 

carcinoma (SCLC) from Peifer et al. 2012 and George et al. 2015; n = 69 LCNECs from 

George et al. 2018; n = 20 lung NETs from Alcala et al. 2019; n = 30 lung NETs from Laddha 
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et al. 2019; n = 6 lung NETs from Miyanaga et al. 2020; and n = 7 lung NETs and n = 2 

LCNECs from Dayton et al. 2023).  

 

Subsequently, the raw gene count matrices and TPM matrices for all lungNENomics and 

publicly available datasets were combined into single gene count and TPM matrices. The gene 

count matrix was then variance-stabilised (R package DESeq2, v1.34.0) for use in statistical 

analyses. Two technical replicates were then removed from the matrices before further analyses 

(LNEN154_TU1_R2 and LNEN171_TU1_R2, both lungNENomics series).  

 

3.3 Sex inference from RNA sequencing data 
Expression levels obtained from RNA-seq data on sex chromosomes were examined to identify 

any samples which did not cluster with others of the same clinical sex. A comparison of the 

sum of variance stabilised read counts on the X and Y chromosomes per patient identified five 

outlier samples (Supplementary Fig. S22). Samples S02236 (George et al. 2018), and 

LNEN199_TU (lungNENomics) were clinically reported as male but were predicted to be 

female by both RNA-seq and DNA methylation array data (Section 5.3), therefore all clinical 

data entries for these samples were replaced with NA in case the information had been entered 

erroneously. Sample SRR10720229 (Miyanaga et al. 2020) is also reported to be male but 

clustered with female samples on RNA-seq data. No WGS or DNA methylation array data was 

available for this sample to confirm tumour-specific loss of chromosome Y, therefore it was 

retained as male. Lastly, samples LNEN246_TU and LNEN251_TU1 (lungNENomics) were 

reported as female and male, respectively but did not cluster with samples of the same sex over 

X/Y chromosome expression. However, as their sex predicted by DNA methylation array 

matched their clinical sex (Section 5.3), RNA-seq data was discarded for subsequent analyses 

in case the RNA sample did not correspond to the correct patient ID. Finally, sample LNET19T 

(Dayton et al. 2023) had no clinically reported sex but was inferred to be female based on 

RNA-seq data.  

 

3.4 Fusion genes identification 
Fusion genes were computed using STAR-fusion31 and Arriba32 (nextflow workflows 

https://github.com/IARCbioinfo/RNAseq-fusion-nf v1.1 and 

https://github.com/IARCbioinfo/gene-fusions-nf v1.1, respectively). Our STAR-fusion 

workflow follows the STAR-fusion best practices and relies on fusion inspector for validation. 

Our Arriba workflow was run both with and without providing structural variant calls for 

samples with WGS (option -d). In both cases, Arriba did not find any high-confidence fusion 

and only found 7 medium-confidence fusions, and the intersection with STAR-fusion detected 

fusions was null. This is in line with the very few structural variants detected in coding regions, 

and with the fact that most driver alterations affected tumor suppressor genes, which are not 

expected to be visible at the RNA level, rather than oncogenes, which would have led to highly 

expressed, high-confidence fusions. 

 

3.5 UMAP of neuroendocrine neoplasms 
Data from sex and mitochondrial chromosomes were removed from raw gene count matrices 

obtained from bulk RNA-seq data (n = 59,607 genes) from 634 samples including 273 lung 

NETs (109 Ca A1, 89 Ca A2, 62 Ca B, 13 sc-enriched), 69 LCNEC, 51 SCLC, 135 pancreatic 

NETs, 88 small intestine NETs and 18 rectal NETs. Read counts were then variance stabilised 

using DEseq2 R package (v1.40.2). The 50 most variable genes were then selected to get 

VST50 on which Uniform Manifold Approximation and Projection (UMAP) was performed, 

using umap R package (v0.2.10.0) with number of neighbours equal to 15 and all the other 

parameters set to the default value.  
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3.6 Immune contexture deconvolution  
The proportion of cells that belong to each of ten immune cell types (B cells, macrophages M1, 

macrophages M2, monocytes, neutrophils, NK cells, CD4+ T cells, CD8+ T cells, CD4+ 

regulatory T cells, and dendritic cells) were estimated from the RNA-seq data using softwares 

quanTIseq33 (downloaded 14 September 2020) using our workflow for parallel processing of 

samples (https://github.com/IARCbioinfo/quantiseq-nf release v1.1), and R package 

immunedeconv, that runs multiple deconvolution methods (Sturm et al. 201934). In line with 

the immunedeconv package recommendations, we chose ABIS, EPIC, ESTIMATE, 

MCPCounter, and MUSIC, because they allow inter-patient comparisons. Methods may not be 

directly comparable given they use different reference cell types, and not all allow for unknown 

cell types to be present. Thus, in order to compare the values while taking into account the 

variability due to the method we computed z-scores across samples for each method and cell 

type, and compared the values of the z-scores by fitting a linear mixed model using R package 

lmer, with the method as a random effect. See results of the test in Supplementary Table S10. 

 

RNA-seq estimated purity was also obtained from quanTIseq as 1 - the sum of the ten immune 

cell type proportions. Estimated cell type proportions are provided in Supplementary Table 

S9. 

 

3.7 Immune archetype inference 
We inferred immune archetypes using the 3-feature classification method from Combes et al. 

202235. To ensure all archetypes were represented we used cohort lung NEN plus SCLC, and 

LUAD and LUSC TCGA datasets. We reprocessed the TCGA datasets as described in Section 

3.2 to limit batch effects. Following Combes et al. for each of the three genes (features), we 

converted expression into expression scores corresponding to the percentile ranks across 

samples. We then performed unsupervised clustering as in the original paper (Louvain 

clustering, using 100 k nearest neighbours and a resolution of 0.5) of the samples based on their 

3-feature percentile scores. Once clustered, following the original method, cluster labels from 

the 3-feature classification of Combes et al. were attributed based on the prevalence and 

distributions of the features within the cluster (visualised as violin plots of all clusters in each 

feature, Supplementary Fig. S4). See Supplementary Fig. S4, that was compared to Fig. 2A-

C from Combes et al. Immune archetypes are provided in Supplementary Table S11. 

 

3.8 Estimation of T-cell inflamed/pembrolizumab-responder phenotype 
Mean expression (vst) of a panel of 18 genes, obtained from Ayers et al.36, was calculated per 

sample. Expression levels were compared between molecular groups by t-tests. Results are 

presented in Supplementary Table S34.      

 

3.9 Calculation of SCLC-I score 
To generate the SCLC Immune (SCLC-I) score and thus identify samples with an SCLC-I-like 

profile, we computed the mean expression values for 13 genes highly expressed by SCLC-I 

tumours in Gay et al.37 (CD274, PDCD1, CD80, CD86, CTLA4, CD38, IDO1, TIGIT, VSIR, 

ICOS, LAG3, CCL5, and CXCL10). Mean variance stabilised expression was used to perform 

statistical analysis displayed in Extended Data Fig. 3g, and mean TPM expression was used 

for illustration (Extended Data Figs. 3f,g).   

 

3.10 Deconvolution of pulmonary neuroendocrine cell states 
To characterise the pulmonary epithelial cell type composition of bulk RNA-seq samples we 

applied MuSiC (Multi-subject Single-cell Deconvolution), a method designed to infer cell type 

compositions from bulk RNA-seq data with cell-type specific gene expression from scRNA-
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seq reference data38. As reference profiles we used epithelial cells from foetal lung tissue 

airway organoids39, enriched for lower airway progenitor and pulmonary neuroendocrine 

cells40, as well as tumour microenvironment cells (stromal and immune) from lung 

neuroendocrine tumours41. The NE cells in this dataset (NE early 1, NE early 2, NE terminally 

differentiated 1 and 2) are represented by four cell states, corresponding to different levels of 

differentiation. Deconvolution was performed using raw gene count matrices from bulk RNA-

seq data (n = 273 lung NETs, n = 69 LCNEC, n = 51 SCLC, and one patient-derived tumour 

organoid (PDTO) from patient LNET10 from Dayton et al.10), and the scRNA-seq reference 

matrix. To reduce technical noise and increase robustness, genes expressed in fewer than three 

single cells were excluded from the analysis, as such low expression is typically too sparse to 

provide informative signal. Cell proportions are provided in Supplementary Table S9.  

 

3.11 Identification and analysis of molecular group core genes  
3.11.1 Identification of molecular group core genes  

Core upregulated and downregulated genes were identified for each molecular group of lung 

NETs using linear regression as follows. Variance stabilised expression values for autosomal 

protein-coding or lncRNA genes expressed at TPM ≥ 1 in at least two samples (n = 25,804 

genes, n = 273 samples), were used to perform linear regression. For each gene and for each 

molecular group a linear model was built to calculate the relationship between the expression 

𝑔 of the focal gene and the proportion 𝑥 of the focal archetype, such as 𝑔(𝑥) = 𝛽0 + 𝛽1𝑥 + 𝜖. 

The intercept 𝛽0 = 𝑔(0) corresponds to the estimated expression of the focal gene in samples 

with no proportion of the focal archetype, and the slope 𝛽1 = 𝑔(1) − 𝛽0 corresponds to the 

difference in the expression of the focal gene in samples purely belonging to the focal archetype 

compared to samples with no proportion of this archetype. P values were adjusted for multiple 

testing using the Benjamini & Hochberg method, and log2 fold changes were calculated as 

follows: log2(
𝛽0+𝛽1

𝛽0
).  

 

For each molecular group, genes were then assigned a label of ‘positive’ (q value < 0.05 and 

log2 fold change > 1), ‘negative’ (q value < 0.05 and log2 fold change < -1), or ‘false’ (q value 

≥ 0.05 and/or -1 < log2 fold change < 1). Finally, each gene was assigned as a core upregulated 

or downregulated for a molecular group if it fulfilled the following criteria: a core upregulated 

gene in molecular group x must be labelled ‘positive’ for group x and labelled either ‘negative’ 

or ‘false’ for the three other groups, and vice versa for a core downregulated gene. As such, no 

gene can be a core upregulated gene for more than one molecular group, nor a core 

downregulated gene for more than one molecular group. Core upregulated and downregulated 

genes are shown in Supplementary Table S27.  

 

3.11.2 Identification of key Gene Ontology pathways 

The Gene Ontology biological processes for human genes database was downloaded to identify 

significantly enriched pathways among the core up-regulated genes specific to each molecular 

group (Fisher’s exact test). To summarise the numerous core pathways identified, we 

constructed directed weighted graphs, where edges were drawn from the pathway containing 

the most genes to the one containing fewer, with edge weights corresponding to the Jaccard 

index between the two gene lists. We then applied the Walktrap community detection algorithm 

to define clusters of pathways involved in similar processes. Finally, each cluster of pathways 

was named based on the most central pathway according to weighted out-degree values, 

forming what we term a ‘super-pathway’ (Fig. 2c, Supplementary Table S28).  
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3.11.3 Identification of master transcription factors 

We used the CaCTS algorithm42 (v1.0; https://github.com/lawrenson-lab/CaCTS) to determine 

potential master transcription factors (TFs) per molecular group. As suggested by Reddy et al. 

we used the 1671 master TFs identified by Saint-André et al.43 and Lambert et al.44, and 

considered as master TF genes those that are both in the top 5% of the most expressed genes 

and in the top 5% of genes with the highest Jensen-Shannon divergence scores.  

 

3.11.4 Testing for enrichment of hallmarks of cancer 

The integrated human gene set collection associated with the ten hallmarks of cancer proposed 

by Menyhart et al.45 (downloaded from https://cancerhallmarks.com/download) was used to 

identify significantly enriched hallmarks among the core upregulated genes of each molecular 

group (Fisher's exact test). In Extended Data Fig. 3e, we report the number of sc-enriched 

core upregulated genes and the three genes with the highest fold change for each significant 

hallmark. 

 

3.11.5 Testing for enrichment of neuroendocrine cell genes 

Genes highly expressed in lung neuroendocrine (NE) cells were obtained from Travaglini et 

al.46. Enrichment testing was performed using Fisher’s exact tests between target lists of core 

upregulated genes per molecular group against background of all other genes profiled with 

RNA sequencing (Supplementary Tables S29 and S30). 

 

3.11.6 Creation of the RNA sequencing heatmap (Fig. 2c) 

To illustrate the findings from this section, we selected a small subset of core genes or master 

TFs for each molecular group. For each molecular group, a list of genes was created which 

were core upregulated, within a super-pathway, and were expressed at median TPM > 1 within 

the molecular group. From these lists, genes were then selected manually based on previous 

relevant publications7,8,28 or out of interest from literature47–53. Additionally, putative master 

TFs for each molecular group were plotted. 

 

3.12 Proliferation index 
A measure of proliferation rate per sample was obtained from variance-stabilised read counts 

(R package DESeq2) as follows. A proliferation index score was calculated for each sample as 

the median expression of the top 1% of genes (131 genes) significantly positively correlated 

with the expression of PCNA (proliferating cell nuclear antigen) in 27 different healthy tissue 

types54,55, Supplementary Tables S1 and S35). A higher proliferation index indicates greater 

proliferation. Associations between proliferation index and lung NET molecular group (k = 4) 

and type (typical versus atypical) were assessed with ANOVA and t-tests, respectively. 

Correlation tests between molecular group proportion and proliferation index were assessed 

with Pearson correlation. Results are shown in Supplementary Table S33. 

 

3.13 Epithelial-mesenchymal transition measurement 
A score of epithelial-mesenchymal transition (EMT) per sample was calculated from variance-

stabilized read counts as the mean expression of 52 mesenchymal-associated genes minus the 

mean expression of 25 epithelial-associated genes, as previously described56, Supplementary 

Tables S1 and S35). A higher EMT score indicates a more mesenchymal-like gene expression 

profile than epithelial-like. Associations between EMT score and lung NET molecular group 

(k = 4) and type (typical versus atypical) were assessed with ANOVA and t-tests, respectively. 

Correlation tests between molecular group proportion and EMT score were assessed with 

Pearson correlation. Results are shown in Supplementary Table S33. 
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3.14 Determination of Proneural, HNF+, or Luminal regulatory subtype 
Gene sets characteristic of Proneural, HNF+ and Luminal regulatory subtypes were obtained 

from Davis et al.57. We selected ASCL1, SOX4, and TCF4 for Proneural classification, HNF1A, 

HNF4A, FOXA3, FGFR3, and FGFR4 for HNF+ classification, and OTP for Luminal 

classification. The bimodality of gene expression (variance stabilised expression values) was 

first assessed for each gene individually using Hartigan’s Dip Test (R package diptest, v0.76-

0) all were significantly bimodal except SOX4 and TCF4 (P values ≥ 0.05), then correlation 

between genes within each set was tested by Pearson correlation (Supplementary Table S31). 

All genes within Proneural and HNF+ gene sets were significantly correlated with one another, 

and therefore a single gene was selected for classification of each subtype. For Proneural, we 

selected ASCL1 as it was the only bimodal gene, and for HNF+ we selected HNF1A as it was 

specifically highlighted by Davis et al.  

 

To determine sample regulatory subtype we first classified samples as being ASCL1 high or 

low, HNF1A high or low, and OTP high or low. For this we followed the procedure described 

in Moonen et al.58, first fitting two Gaussian mixture model distributions to the distribution of 

variance stabilised gene expression (R package mclust, v5.4.10), then selecting a cut-off as the 

lowest density point of the two Gaussian distributions (Supplementary Table S31). Cut-off 

values were as follows: ≥ 11.16856 for ASCL1high, ≥ 6.247015 for HNF1Ahigh, and ≥ 11.8089 

for OTPhigh. Finally, a regulatory subtype was assigned using the following criteria: Proneural 

= ASCL1high/HNF1Alow/OTPhigh, HNF+ = ASCL1low /HNF1Ahigh/OTPhigh, and Luminal = 

ASCL1low/HNF1Ahigh/OTPlow. All samples which didn’t fit these criteria were given the 

classification of Other (Supplementary Table S31). 

 

3.15 TERT expression analysis  
A category of TERT high or low had previously been assigned to a subset of the lung NET 

cohort (n = 76) with RNA-seq data as described in Werr et al.59. A log2 (sFPKM) cut-off of 

8.17 was defined by Werr et al. to distinguish high from low TERT samples. To assign a TERT 

expression category to the entire lung NET cohort, we first examined the association between 

TERT log2(FPKM) obtained from internal processing pipelines (see Section 3.2) and values 

from Werr et al. Finding a significant correlation between the two measurements (P value = 

1.64 x10-24, r = 0.95, Pearson correlation, note all samples with -Inf (as FPKM = 0) were 

excluded from correlation test). A linear model was then fit between the two TERT expression 

measurements, again excluding samples with –Inf, and the y-intercept for a log2(sFPKM) value 

of 8.17 was calculated using the model coefficients (m = 0.9244959, c = -12.5544998). The y-

intercept was used as the internal log2(FPKM) TERT expression cut off to distinguish TERT 

expression categories, high expression was defined as log2(FPKM) ≥ -5.001368. Results are 

provided in Supplementary Table S36.   

 

3.16 Statistical analysis of individual gene expression levels   
Expression of genes of interest (variance stabilised expression values) were directly compared 

between lung NET molecular groups (k = 4) and tumour type (typical versus atypical) using 

ANOVA and t-tests, respectively. Genes were grouped by category (somatostatin receptors, 

hormone receptors, viral receptors) and adjusted for multiple testing using the Benjamini & 

Hochberg method11. Where comparisons were significant (q value < 0.05) for molecular group, 

comparisons between pairs of groups were performed using t-tests, and where significant for 

both molecular group and type, comparisons between pairs of groups were further assessed 

within typical only and atypical only groups. Plotting of significant results was performed with 

log10(TPM + 1) expression values.  
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4. Spatial transcriptomics 
 

4.1 Sample preparation and sequencing 
Spatial transcriptomic sequencing of four FFPE samples was performed at Centre Léon Bérard 

using the 10x Genomics Visium v1 platform. Each sample was placed on a 10x Genomics 

Visium slide followed by deparaffinisation, H&E staining and decrosslinking steps, according 

to 10x Genomics guidelines. Human probes targeting approximately 18,000 genes were 

hybridised overnight on the slides and captured on each spot after ligation between the LHS 

and RHS probes. Libraries were produced for each sample following 10x Genomics protocols. 

Libraries were prepared and sequenced on an Illumina NovaSeq 6000 machine with a target 

sequencing depth of 50,000 reads per spot. 

 

4.2 Data processing 
Samples were processed using SpaceRanger (v1.3.0). Data were demultiplexed, and reads 

mapped to reference genome GRCh38, and tissue and fiducial detection was performed before 

barcode/unique molecular identifier (UMI) counting, generating feature-barcode matrices. 

Quality controls of raw (percentage of valid barcodes and UMIs, quality scores) and processed 

data were performed (percentage of reads mapped, median counts per spot). 

 
4.2.1 Domain identification and spot deconvolution 

Data from the spatial spots was clustered across all samples simultaneously with cell type 

location estimation using the IRIS algorithm60. This allowed for checking whether domains 

were patient-specific or shared across samples. The reference single-cell profiles used as input 

to IRIS were the same as those used for the deconvolution of NE cell states within bulk RNA-

seq data with MuSiC (section 3.10) in order to allow for their comparison, and to include 

potential neuroendocrine cells of origin in the computation. 

 

4.2.2 Computation of molecular group scores 

In order to estimate which spots had expression profiles resembling that of the lung NET 

molecular groups, we performed deconvolution of the expression of the spots (method 

CARD61) using the average expression profile of each molecular group as references, focusing 

on the list of core differentially expressed genes (see section 3.11.1). 

 

4.2.3 Spatial correlation analysis  

To assess the co-localisation of different cell types and molecular group profiles, as well as 

between expression of signalling genes and cell types/molecular group profiles, identified on 

FFPE slides, we computed bivariate spatial cross-correlation coefficients62 and their P values 

using a permutation test without replacement (Supplementary Figs. S20 and S21, 

Supplementary Table S47).  

 

5. DNA methylation arrays 
 

5.1 Sample preparation and DNA methylation detection of the lungNENomics 

cohort 
DNA methylation arrays were performed at the International Agency for Research on Cancer 

for 281 lung NETs (from 191 patients). Following DNA extraction, 600 ng of purified DNA 

was bisulphite-converted using the EZ-96 DNA Methylation kit (D5004; Zymo) following the 

manufacturer’s recommendations for Infinium assays. Then, 250 ng of bisulphite-converted 

DNA was used for amplification, fragmentation, and hybridisation on Infinium 
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MethylationEPIC v1.0 BeadChips (WG-317-1003, Illumina), following the manufacturer’s 

protocol. Chips were scanned using Illumina iScan to produce two-colour raw data files (IDAT 

format). Samples were assigned to chips using stratified randomisation to mitigate the batch 

effects. Samples were assigned to evenly distribute, in order of priority, histopathological type, 

provider, sex, smoking status, and age. ITH samples were placed on the same chip as their 

corresponding tumour sample. The position of samples on each chip was then randomised.  

 

5.2 Data processing 
IDAT files from the lungNENomics cohort and an additional 76 (n = 56 lung NETs, n = 20 

LCNECs) from Alcala et al. 2019 and George et al. 2018 were imported into the R statistical 

programming environment and processed using R packages minfi (v1.40) and ENmix 

(v1.30.03), following our standard workflow 

(https://github.com/IARCbioinfo/Methylation_analysis_scripts). Two-colour intensity data 

from internal control probes were manually inspected to check the quality of successive sample 

preparation steps (bisulphite conversion, hybridisation, extension, and staining; ENmix). All 

samples passed the QC steps of per sample log2 methylated and unmethylated chip-wise 

median signal intensity comparison (minfi), and overall p-detection value measurement (all P 

values < 0.01, minfi).  

 

Four groups of probes were removed: (i) poor performing probes with a p-detection value > 

0.01 in at least one sample (41,279 probes discarded), p-detection value was computed by 

comparing the total signal (methylated and unmethylated) of each probe with the background 

signal level from non-negative control probes (minfi) (ii) cross-reactive probes (41,777 probes 

discarded), cross-reactive probes co-hybridise to multiple locations within the genome and 

therefore cannot be reliably investigated (iii) probes on the sex chromosomes (16,440 probes 

discarded), and (iv) probes with SNPs within the single base extension site, or target CpG site, 

at a minor allele frequency of > 5% (database dbSNP build 137, 7,510 probes discarded). This 

resulted in a normalised, filtered dataset of 758,853 probes for 357 samples. Beta and M-values 

were extracted (functions getBeta and getM, minfi), and probes recording M-values of -∞ for 

at least one sample were replaced with the next lowest M-value in the dataset. 

 

5.3 Sex inference from DNA methylation array data 
Sample sex was predicted from DNA methylation array data using a predictor based on the 

median total intensity on the X and Y chromosomes (function getSex, R package minfi, 

Supplementary Fig. S22). S00567 (George et al. 2018), LNEN164_TU, and LNEN258_TU 

(both lungNENomics) were clinically male but predicted female according to DNA 

methylation data. However, their RNA-seq profile was consistent with male sex and these 

samples were therefore retained as male. Samples S02236 (George et al. 2018) and 

LNEN199_TU (lungNENomics) were predicted to be female by both RNA-seq and DNA 

methylation array data (see Section 3.3), and clinically reported as male, therefore all clinical 

data entries for these samples were replaced with NA in case the information had been entered 

erroneously. Finally, sample LNEN028 (Alcala et al. 2019) had no clinically reported sex but 

was inferred to be male based on DNA methylation array data.  

 

6. Single-omic consensus clustering analyses 
 

6.1 Single-omic consensus clustering for identification of supra-carcinoids 
Consensus clustering was performed for RNA-seq and DNA methylation array datasets 

separately to identify new instances of supra-carcinoids, defined as lung NETs clustering with 

LCNECs. Principal components analysis (PCA) was subsequently performed on each dataset 
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(R package ade4, v1.7-20, number of factors set to ten, data centred and unscaled) to visualise 

consensus clusters.  

 

6.1.1 RNA sequencing data 

The sample set (n = 284) comprised n = 179 lung NETs from lungNENomics, n = 30 lung 

NETs from Laddha et al. 2019, n = 6 lung NETs from Miyanaga et al. 2020, and n = 69 LCNEC 

from George et al. 2018. To generate the expression data for consensus clustering the variance 

stabilised read count matrix was subset to exclude genes on chromosomes X, Y and M, filtered 

to retain only genes with a minimum difference of  ≥ 1 TPM across the sample set, then reduced 

to the top 5,000 genes by variance and median centred. Clustering with a k-means clustering 

algorithm based on Euclidean distances was repeated 100 times with random 80% subsampling 

to generate consensus clusters for k = 2-8 (R package ConsensusClusterPlus, v1.58). PCA was 

performed using the top 5,000 genes by variance (filtered as above) for visualisation. Results 

are presented in Supplementary Table S4.  

 

6.1.2 DNA methylation array data 

The sample set (n = 211) comprised n = 191 lung NETs from lungNENomics, and n = 20 

LCNEC from previously published data (Alcala et al. 2019, George et al. 2018). To generate 

the M-value matrix for consensus clustering the matrix was filtered to retain only probes with 

a minimum difference of ≥ 0.1 beta value across the sample set, then reduced to the top 5,000 

probes by variance and median centred. Clustering with a k-means clustering algorithm based 

on Euclidean distances was repeated 100 times with random 80% subsampling to generate 

consensus clusters for k = 2-8 (R package ConsensusClusterPlus, v1.58). PCA was performed 

using the top 5,000 probes by variance (filtered as above) for visualisation. Results are 

presented in Supplementary Table S4.  

 

6.2 Single-omic consensus clustering to examine the relationship between lung 

NETs and SCLC  
Additional consensus clustering was performed by combining RNA-seq data from the lung 

NET and lung NEN cohorts with SCLC data from two previous publications (Peifer et al. 2012 

and George et al. 2015). Three matrices were generated for three analyses: i) lung NEN cohort 

(n = 342 with RNA-seq data), ii) lung NET cohort + SCLC (n = 324, comprising lung NET 

cohort, 15 SCLC from Peifer et al. 2012 and 36 SCLC from George et al. 2015), and iii) lung 

NEN cohort + SCLC (n = 393).  

 

To generate the expression data matrices for the three consensus clustering analyses, the 

following procedure was used per sample set: variance stabilised read count matrix was subset 

to exclude genes on chromosomes X, Y and M, filtered to retain only genes with a minimum 

difference of  ≥ 1 TPM across the sample set, then reduced to the top 5,000 genes by variance 

and median centred. Clustering with a k-means clustering algorithm upon Euclidean distances 

was repeated 100 times with random 80% subsampling to generate consensus clusters for 𝐾 

=2-8 (R package ConsensusClusterPlus, v1.58). PCA was performed using the top 5,000 genes 

by variance (filtered as above) for visualisation. Results are presented in Supplementary 

Table S4.   

 

The area of the convex hull formed by the most extreme points (samples) over principal 

component axes 1 and 2 was calculated for all samples in the analysis, and for lung NET-only 

samples, using R functions chull() and Polygon() (package sp v. 1.5-0). 
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7. Multi-omics factor analysis 
Multi-Omics Factor Analysis (MOFA) was performed using software MOFA265 (v1.4.0) for 

two cohorts (i) lung NETs only (n = 319) and (ii) lung NETs plus LCNEC (n = 392). Cohort 

lung NET (i) comprised 201 newly sequenced lungNENomics samples, 116 samples from the 

previous Computational Cancer Genomics team publications Alcala et al. 2019 and Dayton et 

al. 2023, plus two previously published lung NETs which clustered with LCNEC (supra-

carcinoids) (see Section 6.1) in order to maximise the number of rare subtypes available for 

molecular characterisation. Cohort lung NEN (ii) was composed of cohort lung NET (i) and an 

additional 73 LCNEC (from George et al. 2018).  

 

7.1 Pre-processing of RNA-seq data 
For each cohort, variance stabilised raw gene counts (DESeq2, v1.34.0) for 273 and 342 

samples (cohort lung NET and cohort lung NEN, respectively) were subset to exclude genes 

on chromosomes X, Y and M, filtered to retain genes with a minimum variance of TPM ≥ 1 

across the cohort, then reduced to the top 5,000 genes by variance. Samples with no RNA-seq 

data were assigned NA values for each gene.  

 

7.2 Pre-processing of DNA methylation array data 
For each cohort, M-values for 247 and 267 samples (cohort lung NET and cohort lung NEN, 

respectively) were filtered to retain probes with a minimum variance of beta value ≥ 0.1 across 

the cohort, then reduced to the top 5,000 probes by variance. Samples with no DNA 

methylation array data were assigned NA values for each probe.  

 

7.3 Pre-processing of small and structural variant data 
Damaging small and structural variants for each cohort (see Section 2.14) were combined and 

filtered to exclude variants in genes that i) were lowly expressed (where maximum TPM < 0.01 

per gene across the sample set), or no TPM values were available, and ii) were not altered in ≥ 

2 samples. MOFA input matrices were then created by assigning a value of 0 (wild-type) or 1 

(altered) to each sample per gene. Samples for which WGS data was available but had no 

damaging small or structural variants were included with a value of 0 for each gene, those with 

no WGS data were assigned values of NA for each gene.   

 

7.4 Pre-processing of copy number variant data 
Copy number values for the eight significant broad and focal events as detected in the lung 

NET cohort by GISTIC2 (see Section 2.6) were included as a single input matrix. Samples 

with no WGS data were assigned values of NA for each event.  

 

7.5 Generating MOFA latent factors  
Two MOFA runs were performed, one for each cohort (lung NET and lung NEN). Input 

datasets for each run comprised those described in Sections 7.1-7.4 above, and the number of 

latent factors was set to ten. See https://github.com/IARCbioinfo/MS_lungNENomics for 

detailed method and input datasets. A summary of input data and MOFA runs, including QC, 

is shown in Supplementary Figs. S2 and S23, Supplementary Table S5. Sample coordinates 

along latent factors are provided in Supplementary Table S4. 

 

7.5.1 Measuring convex hull area over MOFA latent factors 

The area of the convex hull formed by the most extreme points (samples) over MOFA lung 

NEN latent factors 1 and 2 was calculated for all samples in the analysis, and for lung NET 

only samples, using R functions chull() and Polygon() (package sp v. 1.5-0).  
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7.6 Intra-tumoural heterogeneity lung NET MOFAs 
An additional 91 MOFA analyses of lung NETs were performed to measure how similar each 

ITH tumour piece was to its original sample. For each ITH sample, the values of the original 

sample within the four input matrices were replaced with the corresponding values from the 

ITH sample, keeping the rest of the matrices unchanged. Where an ITH piece had different data 

availability to the original sample, the values for the missing omic dataset were replaced by 

NA. Each ITH MOFA run was subsequently performed as described in Section 7.5 to generate 

latent factor positions. In addition, ParetoTI analysis was performed (see Section 8.1) for each 

of the 91 ITH MOFA runs to determine the molecular group of each ITH region. 

 

A measure of how similar within the latent factor space each ITH piece was to its original 

sample was obtained by calculating the Euclidean distance between the pairs of samples over 

latent factors 1, 2 and 5 (those used to determined sample molecular group, Supplementary 

Table S48). In the event that an ITH latent factor was the inverse of the original, the values for 

that latent factor were multiplied by -1 before the distance calculation was performed. Where 

an ITH latent factor order had changed, for instance original latent factor 5 was correlate d with 

ITH factor 4, the distance calculation was performed using the factors which significantly 

correlated with the original LFs 1, 2 and 5. Pairs where the Euclidean distance was greater than 

the mean distance between samples within the original sample molecular group were visualised 

over factors 1, 2 and 5. Euclidean distances were also used to calculate the silhouette statistic. 

Scores range from –1 to 1, where negative values indicate a sample is closer to samples from 

another molecular group than its own molecular group label. Group label was assigned to each 

ITH piece from a patient as the molecular group of the tumour region used in the lung NET 

cohort. 

7.7 Variable associations with MOFA latent factors 
Technical and clinical features of interest were assessed for their statistically significant 

relationship with sample latent factor positions. Unless otherwise stated, the association 

between latent factor positions and continuous variables was assessed with Pearson correlation 

tests, and with categorical variables using linear regression. Variables were grouped by theme 

(categorical technical, continuous technical, and categorical clinical) for statistical analysis 

then adjusted for multiple testing within each group using the Benjamini & Hochberg method11. 

Overall and event-free survival associations with latent factor positions were assessed using 

the Cox proportional hazards model. Definitions of overall and event-free survival can be found 

in Section 1.3.2. Results can be found in Supplementary Table S5.  

 

8. Pareto task inference analysis  
Molecular groups of samples were identified through the application of multi-task evolutionary 

theory by Pareto task inference (ParetoTI)66,67 to the latent factors identified in each MOFA 

analysis (R package ParetoTI, v0.1.13). The ParetoTI algorithm fits a low-dimensional 

polytope over the samples as they are positioned within the multi-dimensional latent factor 

space, with the vertices of the polytope representing archetypes (or subgroups) of the data.  

 

8.1 ParetoTI analysis of MOFA lung NET 
For ParetoTI analysis latent factors which were exclusively associated with technical features 

were excluded (LFs 4, 8 and 9, see Supplementary Table S5) then ordered by the proportion 

of variance in RNA-seq data explained (highest to lowest: 1, 2, 5, 6, 3, 10, 7, see 

Supplementary Table S5). The ParetoTI model was fitted over six combinations of successive 

latent factors (LFs 1, 2; LFs 1, 2, 5; LFs 1, 2, 5, 6; LFs 1, 2, 5, 6, 3; LFs 1, 2, 5, 6, 3, 10; and 

LFs 1, 2, 5, 6, 3, 10, 7), using 200 bootstraps with 75% subsampling, to generate polytopes 
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with between two and six vertices (archetypes). See 

https://github.com/IARCbioinfo/lungNENomics_Archetype for detailed method. Metrics of 

how well each model performed, and the resulting archetype positions, are reported in 

Supplementary Table S6.  

 

Performance metrics examined were (i) the t-ratio, i.e. the ratio of the volume of the best-fitting 

polytope to the volume of the convex hull of the data, (ii) the variance explained by each 

polytope, and (iii) the total variance in position of archetypes during bootstrapping. Each metric 

was also assessed for statistical significance, and a model was considered a significant fit if the 

P value for all three metrics was < 0.05. We subsequently examined two significant fits: k = 3 

generated over LFs 1 and 2, and k = 4 generated over LFs 1, 2 and 5.  

 

8.1.1 Archetype attribution and naming 

The proportion of each archetype was calculated per sample per fit, and the samples were 

assigned to the archetype for which they had the greatest proportion (Supplementary Table 

S1). Archetypes were then examined for enrichment of samples previously classified into the 

molecular groups of Ca A1, Ca A2, Ca B, and supra-carcinoid (Alcala et al. 2019, Dayton et 

al. 2023, Supplementary Fig. S3). Finally, archetypes were renamed as the molecular group 

to which they best corresponded as follows (k = 4): V1 = supra-carcinoid enriched, V2 = Ca 

A1, V3 = Ca B, V4 = Ca A2.  

 

8.2 ParetoTI analysis of MOFA lung NEN 
For ParetoTI analysis, latent factors that were exclusively associated with technical features 

were excluded (LFs 5 and 10, see Supplementary Table S5) then ordered by the proportion 

of variance in RNA-seq data explained (highest to lowest: 2, 1, 3, 6, 7, 9, 4, 8, see 

Supplementary Table S5). The ParetoTI model was fitted over seven combinations of 

successive latent factors (LFs 2, 1; LFs 2, 1, 3; LFs 2, 1, 3, 6; LFs 2, 1, 3, 6, 7; LFs 2, 1, 3, 6, 

7, 9; LFs 2, 1, 3, 6, 7, 9, 4; and LFs 2, 1, 3, 6, 7, 9, 4, 8), using 200 bootstraps with 75% 

subsampling, to generate polytopes with between two and six vertices (archetypes). See 

https://github.com/IARCbioinfo/lungNENomics_Archetype for detailed method. Metrics of 

how well each model performed, and the resulting archetype positions, are reported in 

Supplementary Table S6.  

 

We subsequently examined two significant fits: k = 3 generated over LFs 1 and 2, and k = 4 

generated over LFs 1, 2 and 3. 

 

8.2.1 Archetype attribution and naming 

The proportion of each archetype was calculated per sample per fit, and the samples were 

assigned to the archetype for which they had the greatest proportion (Supplementary Table 

S1). Archetypes were then examined for enrichment of samples previously classified into the 

molecular groups of Ca A1, Ca A2, Ca B, and supra-carcinoid (Alcala et al. 2019, Dayton et 

al. 2023, Supplementary Fig. S24). Finally, archetypes were renamed to match the molecular 

group to which they best corresponded as follows (k = 4): V1 = Ca A2, V2 = Ca A1, V3 = 

LCNEC, V4 = Ca B. 

 

8.3 Measuring molecular heterogeneity within molecular groups  
Two methods were used to assess heterogeneity between molecular groups, Euclidean 

distances over MOFA LFs and variance across MOFA input datasets. The mean Euclidean 

distances between samples within the same molecular group over MOFA lung NET LFs 1, 2 

and 5, and MOFA lung NEN LFs 1, 2 and 3, were calculated, providing a measure of the 
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average spatial distance on the molecular map between samples of the same molecular group 

(Supplementary Table S48).  

 

The variance of MOFA input datasets was obtained by first subsetting each input matrix to 

contain only samples of a single molecular group, resulting in four matrices per original input, 

calculating the variance by row (i.e. gene, probe, genome segment) within each sub-matrix, 

then averaging the variance of each sub-matrix (Supplementary Table S48). 

 

8.4 Variable associations with molecular groups  
Technical and clinical features of interest were assessed for their statistically significant 

association with molecular groups. Unless otherwise stated, the association between molecular 

groups and categorical variables was assessed with Fisher’s exact tests, and molecular groups 

with continuous variables was assessed using ANOVA, in the R statistical programming 

environment. Variables were grouped by theme (categorical technical, continuous technical, 

categorical clinical, categorical morphological) for statistical analysis then adjusted for 

multiple testing within each group using the Benjamini & Hochberg method11. Significant 

associations between a variable and molecular groups overall were then further examined 

between pairs of molecular groups using either Fisher’s exact tests (for categorical variables) 

or two-tailed t-tests (for continuous variables). Additionally, Binomial tests (one-proportion z-

tests) were used to test for enrichment within each molecular group for particular feature levels, 

for example, to determine whether there were more typical samples in Ca A1 than expected. 

Variables with greater than one third of the cohort missing data (history of cancer, history of 

radiation, recurrence, neuroendocrine genetic disorder, location, asbestos exposure, and 

smoking pack years) were assessed for differences in proportion of missing data between 

molecular groups. Results not presented in main figures can be found in Supplementary Table 

S7.  

 

Kaplan-Meier survival estimates for molecular groups were calculated for both overall survival 

and event-free survival. Definitions of overall and event-free survival can be found in Section 

1.3.2. Results not presented in main figures can be found in Supplementary Table S8.   

 

9. Deep learning histopathological analyses 
 

9.1 Image pre-processing 
Haematoxylin/eosin (HE) or haematoxylin/eosin/saffron (HES) whole-slide images (WSIs) for 

212 patients from the lungNENomics cohort (193 with molecular group data) were available 

for use in deep learning histopathological analysis. WSIs were cut into 384 x 384 pixel tiles, 

and those with more than 80% background pixels were excluded, resulting in a dataset of 3.5 

million tiles. Tile colours were normalised using the colour deconvolution method proposed 

by Vahadane et al. 201668.  

 

9.2 Barlow Twins self-supervised deep learning model 
To identify correlations between morphological features of lung NETs and their molecular 

profiles, we first trained a self-supervised network to generate similar representations for tiles 

with common morphological features. We reused the Barlow Twins models originally 

proposed by Zbontar et al.69 and first applied to histological images by Quiros et al.70. The 

original Pytorch implementation of the model developed by Facebook Research was reused for 

this study (https://github.com/facebookresearch/barlowtwins). Two Wide ResNet-50 networks 

pre-trained on ImageNet were used as the Barlow Twins backbone. The model was trained on 

a subset of 300,000 randomly selected HE/HES tiles. A large batch size of 896 images was 
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chosen as proposed by Zbontar et al. so we developed a parallel implementation of Barlow 

Twins running simultaneously on 8 NVIDIA V100 GPUs with 16 GB of RAM each. After 

training for 240 epochs, Barlow Twins was used to create a reduced representation of the 3.5 

million tiles, generating 128-dimensional vectors for each input image. Similar vectors are 

assumed to have similar morphological features, and vice versa for dissimilar vectors. 

 

9.3 Computation of Leiden morphological partitions on Barlow Twins encoded 

vectors 
A random set of 200,000 encoded vectors generated by Barlow Twins was used to create 

morphological partitions based on the Leiden clustering algorithm71. The unweighted graphs 

required for the computation of the Leiden communities were constructed based on the inverse 

of the distances between the k nearest neighbours of the Barlow Twins encoded vectors from 

the selected tiles. To ensure the relevance of the Leiden clustering, the algorithm was run for 

100,000 iterations. The computation was accelerated on a single NVIDIA A100 GPU with 

80GB of RAM thanks to NVIDIA RAPIDS Suite of AI libraries (v24.4.0). Our implementation 

is available on GitHub at: 

https://github.com/IARCbioinfo/LeidenForTilesCommunity_accGPU . The resulting high-

performance implementation allowed us to explore the following hyperparameters: The 

number of neighbours used to construct the graphs, denoted 𝐾 ∈ [75, 125, 250, 400], and the 

Leiden resolution parameter denoted γ ∈ [0.25,0.75,1,1.25,1.5,2, 3]. 
 

We explored 32 combinations between these parameters, repeating the calculation of the 

Leiden algorithm five times per combination, to explore the reproducibility of this clustering 

technique. To select the best clustering, the silhouette scores were calculated for each run 

according to the cosine distances. The silhouette scores were first compared based on the 

parameter 𝐾, and then according to γ.  No value of 𝐾 was significantly associated with higher 

silhouette scores (P value = 0.07, Kruskal-Wallis). 𝐾 = 75 was chosen because it allows a faster 

computation of Leiden partitions. For the Leiden resolution parameter γ = 3, was associated 

with the highest silhouette scores. Finally, for 𝐾 = 75 and γ = 3 the second run was associated 

with the best value and then used to approximate Leiden partitions (Supplementary Fig. S25). 

 

Since the proportions of tiles in each of the resulting 116 Leiden partitions by WSI provide the 

information used to predict the diagnosis or molecular group of patients, each of the 3.5 million 

tiles had to be assigned to a Leiden partition. Therefore, for each tile, the partition of its nearest 

neighbour in the set used to calculate the Leiden groups was used as a proxy for its Leiden 

partition. 

 

9.4 Classification strategy based on Barlow Twins encoded vectors 
Before predicting the patient diagnoses or molecular group, the approximate Leiden partitions 

were filtered according to the following rules. First, since the partitions must include tiles from 

a sufficient number of WSIs to represent a meaningful morphological partition, the inverse of 

the Simpson index, which measures the diversity of a composition vector with non-negative 

entries that sum to one that correspond to the proportions of individuals from different 

categories72, was calculated for each partition. Partitions with a score ≤ 2, indicating low 

diversity (e.g., a partition that was only found in 2 samples and in the same number of tiles in 

each sample), were discarded to ensure sample diversity within partitions. Secondly, since the 

partitions must be significantly enriched for a group to be informative for a classifier, the 

enrichment per group and per partition was calculated. Only partitions with one or more groups 

associated with an enrichment score below 0.5 or over 1.5 were retained. 
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These rules were applied to the 116 Leiden partitions to retain 27 partitions to predict the 

histological type of 212 patients (Supplementary Fig. S13), and 41 partitions to predict the 

molecular group of 193 patients (Supplementary Fig. S14). The proportions of tiles per 

partition and per patient were used to obtain a single vector per WSI70. These vectors of 

proportions were used to train random forest models to predict either the patient’s diagnosis, 

i.e. typical or atypical, or their molecular group. A ‘leave one out’ strategy was used to predict 

once each patient once, based on a training set that included all the other patients. Weighted F1 

scores were computed to evaluate and compare model performance. Results are presented in 

Supplementary Tables S38 and S39. 

 

9.5 RoFormer-MIL supervised deep learning model 
The Multiple Instance Learning (MIL) RoFormer model73 was used as a supervised deep 

learning approach to directly predict the molecular group of each WSI and to identify 

morphological partitions associated with these groups, particularly in the absence of 

established histological hypotheses. RoFormer-MIL offers the following advantages over the 

random forest model used in section 9.4: i) it captures interactions between tiles within the 

WSI using its Transformer module; ii) it accounts for the relative spatial positioning of the tiles 

within the WSI, and iii) it assigns importance to the individual tiles during classification 

through the “Attention-based Deep Multiple Instance Learning” (ABMIL) attention scores74.  

 

We replaced the original naïve tile encoding method, which used a pre-trained ResNet 50 on 

ImageNet, with the encoded vectors obtained from Barlow Twins. RoFormer-MIL was trained 

using a multi-fold train/test strategy, to predict each WSI once. Thus, the 193 WSIs were split 

32-fold, with each fold containing five to nine samples in the test set and nine samples in the 

validation set.  

 

We modified the architecture of the model to adapt RoFormer-MIL to 128-dimensional 

encoding vectors (Supplementary Tables S40 and S41). To mitigate overfitting, the following 

adjustments were made: i) encoded vectors were standardised by WSI, ii) ReLU activation 

functions were substituted for leaky ReLU activations functions75, iii) Networks weights were 

initialised by with Xavier method76, and iv) early stop mechanisms and checkpoint saving were 

configured on the minimal validation loss rather than the maximum binary accuracy as 

originally proposed. 

 

9.6 Leiden morphological partitions based on RoFormer-MIL highest attention 

scores 
The top 5% of ABMIL attention scores by channel and WSI were used to select the encoding 

vectors to compute Leiden clusters. Only correctly predicted WSIs were used, as the aim of 

these clusters was to discover the significant morphological features that led to correct 

classification. In total, 286,097 vectors were selected, the same parameters as in the self-

supervised branch were explored, except for the number of neighbours 𝐾 = 400, which was 

excluded due to memory constraints. To select the best clustering, silhouette coefficients based 

on cosine distances were calculated for each run. The clusters obtained with 𝐾 = 250 had a 

significantly higher silhouette coefficient. The 𝛾 value that maximised the silhouette coefficient 

values was 2.0. Finally, the third run with 𝐾 = 250 and γ =  2 was associated with the highest 

silhouette coefficient and was therefore chosen as the best cluster for interpreting the Leiden 

scores (Supplementary Fig. S25). 
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The resulting 75 Leiden partitions were then filtered according to the criteria defined in Section 

9.4. The first criterion eliminated 34 partitions, and the second excluded 10 more, leaving 31 

partitions after filtering (Supplementary Fig. S16, Supplementary Table S42). 

 

9.7 Pathological review to interpret deep learning-based results 
 

9.7.1 Partition level interpretability and selection of morphological features 

For each of the 31 remaining partitions, five of the six pathologists assessed their 

interpretability based on a random selection of 28 tiles per partition. The evaluation included 

three criteria: i) whether the partition needed to be excluded because it represented recurrent 

artefacts, such as blurred images, or damaged tissue; ii) whether the partition was homogenous 

enough to be described globally without requiring a tile-by-tile annotation; and iii) whether 50 

tiles was estimated as sufficient to capture the morphological heterogeneity, or if additional 

tiles were required for a comprehensive description. 

 

The results of this first step are summarised in Supplementary Table S43, where the majority 

rule was applied to aggregate the responses of all pathologists (Supplementary Table S43). 

Three partitions (9, 10, and 25) were excluded due to the presence of significant artefacts. Four 

partitions (28, 39, 58, and 70) were initially discarded because they contained few tumour cells, 

however, were reported to have other potential features of interest such as stroma and 

parenchyma and were therefore retained. Partitions 28, 39 and 70 were sufficiently described 

based on comments during this first evaluation step and were therefore considered globally 

annotated, whilst partition 58 underwent tile-by-tile annotation. 

 

Of the 25 remaining partitions, 12 were deemed sufficiently homogeneous to be described 

globally, while 13 (including partition 58) required a tile-by-tile description due to significant 

morphological heterogeneity. To reduce the workload, partitions were distributed between two 

pathologists per group, with separate assignments for global and tile-by-tile annotation. A 

preliminary list of morphological features relevant to lung carcinoids was compiled for 

annotation. Pathologists reviewed this list, providing input on its relevance and suggesting 

additional features. All proposed modifications were incorporated into the final list for the 

second step of annotation. The selected features were grouped into the following categories: 

• Cell composition: 

o Presence of immune cells (macrophages, lymphocytes, etc) 

o Stroma description: fibroblasts, endothelial cells, etc. 

o Additional non-tumoural cells (ciliated cells, chondrocytes, etc) 

• Tissue description: 

o Presence of necrosis or fibrosis 

o Tissue architecture 

• Description of tumour cells: 

o Tumour cell size 

o Nucleus-to-cytoplasm ratio 

o Tumour cell shape 

o Additional features (conspicuous nucleoli, salt-and-pepper chromatin, etc) 

 

9.7.2 Global annotations  

Partitions that were sufficiently homogeneous for global description were presented to one pair 

of pathologists using the 28 tiles from the first step. In this second step, each pathologist 
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assessed whether the selected morphological features were present. Supplementary Table S44 

summarises these annotations. Each partition was independently reviewed by two pathologists. 

 

9.7.3 Tile-by-tile annotations  

Partitions exhibiting significant morphological heterogeneity were annotated on a tile-by-tile 

basis. A random selection of 50 tiles per partition was uploaded to the Label Studio web 

application (https://labelstud.io/) where pathologists reviewed individual tiles and assigned 

annotations by selecting our predefined features (Supplementary Fig. S15). Each partition 

was independently annotated by two pathologists, and all annotations are provided in 

Supplementary Table S45. For partition 58, an extended set of 75 tiles was annotated, while 

all other partitions followed the standard 50-tile annotation protocol. 

 

9.7.4 Interpretation of annotations 

To consolidate individual annotations, features were classified into three categories: 

• ‘Yes’: indicating that the feature was identified by both pathologists, either at the tile 

level (for tile-by-tile annotations) or at the partition level (for globally annotated 

partitions). 

• ‘No’: indicating that the feature was not identified by either pathologist. 

• ‘Maybe’: indicating the feature was identified by only one of the two pathologists.  

 

This rule was applied to all features except those associated with higher uncertainty, for which 

additional considerations were implemented: 

• ‘Tumour cell size’ and ‘N:C ratio’ (nucleus-to-cytoplasm ratio): in the absence of a 

defined threshold or measuring tool, the annotation "unusually large" or "unusually 

small" was recorded only if both pathologists agreed. Otherwise, the feature was left 

unspecified (NA), with “medium” as the default classification. 

• ‘Tissue architecture’: due to the inherent difficulty of assessing architecture in small 

tiles, only structures identified by both pathologists were considered. No architectural 

combinations were accepted, except for “organoid and trabecular”, as trabecular is a 

subcategory of organoid architecture77. Additionally, the nested cell architecture was 

classified under organoid. 

 

For tile-by-tile annotated partitions, a Fisher's exact test was performed to assess whether 

specific features were significantly enriched in a given partition compared to others, and P 

values were corrected for multiple testing using the Benjamini-Hochberg method 

(Supplementary Table S45, Supplementary Figs. S17 and 18).  

 

Finally, feature prevalence was evaluated across molecular groups. A total of 29 features were 

evaluated. For partitions annotated tile-by-tile, the proportions of ‘yes’ and ‘maybe’ were 

summed, with the ‘maybe’ level assigned half the weight of the ‘yes’ level. For globally 

annotated partitions, ‘yes’ corresponded to 100% of the tiles displaying the feature, ‘maybe’ to 

50% of the tiles, and ‘no’ to 0% of the tiles displaying the feature. Permutation tests (10,000 

replicates) were performed to compare the means of the groups: a global test to compare the 

three groups, and pairwise tests for each pair of groups (Supplementary Figs. S17 and S18). 

P values were corrected for multiple testing using the Benjamini-Hochberg method, leading to 

13 out of 29 features significant at the 5% threshold (Supplementary Table S45). 

 

9.8 Generalisation of the presence of key morphological features 
To estimate the presence of identified morphological features based on pathological review, 

we used the CONCH78 visual-language foundation model. All tiles were first embedded using 
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the CONCH image encoder. To assess the relevance of specific text prompts corresponding to 

key features identified by pathologists, cosine similarity scores were computed for manually 

annotated tiles. For validation, the model was tested on selected annotated tiles. For example, 

using 100 tiles annotated as containing spindle-shaped cells and 451 tiles without this feature 

(as determined by two pathologists), the prompt “spindle shape” achieved a ROC-AUC score 

of 0.89. Similarly, the prompt “fibrotic tissue” yielded a ROC-AUC score of 0.74, based on 

112 tiles containing this feature and 343 tiles without. Following this prompt evaluation step, 

cosine similarity scores were computed between each text prompt and all tiles. Finally, the 

median cosine similarity score was calculated per WSI, providing a single value per slide. 

These scores were then used to compare the distribution of morphological features across 

different molecular groups (Fig. 3d). In order to test the robustness of the results to the text 

prompt used, we repeated the analysis using 21 alternative prompts for spindle cells (e.g., 

“narrow spindle shape” or “narrow, elongated cells”) and fibrosis (e.g., “fibrous tissue with 

collagen” or “fibrous connective tissue with collagen bundles”; Extended Data Fig. 4d). 

 

9.9 Morphological review for classification 
H&E slides for 22 unclassified/misclassified cases from the immunohistochemistry panel 

classification (see Section 11) were provided to pathologist M.V. for review and classification. 

M.V was instructed to firstly indicate the presence or absence of four features (spindle cell 

shape, organoid architecture, solid architecture, fibrosis) by selecting one of four levels from a 

dropdown menu (absent, low presence, moderate presence, or high presence). Then he was 

asked to use this information to assign a molecular group of Ca A1, Ca A2, or Ca B based on 

the following guidelines. Ca A1: frequent spindle cells, solid architecture and fibrosis, rarely 

organoid architecture; Ca A2: frequent organoid architecture and fibrosis, few spindle cells; Ca 

B: frequent solid architecture, few spindle cells. Results are presented in Supplementary 

Figure S12 and Supplementary Table S37.  
 

10. Digital spatial profiling 
 

10.1 Experimental set up 
To assess the heterogeneity of lung NETs and to characterise the tumour microenvironment, 

we used NanoString GeoMx's Digital Spatial Profiling (DSP) technology79. The DSP data 

combine immune cell and tumour cell areas from 64 patients in the lung NET cohort, including 

25 Ca A1, 18 Ca A2, and 21 Ca B patients (Supplementary Fig. S5). A total of 513 areas of 

interest (AOIs) were selected blindly, with regard to the molecular group, and processed at the 

Centre Léon Berard (Supplementary Fig. S5). Immune AOIs were selected based on CD45 

expression assessed by UV illumination, and tumour cell AOIs by fluorescence of PanCk. The 

expression of 39 proteins from three panels (immune cells, immune activation state, and 

immune cell typing) was spatially quantified using the NanoString nCounter® platform. 

 

10.2 DSP data quality control and normalisation 
We performed quality control on the selected AOIs and protein probes according to the 

instructions in the GeoMx Data Analysis and nCounter user manuals, as well as the protein 

normalisation strategy. A total of 44 AOIs (8.6%) were excluded (Supplementary Fig. S5): 

four due to mixed tumour/immune region design, 16 due to a low number of nuclei (i.e. less 

than 20), six due to a low surface area (i.e. less than 1600 μm2), 15 due to lack of collected 

material, and three with insufficient expression of the housekeeper probes S6, Histone H3 and 

GAPDH (i.e. the logarithm of their geometric mean was considered an outlier with respect to 

the rest of the distribution, being less than five) or too low expression of the negative control 
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probes Rb IgG, Ms IgG2 (i.e. the logarithm of their geometric mean was less than three with 

respect to the rest). This resulted in available data for 469 AOIs.  

 

To check the quality of the protein measurements, the signal to background ratios of each probe 

were calculated, where the background signal was defined as the geometric mean of the 

negative controls. We excluded all proteins for which the mean log2 signal to background ratio 

was less than zero. Nine proteins were excluded according to the quality control performed 

within tumour cell AOIs, i.e. AOIs fluorescing at PanCk: CD66b, CD163, CD80, PD-L1, 

CD27, ICOS, PD-L2, CD40, and PD-1. For immune cells AOIs (fluorescently labelled with 

CD45), five proteins were excluded: CD80, PD-L2, CD66b, PD-L1, and FOXP3. As tumour 

and immune cell AOIs were analysed together, a common set of non-control proteins that 

passed this quality control step was determined, resulting in the inclusion of 23 immune-related 

proteins (Supplementary Fig. S5). 

 

10.3 Molecular group prediction for AOIs  
To evaluate the ability of the selected immune proteins to distinguish the three main molecular 

groups, namely Ca A1, Ca A2, and Ca B, we employed random forest (RF) models to predict 

individual AOIs based on the molecular group defined at the patient level through multi-omics 

analysis (see Section 8.1). The original RF model (RF1) used normalised counts of 23 proteins 

as the input features and were trained using a five-fold cross-validation approach. This training 

process was repeated 100 times, resulting in each AOI being predicted 100 times. The 

probabilities for each class were averaged across the 100 predictions. AOIs were deemed 

unclassifiable if the ratio of the highest to second-highest average probability was less than 1.5; 

otherwise, the AOIs were assigned to the molecular group corresponding to the most probable 

class. The model's performance at the AOI level was evaluated using contingency matrices and 

F1 scores (Supplementary Fig. S6, Supplementary Table S13). AOIs were deemed correctly 

classified if the predicted molecular group corresponded with the molecular group assigned at 

the patient level. We hypothesised that misclassification of AOIs might result from intra-

tumour heterogeneity in the immune microenvironment across AOIs from the same patient 

rather than inaccuracies in the RF1 model. To test this hypothesis, a new set of RF models 

(RF2) was trained only on AOIs that had been correctly classified, because these AOIs 

presumably represent AOIs with immune microenvironments matching the patient-level group 

label, using the same methodology as in RF1. We then performed a prediction for AOIs that 

had been misclassified by the RF1 model using RF2. The high reproducibility of predictions 

between the original RF1 and the RF2 models (Supplementary Fig. S6, Supplementary 

Table S13) validated the reliability of the decision rules. The final molecular group prediction 

for each AOI, used in subsequent analyses, was inferred from RF2 models, and AOIs for which 

the predicted molecular group differed from the patient-level assignment were interpreted as 

indicative of intra-tumoural heterogeneity (Supplementary Fig. S6, Supplementary Table 

S13). The intra-tumoural heterogeneity of immune proteins was illustrated by the prediction of 

each AOI per patient (Supplementary Fig. S8). Furthermore, this intra-tumoural heterogeneity 

within each molecular group was summarised by the prediction frequencies of each molecular 

group (Supplementary Fig. S8). Finally, for each molecular group a Binomial test was 

performed to determine whether one of the two groups that contradicted the patient's true group 

was more likely (Supplementary Table S13). 

 

10.4 The most discriminating immune proteins of molecular groups 
To rank the proteins based on their ability to discriminate the three molecular groups, RF 

models were trained to classify the molecular groups of the AOIs, and the mean decrease in 

Gini index for each protein was recorded. In this third set of RF models, only AOIs that were 
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correctly classified by the second set of models, meaning their predictions matched the 

molecular group defined at the patient level, were included. The models were trained using a 

five-fold cross-validation strategy, repeated 100 times. The average decrease in Gini index for 

each protein across all models was then calculated to rank the proteins according to their 

discriminatory power for molecular group determination (Supplementary Fig. S7, 

Supplementary Table S14). To determine the minimum number of proteins needed to 

replicate the classification performance of the second set of RF models, new RF models were 

trained using progressively larger sets of the top n most predictive proteins from the previous 

ranking. The same training strategy was applied. For each set of these new RF models, the 

weighted average F1 score of the classifications was calculated and reported (Supplementary 

Fig. S7). Subsequently, the elbow method was employed to identify the smallest set of proteins 

that achieved the performance of the second set of RF models. For each protein in this optimal 

set, normalised counts were reported by patient molecular group and according to the molecular 

groups predicted at the AOI level (Supplementary Fig. S7). 

 

11. Immunohistochemistry classification panel  
Ninety samples from the lung NET cohort with FFPE tissue available that had been classified 

as Ca A1, Ca A2 or Ca B as described in Section 8.1 were randomly selected for assessment 

by immunohistochemistry (IHC). IHC staining for ASCL1, HNF1A, and OTP was performed 

at Maastricht University Medical Centre following the protocol described in Leunissen et al.80. 

H-score cutoffs for classification as Ca A1, Ca A2, and Ca B are as follows: OTP ≥ 40 & 

ASCL1 ≥ 10 (Ca A1); OTP ≥ 150 & HNF1A ≥ 30 (Ca A2); OTP ≤ 20 & HNF1A ≥ 80 (Ca B). 

H-scores, predicted molecular group, and true molecular group are shown in Supplementary 

Table S37, example images are shown in Supplementary Fig. S12. 

References 

 

1. Mathian, É. et al. Assessment of the current and emerging criteria for the 

histopathological classification of lung neuroendocrine tumours in the lungNENomics 

project. ESMO Open 9, 103591 (2024). 

2. WHO Classification of Tumours Editorial Board. Thoracic Tumours 5th Edn. vol. 5 

(International Agency for Research on Cancer, Lyon, 2021). 

3. Fernandez-Cuesta, L. et al. Frequent mutations in chromatin-remodelling genes in 

pulmonary carcinoids. Nat Commun 5, (2014). 

4. Peifer, M. et al. Integrative genome analyses identify key somatic driver mutations of 

small-cell lung cancer. Nat Genet 44, (2012). 

5. George, J. et al. Comprehensive genomic profiles of small cell lung cancer. Nature 524, 

(2015). 

6. George, J. et al. Integrative genomic profiling of large-cell neuroendocrine carcinomas 

reveals distinct subtypes of high-grade neuroendocrine lung tumors. Nat Commun 9, 

1048 (2018). 

7. Alcala, N. et al. Integrative and comparative genomic analyses identify 

clinically relevant pulmonary carcinoid groups and unveil the supra-carcinoids. Nat 

Commun 10, (2019). 

8. Laddha, S. V et al. Integrative genomic characterization identifies molecular subtypes 

of lung carcinoids. Cancer Res 79, (2019). 

9. Miyanaga, A. et al. Whole-exome and RNA sequencing of pulmonary carcinoid reveals 

chromosomal rearrangements associated with recurrence. Lung Cancer 145, 85–94 

(2020). 



33 

10. Dayton, T. L. et al. Druggable growth dependencies and tumor evolution analysis in 

patient-derived organoids of neuroendocrine neoplasms from multiple body sites. 

Cancer Cell 41, 2083-2099.e9 (2023). 

11. Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical and 

Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society: Series 

B (Methodological) 57, 289–300 (1995). 

12. Alcala, N. et al. Multi-omic dataset of patient-derived tumor organoids of 

neuroendocrine neoplasms. Gigascience 13, (2024). 

13. Di Genova, A. et al. A molecular phenotypic map of malignant pleural mesothelioma. 

Gigascience 12, (2022). 

14. Mangiante, L. et al. Multiomic analysis of malignant pleural mesothelioma identifies 

molecular axes and specialized tumor profiles driving intertumor heterogeneity. Nat 

Genet 55, 607–618 (2023). 

15. Jia, P. et al. MSIsensor-pro: Fast, Accurate, and Matched-normal-sample-free Detection 

of Microsatellite Instability. Genomics Proteomics Bioinformatics 18, 65–71 (2020). 

16. Campbell, P. J. et al. Pan-cancer analysis of whole genomes. Nature 578, (2020). 

17. Martínez-Jiménez, F. et al. A compendium of mutational cancer driver genes. Nat Rev 

Cancer 20, 555–572 (2020). 

18. Degasperi, A. et al. Substitution mutational signatures in whole-genome-sequenced 

cancers in the UK population. Science 376, (2022). 

19. Nguyen, L., W M Martens, J., Van Hoeck, A. & Cuppen, E. Pan-cancer landscape of 

homologous recombination deficiency. Nat Commun 11, 5584 (2020). 

20. Morrison, M. L. et al. Variability of mutational signatures is a footprint of carcinogens. 

medRxiv 2023.11.23.23298821-2023.11.23.23298821 (2023) 

doi:10.1101/2023.11.23.23298821. 

21. Hundal, J. et al. pVACtools: A Computational Toolkit to Identify and Visualize Cancer 

Neoantigens. Cancer Immunol Res 8, 409–420 (2020). 

22. Zapata, L. et al. Immune selection determines tumor antigenicity and influences 

response to checkpoint inhibitors. Nat Genet 55, (2023). 

23. Li, Q. & Wang, K. InterVar: Clinical Interpretation of Genetic Variants by the 2015 

ACMG-AMP Guidelines. Am J Hum Genet 100, 267–280 (2017). 

24. Jahn, A. et al. Comprehensive cancer predisposition testing within the prospective 

MASTER trial identifies hereditary cancer patients and supports treatment decisions for 

rare cancers. Ann Oncol 33, 1186–1199 (2022). 

25. Vollbrecht, C. et al. Mutational analysis of pulmonary tumours with neuroendocrine 

features using targeted massive parallel sequencing: a comparison of a neglected tumour 

group. Br J Cancer 113, 1704–11 (2015). 

26. Rekhtman, N. et al. Next-generation sequencing of pulmonary large cell neuroendocrine 

carcinoma reveals small cell carcinoma-like and non-small cell carcinoma-like subsets. 

Clinical Cancer Research 22, (2016). 

27. Simbolo, M. et al. Lung neuroendocrine tumours: deep sequencing of the four World 

Health Organization histotypes reveals chromatin-remodelling genes as major players 

and a prognostic role for TERT, RB1, MEN1 and KMT2D. J Pathol 241, 488–500 

(2017). 

28. Simbolo, M. et al. Gene Expression Profiling of Lung Atypical Carcinoids and Large 

Cell Neuroendocrine Carcinomas Identifies Three Transcriptomic Subtypes with 

Specific Genomic Alterations. J Thorac Oncol 14, 1651–1661 (2019). 

29. Halaburkova, A. et al. Pan-cancer multi-omics analysis and orthogonal experimental 

assessment of epigenetic driver genes. Genome Res 30, 1517–1532 (2020). 

30. Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov 12, 31–46 (2022). 



34 

31. Haas, B. J. et al. Accuracy assessment of fusion transcript detection via read-mapping 

and de novo fusion transcript assembly-based methods. Genome Biol 20, (2019). 

32. Uhrig, S. et al. Accurate and efficient detection of gene fusions from RNA sequencing 

data. Genome Res 31, (2021). 

33. Finotello, F. et al. Molecular and pharmacological modulators of the tumor immune 

contexture revealed by deconvolution of RNA-seq data. Genome Med 11, 34 (2019). 

34. Sturm, G. et al. Comprehensive evaluation of transcriptome-based cell-type 

quantification methods for immuno-oncology. Bioinformatics 35, i436–i445 (2019). 

35. Combes, A. J. et al. Discovering dominant tumor immune archetypes in a pan-cancer 

census. Cell 185, 184-203.e19 (2022). 

36. Ayers, M. et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 

blockade. J Clin Invest 127, 2930–2940 (2017). 

37. Gay, C. M. et al. Patterns of transcription factor programs and immune pathway 

activation define four major subtypes of SCLC with distinct therapeutic vulnerabilities. 

Cancer Cell 39, 346-360.e7 (2021). 

38. Wang, X., Park, J., Susztak, K., Zhang, N. R. & Li, M. Bulk tissue cell type 

deconvolution with multi-subject single-cell expression reference. Nat Commun 10, 380 

(2019). 

39. Dayton, T., Hartigh, L. Den, Böttinger, L., Chuva de Sousa Lopes, S. M. & Clevers, H. 

PO-271 Using human lung organoids to study pulmonary neuroendocrine cells. ESMO 

Open 3, A126 (2018). 

40. Conchola, A. S. et al. Regionally distinct progenitor cells in the lower airway give rise 

to neuroendocrine and multiciliated cells in the developing human lung. Proc Natl Acad 

Sci U S A 120, (2023). 

41. Bischoff, P. et al. The single-cell transcriptional landscape of lung carcinoid tumors. Int 

J Cancer 150, 2058–2071 (2022). 

42. Reddy, J. et al. Predicting master transcription factors from pan-cancer expression data. 

Sci Adv 7, eabf6123 (2021). 

43. Saint-André, V. et al. Models of human core transcriptional regulatory circuitries. 

Genome Res 26, 385–96 (2016). 

44. Lambert, S. A. et al. The Human Transcription Factors. Cell 172, 650–665 (2018). 

45. Menyhart, O., Kothalawala, W. J. & Győrffy, B. A gene set enrichment analysis for the 

cancer hallmarks. J Pharm Anal 101065 (2024) doi:10.1016/j.jpha.2024.101065. 

46. Travaglini, K. J. et al. A molecular cell atlas of the human lung from single-cell RNA 

sequencing. Nature 587, 619–625 (2020). 

47. Kuo, C. S. et al. Neuroendocrinology of the lung revealed by single-cell RNA 

sequencing. Elife 11, (2022). 

48. Hua, X. et al. Roles of S100 family members in drug resistance in tumors: Status and 

prospects. Biomed Pharmacother 127, 110156 (2020). 

49. Meng, D., Zhao, L., Liu, J., Ge, C. & Zhang, C. Identification of the Immune Subtypes 

for the Prediction of Metastasis in Pancreatic Neuroendocrine Tumors. 

Neuroendocrinology 113, 719–735 (2023). 

50. Borromeo, M. D. et al. ASCL1 and NEUROD1 Reveal Heterogeneity in Pulmonary 

Neuroendocrine Tumors and Regulate Distinct Genetic Programs. Cell Rep 16, 1259–

1272 (2016). 

51. Chan, C. S. et al. ATRX, DAXX or MEN1 mutant pancreatic neuroendocrine tumors 

are a distinct alpha-cell signature subgroup. Nat Commun 9, 4158 (2018). 

52. Busse, A. et al. Immunoprofiling in Neuroendocrine Neoplasms Unveil 

Immunosuppressive Microenvironment. Cancers (Basel) 12, (2020). 



35 

53. Greenberg, J. A. et al. Developing a Predictive Model for Metastatic Potential in 

Pancreatic Neuroendocrine Tumor. J Clin Endocrinol Metab 110, 263–274 (2024). 

54. Venet, D., Dumont, J. E. & Detours, V. Most random gene expression signatures are 

significantly associated with breast cancer outcome. PLoS Comput Biol 7, (2011). 

55. Bielski, C. M. et al. Genome doubling shapes the evolution and prognosis of advanced 

cancers. Nat Genet 50, (2018). 

56. Mak, M. P. et al. A Patient-Derived, Pan-Cancer EMT Signature Identifies Global 

Molecular Alterations and Immune Target Enrichment Following Epithelial-to-

Mesenchymal Transition. Clin Cancer Res 22, 609–20 (2016). 

57. Davis, E. et al. Enhancer landscape of lung neuroendocrine tumors reveals regulatory 

and developmental signatures with potential theranostic implications. Proc Natl Acad 

Sci U S A 121, e2405001121 (2024). 

58. Moonen, L. et al. Differential Orthopedia Homeobox expression in pulmonary 

carcinoids is associated with changes in DNA methylation. Int J Cancer 150, 1987–1997 

(2022). 

59. Werr, L. et al. TERT Expression and Clinical Outcome in Pulmonary Carcinoids. J Clin 

Oncol 43, 214–225 (2025). 

60. Ma, Y. & Zhou, X. Accurate and efficient integrative reference-informed spatial domain 

detection for spatial transcriptomics. Nat Methods 21, 1231–1244 (2024). 

61. Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial 

transcriptomics. Nat Biotechnol 40, 1349–1359 (2022). 

62. Chen, Y. A New Methodology of Spatial Cross-Correlation Analysis. PLoS One 10, 

e0126158 (2015). 

63. Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. Nat 

Commun 12, 1088 (2021). 

64. Dimitrov, D. et al. LIANA+ provides an all-in-one framework for cell-cell 

communication inference. Nat Cell Biol 26, 1613–1622 (2024). 

65. Argelaguet, R. et al. MOFA+: A statistical framework for comprehensive integration of 

multi-modal single-cell data. Genome Biol 21, (2020). 

66. Hausser, J. et al. Tumor diversity and the trade-off between universal cancer tasks. Nat 

Commun 10, (2019). 

67. Hausser, J. & Alon, U. Tumour heterogeneity and the evolutionary trade-offs of cancer. 

Nat Rev Cancer 20, (2020). 

68. Vahadane, A. et al. Structure-Preserving Color Normalization and Sparse Stain 

Separation for Histological Images. IEEE Trans Med Imaging 35, 1962–71 (2016). 

69. Zbontar, J., Jing, L., Misra, I., LeCun, Y. & Deny, S. Barlow Twins: Self-Supervised 

Learning via Redundancy Reduction. Proceedings of the 38th International Conference 

on Machine Learning 139, 12310–12320 (2021). 

70. Quiros, A. C. et al. Mapping the landscape of histomorphological cancer phenotypes 

using self-supervised learning on unannotated pathology slides. Nat Commun 15, 4596 

(2024). 

71. Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-

connected communities. Sci Rep 9, 5233 (2019). 

72. Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006). 

73. Pochet, E., Maroun, R. & Trullo, R. RoFormer for Position Aware Multiple Instance 

Learning in Whole Slide Image Classification. International Workshop on Machine 

Learning in Medical Imaging 437–446 (2023). 

74. Ilse, M., Tomczak, J. & Welling, M. Attention-based deep multiple instance learning. in 

International conference on machine learning 2127–2136 (PMLR, 2018). 



36 

75. Maas, A. L., Hannun, A. Y. & Ng, A. Y. Rectifier nonlinearities improve neural network 

acoustic models. in Proc. icml vol. 30 3 (Atlanta, GA, 2013). 

76. Glorot, X. & Bengio, Y. Understanding the difficulty of training deep feedforward 

neural networks. in Proceedings of the thirteenth international conference on artificial 

intelligence and statistics 249–256 (JMLR Workshop and Conference Proceedings, 

2010). 

77. Klimstra, D. S., Modlin, I. R., Coppola, D., Lloyd, R. V & Suster, S. The pathologic 

classification of neuroendocrine tumors: a review of nomenclature, grading, and staging 

systems. Pancreas 39, 707–12 (2010). 

78. Lu, M. Y. et al. A visual-language foundation model for computational pathology. Nat 

Med 30, 863–874 (2024). 

79. Merritt, C. R. et al. Multiplex digital spatial profiling of proteins and RNA in fixed 

tissue. Nat Biotechnol 38, 586–599 (2020). 

80. Leunissen, D. J. G. et al. Identification of defined molecular subgroups on the basis of 

immunohistochemical analyses and potential therapeutic vulnerabilities of pulmonary 

carcinoids. Journal of Thoracic Oncology 20, 451–464 (2025). 

  


