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Abstract​
​ Epstein-Barr Virus (EBV) is an endemic herpesvirus implicated in autoimmunity, cancer, and 

neurological disorders. Though primary infection typically resolves with subclinical symptoms, long-term 

complications can arise due to immune dysregulation or viral latency, in which EBV DNA is detectable in 

blood for decades. Despite the ubiquity of this virus, we have an incomplete understanding of the highly 

variable responses to EBV that range from asymptomatic infection to a trigger for severe disease. Here, we 

demonstrate that existing whole genome sequencing (WGS) data contains ample non-human DNA 

sequences to reconstruct a molecular biomarker of latent EBV infection consistent with orthogonal 

phenotypes, including viral serology. Using the UK Biobank (n = 490,560) and All of Us (n = 245,394), we 

uncover reproducible complex trait associations that nominate latent blood-derived EBV DNA as a 

respiratory, autoimmune, and cardiovascular disease biomarker. Further, we evaluate the genetic 

determinants of persistent EBV DNA via genome-wide and exome-wide association studies, uncovering 

protein-altering variants from 147 genes. Single-cell and pathway-scale enrichment analyses implicate 

variable antigen processing and presentation as a primary genetic determinant of latent EBV persistence, 

with gene programs expressed in B cells and antigen-presenting cells. Using predicted viral epitope 

presentation affinities, we implicate genetic variation in MHC class II as a key modulator of EBV DNA 

persistence. Our analyses demonstrate how existing WGS data can derive novel molecular biomarkers, 

which may generalize to dozens of viruses comprising the blood virome1.  
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Main​

​ In 1964, Anthony Epstein, Yvonne Barr, and Burt Achong isolated actively replicating viral particles 

from Burkitt lymphoma, discovering the virus that would later bear their name – Epstein-Barr Virus (EBV)2. 

EBV has since been identified as the first known human oncogenic virus3, the causative agent of infectious 

mononucleosis3, and an agent in developing and exacerbating multiple autoimmune diseases4. Despite 

these wide-ranging pathogenic roles, EBV infection is nearly ubiquitous, infecting >90% of adults 

worldwide5, with most individuals remaining asymptomatic3. Further, latent EBV can persist in B cells and 

even in peripheral blood for the full lifetime of otherwise healthy individuals1,6. This clinical heterogeneity – 

from asymptomatic infection to severe disease – remains incompletely understood. The vast phenotypic 

spectrum following an endemic infection underscores the individual variability in viral response, which can 

partially be attributed to genetic variation in the human genome7–9. However, genetic association studies of 

common infections with complex phenotypes such as EBV have been underpowered due to small cohort 

sizes10, motivating new approaches to study infection, viral persistence, and host-phenotype associations. ​

​ Beyond its role in human disease, EBV has been instrumental in advancing population genetics 

research. EBV can transform primary B lymphocytes from healthy individuals into immortalized 

lymphoblastoid cell lines (LCLs)11, enabling long-term storage and large-scale genetic studies, including the 

HapMap12, 1000 Genomes13, and Geuvadis14 Projects, which applied DNA and RNA sequencing to profile 

diverse global cohorts. These foundational efforts laid the groundwork for more expansive population-scale 

cohorts, such as the UK Biobank (UKB15) and All of Us (AoU16), that include sequencing and phenotypic 

data from hundreds of thousands of individuals17 – a scale that could in theory be used to interrogate the 

genetic underpinnings of complex, variable phenotypes caused by infection. ​

​ As modern biobanks perform whole-genome sequencing (WGS) on peripheral blood rather than 

LCLs, we hypothesized that latent EBV DNA can be captured and quantified in these existing libraries. 

Building on recent work that quantifies viral nucleic acids in petabyte-scale datasets to infer host-virus 

interactions retrospectively18,19, we sought to develop a scalable computational heuristic to estimate latent 

EBV DNA at the level of the individual. By leveraging the existing inclusion of the EBV genome as a contig 

in the human reference genome, we demonstrate how ordinarily excluded sequencing reads can be 

reanalyzed to create a novel molecular biomarker for genome-wide and phenome-wide association studies 

at petabase-scale. Applying this framework to the UKB (n = 490,560 individuals; discovery) and AoU (n = 

245,394; replication) cohorts, we uncover phenotypic and genetic correlates of the variation in latent EBV 

DNA levels. Our approach reveals the potential for studying genetic determinants of infectious disease 

across the human virome20, which may further serve as a biomarker of other complex traits.    

Biobank WGS data harbors EBV DNA​

​ To address the high levels of EBV DNA present in the LCL-derived libraries that were foundational 

for efforts such as the 1000 Genomes Project13, the EBV genome (chrEBV / NC_007605) was incorporated 

into the human reference genome assembly (as of hg38)21. This alternative contig was designated as a sink 

for viral nucleic acids to improve variant calling and interpretation in the human genome21. We hypothesized 

that reads mapping to this contig from blood-derived WGS data would reflect prior infection and latent 

persistence of EBV and serve as a molecular biomarker in these biobank-scale cohorts. We thus extracted 
3 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 18, 2025. ; https://doi.org/10.1101/2025.07.18.665549doi: bioRxiv preprint 

https://paperpile.com/c/1zI2aV/Wrsn
https://paperpile.com/c/1zI2aV/D1it
https://paperpile.com/c/1zI2aV/D1it
https://paperpile.com/c/1zI2aV/96As
https://paperpile.com/c/1zI2aV/3tml
https://paperpile.com/c/1zI2aV/D1it
https://paperpile.com/c/1zI2aV/bHJT+iBRA
https://paperpile.com/c/1zI2aV/lGbx+rffm+M74G
https://paperpile.com/c/1zI2aV/CeIv
https://paperpile.com/c/1zI2aV/Ib9z
https://paperpile.com/c/1zI2aV/JqCp
https://paperpile.com/c/1zI2aV/3fEM
https://paperpile.com/c/1zI2aV/TOfA
https://paperpile.com/c/1zI2aV/JU77
https://paperpile.com/c/1zI2aV/T0Y6
https://paperpile.com/c/1zI2aV/toWW
https://paperpile.com/c/1zI2aV/pENl+HBnTg
https://paperpile.com/c/1zI2aV/qodG
https://paperpile.com/c/1zI2aV/3fEM
https://paperpile.com/c/1zI2aV/Q0LW
https://paperpile.com/c/1zI2aV/Q0LW
https://doi.org/10.1101/2025.07.18.665549
http://creativecommons.org/licenses/by/4.0/


all sequencing reads from the aligned .cram files that mapped to chrEBV, enabling a quantification of the 

per-individual, per-base EBV DNA coverage across 490,560 individuals in UKB (Fig. 1a,b). In addition to 

regions with low coverage corresponding to poor mappability, we identified two distinct loci with 

disproportionately high read depths that corresponded to repetitive sequences (Fig. 1b; Methods). As 

these regions were detected at levels orders-of-magnitude higher than the median of the viral contig, we 

reasoned that they would confound latent EBV DNA detection. To assess this, we utilized complementary 

EBV serostatus as an orthogonal measure of prior infection, evaluated for a subset of 9,964 UKB 

individuals. Using serostatus, we observed a nominal association between detectable EBV DNA and 

seropositivity (Fisher’s Exact test odds ratio [OR] = 1.2, P = 0.03; Fig. 1c; Methods). However, discarding 

these two repetitive regions revealed that >40% of the UKB cohort only had aligned reads in these regions 

(Extended Data Fig. 1b); masking these regions and re-binarizing the individuals resulted in a markedly 

stronger association between our bias-corrected DNA detection and serostatus (Fisher’s Exact test OR = 

14.6, P = 1.7×10-26; Fig. 1c). Notably, the observed association between EBV DNAemia (here defined as 

the bias-corrected detection of EBV in blood WGS) and serostatus was specific to EBV (Fig. 1c,d). The 

next strongest association with serostatus was for human immunodeficiency virus 1 (HIV-1; Fisher’s Exact 

test OR = 4.6, P = 0.0023), consistent with previous reports of EBV DNAemia following immunosuppression 

due to HIV (Fig. 1d)22. Taken together, these analyses suggest that previously underanalyzed reads 

mapping to the chrEBV contig represent EBV DNAemia as a novel molecular biomarker. This distinct 

sequencing-based approach readily scales to hundreds of thousands of individuals, more than a 100-fold 

increase in sample size compared to serology-based association studies10.​

​ To help interpret our metric, we estimated the EBV DNA copy number per 1,000 cells by normalizing 

read counts between viral and host genome sizes. At the extremes, 85.7% of individuals had no detectable 

bias-corrected EBV DNA, whereas 0.3% exhibited EBV DNA copy numbers of at least 1 viral genome per 

1,000 human cells, including one individual with an EBV genome per 100 human cells (Fig. 1e,f). This 

range, derived from predominantly healthy individuals, is consistent with symptomatic EBV infections being 

diagnosed at a level of 1 in 200 cells using PCR23. Complementary analyses of population-scale 

scRNA-seq data showed only 1 EBV transcript in >50 billion reads from ~1,000 blood donors24, confirming 

that the detected viral DNA in UKB is from latent viral infection rather than reactivated or otherwise lytic 

virus (Methods). Given the skewed distribution of EBV DNA load, we assessed varying classification 

thresholds using serostatus as a ground truth. A cutoff of 1.2 viral genomes per 104 human cells yielded the 

strongest concordance with seropositivity (OR = 82.2, P = 2.2 x 10-16 ; Fig. 1g). Hence, using this threshold, 

we classified 47,452 (9.7%) individuals as EBV DNA+ for subsequent analyses (Extended Data Fig. 1b). ​

​ Annotating each individual by birth location, we observed an increasing proportion of EBV DNA+ 

individuals at more northern latitudes in the UK, consistent with prior reports linking EBV infection to vitamin 

D levels25 (Extended Data Fig. 1c). Further, we observed a sex-biased (male higher) and age-associated 

increase in EBV DNA positivity, the latter consistent with EBV serology10 (Extended Data Fig. 1d). To 

replicate these inferences, we performed parallel analyses in the US-based All of US (AoU) cohort, 

spanning 245,394 individuals with available WGS (Extended Data Fig. 1e; Methods). Results from the 

independent analyses of AoU replicated key attributes of the UKB data, including a clear repetitive region 
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that was similarly masked, resulting in 11.9% of individuals annotated as EBV DNA+, as well as consistent 

age- and sex-associated differences (Extended Data Fig. 1f–h). Together, these findings demonstrate that 

EBV DNA can be retrospectively quantified from existing large-scale WGS datasets with reproducible 

signal, after mitigating bioinformatic artifacts.  

EBV DNA is a biomarker of complex traits 
​ To determine whether our WGS-enabled measure of EBV DNAemia could serve as a biomarker of 

complex disease, we performed a phenome-wide association study (PheWAS). Our study used systematic 

outcomes catalogued via ICD10 codes to identify complex traits highly associated with EBV DNAemia on 

individuals of predominantly non-Finnish European (NFE) genetic ancestry (Methods). Using UKB as a 

discovery cohort (n = 426,563), we tested for the association between EBV DNA+ status and 15,220 binary 

phenotypes or 1,931 quantitative phenotypes, following our previously described PheWAS workflow26 

(Extended Data Table 1; Methods). Among binary traits, we observed 242 significant (P < 3.3 x 10-6) 

associations, including the well-established associations with splenic diseases and Hodgkin lymphoma. We 

also observed significant associations with rheumatoid arthritis (RA27), chronic pulmonary disease 

(COPD28), and systemic lupus erythematosus (SLE29), each of which has been previously associated with 

EBV using orthogonal approaches6 (Fig. 2a). Significant quantitative associations (n = 156) included 

detection of two EBV antigens, leukocyte count, neutrophil percentage, smoking pack years, and 

compositions of omega-3 fatty acids, consistent with prior observations of lipogenesis induction following 

EBV infection30 (Extended Data Fig. 2a). Interestingly, we also detected a strong association with malaise 

and fatigue (OR = 1.27; P = 2.06 x 10-10), noting that EBV has been long hypothesized as a risk factor for 

myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)31,32. In addition, we identified significant 

associations with decreased level phosphatidylcholine (P = 2.9 x 10-9) and total choline (P = 5.9 x 10-9), 

consistent with metabolic studies in ME/CFS patients33, reinforcing a potential viral etiology for ME/CFS and 

suggesting that EBV DNAemia could serve as a facile biomarker.  
We replicated these associations using the AoU cohort (Fig. 2b). For 105 of the significantly 

associated ICD10 codes in UKB, we had sufficient representation in the AoU cohort for replication 

analyses, 62 of which were also significant in AoU (Methods; Extended Data Table 2). These included RA 

(UKB: OR = 1.46; P = 3.9 × 10-26; AoU: OR = 1.92; P = 6.6 × 10-20), COPD (UKB: OR = 1.98; P = 1.6 × 

10-33; AoU: OR = 2.03; P = 8.4 × 10-24), and lung neoplasms (UKB: OR = 1.50; P = 6.7 × 10-9; AoU: OR = 

1.87; P = 0.0062), as well as less-established phenotypes of peripheral vascular disease (UKB: OR = 1.47; 

P = 2.5 × 10-22; AoU: OR = 1.39; P = 3.1 × 10-7), emphysema (UKB: OR = 1.69; P = 1.1 × 10-34; AoU: OR = 

1.65; P = 1.1 × 10-9), and tachycardia (UKB: OR = 1.30; P = 2.2 × 10-9; AoU: OR = 1.12; P = 0.029), some 

of which may be attributable to the well-established association between smoking and EBV reactivation34. 
We also considered two additional ICD10 codes for traits previously linked to EBV but were not significant 

in either cohort (Methods; Extended Data Fig. 2b). For multiple sclerosis, we observed associations that 

did not survive multiple testing corrections (UKB: OR = 2.1; P = 0.019; AoU: OR = 0.73; P = 0.0087), 

consistent with previous reports that did not observe associations when examining ICD codes of viral 

exposure on multiple sclerosis outcomes in UKB35. For gammaherpesviral mononucleosis, a primary 

manifestation of EBV infection, the association was consistent in the expected direction (UKB: OR = 2.55; P 
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= 0.23; AoU: OR = 5.86; P = 1.1 × 10-6) but underpowered due to low sample sizes, likely because 

infectious mononucleosis primarily affects younger individuals (n = 11 in UKB; n = 42 in AoU). While further 

work is required to establish a causative role for EBV in previously unreported phenotypes, the 

concordance of effects across the two biobanks indicates that EBV DNA could serve as a molecular 

biomarker for these traits, including cardiovascular, respiratory, and autoimmune diseases.  

Polygenic variation underlies EBV DNAemia 
Previous studies have established that manifestations of viral infections are a polygenic trait 

controlled by dozens of loci in the human genome10,36,37. Hence, we reasoned that genetic variation would 

similarly influence the variable detection of EBV DNA. To evaluate this hypothesis, we conducted a 

genome-wide association study (GWAS) on individuals with primarily NFE ancestry to identify loci 

associated with EBV DNAemia (Methods). Using array-based genotype data followed by imputation from 

426,563 NFE individuals in UKB, we identified 21 independent loci reaching genome-wide significance 

associated with EBV DNA positivity (P < 5 × 10⁻⁸; Fig 3a; Methods). Conversely, analogous genome-wide 

analyses of binarized EBV serology (seropositivity) resulted in 0 genome-wide significant hits38. We 

attribute this disparity to both the five-fold increase in sample-size for our NGS-based biomarker, EBV 

DNAemia, and the underlying molecular biology of the measurements. Namely, seropositivity was 

measured against four EBV antigens (VCA p18, EBNA-1, ZEBRA, and EA-D) for only ~2% of NFE 

participants (n=8,669 out of 426,563 total).  

For the EBV DNAemia GWAS, the strongest association was near human leukocyte antigen (HLA) 

genes on chromosome 6 that encode the major histocompatibility complex (MHC) class I and II proteins 

(Fig. 3a). MHC molecules are critical in differentiating between self and non-self proteins and have been 

widely associated with autoimmune traits10,39,40. Moreover, associations with viral antibody responses7–9 and 

degree of infection severity41 have recurrently implicated this region, corroborating our genetic associations. 

Overall, the SNP-based heritability (h2) determined by LDscore Regression (LDSC) was 2.21% (± 0.85%) 

with limited evidence of genomic inflation (λGC 1.1; LDSC intercept = 1.03 ± 0.008). 

To refine putative functional protein-coding variants at the MHC locus and genome-wide that impact 

EBV DNAemia, we utilized genome sequencing data from UKB to conduct an exome-wide association 

study (ExWAS) as we have previously described26 (Methods). A total of 690 missense variants across 147 

genes were significantly associated after Bonferroni corrections (P < 5 × 10⁻⁸), which aided in the 

annotation of putative causal variants at associated loci (Fig. 3a; Extended Data Table 3; Methods). 

Consistent with our GWAS results, the protein-coding variants with the largest effect sizes were in the MHC 

locus, where 148 MHC class I, 113 MHC class II, and 7 non-classical HLA protein-altering variants were 

significantly associated with EBV DNAemia (Fig. 3b), collectively emphasizing the role of heterogeneous 

antigen processing and presentation in controlling EBV infection and latent persistence.  

Outside the MHC locus, our combined GWAS and ExWAS associations nominated several loci 

associated with EBV DNAemia. The strongest non-chromosome 6 association was in the chromosome 5 

region that encodes the aminopeptidases ERAP1, ERAP2, and LNPEP contiguously42,43 (Extended Data 

Fig. 3b). Strongly associated variants included rs2549794 (OR = 0.89, P = 3.61 × 10-51), an intronic variant 

in ERAP2 that modulates gene expression44 and manifests with pleiotropic effects on infectious respiratory 
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disease and autoimmunity44, consistent with the multi-faceted associations from our phenotypic 

associations (Fig. 2). Additionally, a strong coding variant (rs2476601; R620W) in PTPN22, a key immune 

regulator involved in T cell receptor signaling and type I interferon production45, was associated with EBV 

DNAemia (OR = 1.08, P = 1.07 × 10-9) (Extended Data Fig. 3c). Notably, the PTPN22 R620W variant has 

been extensively characterized in autoimmune diseases, including rheumatoid arthritis, systemic lupus 

erythematosus (SLE), and type 1 diabetes46. In addition, this variant has been associated with susceptibility 

and severity of infectious diseases, including bacterial and viral infections47. Moreover, missense variation 

in SH2B3 (rs3184504; R262W; OR = 0.96, P = 2.43 × 10-9; Extended Data Fig. 3d) was strongly 

associated with Celiac disease and linked to type 1 diabetes, peripheral arterial disease, and coronary 

artery disease, as well as susceptibility to multiple sclerosis48–52. Functional studies of this variant (R262W) 

suggest that SH2B3 mediates repression of IL12 signaling, promoting enhanced IFN-γ production and 

hypertension-associated pathology53. Other significant non-coding associations with rheumatoid arthritis 

included rs6679677, located between RSBN1 and PHTF1 (OR = 0.93, P = 7.41 × 10-10), as well as 

rs3806624 (OR = 0.95, P = 6.67 × 10-11) and rs9880772 (OR = 0.95, P = 1.82 × 10-11), positioned in an 

intergenic region near LINC01980 and EOMES. Notably, both rs3806624 and rs9880772 were also 

associated with lymphoid malignancies, including Hodgkin’s lymphoma54 and chronic lymphocytic 

leukemia55, respectively.  

To validate these and other associated loci, we used the AoU cohort as an independent cohort for 

association analyses to complement the biological plausibility and pleiotropy of genetic associations in 

UKB. Repeating our GWAS framework on n = 131,938 people with EUR ancestry in AoU for 12,099,305 

common variants (1% minor allele frequency), we observed largely concordant associations at key loci. 

Namely, 40,675 variants were genome-wide significant (P < 5 × 10⁻⁸) in UKB and passed quality control 

filters in AoU (Methods). Of these, 91.4% were replicated in the AoU GWAS (nominal P < 0.05; OR 

concordant; Fig. 3c). These strongly concordant results indicate that persistence of latent EBV DNA is a 

polygenic trait, and loci underlying EBV DNAemia are reproducible across continents and quantifiable using 

normally excluded WGS reads. While our discovery and validation methods used the binarized annotation 

of EBV DNAemia, we note that a linear model considering EBV DNAemia as a quantitative trait yielded very 

concordant results (Extended Data Fig. 3e; Methods).  

Pleiotropy with complex disease  
Given the well-described associations between EBV and immune-mediated phenotypes, we sought 

to systematically evaluate similarities between the genomic architectures of EBV DNAemia and 

immune-mediated diseases (IMDs). We utilized cupcake56, a framework that accounts for the shared 

components of genetic architecture across 13 IMDs using a shrinkage approach to adjust for LD, sample 

overlap, allele frequency, and differential sample size via principal component analysis (PCA)56 (Methods). 

Using cupcake, we projected the summary statistics from our EBV DNAemia GWAS onto the IMD-derived 

PCs to assess pleiotropic effects, then tested for significant associations (Methods). Notably, the cupcake 

PC1 segregates an IMD genetic axis characterized by antibody seropositivity56. For instance, “seropositive” 

traits (like RA27, SLE29, and T1D57) have positive PC1, whereas “seronegative” traits (like Crohn’s disease 

and ulcerative colitis) are negative on this axis (Fig. 3d). Consistent with our PheWAS and prior reports of 
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EBV pathogenesis, we observed a positive cupcake PC1 score, reflecting the shared genetic architecture 

between EBV DNAemia and autoimmune diseases such as RA, SLE, and T1D. Noting that initial EBV 

infections are most prevalent in adolescence58 and generally precede onset of autoimmunity59, our data 

refine a potential model where risk loci to these IMDs may first determine the persistence of latent EBV 

after primary infection that, in turn, may trigger complications characteristic of disease. 

Cell type-specific and pathway enrichment analyses 
​ To evaluate implicated genes systematically, we examined the expression of the 147 associated 

ExWAS genes as a signature score in a multi-modal dataset of 211,000 human peripheral blood 

mononuclear cells (PBMCs; Fig. 4a). As expected, the EBV signature score was enriched in B cells, 

consistent with the known viral tropism of EBV infection and latency (Fig. 4b,c). Interestingly, we observed 

a similar enrichment in subsets of antigen-presenting cells (APCs), particularly conventional dendritic cells 

(cDCs; Extended Data Fig. 4a,b), though DCs are most likely not directly infected by EBV60. To resolve the 

potential biological processes linked to this genetic architecture, we performed gene set analyses (GSA) 

using the GO Biological Processes (BP) and KEGG Pathway analyses. Among GO BP enriched terms, the 

top pathways involved antigen processing and presentation, MHC protein complex and assembly, and 

regulation of T cells (Fig. 4d; Extended Data Table 4). From the KEGG enrichments, we observed 

disease-associated annotations that included viral myocarditis, rheumatoid arthritis (RA), herpes simplex 1 

(HSV-1) infection, and, reassuringly, EBV infection (Extended Data Fig. 4d). As the strong linkage 

disequilibrium (LD) on chromosome 6 could drive this association, we refined these enrichments by further 

removing all HLA-associated genes or all genes on chromosome 6 (Methods). Regardless, antigen 

processing and presentation remained the most enriched term in our GO BP analyses, underscoring the 

critical role of this pathway in controlling viral infection and clearance (Fig. 4e,f). Together, these analyses 

indicate that B cells and APCs are the primary cell types affected by the genetic architecture of our latent 

EBV DNAemia biomarker, with viral antigen processing and presentation predominantly influencing the 

emergence and persistence of latent EBV infection.  

EBV peptide binding strength underlies DNAemia 
​ While the HLA locus is pervasively associated with immune-mediated complex traits, these 

associations are challenging to resolve due to the allelic diversity of the HLA locus, heterogeneity between 

human populations, and lack of well-estimated (auto-) antigens that can mediate complex trait 

manifestation39. In our setting, the EBV proteome defines the set of candidate antigens variably presented 

by these alleles that would, in turn, variably yield EBV DNAemia. Hence, we reasoned that explicit modeling 

of the HLA variation alongside predictions of EBV peptide display and processing could refine our 

understanding of genetic variation underlying viral persistence.  

We used NetMHC (NetMHCpan and NetMHCIIpan)61 to infer the binding affinity of all potential EBV 

epitopes in the viral proteome with all HLA alleles observed in the UKB NFE cohort (Fig. 5a;  Extended 
Data Fig. 5a; Methods). Following prior work that prioritized candidate singular immunodominant 

epitopes62,63, we summarized the per-allele best rank from NetMHC for both class I and class II alleles. The 

top predicted epitopes prioritized by NetMHC were corroborated by previously identified EBV antigens in 
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the Immune Epitope Database (IEDB)64, including 9 of 83 (10.8%) class I peptides and 7 of 106 (6.6%) 

class II peptides (Fig. 5b; Extended Data Fig. 5b; Extended Data Table 5). These overlaps were 

significantly enriched over a random set of peptides for both class I (P = 3.5 × 10-23; two-tailed binomial test) 

and class II (P = 0.047; two-tailed binomial test), verifying the capacity for NetMHC to predict viral peptide 

processing and presentation across HLA alleles in UKB. Further, we observed that predicted 

immunodominant peptides were depleted in latency-associated EBV genes specifically for MHC class I 

peptides, reflecting potential viral evolution to evade host immunity during latency (Fig. 5c). 

Recent work has shown that aggregation of immunodominant epitopes of the NetMHC scores via a 

harmonic mean of the best ranked peptide (HBR) is predictive of immune response, including to 

neoantigens in tumors62,63. We hypothesized that similar measures would be associated with the immune 

processing and recognition of viral epitopes. Hence, we summarized the per-person, per-allele HBR for 

class I and class II MHC (Fig. 5d). We developed two heuristics to assess the predictive power of these 

HBR scores in predicting EBV DNAemia, using both a permutation and regression-based framework 

(Methods). We compared the mean difference in HBR for individuals with and without EBV DNAemia and 

compared against 1,000 permutations of this biomarker. For class I presentation, HLA-A (UKB P = 8.3 × 

10-6) and HLA-B (UKB P = 0.046) but not HLA-C (UKB P = 0.40) were associated with individual 

persistence of latent EBV DNA (Fig. 5e). Conversely, for class II presentation, each allele was strongly 

associated (UKB HLA-DP: P = 3.0 × 10-162; UKB HLA-DQ: P = 3.8 × 10-49; UKB HLA-DR: P = 3.9 × 10-29), 

consistent with the role of CD4-mediated immunity of viral infections via class II antigen presentation by B 

cells and DCs. These enrichments were concordant with identical analyses in the AoU EUR cohort (Fig. 
5e). We further verified these results using an additional statistical regression framework that was 

concordant with our permutation model after accounting for potential confounders, including the full HLA 

haplotype per individual (Extended Data Fig. 5c–e; Methods). Together, these results support a model 

where individual genetic variation, predominantly in MHC class II, is a key determinant in the latency and 

persistence of EBV infection (Fig. 5f). In particular, our results indicate that the computational modeling 

between class II host alleles and the viral proteome reflects the development of EBV DNAemia.  

Genetic diversity in EBV sequences​
​ Alongside host genetic variation, our framework enables genome-to-genome analyses65–67 whereby 

variation in the viral genome can be similarly quantified. This setting yields a composition across these 

biobanks that approximates the circulating genetic variation of EBV in the UK and the US. We developed a 

heuristic to estimate the ratio of type 1 to type 2 EBV, confirming that type 1 was the predominant strain on 

both continents68 (UKB: 94.8%; AoU: 89.3%; Extended Data Fig. 6a; Methods) and indicating the 

high-quality nature of our data at nucleotide resolution. The overall allele frequencies between the two 

cohorts were highly correlated (r = 0.92), though we observed that UKB detected more EBV variants (n = 

13,568) than AoU (n = 5,471), which could be attributed to the difference in sample sizes or may reflect 

differences in strain heterogeneity in these two countries (Extended Data Fig. 6b). ​

​ A longstanding hypothesis is that genetic variation in EBV genomes could explain the diversity in 

host response ranging from tolerance to pathogenesis69, which has been tested by various case-control 

studies. However, recent reports have also emphasized that variants in EBV previously attributed to 
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oncogenic strains were more closely tied to geographic origin than functional variation70. Delineating the 

potential geographic bias from oncogenic potential is critical, as EBV-driven tumors display stark 

geographical biases, including nasopharyngeal carcinoma (NPC) that is widespread in southeast China, 

northern Africa, and other regions in southern Asia71. We reasoned that our composite measure of the 

circulating genetic variation in ostensibly healthy individuals could stratify functional EBV variants of 

unknown significance (VUS) detected in tumor genomes (Methods). Reanalyzing a set of 31 EBV 

protein-altering mutations from patients with NPC, a tumor driven by EBV infection70, we enumerated these 

VUS based on our observed allele frequencies in UKB and AoU (Extended Data Fig. 6c). Notably, all but 

four variants were detected in one or both cohorts at an allele frequency of 10% (Extended Data Fig. 6c). 

The exceptions were BALF2 I613V (UKB: 1.7%; AoU: 3.3%), RPMS D51N (UKB: 0.19%; AoU: 0.69%), 

BNRF1 P694H (UKB: 0.20%; AoU: 0.0%), and BALF2 V317M (UKB: 0.18%; AoU: 0.0%) (Extended Data 
Table 6). We suggest that the other 27 variants previously detected in NPC genomes are unlikely to be 

sufficient for pathogenesis, based on their prevalence in healthy individuals in the UK and US. Hence, 

these VUS likely either reflect geographical drift or require an epistatic effect for driving malignancy67. In 

total, our approach of synthesizing pieces of viral genomes from excluded WGS reads of hundreds of 

thousands of individuals provides an alternative to low-throughput amplification and sequencing of healthy 

controls67,70 to resolve potential functional variation in the EBV genome.  

Outlook ​
​ The exponential rise in population-scale sequencing has transformed our understanding of the 

genetic determinants of complex phenotypes17. While these biobanking efforts were originally genotyped 

using DNA microarrays, more recent exome and whole-genome sequencing cohorts have discovered a 

diversity of rare genetic variants underlying complex traits15,26. Here, we show that these same large-scale 

sequencing libraries contain sufficient EBV nucleic acid content to derive novel molecular biomarkers – 

once corrected for low complexity regions. Our analyses show that host genetic variation underlies the 

latency and persistence of EBV, with concomitant inferences of the composition of viral heterogeneity 

across populations. Notably, EBV DNAemia, but not serostatus, is a polygenic biomarker associated with 

genetic loci impacting antigen processing and presentation machinery and other immune-related signalling. 

Our framework extends evaluations of endogenous HHV-6 (eHHV-6) that have nominated loci in linkage 

with germline integration20,72, whereas our analyses reveal that latent viral DNA acquired over a lifetime is 

genetically regulated at a population level. Looking forward, we anticipate that our framework of 

repurposing existing WGS may elucidate genetic determinants and phenotypic consequences of dozens of 

viruses and phages that inhabit peripheral blood, which may further resolve the vast phenotypic variation in 

response to common pathogens.  
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Figure 1. Retrospective quantification of EBV DNA in the UK Biobank. (a) Schematic of the approach, in which 
whole-genome sequencing (WGS) libraries from peripheral blood are aligned to the hg38 reference genome that 
contains an EBV reference contig (chrEBV). (b) Sum of per-base read coverage of high-confidence EBV-mapping 
reads. Two repetitive regions with inflated coverage are noted in purple and red. (c) Association summary of 
person-level serostatus and EBV DNA quantification with variable region masking. Statistical test: two-sided Fisher’s 
exact test. Error bars represent 95% confidence intervals for effect estimate. (d) Summary of EBV DNA association 
with serostatus of 18 infectious agents. Statistical test: two-sided Fisher’s exact test. (e) Empirical cumulative 
distribution of detected EBV DNA across the entire cohort. 85.7% of individuals had no detectable (n.d.) EBV DNA. 
0.3% had EBV DNA at a copy number of 1+ EBV genome per 1,000 human cells. (f) Top 100 individuals based on 
EBV DNA copy number, from the circled population in (e). (g) Association between EBV seropositivity and EBV DNA 
positivity thresholds at variable levels. Statistical test: two-sided Fisher’s exact test.  
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Figure 2. Latent EBV DNA is a biomarker of complex traits. (a) Summary of associations between EBV DNAemia 
and quantitative traits in UKB. The dashed line represents the genome-wide significant P value threshold (3.3 x 10-6). 
The y-axis is capped at -log10(P) = 50; all associations are plotted (n = 15,220), and selected traits are highlighted 
based on biological interest. (b) Effect sizes for overlapping ICD10 codes between UKB and AoU. Dotted lines at OR 
= 1 represent null associations.  
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Figure 3. Genetic architecture of EBV DNAemia. (a) Manhattan plot summarizing the genome-wide association 
statistics for EBV DNAemia for 426,563 individuals of predominantly non-Finnish European (NFE) ancestry. Genes 
proximal to genome-wide significant associations (P < 5 × 10⁻⁸) are annotated. (b) Summary of protein-altering 
variants in HLA genes. (c) Replication of UK Biobank (UKB)-associated variants in the All of Us (AoU) cohort. The 
Pearson correlation of variant effect sizes is noted. (d) Principal component analysis and projection of EBV summary 
statistics on complex immune-mediated diseases via cupcake56. An asterisk indicates a significant principal 
component projection score after multiple testing correction.  
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Figure 4. EBV DNAemia gene associations at cell and pathway resolutions. (a) UMAP embedding of 211,000 
peripheral blood mononuclear cells. The broad cell type annotation (Azimuth L173) annotates major cell types. (b) 
Module score of EBV ExWAS associations, highlighting populations with the highest enrichment. (c) Summary of EBV 
ExWAS scores in major populations. *** indicate statistical significance (P  < 2.2 x 10-16 relative to held-out cell types; 
one-sided Wilcoxon rank-sum test). Boxplots: center line, median; box limits, first and third quartiles; whiskers, 1.5× 
interquartile range. (d) Summary of top 5 terms from gene set analysis (GSA) of GO Biological Processes Pathways 
enrichment. (e) Same as (d) except excluding annotated HLA genes. (f) Same as (d) but excluding all genes mapping 
to chromosome 6.  
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Figure 5. Variable predicted antigen presentation underlies latent EBV DNA persistence. (a) Schematic of 
scoring the EBV proteome for antigen presentation against all HLA alleles observed in the UKB NFE cohort using 
NetMHCpan and NetMHCIIpan61. (b) Summary of top antigens bound per HLA class, colored by whether the peptide 
is annotated in IEDB64. (c) Enrichment analyses of immunodominant peptides as a function of EBV gene functional 
class. The highlighted dot shows MHC I peptides are depleted for latency-associated genes. (d) Schematic of  
harmonic best rank (HBR) per HLA allele, which is used as input for downstream analyses. (e) Summary of change in 
comparing individuals with and without detected EBV DNA. P values are the result of a permutation test (n = 1,000 
permutations). (f) Overview of an inferred model of antigen processing and presentation via MHC, resulting in 
persistence or clearance of EBV DNA following infection.  
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Extended Data Figure 1. Supporting analyses of EBV DNA detected from WGS data. (a) Mappability of the EBV 
contig in the hg38 reference. (b) Partition of UKB participants by EBV DNA detection after accounting for biased 
regions. “Biased only” refers to participants with reads mapping to only the two repetitive regions indicated in Fig. 1b. 
“Valid and low count” refers to participants with EBV DNA detected after masking the two biased regions. “DNA+” 
refers to participants who pass the threshold of 1.2 EBV copies per 104 human cells. (c) Geographical distribution of 
participant birth location colored by percent EBV DNA+, split by UK NUTS2 annotations. (d) Percent EBV DNA+ 
resolved by sex and age in UKB. Statistical test: two-sided proportion test comparing sex in associated age bin. Error 
bars: standard error of the mean. (e) Schematic of AoU chrEBV extraction from blood-based WGS. (f) Sum of 
per-base read coverage of map quality (MAPQ) score ≥30. (g) Same as b but for AoU. (h) Percent EBV DNA+ 
resolved by sex and age in AoU. Statistical test: two-sided proportion test. Error bars: standard error of the mean. 
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Extended Data Figure 2. Summary of phenome-wide associations for selected traits. (a) Summary of 
associations between EBV DNAemia and quantitative traits in UKB. The dashed line represents the genome-wide 
significant P value threshold (3.3 × 10-6). The y-axis is capped at -log10(P) = 50; all associations are plotted (n = 
1,931), and selected traits are highlighted based on biological interest. (b) Focused association summary for two 
ICD10 codes. Error bars represent the 95% confidence interval of the OR estimate from either cohort. Dotted lines at 
OR = 1 represent null associations.  
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​
Extended Data Figure 3. Supporting analyses for genetic association studies. (a) Manhattan plot of binarized 
EBV serostatus among 8,669 individuals of non-Finnish European (NFE) ancestry in UKB. (b) Zoom plot of the 
ERAP2-LNPEP locus in the EBV DNAemia GWAS with the UKB NFE cohort. (c) Zoom plot of the PTPN22 locus in 
the EBV DNAemia GWAS with the UKB NFE cohort, highlighting the rs2476601 variant. (d) Zoom plot of the SH2B3 
locus in the EBV DNAemia GWAS with the UKB NFE cohort, highlighting the rs3184504 variant. (e) Comparison of 
EBV GWAS analyses as a quantitative trait (y-axis) compared to a logistic regression binarization (x-axis) for all 
variants P < 1× 10-6 in the EBV DNAemia GWAS with the AoU EUR cohort. -log10 p-values (left) and effect sizes (right) 
are shown at the variant level.  
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​
Extended Data Figure 4. Supporting analyses of EBV DNAemia-associated genes at single-cell and pathway 
resolution. (a)  UMAP embedding of 211,000 peripheral blood mononuclear cells. The broad cell type annotation 
(Azimuth L273) annotates refined cell types. (b) Summary of EBV signature stratified by Azimuth L2 cell type, sorted by 
median score. Boxplots: center line, median; box limits, first and third quartiles; whiskers, 1.5× interquartile range. (c) 
Summary of GO Biological Processes and (d) KEGG gene set analyses. Top pathways based on q-value and fold 
enrichment are annotated.  
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Extended Data Figure 5. Supporting analyses of HLA-specific and antigen-binding associations. (a) Summary 
of four-digit HLA genotype frequencies across both biobanks. The Pearson correlation of the allele frequency is noted. 
(b) Annotation of the strongest predicted peptide among variable HLA alleles for class I (top) and class II (bottom). (c) 
Schematic of logistic regression analyses. (d) Correspondence between z-scores per allele for regression and 
permutation statistical models for the UKB cohort. The Pearson correlation between z-scores of the alleles is noted. 
(e) Same as in (d) but for the All of Us cohort.  
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​
Extended Data Figure 6. Analyses of genetic variation in the EBV genome. (a) Summary of 9 selected variants 
that discriminate between type 1 and type 2 EBV strains. The observed allele frequency for the reference contig 
(NC_007605; type I EBV) is plotted, and the corresponding type 2 allele is noted in parentheses. (b) The Pearson 
correlation of the two allele frequencies is noted. (c) Characterization of EBV variants of unknown significance (VUS) 
from cohorts of nasopharyngeal carcinoma (NPC) tumors70. All but four variants were detected at 10%+ in one or both 
cohorts.  
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Extended Data Tables 

Extended Data Table 1. Summary of UKB PheWAS.  

Extended Data Table 2. Reproducible PheWAS associations between UKB and AoU.  

Extended Data Table 3. Summary of significant genes and variant associations from ExWAS.  

Extended Data Table 4. Full results of pathway enrichment analyses. 

Extended Data Table 5. Annotation of immunodominant epitopes per HLA alleles with IEDB annotation.  

Extended Data Table 6. Full annotation of population allele frequencies for EBV variants of unknown 
significance.  
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Methods 
Rationale of EBV detection 

The 171,823 nucleotide EBV genome (NC_007605.1) was first included in December 2013 (hg38 

version GCA_000001405.15) as a sink for off-target reads that are often present in sequencing libraries, to 

account for pervasive EBV reads present from the immortalization of LCLs (as with the 1000 Genomes 

Project and related consortia). Importantly, whole-genome sequencing (WGS) in the UK Biobank (UKB) and 

All of Us (AoU) consortia was performed on whole blood or whole blood subfractions16,74, reflecting that 

EBV reads detected would derive from latent viral DNA from prior infections.  

As an independent measure of validating that EBV is latent (rather than an active infection), we 

quantified scRNA-seq data from peripheral blood mononuclear cells from ~1,000 individuals profiled via 

single-cell sequencing24 using kallisto75 for mRNA quantification (analogous to our previous execution with 

HHV-618). We reanalyzed a total of 53,872,337,003 paired-end sequencing reads from this consortium, 

identifying only 1 UMI that was classified as uniquely mapping to the EBV transcriptome (the BARF0 EBV 

gene). Hence, our interpretation of the detection of EBV DNA from WGS libraries is a measure of residual 

latent virus that is not active for nearly all individuals. As ~90% of individuals (in UKB and in these 

populations) are seropositive, yet we detect high-confidence EBV DNAemia in ~10% of individuals, we 

interpret our measure to reflect the tail of latent viral retention among individuals for whom this is highest.  

WGS data and cohort analyses in UKB 

For UKB, we obtained per-base abundance of EBV DNA of the 490,560 WGS libraries by extracting 

reads aligning to chrEBV in the hg38 human genome reference with a read mapping quality (MAPQ) ≥30 

via the samtools view command76. To quantify EBV DNA abundance for each position, we summed the 

coverage of each base in the EBV genome across all libraries (per-base abundance). The resulting 

coverage across the viral contig was approximately flat, supporting that EBV DNA detection from WGS 

reads was real viral DNA, with two key exceptions (Fig. 1b). First, a total of 27,692 positions had low- to no 

coverage (per-base abundance  10) due to low mappability of the EBV contig. Second, two regions ≤

(positions 36,390-36,514 and 95,997-96,037) had orders-of-magnitude higher coverage (per-base 

abundance ≥ 103 at these 166 positions). Upon further examination, the sequences were highly repetitive 

(Fig. 1b). Hence, we reasoned that these two regions may confound EBV DNA detection. To assess this, 

we calculated EBV DNA abundance per person before and after masking, by summing MAPQ ≥ 30 

coverage either across all J = 171,823 bases, or only across the remaining J’ = 143,965 well-covered bases 

(10 < per-base abundance < 103 for each base). The per-individual EBV sum unmasked was computed 

over all J bases, whereas the masking was performed over J’ bases.  

We then used a two-sided Fisher’s exact test to test for association between EBV DNA presence 

(EBV DNA coverage > 0) and EBV serostatus (“EBV seropositivity with Epstein-Barr virus,” a measurement 

in UKB with ID 35811742). Before masking, EBV DNA presence had a weak but insignificant positive 

association with EBV seropositivity (OR = 1.2, P = 0.03). Conversely, after masking these repetitive regions 

and recomputing donor positivity, the association between DNAemia and seropositivity was much stronger 

(OR = 14.6, P = 1.7 x 10-26) (Fig. 1c). These analyses demonstrate that masking highly-repetitive regions in 

the viral contig are required to perform valid inferences of latent viral activity retrospectively. In other words, 
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we highlight that a simple enumeration of aligned reads is insufficient to uncover high-quality associations, 

and further processing is required for low-complexity regions, as evidenced by statistical overlap with EBV 

serostatus. 

Contig mappability analyses 

​ To confirm that regions of the EBV contig that were not detected were attributable to poor mapping 

quality of those regions, we generated synthetic reads of length 101 bases by tiling the reference EBV 

contig. Next, each synthetic read was aligned using bowtie277. We define mappability as the percentage of 

reads overlapping a position with a map quality score exceeding 10. This analysis reproduced regions 

depleted from the pseudobulk abundance (Extended Data Fig. 1a), indicating that lowly detected regions 

were due to homology in the hg38 reference rather than variable DNA presence in the latent EBV genome.   

EBV DNA copy number estimation and thresholding 

To calculate EBV DNA abundance per person, we summed the coverage over the well-covered, 

non-biased bases (J’). We normalized this value against the effective EBV genome size (143,965 bases) to 

get an estimate of the coverage per EBV genome. Next, we used the human WGS coverage and 

accounted for the diploid human genome to compute an estimate of EBV DNA copy number per human 

cell. The resulting value was an estimate of the EBV DNA copy number per cell, which was predominantly 1 

in 1,000-10,000 cells for individuals whom this was detected (i.e, our limit of detection was approximately 1 

EBV genome per 10,000 cells). To the best of our knowledge, analogous values have not been 

comprehensively computed in healthy populations, but clinical diagnostics of EBV infection estimate loads 

of 1 in 200 cells using PCR for positive diagnoses23. While a previous study similarly used EBV reads in a 

cohort of ~8,000 donors, this analysis used reads that did not map to the human reference genome and did 

not correct for the repetitive, biased DNA abundances that significantly skewed the resulting quantification1.  

After quantifying per-person EBV DNA abundance, 85.7% of individuals in UKB had no detectable 

EBV DNA. Further, we noted a small fraction of individuals (n = 365) with minimal EBV DNA (i.e., only 1 

high-confidence base after excluding repetitive regions). The extreme left skew of this distribution suggests 

that converting EBV DNA copy number to a binary trait, EBV DNA detection, would be more suitable, since 

a quantitative trait otherwise assumes a dose-dependent relationship when testing for associations.  

Using a two-sided Fisher’s exact test, we surveyed different cutoffs against association with EBV 

serostatus to determine an optimal EBV copy number threshold. We observed the most significant positive 

association with a threshold of 1.2 EBV copies / 104 human cells (OR = 82.17, P ≈ 0). This corresponded to 

having a per-person abundance of at least 302 bases covered, which corresponds to a full paired-end 

sequencing read (2 x 151bp) with no soft-clipping. 47,452 people (9.67%) had EBV copy numbers greater 

than this threshold, which was used for all downstream analyses. 

EBV DNA detection in AoU 

We obtained per-base abundance of EBV DNA for 245,394 people in AoU with WGS data similarly 

by extracting reads that mapped to chrEBV in the hg38 human genome reference with an alignment quality 

(MAPQ score) of ≥ 30. To quantify EBV DNA abundance per base, we summed the q30 coverage of each 

base in the 171,823 bp EBV genome across all people. We again observed an overall uniform coverage; 
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23,513 positions had no coverage (per-base abundance = 0), and 4 regions (positions 36,389-36,516; 

52,012-52,034; 95,997-96,037; and 163,596-163,617) had abnormally high coverage (per-base abundance 

>1,000 at 214 positions; Extended Data Fig. 1g). The effective EBV genome size was the remaining 

148,096 bases (> 0 but < 103 for each base). While the largest repetitive region was the same in both UKB 

and AoU, differences in the other regions with variable bias could be attributed to differences in the 

alignment software for either cohort, noting that all analyses used the existing mappings from either cohort.  

We quantified the EBV copy number per person in AoU with a similar approach as used in UKB. 

Briefly, we normalized by the effective EBV genome size, then by the average genome coverage (30x 

human WGS) provided by AoU metadata. A total of 51,459 people (21%) had detectable EBV DNA. The 

top EBV DNA load harbored was ~1 EBV copy per 1.4 cells (or 7,046 EBV copies per 104 cells) (Fig. 1c,d). 

Using the same EBV DNA copy number thresholds as in UKB, a total of 29,249 people (11.9%) had 

EBV copy numbers greater than the threshold of 1.2 EBV copies per 104 human cells. The overall higher 

EBV loads in AoU compared to UKB may be due to a difference in the recruitment criteria and 

demographics of the two cohorts: relative to the general population (as in AoU), UKB shows a “healthy 

volunteer bias” where participants were less likely to have self-reported health conditions17. In comparison, 

the maximum described in a previous paper was a few orders of magnitude higher (2,404,531 EBV copies 

per 105 human cells), potentially due to our exclusion of abnormally high coverage regions1.  

Phenome-wide association studies 

​ We conducted PheWAS in UKB as a discovery cohort to test for the association between EBV 

DNAemia and 13,289 binary phenotypes and 1,931 quantitative phenotypes amongst participants with 

broadly non-Finnish European ancestry (NFE) as in the GWAS (refer to the following section). We 

employed logistic regression with Firth correction and included the same covariates as in the GWAS: age + 

sex + age * sex + age2 + age2 * sex + batch + ancestry PCs 1-20. Using a Bonferroni correction, we defined 

0.05/15,220 = 3.3x10-6 as our significance threshold.  

We replicated PheWAS associations using the AoU cohort via Fisher’s exact tests for association 

between EBV DNAemia and each representative ICD9/10CM code in AoU. As recommended in the AoU 

workbench, we defined a representative ICD code as a code appearing at least twice in a person and 20 

instances across all participants. The top results were predominantly being HIV positive, having 

immunodeficiencies, or receiving organ transplants, which we also observed in UKB. To compare effect 

sizes between hits in UKB and AoU, we matched AoU ICD10CM codes to a corresponding ICD10 code by 

taking the first four characters of the ICD10CM code, as codes > 4 characters do not exist in the ICD10 

ontology used in UKB. 

Genetic associations with EBV DNAemia in UKB 

For individuals with broadly non-Finnish European (NFE) ancestry in UKB, array-based imputed 

genotypes with good genome-wide coverage in the common (>5%) and low frequency (1–5%) MAF ranges 

were available15. Genotyping arrays capture genome-wide genetic variations (SNPs and indels) within both 

coding and noncoding regions, allowing imputation of genotypes and tests for association between 

genotypes and a specified trait. To avoid confounding results due to differences in ancestral background, 
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we stratified the cohort across six broad genetic ancestries (AFR, AMR, ASJ, EAS, NFE, and SAS) before 

testing for associations between EBV DNAemia and UKB-imputed genotypes, which resulted in a total of 

450,032 individuals with array imputed genotype data available, including 426,563 individuals of 

non-Finnish European (NFE) ancestry. We then used REGENIE v3.578 to examine associations between 

EBV DNAemia (EBV DNA+ status) and imputed genotypes, using a logistic model with covariates and 

applying Firth correction: EBV DNAemia ~ age + sex + age * sex + age2 + age2 * sex + batch + ancestry 

PCs 1-20, as previously described. The input to REGENIE includes directly genotyped variants (MAF>1%, 

MAC>100, genotyping rate per variant >99%, and genotyping rate per individual >80%). We pruned these 

variant sets using PLINK2 (--indep-pairwise 1000 100 0.8) as input to REGENIE’s step1 analyses. This 

step produces a whole genome regression model to fit to the binary trait of EBV DNAemia and outputs a 

set of genomic predictions.  

For REGENIE step2, we further filtered out SNPs that had 0.99 “missingness,” imputation INFO < 

0.7, and p.HWE > 1 x 10-5. This step fits a logistic model to imputed data, using the genomic predictions 

from step1. To estimate heritability of SNPs and genomic inflation, we performed LD score regression 

(LDSC) by applying the ldsc package (v1.0.1). Briefly, we used munge_stats.py on the cleaned summary 

stats, then used ldsc.py to estimate h2 using the supplied 1KG Genomes LD score matrices. Identical steps 

were applied to execute the EBV serology on the subset of patients where multiplexed serostatus was 

measured38 (Extended Data Fig. 3a).  

To annotate variant loci, we focused on significant variants (P < 5 x 10-8) and created genomic 

intervals of  ± 1 Mb around each variant. As variants on chromosome 6 often exhibit linkage disequilibrium 

with MHC, we created a custom interval (chr6: 25,500,000 to 34,000,000) for the HLA region. We then 

combined overlapping intervals using the GenomicRanges reduce function and selected the most 

significant variant per interval as the index variant. In the case of ties, we selected the variant closest to the 

midpoint of the region. We applied the reduce function again to ensure we had a set of non-redundant 

index variants. Finally, we annotated each variant by the closest gene, using the Bioconductor library 

biomaRt to access Ensembl v111 (Jan 2024) gene annotations and selecting the gene whose midpoint was 

closest to the index variant. For visualization of specific loci, we used the canonical hg38 reference genome 

isoforms. Linkage disequilibrium was determined via LDlink79 for the regions noted (Extended Data Fig. 
3b-d). Zoom plots were from the array-based GWAS associations in UKB, and the LD reference panel in 

LDLink79 used all EUR populations.  

We complemented our GWAS with an exome-wide association analysis (ExWAS), leveraging the 

whole-genome sequencing data available in UKB. Specifically, we tested for associations between EBV 

DNAemia and protein-coding variants and observed at least six participants of European ancestry in UKB. 

We applied our previously described protocol to generate variant-level statistics26,80. Variants were required 

to pass the following quality control (QC) criteria: coverage ≥10x; ≥0.20 of reads with the alternate allele for 

heterozygous genotype calls; binomial test of alternate allele proportion departure from 50% in 

heterozygous state P ≥ 1 × 10−6; GQ ≥ 20; Fisher Strand Bias (FS) ≤200 for indels and ≤60 for SNVs; 

root-mean-square mapping quality (MQ) ≥40; QUAL ≥30; read position rank sum score (RPRS) ≥−2; 

mapping quality rank score (MQRS) ≥−8; DRAGEN variant status = PASS; and ≤10% of the cohort with 
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missing genotypes. Additional out-of-sample QC filters were also imposed based on the gnomAD v2.1.1 

exomes (GRCh38 liftover) dataset81. The sites of all variants were required to have ≥10x coverage in ≥30% 

of gnomAD exomes and, if present, each variant was required to have an allele count ≥50% of the raw 

allele count. Variants with missing values for any filter were retained unless they failed another metric. 

Variants failing QC in >20,000 people were also removed. P values were generated via Fisher’s exact 

two-sided test. Three distinct genetic models were studied for binary traits: allelic (A versus B allele), 

dominant (AA + AB versus BB), and recessive (AA versus AB + BB), where A denotes the alternative allele 

and B denotes the reference allele. 

Replication of UKB EBV DNAemia-associated genotypes in AoU 

​ To broadly capture variants in individuals with imputed European ancestry within AoU, we utilized 

the variant-level metadata for the SNP and indel variants contained in the short read WGS (srWGS) data 

dictionary. We filtered for variants with an alternative allele frequency (AF) of 0.01 < AF < 0.49 or 0.51 < AF 

< 0.99 (gvs_eur_af) and at least 100 individuals containing this variant (gvs_eur_sc ≥ 100) in the European 

subpopulation as the input variants lists to step1 and 2 of the REGENIE pipeline. This resulted in 

16,566,413 variants across chromosomes 1-22. EBV DNAemia was supplied as a binary trait, along with 

the covariates age, sex, age*sex, and ancestry PCs 1-15. There were 133,578 such individuals that had 

EBV DNAemia levels determined, of which 131,938 had complete covariate data and were used in the 

analysis, along with 12,099,305 total variants.      

Genomic architecture associations 

To holistically evaluate genetic architecture similarities between EBV DNAemia and IMDs, we used 

the R package cupcake. The package was used to define shared components of genetic architecture 

across 13 IMDs, applying shrinkage to adjust for LD, individual overlap, allele frequency, and differential 

sample size. Summary statistics of 13 large IMD GWAS were projected into a reduced dimension space, 

which served as a common genetic basis that enabled simultaneous comparisons between multiple 

diseases. A set of 566 variants was extracted, and PCA was applied to distill the variants down into 13 PCs 

that were defined as genetic risk components56. Applying this approach, we first used tabix to extract 

summary association statistics for these 566 variants from our NFE EBV status GWAS. After checking and 

adjusting the effect allele alignment, we used cupcake56 to project these variants onto the 13 IMD genetic 

risk components and assess the significance of association with each component.  

Pathway and single-cell analyses 

​ To evaluate the gene expression program uncovered by our ExWAS association, we utilized a 

high-resolution single-cell CITE-seq dataset of peripheral blood mononuclear cells from eight distinct 

donors with 210,911 quality-controlled cells73. The 147 ExWAS-associated genes were input alongside the 

preprocessed Seurat object into the AddModuleScore function with default hyperparameters. We removed 

genes mapping to the HLA region as well as ribosome-associated genes from the input gene list due to 

technical variation (HLA: genetic polymorphisms; ribosome: cell quality) from the module score foreground 

and background. Downstream association analyses of cell type enrichment were performed using the 

pre-supplied labels.  
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Pathway enrichment analyses were performed using the same ExWAS gene set via the 

clusterProfiler R package82. Gene set analyses were performed using the enrichGO (for biological 

processes) and enrichKEGG functions using the set of 147 genes and all ENSEMBL human genes as a 

background set. For analyses with HLA (Fig. 4e) and chromosome 6 excluded (Fig. 4f), we removed 

appropriate genes both from the foreground (i.e., test set) and background set for statistical analyses. We 

used the simplify() function in clusterProfiler with a similarity cutoff of 0.7 (the default value) to reduce the 

number of redundant association terms. Hence, we note that the labels in panels Fig. 4d-f are not identical 

in name; this result is due to the simplify() function’s selection of a single term that is nearly identical to 

other related terms.  

HLA haplotype and EBV peptide presentation 

We used the four-digit HLA imputation calls processed in the UK BiobankRAP that were called via 

HLA*IMP:0283. In brief, allele dosage values >0.7 were used for defining donor haplotypes for a specific 

four-digit HLA allele. Homozygotes were determined by alleles with values >1.3. For All of Us, 

predetermined HLA genotypes were not available in the workbench. Hence, we reconstructed the HLA calls 

for individuals of EUR ancestry, using the T1K toolkit using a synthesis of chromosome 6 mapping reads, 

reads mapping to HLA decoy contigs, and unmapped reads84. Following T1K toolkit recommendations, the 

donor haplotypes were determined by alleles with a Quality score >0. In addition, homozygotes were 

determined by donors with only a single allele called and with a Quality score >30. 

The amino acid sequences of all 87 unique EBV protein sequences were obtained from the peptide 

sequence of the nuccore NC_007605. The protein fasta file was input to NetMHCpan, along with all 

observed MHC class I alleles (HLA-A, HLA-B, or HLA-C) and class II alleles (HLA-DR, HLA-DP, or 

HLA-DQ) in the UKB NFE cohort. Sliding windows of all 8-, 9-, 10-, or 11-mers of the provided protein 

sequences were generated for prediction of class I allele peptide presentation, and sliding windows of size 

15-mers for class II. These peptides were scored for available alleles that could be quantified via 

NetMHCpan4.1 and NetMHCIIpan4.385. 

The NetMHC output reflects the predicted %rank score for each peptide and a given allele, which is 

a measure of the rank of the predicted affinity of the allele for the peptide compared to a set of 400K 

random natural peptides. For MHC class I, we computed the harmonic best rank (HBR) score per allele by 

taking the harmonic mean over the two genotyped alleles for each of HLA-A, B, and C. For homozygotes, 

the harmonic mean is equivalent to any individual observation. For individuals missing a single allele, we 

considered only the genotyped call, and for two missing alleles, the individual was excluded from the 

per-allele analysis.  

For MHC class II analyses, all HLA-DRB alleles were directly applied as input, along with the EBV 

proteome fasta file, to generate all possible 15-mer sliding windows. As HLA-DQ and HLA-DR alleles exist 

in pairs of alpha and beta alleles within the predictions, we took all HLA-DQ and HLA-DP alleles imputed in 

the UKB NFE cohort and generated all possible combinations of HLA-DQA/HLA-DQB alleles and all 

possible combinations of HLA-DPA/HLA-DPB allele pairs. These alpha-beta allele combinations were then 

used as inputs to NetMHCIIpan, along with the EBV proteome fasta file. Again, the output file lists each 

peptide, the protein from which the peptide is derived, a given class II allele (pair), and the predicted 
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%rank_EL score, which is the percentile rank of the eluted ligand prediction score. As HLA-DRA is the only 

non-variable gene in the population, each individual has only two possible HLA-DR heterodimers. Each 

individual can form four possible alpha-beta heterodimers from HLA-DP and HLA-DQ (between alpha and 

beta molecules). Hence, each individual may assemble 10 possible unique heterodimeric MHC-II 

molecules62.  

The per-allele HBR was computed using the harmonic rank of the heterodimers for each allele class 

and rescaled by a factor of 106 when computing the final ∆HBR score (shown in Fig. 5). The comparisons 

were only between the NFE (EUR) populations in either cohort identified through genetic analyses. To 

further verify our effect was linked to class II presentation strength, we completed regression analyses 

using the same set of covariates for our genetic association analyses, which verified that other forms of 

confounding (e.g., population stratification; sex) did not explain the associations between the class II 

predicted presentation strength and EBV DNAemia.​ 

EBV viral sequence analysis 

​ Raw sequencing reads from chrEBV were merged from all participants from both cohorts. The 

aggregated .bam file was transformed into a per-base, per-nucleotide count using bam-readcount86. For the 

type 1 and type 2 strain analyses, we sought to quantify the abundance directly from the aligned reads to 

the chrEBV reference (a type 1 EBV strain). Here, we performed a multiple-sequence alignment of the 

EBNA-2 gene (the major difference between strains) for nuccore IDs K03333 (type1) and K03332 (type 2) 

and mapped the MSA coordinates back to the chrEBV reference to identify putative regions that would 

reflect single nucleotide variation that would, in turn, reflect strain-level differences. We identified nine 

variants (all on chrEBV): 36209C>T, 36226T>A, 36251A>G, 36252A>T, 36258C>A, 36275G>T, 36302A>C, 

36312T>A, and 36320C>T, where the reference was type 1-derived and the alternate was type 2-derived. 

These were selected based on: (a) no more than 1% allele frequency aside from the ref and most abundant 

alt; (b) no overlap with the repetitive regions (Fig. 1b); and (c) filtered for overall consistency. A set of 

mutations of 31 protein-altering mutations in EBV (Extended Data Fig. 6c) was curated from a recent 

resource and global-scale analyses of EBV genomes70 derived from individuals with EBV+ nasopharyngeal 

carcinomas.  
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