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1. Study cohort

1.1 The lungNENomics project cohort

The majority of samples used in this study are from the lungNENomics project cohort, a multi-
national mixed retrospective and prospective cohort of over 400 lung neuroendocrine tumour
patients, established by L.F-C and M.F of the Computational Cancer Genomics Team.

Fresh-frozen and formalin-fixed, paraffin-embedded (FFPE) tumour tissues, fresh-frozen
adjacent normal lung tissue, and whole blood were collected at diagnosis during surgical
resection from 12 contributing centres. Patients provided informed consent for tissue collection
and its use in histopathological and molecular analyses (including somatic and germline whole-
genome sequencing), as well as for the collection of de-identified clinical data. This study was
approved by the International Agency for Research on Cancer Ethics Committee (project
number 19-07).

In total, 201 patients from the lungNENomics cohort underwent molecular analysis for this
study. WGS was performed for 72 patients, RNA sequencing for 179, and DNA methylation
array profiling for 191. All three types of omics data were generated for 60 patients, while an
additional 109 were covered by both RNA sequencing and DNA methylation array profiling.
For 41 patients, multi-region samples were available (intra-tumoural heterogeneity, ITH,
samples). These patients had between two and seven tissue samples from different tumour
regions analysed. Four patients underwent spatial transcriptomics (see section 4), and 64
underwent spatial proteomics (see section 10).

1.1.1 Central pathology review

Where FFPE material was available, samples underwent blinded central pathology review by
six pathologists (L.B., S.L., AM-L., M.G.P., G.P., and J-M.V.). A detailed description of
sample review and the subsequent outcome can be found in Mathian et al. 2023'. Briefly, i)
pathologists were instructed to follow the guidelines in the WHO Classification of Thoracic
Tumours 5th edition? for the classification as typical or atypical pulmonary carcinoid: mitotic
count and presence or absence of necrosis, ii) each pathologist assigned a diagnosis of typical
or atypical per patient, and iii) a final diagnosis was made based on the majority vote.

Central pathology review was performed on 187 of the 201 patients, and 10 additional patients
from Fernandez-Cuesta et al. 2014° (see section 1.3). This resulted in a different diagnosis
from that reported by the contributing centre in 55 cases. As the FFPE slides reviewed by the
central pathology team were not necessarily the same slides used for initial diagnosis, it was
decided that the review classification could only be used to upgrade (from typical to atypical)
but not downgrade tumours. A final ‘type’ label was therefore assigned to each patient based
on their initial and central pathology review diagnosis as follows: initial typical + review
typical = typical; any initial diagnosis + review atypical = atypical; any initial diagnosis +
review undetermined/insufficient tissue = carcinoid; initial atypical + review typical =
carcinoid; any initial diagnosis + review ‘AC NETG3 LCNEC’ = NET G3. Samples that were
not reviewed by central pathology (n = 14) were labelled ‘carcinoid’.

1.1.2 DNA and RNA extraction

Unless otherwise stated, whole-genome sequencing, RNA sequencing, and DNA methylation
array data were generated from fresh-frozen tissue. Frozen tissue samples were evaluated by
the study pathologist (S.L), those with at least 70% tumour content were selected for
downstream DNA and RNA extraction.



DNA extraction was performed using the Gentra Puregene Tissue Kit (158667, Qiagen,
samples extracted between 2018 and 2020), or the DNAdvance Tissue Kit (A48705, Beckman
Coulter, samples extracted from 2021 onwards), following the manufacturer’s instructions. All
DNA samples were quantified using the fluorometric method (Qubit dSDNA BR Assay Kit,
Life Technologies) and assessed for purity (260/280 and 260/230 ratios) by NanoDrop
(Thermo Scientific). RNA extraction was performed using the miRNeasy Mini Kit (217004,
Qiagen, samples extracted between 2018-2020), or the RNAdvance Tissue Kit (A32646,
Beckman Coulter, samples extracted from 2021 onwards), following the manufacturer’s
instructions, and then treated with DNase I for 15 min at 30°C. RNA concentration and sample
purity (260/280 and 260/230 ratios) were assessed using NanoDrop (Thermo Scientific). DNA
and RNA integrity were checked with a TapeStation 4200 system using, respectively, Genomic
DNA ScreenTapes and Reagents, and RNA ScreenTapes and Reagents, Agilent Technologies.

1.2 Publicly available datasets

Additional datasets used in this study were obtained from the following publications: Peifer et
al. 2012* (accession number: EGAS00001000925), Fernandez-Cuesta et al. 2014°
(EGAS00001000650), George et al. 2015° (EGAS00001000925), George et al. 2018°
(EGAS00001000708), Alcala et al. 20197 (EGAS00001003699), Laddha et al. 20198
(GSE118131), Miyanaga et al. 2020° (GSE142186), and Dayton et al. 2023
(EGAS00001005752). Data type and sample numbers are provided in the relevant data
processing sections.

1.3 Lung NET and lung NEN cohorts

To maximise our ability to characterise rare lung neuroendocrine tumours (lung NETs), the
201 samples from the lungNENomics cohort were combined with 115 lung NET samples from
previous Computational Cancer Genomics team members publications (Fernandez-Cuesta et
al. 2014, Alcala et al. 2019 and Dayton et al. 2023), and two previously published lung NETs
studies (Laddha ef al. 2019 and Miyanaga et al. 2020) which clustered with LCNEC (supra-
carcinoids, see Section 6.1). Unless otherwise stated, all analyses were performed on this
combined study cohort, subsequently referred to as the lung NET cohort (Supplementary
Table S1). To investigate associations with lung neuroendocrine carcinomas, the lung NET
cohort was combined with 73 large cell neuroendocrine carcinomas (LCNEC) from George et
al. 2018 to form the lung NEN cohort. See Supplementary Fig. S1, and Supplementary
Tables S1-S3 for a summary of the lung NET and lung NEN cohorts.

1.3.1 Examination of technical and clinical features of lung NET and lung NEN cohorts

Technical and clinical features of interest were assessed for their statistically significant
relationship with one another. Technical features examined were sample source (study), omics
group (data type availability), whole-genome sequencing batch, RNA sequencing batch, DNA
methylation array batch, Sentrix ID and Sentrix position, and tumour purity estimated by 1)
study pathologist (S.L.), i1) whole-genome sequencing (see Section 2.11), and iii)) RNA
sequencing (see Section 3.6). Clinical features examined were sex (inferred, see Sections 2.3,
3.3 and 5.3), age category (continuous age values were cut into three groups: (15.9 — 40.7],
(40.7 — 65.3], (65.3 — 90.1]), type (see Section 1.1.1), tumour location, stage, recurrence,
smoking status, history of asbestos exposure, history of cancer, history of radiation exposure,
and history of neuroendocrine genetic disorder. Unless otherwise stated, the associations
between categorical variables were assessed with Fisher’s exact tests, and between continuous
and categorical variables with linear regression. Variables were grouped by theme (categorical
technical, continuous technical, categorical clinical, and continuous clinical) for statistical



analysis then adjusted for multiple testing within each group using the Benjamini & Hochberg
method!!. Results can be found in Supplementary Table S2.

1.3.2 Survival analysis of lung NET and lung NEN cohorts

Clinical features were also tested for their association with patient survival. Cox proportional
hazards models were used to estimate the hazard ratio of each feature with regard to overall
and event-free survival. For the lung NET cohort, clinical features tested were inferred sex, age
category, type, tumour location, stage, recurrence, smoking status, history of asbestos
exposure, and history of cancer. Insufficient sample numbers were available to test history of
radiation exposure or history of neuroendocrine genetic disorder. For LCNEC samples, clinical
features tested were sex, age category, stage and smoking status, no other variables were
available.

For overall survival, death from disease or unknown cause was considered an event, whilst
death from non-disease related known causes, and survival, were labelled as ‘no event’. For
event-free survival, death from disease or unknown cause, or tumour recurrence (at the primary
site or elsewhere) were considered events, whilst no recurrence during the study period was
labelled ‘no event’, patients who had no reported tumour recurrence but who died of an
unrelated cause were censored on the date of unrelated death and labelled ‘no event’. Patients
were censored on the date of most recent follow up, or day of unrelated death, time from date
of diagnosis to event or censor was calculated in months. Results can be found in
Supplementary Table S3.

2. Whole-genome sequencing

2.1 Sample preparation and sequencing of the lungNENomics cohort
Whole-genome sequencing (WGS) was performed by the Centre National de Recherche en
Génomique Humaine (CNRGH, Institut de Biologie Francois Jacob, Commissariat a I'énergie
atomique et aux énergies alternatives) on 106 fresh-frozen lung NETs and their matched
adjacent normal tissue or blood samples (from 72 patients). Following extraction, genomic
DNA (1 pg) was used to prepare a library for whole-genome sequencing, using the TruSeq
DNA PCR-Free Library Preparation Kit (20015963; Illumina), according to the manufacturer’s
instructions. After quality control and normalisation, libraries were sequenced to a target depth
of 60x for tumour tissues and 30x for matched normal tissue or blood on a HiSeqX$5 platform
(Illumina) as paired-end 150 bp reads. Sequence quality parameters were assessed throughout
the sequencing run and standard bioinformatics analysis of sequencing data was based on the
[Mlumina pipeline to generate FASTQ files for each sample.

2.2 Data processing

WGS reads were mapped to the reference genome GRCh38 (with ALT and decoy contigs) by
the CNRGH platform. In summary, the workflow consists of four steps: read mapping
(software BWA; v0.7.15-r1140), duplicate marking and reads sorting (software sambamba;
v0.6.8-prel).

Alignment (CRAM) files from previously published WGS datasets were processed following
the same  procedure using our in-house version of the  workflow
(https://github.com/IARCbioinfo/alignment-nf v1.0; n =26 lung NETs from Fernandez-Cuesta
et al. 2014; and n =4 lung NETs and n = 2 LCNECs from Dayton et al. 2023).



2.3 Sex inference from whole-genome sequencing data

Sample sex was predicted from WGS using the sex determination step in PURPLE, as
described in:
https://github.com/hartwigmedical/hmftools/blob/master/purple/ README.md#1 -sex-
determination. Two lung NET samples were found to be discrepant between clinically reported
sex and WGS-predicted sex, S01060 B_TU (lungNENomics) and S01539 (Fernandez-Cuesta
etal. 2014); however inspection of X and Y chromosome coverage, obtained from the PURPLE
implementation of COBALT, indicated these samples had low coverage over the Y
chromosome (Supplementary Fig. S22).

2.4 Small variant calling

We called somatic single nucleotide variants (SNVs) using Mutect2 from GATK (v4.2.0), and
Indels and multi-nucleotide polymorphisms (MNPs) using both Mutect2 and Strelka2
(v2.9.10), retaining only Indels and MNPs detected by both methods to avoid false discoveries
that are more common in these variants, as previously described in Alcala et al. 20242,
Germline variants were called with Strelka2 only (v2.9.10). See workflows
https://github.com/IARCbioinfo/mutect-nf release v2.3 and
https://github.com/IARCbioinfo/strelka2-nf release v1.2a. We checked using mutational
signature decomposition that no known artefactual signatures were present (see Section 2.11).
Note that no MNPs were present in the intersection of Mutect2 and Strelka?2 calls.

2.5 Structural variant calling

We called somatic and germline structural variants wusing our workflow
https://github.com/IARCbioinfo/sv_somatic_cns-nf v1.1, which uses an ensemble approach
combining three structural variant callers (DELLY, Manta, and SvVABA; see Di Genova et al.
2022'%). In addition, we created a panel of normal SVs from the germline SVs detected in the
normal samples by the three callers, and filtered out somatic SVs whose breakpoints both fall
within a 100bp region of a germline SV in more than 1% of normal samples.

2.6 Copy number variant calling

Copy number variants (CNVs) were called using PURPLE using our Nextflow pipeline
iarcbioinfo/purple-nf v1.1, using a list of high-quality somatic small variants to improve the
calls. Additionally, PURPLE estimated tumour purity, ploidy (including whole-genome
duplication status, WGD, and microsatellite stability status, MSI). Following Mangiante et al.
20234, we rounded negative copy number estimates greater than -0.50 to 0 (6 out of 12443
segments) and removed those less than or equal to -0.5 (2 out of 12449 segments, less than
0.02%). Copy number values by segment and by gene are provided in Supplementary Tables
S18 and S19. We computed CNV profiles using aCNViewer and ran GISTIC2 (v2.0.23)
through the aCNViewer wrapper with confidence of 0.99 and broad event length of 0.7. MSI
statuses were confirmed using MSIsensor-pro'® (v1.2.0) in tumour-normal pair mode, which
detected no sample with more than 0.5% of altered MSI sites. Sample purity, ploidy, WGD and
MSI statuses and copy number values for significantly altered broad and focal events are
provided in Supplementary Table S17.

2.6.1 Timing of amplifications
Amplifications were timed based on the allelic fractions of small variants and their amounts
using R package mutationtimeR.



2.7 Shattered regions detection

Spearman correlation between SV and CNV break counts was 0.57 across all samples,
indicating good concordance between SV and CNV calls. We detected shattered chromosomal
regions consistent with chromothripsis or chromoplexy using the svpluscnv R package
(v0.9.1), which combines somatic CNV segment breakpoints (see Section 2.6) and structural
variant breakpoints to identify regions with clustered breakpoints. We combined three sets of
parameters to detect shattered regions. We used thresholds corresponding to (i) intermediate
concordant evidence from the two types of variants (at least three CNV breaks and three SV
breaks within a region), (ii) strong evidence from SVs but lower evidence from CNVs (at least
one CNV and 20 SV breaks in a region), and (iii) strong evidence from CNVs but lower
evidence from SVs (at least 20 CNVs and one SV in a region). We then used a threshold of
seven CNV breaks to separate high- and low-confidence regions following recent practices'.
Results are provided in Supplementary Table S17.

2.8 Copy number, and small and structural variant burden computation

We computed mutational burdens for each type of alteration. For small variants and SVs, they
correspond to the total number of such variants in each sample. For CNVs, we separated
amplified and deleted segments, counting only those with an integer copy number different
from 2 in autosomes and sex chromosomes in females, and different from 1 in Y chromosomes,
and excluding samples with whole-genome duplication (according to software purple) in order
to focus on arm-level and focal copy number changes. We tested the differences in burdens for
small variants and SVs using pairwise t-tests on logio(burden+1) values because of the spread
of the burden distribution across several orders of magnitude. For deletions and amplifications,
we compared the proportion of the genome either amplified or deleted, and favoured non-
parametric tests (permutation tests; Imp function from R package ImPerm) because of the skew
in the distribution of mutational burdens and the number observations tied at zero. In order to
test simultaneously the differences between molecular groups and histological types, we
computed models where the histological type variable was nested within the molecular group
variable, using either linear (for small variants and SVs) or permutation models with function
Imp (for deletions and amplifications). Results are presented in Supplementary Table S20.

In order to assess whether the burdens of the different types of variants were high or low, we
compared them to that of common cancers using data from the Pancancer Analysis of Whole
Genomes (PCAWG) consortium'®, following'*. We downloaded the PCAWG somatic variant
data following the instructions at https://docs.icgc-argo.org/docs/data-access/icge-25k-
data#fopen-release-data---object-bucket-details (release of August 2016 for metadata: sample
sheet v1.4 and specimen histology v9), keeping only samples from the white list, and cohorts
with at least 30 samples. Burdens were computed as described above for our own cohorts,
taking the median value for each cohort to compare with that of lung NET molecular groups
(results are provided in Supplementary Figure. S8).

2.9 Driver mutation detection

Identification of cancer driver genes was performed with IntOGen!”. IntOGen combines
multiple driver detection methods to distinguish signals of positive selection from neutral
mutagenesis across a cohort of tumours. The IntOGen pipeline was run on small variants and
Indels identified in the lung NET cohort (» = 102 individual patients with WGS data, see
Section 2.1). The ten drivers which passed a filter of being expressed at > 1 TPM in 80% of
the lung NET cohort were included for further analysis; excluded drivers were FAM47C, FAT4,
and MUCI6. A list of driver genes and altered samples are provided in Supplementary Table
S23.



2.10 Evolutionary trajectory inference

Recurrent evolutionary trajectories were identified using the R package revolver. We used as
input all samples with WGS data available, including all regions sequenced whenever
available, and used driver small variant and CNV alterations along with their inferred clonality.
For CNVs, we considered all segments with a copy number between X-0.2 and X+0.2 to be
clonal with copy number X, and otherwise to be subclonal. In order to separate the effect of
WGD from that of focal amplifications, following what is performed by programs ACNViewer
and GISTIC2, we considered amplifications and deletions relative to the ploidy of the sample,
and in order to reduce noise in the trajectory calling, we removed from the analyses samples
with uncertain WGD status (i.e., samples with ploidy confidence intervals including several
ploidy values). Note that samples without any detected driver (small variant or CNV) are not
taken into account by the algorithm, thus leading to 49 patients included in the analysis. Drivers
with less than two alterations were also removed, leading to 18 driver events for 227 variants.
Significant driver-to-driver trajectories were assessed using Fisher’s exact test, and g values
were computed using the Benjamini-Hochberg method.

2.11 Mutational signatures detection

We computed SBS, DBS, INDEL, CNV, and SV signatures using SigProfilerExtractor
(v1.1.21) on the lung NEN cohort (n = 111 samples with WGS available). We tested from one
to five de novo signatures with 250 replicates, and the optimal number of signatures was
selected automatically by SigProfilerExtractor as the best compromise between maximising
average signature stability and minimising mean sample cosine distance. For SBS, DBS,
INDEL, and CNV signatures, COSMIC signatures were available, and each de novo signature
was decomposed into COSMIC v3.3 signatures using default parameters. De novo signatures
could be decomposed into 11 COSMIC signatures. For CNVs, we used rounded copy number
estimates as done by default for PURPLE by subprogram SigProfilerMatrixGenerator, joining
consecutive segments with similar rounded copy numbers to avoid over segmentation. For SVs,
we used Signal signatures'®, as no COSMIC signatures are available. All results are reported
in Supplementary Table S21. To confirm that no tumour presented a homologous
recombination deficiency (HRD, absence of signatures SBS3, ID6, and SV3), we ran R
package R CHORD' (v.0.9.1), which combines single base substitutions, indels, and structural
variant information to identify HRD (Supplementary Table S22). Statistical differences
among molecular groups and among histological types were conducted using fisher’s exact test
to test for an enrichment in presence/absence of certain signatures, and using linear regression
model of the logl0 number of alterations with age, sex, type and molecular groups as
covariables to test for differences among samples where the signature is present
(Supplementary Table S21).

We also performed signature variability analyses (Sigvar) as recently described®. We
computed the mean within-sample signature diversity statistic (Gini-Simpson index;
Supplementary Fig. S21, Supplementary Table S21) and compared the values between
groups using t-tests.

To compute the signature most likely to be responsible for each small variant driver (Extended
Data Fig. 2e), we assigned to each driver a mutation class (among the 96 SBS classes for SNVs
and among the 83 ID classes for indels) and then computed the probability that a mutation of
that class was generated by each mutational signature given the relative attributions of the
signatures in the focal sample, following Morrison et al.?’. The resulting probabilities were
summed across samples from each group to produce Extended Data Fig. 2e.
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2.12 Neoantigen detection

Neoantigens were detected using pVACtools?' as implemented within our nextflow pipeline
hla-neo-nf (https://github.com/IARCbioinfo/hla-neo-nf). The level of immunoediting was
estimated by the ratio of nonsynonymous to synonymous mutation rate (dN/dS) within
neoantigen-rich regions, obtained using the SOPRANO method??. The diversity of HLA
regions was computed using the Grantham distance (function HLADiversityScore from R
package HLAdivR).

2.13 Identification of pathogenic germline small variants

Small variants were called from germline WGS using Strelka2 (v2.9.10). VCF files were then
annotated for their pathogenicity using the software InterVar®® (v2.2.1). We selected variants
labelled 'likely pathogenic' and 'pathogenic' from column ‘InterVar: InterVar and Evidence’,
which resulted in 805 likely pathogenic/pathogenic germline variants for 102 patients
(Supplementary Table S26). Variants were further filtered for relevance to cancer using an
in-house gene list compiled from i) the National Center for Tumor Diseases/German Cancer
Consortium (NCT/DKTK) Molecularly Aided Stratification for Tumor Eradication Research
(MASTER) trial®*, and ii) peer-reviewed journal articles covering exome/genome sequencing
of lung neuroendocrine neoplasms®*>28, The MASTER trial aimed to investigate the clinical
value of exome/genome sequencing in cancer care and included the evaluation of germline
variants associated with genetic cancer predisposition syndromes. As such, 142 genes
associated or potentially associated with cancer predisposition were selected based on expert
opinion, in-house lists, and peer-reviewed literature, for germline analysis. To this we added
89 genes reported in the literature as being recurrently altered (two or more samples altered) in
lung neuroendocrine neoplasms (Supplementary Table S26).

2.14 Identification of damaging small and structural variants

2.14.1 Filtering for damaging small variants

Small variant calls for all samples were combined into a single dataset, annotated with
ANNOVAR (v2020-06-08), and filtered to retain only likely damaging alterations as follows:
(1) variants on chromosome M were removed, (ii) variants not labelled "exonic",
"exonic;splicing",  "splicing", and "ncRNA exonic;splicing” (annotation column
Func.ensGene) were removed, (iii) variants labelled "synonymous SNV" (annotation column
ExonicFunc.ensGene), and (iv) variants labelled "silent" (function coding change.pl), were
removed, and finally (v) variants in non-protein coding or IncRNA genes were removed.

Variants were subsequently categorised with maftools (v2.10.05) into Frameshift Indel, In-
frame Indel, IncRNA, Missense, Nonsense, Nonstop, Splice Site and Translation Start Site
using labels provided in maftools column Variant Classification. Variants labelled as
‘Unknown’ were manually examined for changes to amino acid sequence and re-categorised
(n = 4) or discarded (n = 1) as appropriate. All damaging small variants are provided in
Supplementary Table S15.

2.14.2 Filtering for damaging structural variants

We followed the approach from Mangiante ef al. 2023 to classify SVs as damaging based on
their type, and position of the breakpoints (in exon, introns, or intergenic regions). See script
at https://github.com/IARCbioinfo/sv_somatic_cns-
nf/blob/929dc35e146c9813747a7c7d223aa2tb2f32fe8/aux_scripts/SV_annotation.R. All
damaging structural variants are provided in Supplementary Table S16.
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2.15 Enrichment testing of damaging small variants

Genes affected by at least one damaging small variant within the lung NET cohort were tested
for enrichment for epigenetic regulatory genes using a gene list compiled by Halaburkova et
al.¥ (Supplementary Table S24). The list of genes which were never affected by a damaging
small variant in the lung NET cohort was used as background, and enrichment was tested using
Fisher’s exact test. Genes that were affected by both damaging and non-damaging small
variants were only retained in the test list and were excluded from background.

2.16 Genomic hallmarks of cancer analysis

2.16.1 Datasets required

The dataset of the 10 hallmarks of cancer given in Hanahan et al. 2022° used for this study
and the corresponding genes that cause their acquisition through mutation were downloaded
from the Catalogue of Somatic Mutations in Cancer (COSMIC, v99 GRCh38). This dataset
was filtered to only contain cell types associated with human malignant cancers.

The dataset used for the genomic hallmarks of cancer analysis (Supplementary Table S25)
was created by combining three data frames: Damaging small variants, ParetoT] analysis, and
hallmarks of cancer from COSMIC. The resulting combination of these data frames gave us
the hallmarks of cancer affected by each damaging mutation for a given sample, as well as the
corresponding molecular group.

2.16.2 Distribution of hallmarks affected per patient

Using the previously mentioned dataset, a data frame in wide format was created, attributing
to each sample the presence or absence of an effect from a damaging small variant for a given
hallmark (Supplementary Table S25). Distributions of hallmarks affected per patient were
obtained by computing row sums using the rowSums R function from the base package (v4.4.1)
and plotting the results, grouped by molecular group, in a violin plot (ggplot2 package v3.5.1).
The resulting four distributions were statistically compared two by two using Mann-Whitney
U tests (wilcox.test function from the stats package v4.4.1), and significantly different
distributions were annotated on the violin plot.

The same analysis was performed to compare histological types (typical versus atypical) within
molecular groups and overall. As there were no typical tumours with WGS data within the sc-
enriched group, this molecular group was excluded so as to not drive an increase in the number
of hallmarks acquired in atypical samples overall.

2.16.3 Genomic hallmark profiles

An average genomic hallmark profile was created for each molecular group using the same
data frame in wide format as in the previous section. Such a profile represents the proportion
of patients for which each hallmark is affected by damaging SNVs. These proportions (one
proportion per hallmark, ten per profile) were obtained by dividing the column sums (colSums
function from the base package v4.4.1) by the number of samples for a given molecular group.
Each profile was plotted as a bar plot (ggplot2 package v3.5.1).

To statistically compare each proportion between molecular groups, logistic regression models
were used (one per hallmark; glm function from the stats package v4.4.1) to evaluate the
association between each molecular group and a given hallmark. Ca Al was used as the
reference for each model. Corresponding forest plots were obtained for each model using the
forest model function from the forestmodel package (v0.6.2). However, hallmarks
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‘angiogenesis’ and ‘proliferative signalling’ were not evaluated using such a model, as their
proportions in the sc-enriched group were respectively 0 and 1 (which both introduce a null
variance in a logistic regression model). Consequently, these two hallmarks were statistically
evaluated between molecular groups using a Fisher’s exact test on each molecular group pair
(fisher.test function from the stats package v4.4.1). Hallmarks with significant differences
compared with Ca Al were annotated on each bar plot. All statistical results are provided in
Supplementary Table S25).

2.16.4 Euler diagram of genes involved in hallmark acquisition
A Euler diagram was created showing how many genes are involved in hallmark acquisition
per molecular group, as well as how many are shared between molecular groups. The Euler
function from package eulerr (v7.0.2) was used to create and plot the diagram. Genes that affect
hallmarks in at least two patients were annotated on the diagram.

3. Bulk RNA sequencing

3.1 Sample preparation and sequencing of the lungNENomics cohort

RNA sequencing (RNA-seq) was performed at the Cologne Center for Genomics on 246 lung
neuroendocrine tumours (from 180 patients). Following extraction, 1 pug total RNA was used
for library preparation with the TruSeq mRNA stranded sample preparation kit (20020595;
[llumina). After poly-A selection (using poly-T oligo-attached magnetic beads), mRNA was
purified and fragmented using divalent cations under elevated temperature. RNA fragments
underwent reverse transcription using random primers, followed by second strand
complementary DNA (cDNA) synthesis with DNA Polymerase I and RNAse H. After end
repair and A-tailing, indexing adapters were ligated. Products were then purified and amplified
(14 PCR cycles) to create final cDNA libraries. After library validation and quantification
(TapeStation, Agilent Biotechnologies), equimolar amounts of the library were pooled. The
pool was quantified using a KAPA Library Quantification Kit (KK4835; Peqlab) and the
7900HT Sequence Detection System (Applied Biosystems). The pool was sequenced using an
[llumina NovaSeq 6000 and a paired-end 100 nt protocol.

3.2 Data processing

Reads were trimmed for the adapter sequence using Trim Galore (v0.6.5 for expression
quantification, and v0.4.2 for alternative splicing analyses), then mapped to reference genome
GRCh38 (using annotation gencode v33) with STAR software (v2.7.3a). Reads were realigned
locally using ABRA2 (workflow https://github.com/IARCbioinfo/abra-nf release v3.0), and
base quality scores were recalibrated using GATK (workflow
https://github.com/IARCbioinfo/BQSR-nf release v1.1). Expression was quantified for each
sample, generating a raw read count table with gene-level quantification for each gene of the
comprehensive gencode gene annotation file (v33), as well as a table with Transcripts per
Million (TPM), and Fragments per Kilobase per Million (FPKM), using StringTie software
(v2.1.2) (Nextflow pipeline accessible at https://github.com/IARCbioinfo/RNAseq-transcript-
nf release v2.2). Quality control was performed at each step. FastQC software (v0.11.9;
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to check raw reads
quality and RSeQC software (v3.0.1) was used to check alignment quality.

FASTAQ files from previously published RNA-seq datasets were processed following the same
procedure (n = 66 lung NETs from Fernandez-Cuesta et al. 2014; n = 51 small cell lung
carcinoma (SCLC) from Peifer et al. 2012 and George et al. 2015; n = 69 LCNECs from
George et al. 2018; n =20 lung NETs from Alcala et al. 2019; n =30 lung NETs from Laddha
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et al. 2019; n = 6 lung NETs from Miyanaga et al. 2020; and n = 7 lung NETs and n = 2
LCNECs from Dayton et al. 2023).

Subsequently, the raw gene count matrices and TPM matrices for all lungNENomics and
publicly available datasets were combined into single gene count and TPM matrices. The gene
count matrix was then variance-stabilised (R package DESeq2, v1.34.0) for use in statistical
analyses. Two technical replicates were then removed from the matrices before further analyses
(LNEN154 TU1 R2 and LNEN171 TUI R2, both lungNENomics series).

3.3 Sex inference from RNA sequencing data

Expression levels obtained from RNA-seq data on sex chromosomes were examined to identify
any samples which did not cluster with others of the same clinical sex. A comparison of the
sum of variance stabilised read counts on the X and Y chromosomes per patient identified five
outlier samples (Supplementary Fig. S22). Samples S02236 (George et al. 2018), and
LNEN199 TU (lungNENomics) were clinically reported as male but were predicted to be
female by both RNA-seq and DNA methylation array data (Section 5.3), therefore all clinical
data entries for these samples were replaced with NA in case the information had been entered
erroneously. Sample SRR10720229 (Miyanaga et al. 2020) is also reported to be male but
clustered with female samples on RNA-seq data. No WGS or DNA methylation array data was
available for this sample to confirm tumour-specific loss of chromosome Y, therefore it was
retained as male. Lastly, samples LNEN246 TU and LNEN251 TUI (lungNENomics) were
reported as female and male, respectively but did not cluster with samples of the same sex over
X/Y chromosome expression. However, as their sex predicted by DNA methylation array
matched their clinical sex (Section 5.3), RNA-seq data was discarded for subsequent analyses
in case the RNA sample did not correspond to the correct patient ID. Finally, sample LNET19T
(Dayton et al. 2023) had no clinically reported sex but was inferred to be female based on
RNA-seq data.

3.4 Fusion genes identification

Fusion genes were computed using STAR-fusion’! and Arriba*?> (nextflow workflows
https://github.com/IARCbioinfo/RNAseq-fusion-nf vl.1 and
https://github.com/IARCbioinfo/gene-fusions-nf v1.1, respectively). Our STAR-fusion
workflow follows the STAR-fusion best practices and relies on fusion inspector for validation.
Our Arriba workflow was run both with and without providing structural variant calls for
samples with WGS (option -d). In both cases, Arriba did not find any high-confidence fusion
and only found 7 medium-confidence fusions, and the intersection with STAR-fusion detected
fusions was null. This is in line with the very few structural variants detected in coding regions,
and with the fact that most driver alterations affected tumor suppressor genes, which are not
expected to be visible at the RNA level, rather than oncogenes, which would have led to highly
expressed, high-confidence fusions.

3.5 UMAP of neuroendocrine neoplasms

Data from sex and mitochondrial chromosomes were removed from raw gene count matrices
obtained from bulk RNA-seq data (n = 59,607 genes) from 634 samples including 273 lung
NETs (109 Ca A1, 89 Ca A2, 62 Ca B, 13 sc-enriched), 69 LCNEC, 51 SCLC, 135 pancreatic
NETs, 88 small intestine NETs and 18 rectal NETs. Read counts were then variance stabilised
using DEseq2 R package (v1.40.2). The 50 most variable genes were then selected to get
VST50 on which Uniform Manifold Approximation and Projection (UMAP) was performed,
using umap R package (v0.2.10.0) with number of neighbours equal to 15 and all the other
parameters set to the default value.
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3.6 Immune contexture deconvolution

The proportion of cells that belong to each of ten immune cell types (B cells, macrophages M1,
macrophages M2, monocytes, neutrophils, NK cells, CD4+ T cells, CD8+ T cells, CD4+
regulatory T cells, and dendritic cells) were estimated from the RNA-seq data using softwares
quanTIseq®® (downloaded 14 September 2020) using our workflow for parallel processing of
samples (https://github.com/IARCbioinfo/quantiseq-nf release vl1.l1), and R package
immunedeconv, that runs multiple deconvolution methods (Sturm et al. 2019%%). In line with
the immunedeconv package recommendations, we chose ABIS, EPIC, ESTIMATE,
MCPCounter, and MUSIC, because they allow inter-patient comparisons. Methods may not be
directly comparable given they use different reference cell types, and not all allow for unknown
cell types to be present. Thus, in order to compare the values while taking into account the
variability due to the method we computed z-scores across samples for each method and cell
type, and compared the values of the z-scores by fitting a linear mixed model using R package
Imer, with the method as a random effect. See results of the test in Supplementary Table S10.

RNA-seq estimated purity was also obtained from quanTIseq as 1 - the sum of the ten immune
cell type proportions. Estimated cell type proportions are provided in Supplementary Table
S9.

3.7 Immune archetype inference

We inferred immune archetypes using the 3-feature classification method from Combes et al.
202233, To ensure all archetypes were represented we used cohort lung NEN plus SCLC, and
LUAD and LUSC TCGA datasets. We reprocessed the TCGA datasets as described in Section
3.2 to limit batch effects. Following Combes et al. for each of the three genes (features), we
converted expression into expression scores corresponding to the percentile ranks across
samples. We then performed unsupervised clustering as in the original paper (Louvain
clustering, using 100 & nearest neighbours and a resolution of 0.5) of the samples based on their
3-feature percentile scores. Once clustered, following the original method, cluster labels from
the 3-feature classification of Combes ef al. were attributed based on the prevalence and
distributions of the features within the cluster (visualised as violin plots of all clusters in each
feature, Supplementary Fig. S4). See Supplementary Fig. S4, that was compared to Fig. 2A-
C from Combes ef al. Immune archetypes are provided in Supplementary Table S11.

3.8 Estimation of T-cell inflamed/pembrolizumab-responder phenotype

Mean expression (vst) of a panel of 18 genes, obtained from Ayers et al.>®, was calculated per
sample. Expression levels were compared between molecular groups by t-tests. Results are
presented in Supplementary Table S34.

3.9 Calculation of SCLC-I score

To generate the SCLC Immune (SCLC-I) score and thus identify samples with an SCLC-I-like
profile, we computed the mean expression values for 13 genes highly expressed by SCLC-I
tumours in Gay et al.’’ (CD274, PDCD1, CD80, CD86, CTLA4, CD38, IDOI1, TIGIT, VSIR,
ICOS, LAG3, CCL5, and CXCL10). Mean variance stabilised expression was used to perform
statistical analysis displayed in Extended Data Fig. 3g, and mean TPM expression was used
for illustration (Extended Data Figs. 3f,g).

3.10 Deconvolution of pulmonary neuroendocrine cell states

To characterise the pulmonary epithelial cell type composition of bulk RNA-seq samples we
applied MuSiC (Multi-subject Single-cell Deconvolution), a method designed to infer cell type
compositions from bulk RNA-seq data with cell-type specific gene expression from scRNA-
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seq reference data®®. As reference profiles we used epithelial cells from foetal lung tissue
airway organoids®®, enriched for lower airway progenitor and pulmonary neuroendocrine
cells*, as well as tumour microenvironment cells (stromal and immune) from lung
neuroendocrine tumours*!'. The NE cells in this dataset (NE early 1, NE early 2, NE terminally
differentiated 1 and 2) are represented by four cell states, corresponding to different levels of
differentiation. Deconvolution was performed using raw gene count matrices from bulk RNA-
seq data (n = 273 lung NETs, n = 69 LCNEC, n = 51 SCLC, and one patient-derived tumour
organoid (PDTO) from patient LNET10 from Dayton et al.'%), and the scRNA-seq reference
matrix. To reduce technical noise and increase robustness, genes expressed in fewer than three
single cells were excluded from the analysis, as such low expression is typically too sparse to
provide informative signal. Cell proportions are provided in Supplementary Table S9.

3.11 Identification and analysis of molecular group core genes

3.11.1 Identification of molecular group core genes

Core upregulated and downregulated genes were identified for each molecular group of lung
NETs using linear regression as follows. Variance stabilised expression values for autosomal
protein-coding or IncRNA genes expressed at TPM > 1 in at least two samples (n = 25,804
genes, n = 273 samples), were used to perform linear regression. For each gene and for each
molecular group a linear model was built to calculate the relationship between the expression
g of the focal gene and the proportion x of the focal archetype, such as g(x) = S, + B1x + €.
The intercept B, = g(0) corresponds to the estimated expression of the focal gene in samples
with no proportion of the focal archetype, and the slope B, = g(1) — B, corresponds to the
difference in the expression of the focal gene in samples purely belonging to the focal archetype
compared to samples with no proportion of this archetype. P values were adjusted for multiple
testing using the Benjamini & Hochberg method, and log> fold changes were calculated as
Bo+B1

Potly,

follows: log2( 3
0

For each molecular group, genes were then assigned a label of ‘positive’ (¢ value < 0.05 and
log> fold change > 1), ‘negative’ (g value < 0.05 and log> fold change < -1), or ‘false’ (¢ value
> (.05 and/or -1 <log> fold change < 1). Finally, each gene was assigned as a core upregulated
or downregulated for a molecular group if it fulfilled the following criteria: a core upregulated
gene in molecular group x must be labelled ‘positive’ for group x and labelled either ‘negative’
or ‘false’ for the three other groups, and vice versa for a core downregulated gene. As such, no
gene can be a core upregulated gene for more than one molecular group, nor a core
downregulated gene for more than one molecular group. Core upregulated and downregulated
genes are shown in Supplementary Table S27.

3.11.2 Identification of key Gene Ontology pathways

The Gene Ontology biological processes for human genes database was downloaded to identify
significantly enriched pathways among the core up-regulated genes specific to each molecular
group (Fisher’s exact test). To summarise the numerous core pathways identified, we
constructed directed weighted graphs, where edges were drawn from the pathway containing
the most genes to the one containing fewer, with edge weights corresponding to the Jaccard
index between the two gene lists. We then applied the Walktrap community detection algorithm
to define clusters of pathways involved in similar processes. Finally, each cluster of pathways
was named based on the most central pathway according to weighted out-degree values,
forming what we term a ‘super-pathway’ (Fig. 2¢, Supplementary Table S28).
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3.11.3 Identification of master transcription factors

We used the CaCTS algorithm*? (v1.0; https:/github.com/lawrenson-lab/CaCTS) to determine
potential master transcription factors (TFs) per molecular group. As suggested by Reddy et al.
we used the 1671 master TFs identified by Saint-André et al.** and Lambert et al*, and
considered as master TF genes those that are both in the top 5% of the most expressed genes
and in the top 5% of genes with the highest Jensen-Shannon divergence scores.

3.11.4 Testing for enrichment of hallmarks of cancer

The integrated human gene set collection associated with the ten hallmarks of cancer proposed
by Menyhart et al.*> (downloaded from https://cancerhallmarks.com/download) was used to
identify significantly enriched hallmarks among the core upregulated genes of each molecular
group (Fisher's exact test). In Extended Data Fig. 3e, we report the number of sc-enriched
core upregulated genes and the three genes with the highest fold change for each significant
hallmark.

3.11.5 Testing for enrichment of neuroendocrine cell genes

Genes highly expressed in lung neuroendocrine (NE) cells were obtained from Travaglini et
al.*®. Enrichment testing was performed using Fisher’s exact tests between target lists of core
upregulated genes per molecular group against background of all other genes profiled with
RNA sequencing (Supplementary Tables S29 and S30).

3.11.6 Creation of the RNA sequencing heatmap (Fig. 2c)

To illustrate the findings from this section, we selected a small subset of core genes or master
TFs for each molecular group. For each molecular group, a list of genes was created which
were core upregulated, within a super-pathway, and were expressed at median TPM > 1 within
the molecular group. From these lists, genes were then selected manually based on previous
relevant publications”®?® or out of interest from literature*’ 3. Additionally, putative master
TFs for each molecular group were plotted.

3.12 Proliferation index

A measure of proliferation rate per sample was obtained from variance-stabilised read counts
(R package DESeq?2) as follows. A proliferation index score was calculated for each sample as
the median expression of the top 1% of genes (131 genes) significantly positively correlated
with the expression of PCNA (proliferating cell nuclear antigen) in 27 different healthy tissue
types>*>>, Supplementary Tables S1 and S35). A higher proliferation index indicates greater
proliferation. Associations between proliferation index and lung NET molecular group (k= 4)
and type (typical versus atypical) were assessed with ANOVA and t-tests, respectively.
Correlation tests between molecular group proportion and proliferation index were assessed
with Pearson correlation. Results are shown in Supplementary Table S33.

3.13 Epithelial-mesenchymal transition measurement

A score of epithelial-mesenchymal transition (EMT) per sample was calculated from variance-
stabilized read counts as the mean expression of 52 mesenchymal-associated genes minus the
mean expression of 25 epithelial-associated genes, as previously described*, Supplementary
Tables S1 and S35). A higher EMT score indicates a more mesenchymal-like gene expression
profile than epithelial-like. Associations between EMT score and lung NET molecular group
(k=4) and type (typical versus atypical) were assessed with ANOVA and t-tests, respectively.
Correlation tests between molecular group proportion and EMT score were assessed with
Pearson correlation. Results are shown in Supplementary Table S33.
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3.14 Determination of Proneural, HNF+, or Luminal regulatory subtype

Gene sets characteristic of Proneural, HNF+ and Luminal regulatory subtypes were obtained
from Davis e al.’’. We selected ASCL1, SOX4, and TCF4 for Proneural classification, HNF 1A,
HNF44, FOXA3, FGFR3, and FGFR4 for HNF+ classification, and OTP for Luminal
classification. The bimodality of gene expression (variance stabilised expression values) was
first assessed for each gene individually using Hartigan’s Dip Test (R package diptest, v0.76-
0) all were significantly bimodal except SOX4 and TCF4 (P values > 0.05), then correlation
between genes within each set was tested by Pearson correlation (Supplementary Table S31).
All genes within Proneural and HNF+ gene sets were significantly correlated with one another,
and therefore a single gene was selected for classification of each subtype. For Proneural, we
selected ASCLI as it was the only bimodal gene, and for HNF+ we selected HNF'14 as it was
specifically highlighted by Davis et al.

To determine sample regulatory subtype we first classified samples as being ASCLI high or
low, HNF'14 high or low, and OTP high or low. For this we followed the procedure described
in Moonen et al.*®, first fitting two Gaussian mixture model distributions to the distribution of
variance stabilised gene expression (R package mclust, v5.4.10), then selecting a cut-off as the
lowest density point of the two Gaussian distributions (Supplementary Table S31). Cut-off
values were as follows: > 11.16856 for ASCLIMe" > 6.247015 for HNF1A4"2" and > 11.8089
for OTP"#", Finally, a regulatory subtype was assigned using the following criteria: Proneural
= ASCLI"e"HNF14"°%/OTP"e" HNF+ = ASCLI™ /HNFI1AM®/OTP" and Luminal =
ASCLI™™/HNF1A4"&/OTP"". All samples which didn’t fit these criteria were given the
classification of Other (Supplementary Table S31).

3.15 TERT expression analysis

A category of TERT high or low had previously been assigned to a subset of the lung NET
cohort (n = 76) with RNA-seq data as described in Werr et al.>®. A log, (sSFPKM) cut-off of
8.17 was defined by Werr et al. to distinguish high from low TERT samples. To assign a TERT
expression category to the entire lung NET cohort, we first examined the association between
TERT log2(FPKM) obtained from internal processing pipelines (see Section 3.2) and values
from Werr ef al. Finding a significant correlation between the two measurements (P value =
1.64 x102*, r = 0.95, Pearson correlation, note all samples with -Inf (as FPKM = 0) were
excluded from correlation test). A linear model was then fit between the two TERT expression
measurements, again excluding samples with —Inf, and the y-intercept for a log2(sFPKM) value
of 8.17 was calculated using the model coefficients (m = 0.9244959, ¢ = -12.5544998). The y-
intercept was used as the internal logo(FPKM) TERT expression cut off to distinguish TERT
expression categories, high expression was defined as logo(FPKM) > -5.001368. Results are
provided in Supplementary Table S36.

3.16 Statistical analysis of individual gene expression levels

Expression of genes of interest (variance stabilised expression values) were directly compared
between lung NET molecular groups (k = 4) and tumour type (typical versus atypical) using
ANOVA and t-tests, respectively. Genes were grouped by category (somatostatin receptors,
hormone receptors, viral receptors) and adjusted for multiple testing using the Benjamini &
Hochberg method!!. Where comparisons were significant (¢ value < 0.05) for molecular group,
comparisons between pairs of groups were performed using t-tests, and where significant for
both molecular group and type, comparisons between pairs of groups were further assessed
within typical only and atypical only groups. Plotting of significant results was performed with
logi1o(TPM + 1) expression values.
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4. Spatial transcriptomics

4.1 Sample preparation and sequencing

Spatial transcriptomic sequencing of four FFPE samples was performed at Centre Léon Bérard
using the 10x Genomics Visium vl platform. Each sample was placed on a 10x Genomics
Visium slide followed by deparaffinisation, H&E staining and decrosslinking steps, according
to 10x Genomics guidelines. Human probes targeting approximately 18,000 genes were
hybridised overnight on the slides and captured on each spot after ligation between the LHS
and RHS probes. Libraries were produced for each sample following 10x Genomics protocols.
Libraries were prepared and sequenced on an Illumina NovaSeq 6000 machine with a target
sequencing depth of 50,000 reads per spot.

4.2 Data processing

Samples were processed using SpaceRanger (v1.3.0). Data were demultiplexed, and reads
mapped to reference genome GRCh38, and tissue and fiducial detection was performed before
barcode/unique molecular identifier (UMI) counting, generating feature-barcode matrices.
Quality controls of raw (percentage of valid barcodes and UMIs, quality scores) and processed
data were performed (percentage of reads mapped, median counts per spot).

4.2.1 Domain identification and spot deconvolution

Data from the spatial spots was clustered across all samples simultaneously with cell type
location estimation using the IRIS algorithm®. This allowed for checking whether domains
were patient-specific or shared across samples. The reference single-cell profiles used as input
to IRIS were the same as those used for the deconvolution of NE cell states within bulk RNA-
seq data with MuSiC (section 3.10) in order to allow for their comparison, and to include
potential neuroendocrine cells of origin in the computation.

4.2.2 Computation of molecular group scores

In order to estimate which spots had expression profiles resembling that of the lung NET
molecular groups, we performed deconvolution of the expression of the spots (method
CARD®") using the average expression profile of each molecular group as references, focusing
on the list of core differentially expressed genes (see section 3.11.1).

4.2.3 Spatial correlation analysis

To assess the co-localisation of different cell types and molecular group profiles, as well as
between expression of signalling genes and cell types/molecular group profiles, identified on
FFPE slides, we computed bivariate spatial cross-correlation coefficients®? and their P values
using a permutation test without replacement (Supplementary Figs. S20 and S21,
Supplementary Table S47).

5. DNA methylation arrays

5.1 Sample preparation and DNA methylation detection of the lungNENomics
cohort

DNA methylation arrays were performed at the International Agency for Research on Cancer
for 281 lung NETs (from 191 patients). Following DNA extraction, 600 ng of purified DNA
was bisulphite-converted using the EZ-96 DNA Methylation kit (D5004; Zymo) following the
manufacturer’s recommendations for Infinium assays. Then, 250 ng of bisulphite-converted
DNA was used for amplification, fragmentation, and hybridisation on Infinium
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MethylationEPIC v1.0 BeadChips (WG-317-1003, Illumina), following the manufacturer’s
protocol. Chips were scanned using [llumina iScan to produce two-colour raw data files (IDAT
format). Samples were assigned to chips using stratified randomisation to mitigate the batch
effects. Samples were assigned to evenly distribute, in order of priority, histopathological type,
provider, sex, smoking status, and age. ITH samples were placed on the same chip as their
corresponding tumour sample. The position of samples on each chip was then randomised.

5.2 Data processing

IDAT files from the lungNENomics cohort and an additional 76 (n = 56 lung NETs, n = 20
LCNECs) from Alcala et al. 2019 and George et al. 2018 were imported into the R statistical
programming environment and processed using R packages minfi (v1.40) and ENmix
(v1.30.03), following our standard workflow
(https://github.com/IARCbioinfo/Methylation analysis scripts). Two-colour intensity data
from internal control probes were manually inspected to check the quality of successive sample
preparation steps (bisulphite conversion, hybridisation, extension, and staining; ENmix). All
samples passed the QC steps of per sample log> methylated and unmethylated chip-wise
median signal intensity comparison (minfi), and overall p-detection value measurement (all P
values < 0.01, minfi).

Four groups of probes were removed: (i) poor performing probes with a p-detection value >
0.01 in at least one sample (41,279 probes discarded), p-detection value was computed by
comparing the total signal (methylated and unmethylated) of each probe with the background
signal level from non-negative control probes (minfi) (ii) cross-reactive probes (41,777 probes
discarded), cross-reactive probes co-hybridise to multiple locations within the genome and
therefore cannot be reliably investigated (ii1) probes on the sex chromosomes (16,440 probes
discarded), and (iv) probes with SNPs within the single base extension site, or target CpG site,
at a minor allele frequency of > 5% (database dbSNP build 137, 7,510 probes discarded). This
resulted in a normalised, filtered dataset of 758,853 probes for 357 samples. Beta and M-values
were extracted (functions getBeta and getM, minfi), and probes recording M-values of -0 for
at least one sample were replaced with the next lowest M-value in the dataset.

5.3 Sex inference from DNA methylation array data

Sample sex was predicted from DNA methylation array data using a predictor based on the
median total intensity on the X and Y chromosomes (function getSex, R package minfi,
Supplementary Fig. S22). S00567 (George et al. 2018), LNEN164 TU, and LNEN258 TU
(both lungNENomics) were clinically male but predicted female according to DNA
methylation data. However, their RNA-seq profile was consistent with male sex and these
samples were therefore retained as male. Samples S02236 (George et al. 2018) and
LNEN199 TU (lungNENomics) were predicted to be female by both RNA-seq and DNA
methylation array data (see Section 3.3), and clinically reported as male, therefore all clinical
data entries for these samples were replaced with NA in case the information had been entered
erroneously. Finally, sample LNENO028 (Alcala et al. 2019) had no clinically reported sex but
was inferred to be male based on DNA methylation array data.

6. Single-omic consensus clustering analyses
6.1 Single-omic consensus clustering for identification of supra-carcinoids
Consensus clustering was performed for RNA-seq and DNA methylation array datasets

separately to identify new instances of supra-carcinoids, defined as lung NETs clustering with
LCNEC:s. Principal components analysis (PCA) was subsequently performed on each dataset
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(R package ade4, v1.7-20, number of factors set to ten, data centred and unscaled) to visualise
consensus clusters.

6.1.1 RNA sequencing data

The sample set (n = 284) comprised n = 179 lung NETs from lungNENomics, » = 30 lung
NETs from Laddha ef al. 2019, n = 6 lung NETs from Miyanaga et al. 2020, and n = 69 LCNEC
from George et al. 2018. To generate the expression data for consensus clustering the variance
stabilised read count matrix was subset to exclude genes on chromosomes X, Y and M, filtered
to retain only genes with a minimum difference of > 1 TPM across the sample set, then reduced
to the top 5,000 genes by variance and median centred. Clustering with a k-means clustering
algorithm based on Euclidean distances was repeated 100 times with random 80% subsampling
to generate consensus clusters for £ = 2-8 (R package ConsensusClusterPlus, v1.58). PCA was
performed using the top 5,000 genes by variance (filtered as above) for visualisation. Results
are presented in Supplementary Table S4.

6.1.2 DNA methylation array data

The sample set (n = 211) comprised n = 191 lung NETs from lungNENomics, and » = 20
LCNEC from previously published data (Alcala et al. 2019, George et al. 2018). To generate
the M-value matrix for consensus clustering the matrix was filtered to retain only probes with
a minimum difference of > 0.1 beta value across the sample set, then reduced to the top 5,000
probes by variance and median centred. Clustering with a k-means clustering algorithm based
on Euclidean distances was repeated 100 times with random 80% subsampling to generate
consensus clusters for k£ = 2-8 (R package ConsensusClusterPlus, v1.58). PCA was performed
using the top 5,000 probes by variance (filtered as above) for visualisation. Results are
presented in Supplementary Table S4.

6.2 Single-omic consensus clustering to examine the relationship between lung
NETs and SCLC

Additional consensus clustering was performed by combining RNA-seq data from the lung
NET and lung NEN cohorts with SCLC data from two previous publications (Peifer ef al. 2012
and George et al. 2015). Three matrices were generated for three analyses: 1) lung NEN cohort
(n = 342 with RNA-seq data), ii) lung NET cohort + SCLC (n = 324, comprising lung NET
cohort, 15 SCLC from Peifer et al. 2012 and 36 SCLC from George et al. 2015), and ii1) lung
NEN cohort + SCLC (n = 393).

To generate the expression data matrices for the three consensus clustering analyses, the
following procedure was used per sample set: variance stabilised read count matrix was subset
to exclude genes on chromosomes X, Y and M, filtered to retain only genes with a minimum
difference of > 1 TPM across the sample set, then reduced to the top 5,000 genes by variance
and median centred. Clustering with a k-means clustering algorithm upon Euclidean distances
was repeated 100 times with random 80% subsampling to generate consensus clusters for K
=2-8 (R package ConsensusClusterPlus, v1.58). PCA was performed using the top 5,000 genes
by variance (filtered as above) for visualisation. Results are presented in Supplementary
Table S4.

The area of the convex hull formed by the most extreme points (samples) over principal

component axes 1 and 2 was calculated for all samples in the analysis, and for lung NET-only
samples, using R functions chull() and Polygon() (package sp v. 1.5-0).
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7. Multi-omics factor analysis

Multi-Omics Factor Analysis (MOFA) was performed using software MOFA2% (v1.4.0) for
two cohorts (i) lung NETs only (n = 319) and (ii) lung NETs plus LCNEC (n = 392). Cohort
lung NET (i) comprised 201 newly sequenced lungNENomics samples, 116 samples from the
previous Computational Cancer Genomics team publications Alcala ef al. 2019 and Dayton et
al. 2023, plus two previously published lung NETs which clustered with LCNEC (supra-
carcinoids) (see Section 6.1) in order to maximise the number of rare subtypes available for
molecular characterisation. Cohort lung NEN (ii) was composed of cohort lung NET (i) and an
additional 73 LCNEC (from George et al. 2018).

7.1 Pre-processing of RNA-seq data

For each cohort, variance stabilised raw gene counts (DESeq2, v1.34.0) for 273 and 342
samples (cohort lung NET and cohort lung NEN, respectively) were subset to exclude genes
on chromosomes X, Y and M, filtered to retain genes with a minimum variance of TPM > 1
across the cohort, then reduced to the top 5,000 genes by variance. Samples with no RNA-seq
data were assigned NA values for each gene.

7.2 Pre-processing of DNA methylation array data

For each cohort, M-values for 247 and 267 samples (cohort lung NET and cohort lung NEN,
respectively) were filtered to retain probes with a minimum variance of beta value > 0.1 across
the cohort, then reduced to the top 5,000 probes by variance. Samples with no DNA
methylation array data were assigned NA values for each probe.

7.3 Pre-processing of small and structural variant data

Damaging small and structural variants for each cohort (see Section 2.14) were combined and
filtered to exclude variants in genes that 1) were lowly expressed (where maximum TPM <0.01
per gene across the sample set), or no TPM values were available, and ii) were not altered in >
2 samples. MOFA input matrices were then created by assigning a value of 0 (wild-type) or 1
(altered) to each sample per gene. Samples for which WGS data was available but had no
damaging small or structural variants were included with a value of 0 for each gene, those with
no WGS data were assigned values of NA for each gene.

7.4 Pre-processing of copy number variant data

Copy number values for the eight significant broad and focal events as detected in the lung
NET cohort by GISTIC2 (see Section 2.6) were included as a single input matrix. Samples
with no WGS data were assigned values of NA for each event.

7.5 Generating MOFA latent factors

Two MOFA runs were performed, one for each cohort (lung NET and lung NEN). Input
datasets for each run comprised those described in Sections 7.1-7.4 above, and the number of
latent factors was set to ten. See https://github.com/IARCbioinfo/MS lungNENomics for
detailed method and input datasets. A summary of input data and MOFA runs, including QC,
is shown in Supplementary Figs. S2 and S23, Supplementary Table S5. Sample coordinates
along latent factors are provided in Supplementary Table S4.

7.5.1 Measuring convex hull area over MOFA latent factors

The area of the convex hull formed by the most extreme points (samples) over MOFA lung
NEN latent factors 1 and 2 was calculated for all samples in the analysis, and for lung NET
only samples, using R functions chull() and Polygon() (package sp v. 1.5-0).
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7.6 Intra-tumoural heterogeneity lung NET MOFAs

An additional 91 MOFA analyses of lung NETs were performed to measure how similar each
ITH tumour piece was to its original sample. For each ITH sample, the values of the original
sample within the four input matrices were replaced with the corresponding values from the
ITH sample, keeping the rest of the matrices unchanged. Where an ITH piece had different data
availability to the original sample, the values for the missing omic dataset were replaced by
NA. Each ITH MOFA run was subsequently performed as described in Section 7.5 to generate
latent factor positions. In addition, ParetoTI analysis was performed (see Section 8.1) for each
of the 91 ITH MOFA runs to determine the molecular group of each ITH region.

A measure of how similar within the latent factor space each ITH piece was to its original
sample was obtained by calculating the Euclidean distance between the pairs of samples over
latent factors 1, 2 and 5 (those used to determined sample molecular group, Supplementary
Table S48). In the event that an ITH latent factor was the inverse of the original, the values for
that latent factor were multiplied by -1 before the distance calculation was performed. Where
an ITH latent factor order had changed, for instance original latent factor 5 was correlate d with
ITH factor 4, the distance calculation was performed using the factors which significantly
correlated with the original LFs 1, 2 and 5. Pairs where the Euclidean distance was greater than
the mean distance between samples within the original sample molecular group were visualised
over factors 1, 2 and 5. Euclidean distances were also used to calculate the silhouette statistic.
Scores range from —1 to 1, where negative values indicate a sample is closer to samples from
another molecular group than its own molecular group label. Group label was assigned to each
ITH piece from a patient as the molecular group of the tumour region used in the lung NET
cohort.

7.7 Variable associations with MOFA latent factors

Technical and clinical features of interest were assessed for their statistically significant
relationship with sample latent factor positions. Unless otherwise stated, the association
between latent factor positions and continuous variables was assessed with Pearson correlation
tests, and with categorical variables using linear regression. Variables were grouped by theme
(categorical technical, continuous technical, and categorical clinical) for statistical analysis
then adjusted for multiple testing within each group using the Benjamini & Hochberg method!!.
Overall and event-free survival associations with latent factor positions were assessed using
the Cox proportional hazards model. Definitions of overall and event-free survival can be found
in Section 1.3.2. Results can be found in Supplementary Table S5.

8. Pareto task inference analysis

Molecular groups of samples were identified through the application of multi-task evolutionary
theory by Pareto task inference (ParetoTI)**%” to the latent factors identified in each MOFA
analysis (R package ParetoTI, v0.1.13). The ParetoTI algorithm fits a low-dimensional
polytope over the samples as they are positioned within the multi-dimensional latent factor
space, with the vertices of the polytope representing archetypes (or subgroups) of the data.

8.1 ParetoTI analysis of MOFA lung NET

For ParetoTI analysis latent factors which were exclusively associated with technical features
were excluded (LFs 4, 8 and 9, see Supplementary Table S5) then ordered by the proportion
of variance in RNA-seq data explained (highest to lowest: 1, 2, 5, 6, 3, 10, 7, see
Supplementary Table S5). The ParetoTI model was fitted over six combinations of successive
latent factors (LFs 1, 2; LFs 1,2,5; LFs 1,2,5,6;LFs1,2,5,6,3;LFs1,2,5,6, 3, 10; and
LFs 1, 2, 5, 6, 3, 10, 7), using 200 bootstraps with 75% subsampling, to generate polytopes
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with between two and Six vertices (archetypes). See
https://github.com/IARCbioinfo/lungNENomics Archetype for detailed method. Metrics of
how well each model performed, and the resulting archetype positions, are reported in
Supplementary Table S6.

Performance metrics examined were (i) the t-ratio, i.e. the ratio of the volume of the best-fitting
polytope to the volume of the convex hull of the data, (ii) the variance explained by each
polytope, and (iii) the total variance in position of archetypes during bootstrapping. Each metric
was also assessed for statistical significance, and a model was considered a significant fit if the
P value for all three metrics was < 0.05. We subsequently examined two significant fits: £ =3
generated over LFs 1 and 2, and k = 4 generated over LFs 1, 2 and 5.

8.1.1 Archetype attribution and naming

The proportion of each archetype was calculated per sample per fit, and the samples were
assigned to the archetype for which they had the greatest proportion (Supplementary Table
S1). Archetypes were then examined for enrichment of samples previously classified into the
molecular groups of Ca Al, Ca A2, Ca B, and supra-carcinoid (Alcala ef al. 2019, Dayton et
al. 2023, Supplementary Fig. S3). Finally, archetypes were renamed as the molecular group
to which they best corresponded as follows (k = 4): V1 = supra-carcinoid enriched, V2 = Ca
Al,V3=CaB, V4=CaA2.

8.2 ParetoTI analysis of MOFA lung NEN

For ParetoTI analysis, latent factors that were exclusively associated with technical features
were excluded (LFs 5 and 10, see Supplementary Table S5) then ordered by the proportion
of variance in RNA-seq data explained (highest to lowest: 2, 1, 3, 6, 7, 9, 4, 8, see
Supplementary Table S5). The ParetoTI model was fitted over seven combinations of
successive latent factors (LFs 2, 1; LFs 2, 1,3; LFs 2, 1,3, 6; LFs 2, 1, 3,6, 7; LFs 2, 1, 3, 6,
7,9; LFs 2, 1,3,6,7,9, 4; and LFs 2, 1, 3, 6, 7, 9, 4, 8), using 200 bootstraps with 75%
subsampling, to generate polytopes with between two and six vertices (archetypes). See
https://github.com/IARCbioinfo/lungNENomics Archetype for detailed method. Metrics of
how well each model performed, and the resulting archetype positions, are reported in
Supplementary Table S6.

We subsequently examined two significant fits: k£ = 3 generated over LFs 1 and 2, and k = 4
generated over LFs 1, 2 and 3.

8.2.1 Archetype attribution and naming

The proportion of each archetype was calculated per sample per fit, and the samples were
assigned to the archetype for which they had the greatest proportion (Supplementary Table
S1). Archetypes were then examined for enrichment of samples previously classified into the
molecular groups of Ca Al, Ca A2, Ca B, and supra-carcinoid (Alcala et al. 2019, Dayton et
al. 2023, Supplementary Fig. S24). Finally, archetypes were renamed to match the molecular
group to which they best corresponded as follows (k = 4): V1 = Ca A2, V2 = Ca Al, V3 =
LCNEC, V4 =CaB.

8.3 Measuring molecular heterogeneity within molecular groups

Two methods were used to assess heterogeneity between molecular groups, Euclidean
distances over MOFA LFs and variance across MOFA input datasets. The mean Euclidean
distances between samples within the same molecular group over MOFA lung NET LFs 1, 2
and 5, and MOFA lung NEN LFs 1, 2 and 3, were calculated, providing a measure of the
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average spatial distance on the molecular map between samples of the same molecular group
(Supplementary Table S48).

The variance of MOFA input datasets was obtained by first subsetting each input matrix to
contain only samples of a single molecular group, resulting in four matrices per original input,
calculating the variance by row (i.e. gene, probe, genome segment) within each sub-matrix,
then averaging the variance of each sub-matrix (Supplementary Table S48).

8.4 Variable associations with molecular groups

Technical and clinical features of interest were assessed for their statistically significant
association with molecular groups. Unless otherwise stated, the association between molecular
groups and categorical variables was assessed with Fisher’s exact tests, and molecular groups
with continuous variables was assessed using ANOVA, in the R statistical programming
environment. Variables were grouped by theme (categorical technical, continuous technical,
categorical clinical, categorical morphological) for statistical analysis then adjusted for
multiple testing within each group using the Benjamini & Hochberg method!!. Significant
associations between a variable and molecular groups overall were then further examined
between pairs of molecular groups using either Fisher’s exact tests (for categorical variables)
or two-tailed t-tests (for continuous variables). Additionally, Binomial tests (one-proportion z-
tests) were used to test for enrichment within each molecular group for particular feature levels,
for example, to determine whether there were more typical samples in Ca Al than expected.
Variables with greater than one third of the cohort missing data (history of cancer, history of
radiation, recurrence, neuroendocrine genetic disorder, location, asbestos exposure, and
smoking pack years) were assessed for differences in proportion of missing data between
molecular groups. Results not presented in main figures can be found in Supplementary Table
S7.

Kaplan-Meier survival estimates for molecular groups were calculated for both overall survival
and event-free survival. Definitions of overall and event-free survival can be found in Section
1.3.2. Results not presented in main figures can be found in Supplementary Table S8.

9. Deep learning histopathological analyses

9.1 Image pre-processing

Haematoxylin/eosin (HE) or haematoxylin/eosin/saffron (HES) whole-slide images (WSIs) for
212 patients from the lungNENomics cohort (193 with molecular group data) were available
for use in deep learning histopathological analysis. WSIs were cut into 384 x 384 pixel tiles,
and those with more than 80% background pixels were excluded, resulting in a dataset of 3.5
million tiles. Tile colours were normalised using the colour deconvolution method proposed
by Vahadane et al. 2016%,

9.2 Barlow Twins self-supervised deep learning model

To identify correlations between morphological features of lung NETs and their molecular
profiles, we first trained a self-supervised network to generate similar representations for tiles
with common morphological features. We reused the Barlow Twins models originally
proposed by Zbontar et al.® and first applied to histological images by Quiros et al.’®. The
original Pytorch implementation of the model developed by Facebook Research was reused for
this study (https://github.com/facebookresearch/barlowtwins). Two Wide ResNet-50 networks
pre-trained on ImageNet were used as the Barlow Twins backbone. The model was trained on
a subset of 300,000 randomly selected HE/HES tiles. A large batch size of 896 images was
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chosen as proposed by Zbontar ef al. so we developed a parallel implementation of Barlow
Twins running simultaneously on 8 NVIDIA V100 GPUs with 16 GB of RAM each. After
training for 240 epochs, Barlow Twins was used to create a reduced representation of the 3.5
million tiles, generating 128-dimensional vectors for each input image. Similar vectors are
assumed to have similar morphological features, and vice versa for dissimilar vectors.

9.3 Computation of Leiden morphological partitions on Barlow Twins encoded
vectors

A random set of 200,000 encoded vectors generated by Barlow Twins was used to create
morphological partitions based on the Leiden clustering algorithm’!. The unweighted graphs
required for the computation of the Leiden communities were constructed based on the inverse
of the distances between the & nearest neighbours of the Barlow Twins encoded vectors from
the selected tiles. To ensure the relevance of the Leiden clustering, the algorithm was run for
100,000 iterations. The computation was accelerated on a single NVIDIA A100 GPU with
80GB of RAM thanks to NVIDIA RAPIDS Suite of Al libraries (v24.4.0). Our implementation
is available on GitHub at:
https://github.com/IARCbioinfo/LeidenForTilesCommunity accGPU . The resulting high-
performance implementation allowed us to explore the following hyperparameters: The
number of neighbours used to construct the graphs, denoted K € [75, 125, 250,400], and the
Leiden resolution parameter denoted y € [0.25,0.75,1,1.25,1.5,2, 3].

We explored 32 combinations between these parameters, repeating the calculation of the
Leiden algorithm five times per combination, to explore the reproducibility of this clustering
technique. To select the best clustering, the silhouette scores were calculated for each run
according to the cosine distances. The silhouette scores were first compared based on the
parameter K, and then according to y. No value of K was significantly associated with higher
silhouette scores (P value = 0.07, Kruskal-Wallis). K =75 was chosen because it allows a faster
computation of Leiden partitions. For the Leiden resolution parameter y = 3, was associated
with the highest silhouette scores. Finally, for K =75 and y = 3 the second run was associated
with the best value and then used to approximate Leiden partitions (Supplementary Fig. S25).

Since the proportions of tiles in each of the resulting 116 Leiden partitions by WSI provide the
information used to predict the diagnosis or molecular group of patients, each of the 3.5 million
tiles had to be assigned to a Leiden partition. Therefore, for each tile, the partition of its nearest
neighbour in the set used to calculate the Leiden groups was used as a proxy for its Leiden
partition.

9.4 Classification strategy based on Barlow Twins encoded vectors

Before predicting the patient diagnoses or molecular group, the approximate Leiden partitions
were filtered according to the following rules. First, since the partitions must include tiles from
a sufficient number of WSIs to represent a meaningful morphological partition, the inverse of
the Simpson index, which measures the diversity of a composition vector with non-negative
entries that sum to one that correspond to the proportions of individuals from different
categories’?, was calculated for each partition. Partitions with a score < 2, indicating low
diversity (e.g., a partition that was only found in 2 samples and in the same number of tiles in
each sample), were discarded to ensure sample diversity within partitions. Secondly, since the
partitions must be significantly enriched for a group to be informative for a classifier, the
enrichment per group and per partition was calculated. Only partitions with one or more groups
associated with an enrichment score below 0.5 or over 1.5 were retained.
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These rules were applied to the 116 Leiden partitions to retain 27 partitions to predict the
histological type of 212 patients (Supplementary Fig. S13), and 41 partitions to predict the
molecular group of 193 patients (Supplementary Fig. S14). The proportions of tiles per
partition and per patient were used to obtain a single vector per WSI’. These vectors of
proportions were used to train random forest models to predict either the patient’s diagnosis,
i.e. typical or atypical, or their molecular group. A ‘leave one out’ strategy was used to predict
once each patient once, based on a training set that included all the other patients. Weighted F1
scores were computed to evaluate and compare model performance. Results are presented in
Supplementary Tables S38 and S39.

9.5 RoFormer-MIL supervised deep learning model

The Multiple Instance Learning (MIL) RoFormer model” was used as a supervised deep
learning approach to directly predict the molecular group of each WSI and to identify
morphological partitions associated with these groups, particularly in the absence of
established histological hypotheses. RoFormer-MIL offers the following advantages over the
random forest model used in section 9.4: 1) it captures interactions between tiles within the
WSI using its Transformer module; ii) it accounts for the relative spatial positioning of the tiles
within the WSI, and iii) it assigns importance to the individual tiles during classification
through the “Attention-based Deep Multiple Instance Learning” (ABMIL) attention scores’*.

We replaced the original naive tile encoding method, which used a pre-trained ResNet 50 on
ImageNet, with the encoded vectors obtained from Barlow Twins. RoFormer-MIL was trained
using a multi-fold train/test strategy, to predict each WSI once. Thus, the 193 WSIs were split
32-fold, with each fold containing five to nine samples in the test set and nine samples in the
validation set.

We modified the architecture of the model to adapt RoFormer-MIL to 128-dimensional
encoding vectors (Supplementary Tables S40 and S41). To mitigate overfitting, the following
adjustments were made: 1) encoded vectors were standardised by WSI, ii) ReLU activation
functions were substituted for leaky ReLU activations functions’, iii) Networks weights were
initialised by with Xavier method’®, and iv) early stop mechanisms and checkpoint saving were
configured on the minimal validation loss rather than the maximum binary accuracy as
originally proposed.

9.6 Leiden morphological partitions based on RoFormer-MIL highest attention
scores

The top 5% of ABMIL attention scores by channel and WSI were used to select the encoding
vectors to compute Leiden clusters. Only correctly predicted WSIs were used, as the aim of
these clusters was to discover the significant morphological features that led to correct
classification. In total, 286,097 vectors were selected, the same parameters as in the self-
supervised branch were explored, except for the number of neighbours K = 400, which was
excluded due to memory constraints. To select the best clustering, silhouette coefficients based
on cosine distances were calculated for each run. The clusters obtained with K = 250 had a
significantly higher silhouette coefficient. The y value that maximised the silhouette coefficient
values was 2.0. Finally, the third run with K =250 and y = 2 was associated with the highest
silhouette coefficient and was therefore chosen as the best cluster for interpreting the Leiden
scores (Supplementary Fig. S25).
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The resulting 75 Leiden partitions were then filtered according to the criteria defined in Section
9.4. The first criterion eliminated 34 partitions, and the second excluded 10 more, leaving 31
partitions after filtering (Supplementary Fig. S16, Supplementary Table S42).

9.7 Pathological review to interpret deep learning-based results

9.7.1 Partition level interpretability and selection of morphological features

For each of the 31 remaining partitions, five of the six pathologists assessed their
interpretability based on a random selection of 28 tiles per partition. The evaluation included
three criteria: 1) whether the partition needed to be excluded because it represented recurrent
artefacts, such as blurred images, or damaged tissue; ii) whether the partition was homogenous
enough to be described globally without requiring a tile-by-tile annotation; and ii1) whether 50
tiles was estimated as sufficient to capture the morphological heterogeneity, or if additional
tiles were required for a comprehensive description.

The results of this first step are summarised in Supplementary Table S43, where the majority
rule was applied to aggregate the responses of all pathologists (Supplementary Table S43).
Three partitions (9, 10, and 25) were excluded due to the presence of significant artefacts. Four
partitions (28, 39, 58, and 70) were initially discarded because they contained few tumour cells,
however, were reported to have other potential features of interest such as stroma and
parenchyma and were therefore retained. Partitions 28, 39 and 70 were sufficiently described
based on comments during this first evaluation step and were therefore considered globally
annotated, whilst partition 58 underwent tile-by-tile annotation.

Of the 25 remaining partitions, 12 were deemed sufficiently homogeneous to be described
globally, while 13 (including partition 58) required a tile-by-tile description due to significant
morphological heterogeneity. To reduce the workload, partitions were distributed between two
pathologists per group, with separate assignments for global and tile-by-tile annotation. A
preliminary list of morphological features relevant to lung carcinoids was compiled for
annotation. Pathologists reviewed this list, providing input on its relevance and suggesting
additional features. All proposed modifications were incorporated into the final list for the
second step of annotation. The selected features were grouped into the following categories:

e Cell composition:
o Presence of immune cells (macrophages, lymphocytes, etc)
o Stroma description: fibroblasts, endothelial cells, etc.
o Additional non-tumoural cells (ciliated cells, chondrocytes, etc)
o Tissue description:
o Presence of necrosis or fibrosis
o Tissue architecture
e Description of tumour cells:
Tumour cell size
Nucleus-to-cytoplasm ratio
Tumour cell shape
Additional features (conspicuous nucleoli, salt-and-pepper chromatin, etc)

o O O O

9.7.2 Global annotations
Partitions that were sufficiently homogeneous for global description were presented to one pair
of pathologists using the 28 tiles from the first step. In this second step, each pathologist
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assessed whether the selected morphological features were present. Supplementary Table S44
summarises these annotations. Each partition was independently reviewed by two pathologists.

9.7.3 Tile-by-tile annotations

Partitions exhibiting significant morphological heterogeneity were annotated on a tile-by-tile
basis. A random selection of 50 tiles per partition was uploaded to the Label Studio web
application (https://labelstud.io/) where pathologists reviewed individual tiles and assigned
annotations by selecting our predefined features (Supplementary Fig. S15). Each partition
was independently annotated by two pathologists, and all annotations are provided in
Supplementary Table S45. For partition 58, an extended set of 75 tiles was annotated, while
all other partitions followed the standard 50-tile annotation protocol.

9.7.4 Interpretation of annotations
To consolidate individual annotations, features were classified into three categories:

e ‘Yes’: indicating that the feature was identified by both pathologists, either at the tile
level (for tile-by-tile annotations) or at the partition level (for globally annotated
partitions).

e ‘No’: indicating that the feature was not identified by either pathologist.

e ‘Maybe’: indicating the feature was identified by only one of the two pathologists.

This rule was applied to all features except those associated with higher uncertainty, for which
additional considerations were implemented:

e ‘Tumour cell size’ and ‘N:C ratio’ (nucleus-to-cytoplasm ratio): in the absence of a
defined threshold or measuring tool, the annotation "unusually large" or "unusually
small" was recorded only if both pathologists agreed. Otherwise, the feature was left
unspecified (NA), with “medium” as the default classification.

o ‘Tissue architecture’: due to the inherent difficulty of assessing architecture in small
tiles, only structures identified by both pathologists were considered. No architectural
combinations were accepted, except for “organoid and trabecular”, as trabecular is a
subcategory of organoid architecture’’. Additionally, the nested cell architecture was
classified under organoid.

For tile-by-tile annotated partitions, a Fisher's exact test was performed to assess whether
specific features were significantly enriched in a given partition compared to others, and P
values were corrected for multiple testing using the Benjamini-Hochberg method
(Supplementary Table S45, Supplementary Figs. S17 and 18).

Finally, feature prevalence was evaluated across molecular groups. A total of 29 features were
evaluated. For partitions annotated tile-by-tile, the proportions of ‘yes’ and ‘maybe’ were
summed, with the ‘maybe’ level assigned half the weight of the ‘yes’ level. For globally
annotated partitions, ‘yes’ corresponded to 100% of the tiles displaying the feature, ‘maybe’ to
50% of the tiles, and ‘no’ to 0% of the tiles displaying the feature. Permutation tests (10,000
replicates) were performed to compare the means of the groups: a global test to compare the
three groups, and pairwise tests for each pair of groups (Supplementary Figs. S17 and S18).
P values were corrected for multiple testing using the Benjamini-Hochberg method, leading to
13 out of 29 features significant at the 5% threshold (Supplementary Table S45).

9.8 Generalisation of the presence of key morphological features
To estimate the presence of identified morphological features based on pathological review,
we used the CONCH”® visual-language foundation model. All tiles were first embedded using
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the CONCH image encoder. To assess the relevance of specific text prompts corresponding to
key features identified by pathologists, cosine similarity scores were computed for manually
annotated tiles. For validation, the model was tested on selected annotated tiles. For example,
using 100 tiles annotated as containing spindle-shaped cells and 451 tiles without this feature
(as determined by two pathologists), the prompt “spindle shape” achieved a ROC-AUC score
of 0.89. Similarly, the prompt “fibrotic tissue” yielded a ROC-AUC score of 0.74, based on
112 tiles containing this feature and 343 tiles without. Following this prompt evaluation step,
cosine similarity scores were computed between each text prompt and all tiles. Finally, the
median cosine similarity score was calculated per WSI, providing a single value per slide.
These scores were then used to compare the distribution of morphological features across
different molecular groups (Fig. 3d). In order to test the robustness of the results to the text
prompt used, we repeated the analysis using 21 alternative prompts for spindle cells (e.g.,
“narrow spindle shape” or “narrow, elongated cells”) and fibrosis (e.g., “fibrous tissue with
collagen” or “fibrous connective tissue with collagen bundles”; Extended Data Fig. 4d).

9.9 Morphological review for classification

H&E slides for 22 unclassified/misclassified cases from the immunohistochemistry panel
classification (see Section 11) were provided to pathologist M. V. for review and classification.
M.V was instructed to firstly indicate the presence or absence of four features (spindle cell
shape, organoid architecture, solid architecture, fibrosis) by selecting one of four levels from a
dropdown menu (absent, low presence, moderate presence, or high presence). Then he was
asked to use this information to assign a molecular group of Ca Al, Ca A2, or Ca B based on
the following guidelines. Ca Al: frequent spindle cells, solid architecture and fibrosis, rarely
organoid architecture; Ca A2: frequent organoid architecture and fibrosis, few spindle cells; Ca
B: frequent solid architecture, few spindle cells. Results are presented in Supplementary
Figure S12 and Supplementary Table S37.

10. Digital spatial profiling

10.1 Experimental set up

To assess the heterogeneity of lung NETs and to characterise the tumour microenvironment,
we used NanoString GeoMx's Digital Spatial Profiling (DSP) technology’®. The DSP data
combine immune cell and tumour cell areas from 64 patients in the lung NET cohort, including
25 Ca Al, 18 Ca A2, and 21 Ca B patients (Supplementary Fig. SS). A total of 513 areas of
interest (AOIs) were selected blindly, with regard to the molecular group, and processed at the
Centre Léon Berard (Supplementary Fig. S5). Immune AOIs were selected based on CD45
expression assessed by UV illumination, and tumour cell AOIs by fluorescence of PanCk. The
expression of 39 proteins from three panels (immune cells, immune activation state, and
immune cell typing) was spatially quantified using the NanoString nCounter® platform.

10.2 DSP data quality control and normalisation

We performed quality control on the selected AOIs and protein probes according to the
instructions in the GeoMx Data Analysis and nCounter user manuals, as well as the protein
normalisation strategy. A total of 44 AOIs (8.6%) were excluded (Supplementary Fig. S5):
four due to mixed tumour/immune region design, 16 due to a low number of nuclei (i.e. less
than 20), six due to a low surface area (i.e. less than 1600 um?2), 15 due to lack of collected
material, and three with insufficient expression of the housekeeper probes S6, Histone H3 and
GAPDH (i.e. the logarithm of their geometric mean was considered an outlier with respect to
the rest of the distribution, being less than five) or too low expression of the negative control
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probes Rb IgG, Ms IgG2 (i.e. the logarithm of their geometric mean was less than three with
respect to the rest). This resulted in available data for 469 AOls.

To check the quality of the protein measurements, the signal to background ratios of each probe
were calculated, where the background signal was defined as the geometric mean of the
negative controls. We excluded all proteins for which the mean log, signal to background ratio
was less than zero. Nine proteins were excluded according to the quality control performed
within tumour cell AOIs, i.e. AOIs fluorescing at PanCk: CD66b, CD163, CD80, PD-L1,
CD27, ICOS, PD-L2, CD40, and PD-1. For immune cells AOIs (fluorescently labelled with
CD45), five proteins were excluded: CD80, PD-L2, CD66b, PD-L1, and FOXP3. As tumour
and immune cell AOIs were analysed together, a common set of non-control proteins that
passed this quality control step was determined, resulting in the inclusion of 23 immune-related
proteins (Supplementary Fig. S5).

10.3 Molecular group prediction for AOIs

To evaluate the ability of the selected immune proteins to distinguish the three main molecular
groups, namely Ca Al, Ca A2, and Ca B, we employed random forest (RF) models to predict
individual AOIs based on the molecular group defined at the patient level through multi-omics
analysis (see Section 8.1). The original RF model (RF1) used normalised counts of 23 proteins
as the input features and were trained using a five-fold cross-validation approach. This training
process was repeated 100 times, resulting in each AOI being predicted 100 times. The
probabilities for each class were averaged across the 100 predictions. AOIs were deemed
unclassifiable if the ratio of the highest to second-highest average probability was less than 1.5;
otherwise, the AOIs were assigned to the molecular group corresponding to the most probable
class. The model's performance at the AOI level was evaluated using contingency matrices and
F1 scores (Supplementary Fig. S6, Supplementary Table S13). AOIs were deemed correctly
classified if the predicted molecular group corresponded with the molecular group assigned at
the patient level. We hypothesised that misclassification of AOIs might result from intra-
tumour heterogeneity in the immune microenvironment across AOIs from the same patient
rather than inaccuracies in the RF1 model. To test this hypothesis, a new set of RF models
(RF2) was trained only on AOIs that had been correctly classified, because these AOIs
presumably represent AOIs with immune microenvironments matching the patient-level group
label, using the same methodology as in RF1. We then performed a prediction for AOIs that
had been misclassified by the RF1 model using RF2. The high reproducibility of predictions
between the original RF1 and the RF2 models (Supplementary Fig. S6, Supplementary
Table S13) validated the reliability of the decision rules. The final molecular group prediction
for each AOI, used in subsequent analyses, was inferred from RF2 models, and AOIs for which
the predicted molecular group differed from the patient-level assignment were interpreted as
indicative of intra-tumoural heterogeneity (Supplementary Fig. S6, Supplementary Table
S13). The intra-tumoural heterogeneity of immune proteins was illustrated by the prediction of
each AOI per patient (Supplementary Fig. S8). Furthermore, this intra-tumoural heterogeneity
within each molecular group was summarised by the prediction frequencies of each molecular
group (Supplementary Fig. S8). Finally, for each molecular group a Binomial test was
performed to determine whether one of the two groups that contradicted the patient's true group
was more likely (Supplementary Table S13).

10.4 The most discriminating immune proteins of molecular groups

To rank the proteins based on their ability to discriminate the three molecular groups, RF
models were trained to classify the molecular groups of the AOIs, and the mean decrease in
Gini index for each protein was recorded. In this third set of RF models, only AOIs that were
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correctly classified by the second set of models, meaning their predictions matched the
molecular group defined at the patient level, were included. The models were trained using a
five-fold cross-validation strategy, repeated 100 times. The average decrease in Gini index for
each protein across all models was then calculated to rank the proteins according to their
discriminatory power for molecular group determination (Supplementary Fig. S7,
Supplementary Table S14). To determine the minimum number of proteins needed to
replicate the classification performance of the second set of RF models, new RF models were
trained using progressively larger sets of the top » most predictive proteins from the previous
ranking. The same training strategy was applied. For each set of these new RF models, the
weighted average F1 score of the classifications was calculated and reported (Supplementary
Fig. S7). Subsequently, the elbow method was employed to identify the smallest set of proteins
that achieved the performance of the second set of RF models. For each protein in this optimal
set, normalised counts were reported by patient molecular group and according to the molecular
groups predicted at the AOI level (Supplementary Fig. S7).

11. Immunohistochemistry classification panel

Ninety samples from the lung NET cohort with FFPE tissue available that had been classified
as Ca Al, Ca A2 or Ca B as described in Section 8.1 were randomly selected for assessment
by immunohistochemistry (IHC). IHC staining for ASCL1, HNF1A, and OTP was performed
at Maastricht University Medical Centre following the protocol described in Leunissen et al.*.
H-score cutoffs for classification as Ca Al, Ca A2, and Ca B are as follows: OTP > 40 &
ASCL1>10 (Ca Al); OTP > 150 & HNF1A > 30 (Ca A2); OTP <20 & HNFIA > 80 (Ca B).
H-scores, predicted molecular group, and true molecular group are shown in Supplementary
Table S37, example images are shown in Supplementary Fig. S12.
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