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Abstract 

 

Deep visual proteomics (DVP) is an emerging approach for cell type-specific and spatially 

resolved proteomics. However, its broad adoption has been constrained by the lack of an 

open-source end-to-end workflow in a community-driven ecosystem. Here, we introduce 

openDVP, an experimental and computational framework for simplifying and 

democratizing DVP. OpenDVP integrates open-source software for image analysis, 

including MCMICRO, QuPath, and Napari, and uses the scverse data formats AnnData and 

SpatialData for multi-omics integration. It offers two workflows: a fast-track pipeline 

requiring no image analysis expertise and an artificial intelligence (AI)-powered pipeline 

with recent algorithms for image pre-processing, segmentation, and spatial analysis. We 

demonstrate openDVP's versatility in three archival tissue studies, profiling human placenta, 

early-stage lung cancer, and locally relapsed breast cancer. In each study, our framework 

provided insights into health and disease states by integrating spatial single-cell phenotypes 

with exploratory proteomic data. Finally, we introduce deep proteomic profiling of cellular 

neighborhoods as a scalable approach to accelerate spatial discovery proteomics across 

biological systems. 
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Introduction 

Recent advances in spatial omics have revolutionized our understanding of tissue biology and 

disease processes 1. In particular, spatial proteomics is experiencing remarkable progress in 

sensitivity, throughput, and spatial resolution 2. The ability to map proteins with high spatial 

resolution has provided novel insights into cellular organization, tissue heterogeneity, and disease 

mechanisms with unprecedented detail. The significance of these advancements lies in the premise 

that proteomic profiles provide a direct perspective on the functional and phenotype-centric 

cellular states that govern health and disease. Historically, spatial proteomics has depended on 

targeted, antibody-based methodologies 3, which offer excellent spatial resolution, yet require prior 

knowledge for antibody panel design. Antibody-based methods, which profile up to ~60 proteins 
4, capture a comparatively small fraction of the proteome, which is estimated to encompass more 

than 10,000 different proteins per single cell type 5. A highly synergistic approach involves 

integrating targeted methods with ultrasensitive liquid chromatography-mass spectrometry (LC-

MS)-based proteomics. This multiscale approach has paved the way for exploratory, 

comprehensive analyses of cell-type and spatially resolved tissue proteomes 6,7. Recently, we co-

developed deep visual proteomics (DVP)8, which combines tissue imaging (immunofluorescence 

[IF] or immunohistochemistry [IHC]), machine learning-based image analysis, automated laser 

microdissection (LMD), and ultrasensitive MS for the exploratory proteomic profiling of cell types 

or regions of interest (ROI). DVP enables the systematic mapping of thousands of proteins, 

elucidating their networks and signaling pathways within complex tissue architectures, and 

providing unprecedented insights into health and disease states. For example, DVP was recently 

used to discover a curative treatment strategy for a fatal human skin disease 9 and to map single-

cell proteotoxicity in human liver 10. 

However, the full potential of DVP has been constrained by the lack of open-source workflows for 

scalable image analysis, laser microdissection support, and multimodal data integration. Moreover, 

there is a growing demand for simplified experimental strategies, supporting researchers with 

limited experience in image analysis and spatial proteomics. To address this, we developed open-

source deep visual proteomics (openDVP). We built openDVP as a highly modular framework, 

allowing scientists to customize their own approach based on specific research needs and available 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 16, 2025. ; https://doi.org/10.1101/2025.07.13.662099doi: bioRxiv preprint 

https://doi.org/10.1101/2025.07.13.662099
http://creativecommons.org/licenses/by/4.0/


   
 

Nimo et al.   
 

4 

resources while integrating the latest advancements in bioimage analysis and computational 

proteomics. OpenDVP is equipped with state-of-the-art image processing and spatial analysis tools 

optimized for high-performance computing and incorporates the latest advances in ultrasensitive, 

high-throughput MS-based proteomics to acquire hundreds of spatially resolved proteomes. We 

show our framework’s versatility in three archival tissue studies and demonstrate how cellular 

neighborhood-guided proteome profiling, compared to more challenging single-cell isolation, 

offers a powerful and balanced approach for spatial discovery proteomics at scale.  

Results 

Overview of the openDVP framework 

We developed openDVP, an open-source and modular framework for user-empowered deep visual 

proteomics (Fig. 1a) (https://github.com/CosciaLab/openDVP). Our end-to-end framework 

encompasses optimized functions for all the key steps of the DVP workflow, supporting image 

preprocessing and analysis, automated laser microdissection, interactive image data visualization, 

and multimodal data integration. OpenDVP supports the most common imaging and proteomics 

data formats by current and extending functionalities from existing open-source software, such as 

MCMICRO11, SOPA12, QuPath 13, Napari 14, and SpatialData 15. Importantly, the modules’ inputs 

and outputs are standard file formats for seamless integration of community-published or in-house 

tools. We introduce two complementary workflows: a simplified fast-track pipeline, termed 

flashDVP, which does not require image analysis expertise, and an extended AI-powered pipeline 

capable of in-depth spatial tissue analyses. FlashDVP serves as an intuitive entry point for users 

seeking to rapidly convert raw images (i.e., H&E, IHC, or IF) into exploratory spatial proteomics 

results. The extended AI-powered DVP workflow enables more experienced users to customize 

and optimize the pipeline using advanced single-cell spatial analysis tools for more complex 

phenotype-to-proteotype associations. 
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Fig. 1: Overview of the openDVP framework 
(a) Main workflow of openDVP begins with tissue imaging to produce TIFF files. Flash-DVP comprises manual 
image annotation, coordinate transfer with the QuPath-to-LMD webapp, and laser microdissection. OpenDVP 
provides a framework to process images into feature tables and analyze matrices to phenotype cells, using open-source 
tools. These data layers provide the basis for contour export and laser microdissection via QuPath-to-LMD.  
(b) OpenDVP supports tissue microarrays or whole-slide images, common imaging modalities, and different LMD 
collection strategies. (c) The Napari-cell-gater plugin enables phenotyping through visual feedback thresholding, 
plotting cell features in FACS-like density plots. (d) QuPath-to-LMD webapp allows users to design, transfer, and 
validate annotations from QuPath and openDVP to an LMD-ready file format. (e) Exemplary openDVP workflow 
showing the results of multiplexed immunofluorescence (mIF) imaging, cell segmentation, cell phenotyping, cellular 
neighborhood analysis, contour annotations, and multimodal data integration using SpatialData. 
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Providing a versatile solution to support diverse spatial proteomics experiments 

We built openDVP for compatibility with a wide range of imaging applications that support whole-

slide images (WSI) and tissue microarrays (TMA) based on conventional widefield or confocal 

microscopy (H&E, IHC, IF, and mIF) (Fig. 1b). While WSI can provide a comprehensive view of 

large tissue areas, which are particularly important for heterogenous tissues, TMA applications 

support cohort-size spatial proteome analyses. Importantly, the imaging pipelines use BioFormats 

compatible file formats (e.g., OME-TIFF) and does not rely on any proprietary software or specific 

microscopy hardware for broad accessibility. 

 

Efficient and extensible image processing 

Following image acquisition, the first step in DVP workflow is the processing of images, including 

illumination correction and stitching image tiles. OpenDVP builds on top of the established open-

source image processing pipelines MCMICRO and SOPA (Fig. 1a). MCMICRO was built using 

NextFlow 16, following nf-core guidelines, to ensure high standards of modularity, consistency, 

and interoperability. SOPA is built on python-based Snakemake 17, enabling python-fluent users 

to add new modules or modify existing steps. We developed custom modules to expand 

segmentation masks by a defined number of pixels, quantify marker intensity quantiles per cell, 

and pyramidize images for smooth quality control. These open-source pipelines offer key 

advantages: (1) Broad compatibility, supporting most imaging formats and modalities. (2) Modular 

architecture, integrating latest algorithms and machine learning models, such as Cellpose 2.0 and 

DeepCell's Mesmer. (3) Scalability, enabling efficient distribution of processes, for example, 

segmenting about a million cells from centimeter-scaled whole slide images in less than 3 hours. 

(4) Active maintenance and development by a growing community of bioimage analysts. 

 

Interactive quality control and marker thresholding for single-cell phenotyping 

Visual quality control is critical in image processing pipelines to assess illumination correction, 

stitching and registration results, and segmentation accuracy. OpenDVP also provides demo 

datasets and Jupiter notebook-based tutorials to help users integrate and inspect results using two 

complementary interfaces, Napari and QuPath. We chose them for their ability to visualize larger-

than-memory images and community activity in developing new features. To facilitate image-

based cell phenotyping based on marker expression, we developed an interactive Napari plugin 
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(Fig. 1c) (github.com/CosciaLab/napari-cell-gater). Our plugin enables users to visualize 

multichannel images, overlay segmentation masks, plot mutually exclusive markers (FACS 

analysis-like), and provide real-time feedback of cells being labelled positive or negative based on 

selected thresholds. Although more laborious, this approach gives users full autonomy in their 

filter strategy for the complex task of single-cell phenotyping. For transparency, our plugin 

generates summary tables with cutoff values for each marker-sample pair. Finally, our image-

processing pipeline creates a filtered single-cell matrix used for supervised or unsupervised 

analysis to identify cell types, states, and cellular neighborhoods. These guide laser 

microdissection and exploratory LC-MS-based proteome analysis. 

 

A versatile interface between image analysis and laser microdissection  

Laser microdissection is an essential step in the DVP workflow for isolating either single cells or 

ROIs in a precise and automated manner. Segmentation-based cell/nucleus isolation provides the 

highest biological granularity, which is particularly relevant for single-cell applications or rare 

phenotypes. The isolation of larger ROIs (e.g., multi-cellular niches) represents a robust alternative 

to single-cell LMD cutting. To support both scenarios for high user flexibility, we developed 

QuPath-to-LMD, an interactive open-source web app for experimental design support, contour 

export, and validation of LMD-ready masks, currently supporting the Leica LMD7 and MMI 

CellCut systems (Fig. 1d) (github.com/CosciaLab/Qupath_to_LMD).  

Importantly, QuPath-to-LMD provides an accessible interface between histopathology and omics-

based profiling, as histological slide annotations can be directly transferred into LMD-ready 

contours for downstream (prote)omic analysis.  

 

Integrating imaging and MS-based proteomics data through the scverse ecosystem 

DVP generates two types of proteomic data: imaging and LC-MS data. For data integration, 

visualization, and multi-modal analysis, openDVP’s python code uses scverse standards and the 

AnnData and SpatialData formats, ensuring compatibility with popular analysis packages such as 

scimap 18, scanpy 19, and spatialproteomics 20. To our knowledge, this framework represents the 

first instance of integrating mass spectrometry-based proteomic data into the scverse ecosystem, 

streamlining data analysis for large-scale spatial tissue proteomics. For example, through 

SpatialData adoption, users can overlay their images with cellular phenotype information (e.g., cell 
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types and cellular neighborhoods) and matching quantitative proteome information. We developed 

a data analysis package to facilitate storing, integrating, visualizing, and analyzing spatial 

proteomics data (Suppl. Fig. 1). A vignette of the openDVP workflow is shown in Fig. 1e.  

OpenDVP quantifies cell-type resolved proteomes of human placental 

tissue 

Understanding biological foundations of human health and disease requires comprehensive 

characterization of individual cells, the fundamental units of life. Recent single-cell and spatial 

omics advancements have catalyzed large-scale initiatives, such as the Human Cell Atlas 21 and 

the LifeTime Initiative 22, which aim to systematically profile all human cell types across tissues 

to unravel relationships between cells, tissue organization, and function. However, certain cell 

types (e.g., cardiomyocytes, adipocytes, and neurons) pose analytical challenges due to their 

resistance to dissociation into single-cell suspensions. Their interconnectivity and/or fragility 

make them inaccessible for sorting-based single-cell profiling, and they are often morphologically 

too complex for accurate cell segmentation. One example is the syncytiotrophoblast (STB) of the 

human placenta, a syncytial layer derived from fused cytotrophoblasts (CTB) that lacks distinct 

cell boundaries (Fig 2a), making cell segmentation and single-cell-based laser microdissection 

challenging. Despite STB's critical roles in nutrient exchange, hormone secretion, and immune 

modulation at the maternal-fetal interface 23, its syncytial nature has prohibited its comprehensive 

molecular profiling, particularly at the global proteomic level. With this in mind, we applied 

flashDVP as a simplified and image segmentation-free version of DVP. We performed four-color 

immunofluorescence (IF) staining of 5µm thick first trimester human placental FFPE sections 

mounted on PPS frame slides and performed centimeter-scale whole-slide imaging.  

The placental barrier, appearing in tree-like villi structures, controls the nutrient and gas exchange 

between maternal and fetal blood.  It consists of E-cadherin+ bipotential CTBs that fuse to form a 

multinucleated E-cadherin−, HLAG− STB layer that is in direct contact to maternal blood. 

HLAG+ trophoblasts constitute the invasive CTB derived lineage that anchor the placenta to the 

maternal uterine tissue (Fig 2a). CD163+ extraembryonic macrophages (Hofbauer cells, HBC) in 

the stroma play roles in tissue remodeling, immune surveillance, and support the formation and 

maintenance of fetal blood vessels in the villi 24. We annotated 150 cells per replicate for each cell 
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type (STB, CTB, and HBC, Fig 2c-d) to reach an equal tissue amount per sample. LMD contours 

were created using the QuPath-to-LMD web app, transferred to a Leica LMD7 microscope for 

laser microdissection and processed using our ultralow-input tissue proteomics protocol 25. 

Samples were measured in label-free diaPASEF mode and analyzed with DIA-NN 26 in library-

free mode. We identified 3,994 unique proteins across groups (Suppl. Fig. 2a), including 

canonical markers for each cell type (Fig. 2d, Suppl. Fig. 2c). Principal component analysis 

separated cell phenotypes regardless of tissue origin (Fig. 2e). Differential abundance analysis 

revealed cell type-specific markers that showed good concordance with public transcriptomics data 
27,28 (Fig. 2f-g). Pathway analysis of protein clusters confirmed STB-specific functions in steroid 

hormone metabolism, vesicular transport, and energy demands (Fig. 2h). The regulation of SUMO 

proteins, linked to placental development and hypertension in pregnancy in bulk studies 29,30, was 

specific to STBs despite their lower abundance, underscoring the value of cell-type resolved 

proteomic analyses. CTB and HBC showed an enrichment in RhoJ GTPase and VEGF signaling 

pathways, while HBCs displayed immune regulation pathways, supporting their immunotolerant 

role. We found HBC-specific enrichment for proteins involved in mRNA splicing, aligning with 

the role of alternative splicing as an essential feature of placental dysfunction 31. Given the physical 

proximity between STBs and CTBs (Fig. 2a, c), cell communication analysis between these 

connected trophoblasts cells revealed high paracrine activity of both cell types, with autocrine 

communication strongest in the CTB monolayer (Fig. 2i). Strong signaling via cadherins (CDH), 

junctional adhesion molecules (JAM), fibronectins (FN1), and desmosomes was inferred, 

supporting the importance of cell adhesion integrity in fusion-competent CTBs. We identified 

robust communication involving collagens, laminins, and extracellular matrix proteins critical for 

implantation and placentation 32. Our data also revealed that endothelial cell-selective adhesion 

molecule (ESAM) as a unique and previously unreported autocrine signaling molecule of STBs. 

ESAM is an important component of tight junctions and a negative regulator of platelet activation; 

the latter is known to underpin pregnancy health and coexist with complications 33. These findings 

establish flashDVP as a powerful 'fast-track' approach for cell type and spatially resolved tissue 

proteomics. 
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Fig. 2: High-resolution cell-type resolved proteomics of human placental tissue  
(a) Left: Schematic of placental villi samples and fetal structures at the maternal-fetal interface. Right: Cross-section 
showing cytotrophoblast (CTB) monolayer replenishing syncytiotrophoblast (STB) layer, with Hofbauer cells (HBC) 
in the stroma. cs, cross-section. (b) Representative immunofluorescence image of placental tissue stained for E-
cadherin, CD163, HLA-G, and DNA (DAPI), used for cell type annotation, laser microdissection, and proteomic 
profiling. Box inserts correspond to panels c (1) and d (2). (c,d) Representative regions of interest manually selected 
in QuPath for isolation of immune (c) and trophoblast (d) compartments. CTB monolayer is defined by E-cadherin+ 
and HLAG-, whereas the multinucleated STB layer is E-cadherin- and HLAG- in the outer layer of the villi. CD163 
expression marks macrophages (HBC). (e) Principal component analysis of cell type resolved proteomes from three 
placental tissues. Colors indicate cell types. Confidence ellipses (95% CI) computed from PC scores covariance.  
(f) Cell type-specific protein marker heatmap as inferred by ANOVA (FDR < 0.05) showing relative abundance 
profiles per replicate. Canonical markers for each phenotype highlighted in orange (HBC), green (STB), and light blue 
(CTB). Z-scored relative protein abundances are shown. (g) Comparison of flashDVP-generated phenotype-specific 
proteins and published genes marking CTB, STB, and HBC phenotypes. Shared and unique markers highlight the 
importance of proteomic data in complementing other omics. (h) Enriched functional pathways of phenotype-
separating clusters from (g). Enrichment based on ranked proteins using the Reactome database. Circle shows 
overrepresented proteins per pathway, color indicates cell phenotype. (i) Significant cell-cell communication in 
trophoblast compartment inferred using CellChat34. Dot colors show mean communication probability of ligand-
receptor pairs in labelled pathway, size represents p-value from one-sided permutation test.  
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OpenDVP coupled to spatial transcriptomics uncovers niche-specific 

drug targets in an aggressive lung tumor 

We next tested whether flashDVP could facilitate cell-type resolved tissue proteomics by 

integrating additional spatial omics layers. We analyzed a serial FFPE tissue section from an early-

stage lung adenocarcinoma that we previously characterized by spatial transcriptomics (ST, 

Nanostring CosMx) 35 (Fig. 3a). Using 960 cancer-related genes, we profiled over 340,000 cells, 

identifying 18 cell types and their spatial distribution. These rich data revealed diverse immune 

and tumor cell niches of therapeutic value, including a small tumor niche enriched for pro-

metastatic mesenchymal tumor cells with high NDRG1 and LGALS1 expression, located near 

myofibroblasts and SPP1+ tumor-associated macrophages (TAMs) (Fig. 3b). Pseudotime analysis 

identified this ‘epithelial to mesenchymal (EMT)-niche' as the potential start site of tumor 

invasion. Based on these observations, we investigated the proteome of EMT-niche tumor cells to 

understand their functional state and to identify potential drug targets. IF staining of a serial tissue 

section against epithelial and mesenchymal markers, overlaid with CosMx phenotypes, confirmed 

the mesenchymal nature of EMT niche tumor cells (panCK+, VIM+, E-cadherin-) (Fig. 3c-d). We 

next annotated multiple ROIs to proteomically profile tumor and stromal niches (Suppl. Fig. 3a). 

ROIs contained 50-100 cells (40,000 – 50,000 µm2, 5 µm thick). We quantified 4,138 and 4,976 

proteins in stromal and tumor compartments respectively, totaling 5,956 proteins (Fig. 3e, Suppl. 

Fig. 3b). Group replicates clustered together and showed high proteome correlations (Pearson's r 

> 0.9, Suppl. Fig. 3c). PCA analysis showed EMT-niche tumor cells and stroma-infiltrating tumor 

cells were closer to stromal samples in component 1, reflecting their mesenchymal phenotype (Fig. 

3f). Integration with CosMx data confirmed that tumor cell-intrinsic signatures dominated the 

EMT-niche tumor proteomes (Fig. 3g-h). Proteomics further validated the CosMx and IF data 

showing panCK+, VIM+, and E-cadherin- tumor cells in the EMT-niche and upregulated NDRG1 

and LGALS1 protein levels. Many genes identified by ST were also significantly upregulated at 

the protein level in EMT niche tumor cells, emphasizing the value of spatial niche information in 

3D for aligning and integrating tissue sections for multi-omics analyses (Fig. 3a). However, MS-

based proteomics captured higher dynamic ranges of analyte abundances, resulting in different 

gene/protein rankings and drug target prioritizations (Fig. 3g-h, Suppl. Fig. 3d). We identified 

133 additional FDA-approved drug targets upregulated in the EMT niche (Suppl. Fig. 3e), 
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including 46 cancer-related targets like PDGFRβ, an actionable gene for imatinib, a receptor 

tyrosine kinase inhibitor approved for various malignancies including gastrointestinal stromal 

tumors and myeloproliferative neoplasms 36. SLC2A1/GLUT1 was the most up-regulated protein 

in EMT niche tumor cells. Consistently, pathway analysis revealed high glycolysis expression in 

EMT niche tumor cells, along with hypoxia, angiogenesis, and EMT pathways (Suppl. Fig. 3f). 

As targeting glucose metabolism is currently under clinical investigation for cancer therapy 37,38, 

we assessed the tumor-specific expression of GLUT1 and its association with patient outcomes. 

We validated high tumoral GLUT1 expression in a large-scale transcriptome study of 483 lung 

adenocarcinomas and 347 control samples 39,40 (Fig. 3i) as well as on IHC data obtained from the 

human protein atlas 41 (Fig. 3j). High GLUT1 expression was a strong prognostic factor associated 

with poor patient outcome, as revealed by the significantly different overall survival (p = 0.0003, 

n=239 per group) (Fig. 3k). These data support the notion that targeting glucose metabolism, 

possibly via GLUT1, could offer a potential therapeutic strategy for targeting highly invasive and 

metabolically rewired lung cancer cells. Together, these results underline the benefit of cellular 

niche-guided spatial multiomics as a promising approach for identifying and validating niche-

specific, personalized drug targets. 
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Fig. 3: Cell-type resolved deep proteomic profiling of transcriptionally defined cellular niches 
(a) Overview of 5 µm FFPE lung adenocarcinoma sections showing regions for CosMx spatial transcriptomics and 
DVP analysis. (b) 3D reconstruction of transcriptomically defined niches, showing tumor-infiltrating cells. NDRG1 
RNA level was upregulated in tumor cells from the surface and EMT niche, as previously published by us 35. (c) Left: 
2D multicellular niche map from CosMx data (Section 3435). Right: immunofluorescence of epithelial (E-cadherin, 
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green) and mesenchymal (vimentin, red) markers in section 36. Insets 1–3 correspond to panel (d). Nuclei with DAPI 
(white). Scale bar: 400 µm. (d) Magnified views: [1] tumor center (E-Cadherin+/Vimentin-), [2] EMT niche (E-
Cadherin+/Vimentin+, arrow), and [3] invading tumor cells (E-Cadherin+/Vimentin+, arrow). Scale bar: 20 µm.  
(e) Proteomics identified a mean of 4,138 proteins in stroma and 4,976 in tumor regions (50–100 cells/sample).  
(f) Principal component analysis of 5,441 proteins shows a separation of tumor and stroma samples along PC1. EMT 
niche tumor samples cluster near invasive and stromal samples. (g) Volcano plot showing differential protein 
abundance in tumor cells inside vs. outside the EMT niche. CosMx-upregulated genes 35 in orange. (h) Relative protein 
levels of top upregulated genes in EMT niche tumor cells. (i) Mean RNA expression of SLC2A1/GLUT1, the most 
EMT-niche upregulated tumor protein in the proteomics data, in lung cancer cohort (n = 483 tumor, 347 healthy; 
TCGA LUAD) shows higher expression in cancer tissues 39. (j) GLUT1 IHC staining of lung adenocarcinoma tissues 
confirmed tumor-specific expression. Images (left: ID 426; right: ID 1303) from human protein atlas 41. (k) Kaplan–
Meier analysis showed lower overall survival in patients with high SLC2A1/GLUT1 RNA expression, grouped by 
median. 

OpenDVP uncovers broad tumor microenvironment remodeling in 
primary and locally relapsed triple-negative breast cancer 
Tumor ecosystems comprise spatially defined clusters of immune, stromal, and epithelial cells 

with distinct pro- and anti-tumorigenic functions. Such cell communities, or cellular 

neighborhoods (CNs), are associated with therapeutic responses and patient outcomes across 

cancer types 42–44. Triple-negative breast cancer (TNBC), the most aggressive breast cancer 

subtype 45, exemplifies how tumor microenvironment (TME) organization and CNs associate with 

distinct clinical outcomes 46. For example, recent studies have revealed critical roles of CNs 

comprising tumor-associated macrophages (TAM) and cancer-associated fibroblasts (CAFs) 47–49. 

A detailed understanding of CNs within the TME hence offers new treatment avenues by 

identifying druggable proteins that mediate cellular interactions and communication. We reasoned 

that CN-guided proteome profiling would offer a robust approach to accelerate spatial discovery 

proteomics while retaining the DVP core concept to connect visual phenotypes with quantitative 

proteomes. To address this, we first derived an optimized protocol for centimeter-scale whole-

slide multiplex immunofluorescence (mIF) imaging on PPS membrane slides and included a panel 

of nine markers for this proof-of-concept study (Fig. 4a-b). We stained and imaged two paired 

tissue sections obtained from the primary surgical resection and matching local relapse sample of 

the same patient. The primary sample showed a large (38 mm) ductal carcinoma in situ (DCIS) 

that invaded the surrounding stroma at several sites (Fig. 4c, subplot 2), thus transitioning to 

invasive carcinoma. The relapse manifested two years later after systemic adjuvant chemotherapy 

and featured a large (45 mm in diameter) focus of invasive carcinoma without any residual DCIS.  

Both image datasets (each 150GB+) were processed using MCMICRO and SOPA for cell 

segmentation, phenotyping, and neighborhood analysis. H&E staining of the same slide allowed 
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us to integrate additional tissue morphology information (Suppl. Fig. 4a-b). We segmented 

610,182 and 1'005,051 cells from the primary and relapse sample, respectively, that clustered into 

five major communities corresponding to cancer cells, T-cells, B-cells, macrophages, and stromal 

cells (Fig. 4c-e, Suppl. Fig. 4c-d). In both primary tumor and relapse, panCK+ tumor cells were 

most abundant, followed by T lymphocytes and stromal cells. Cell type frequencies differed 

significantly between the two tissue samples (Fig. 4f). CD3+ T-cells were the second most 

abundant population in the primary sample, which localized with CD20+ B-cells in the stroma 

around DCIS-filled ducts (Fig. 4c, subplot 1). The relapse sample showed reduced CD20+ B-cells 

and CD8+ T-cells, while CD68+ macrophages and VIM+ stromal cells increased 16-fold and 4-

fold, respectively (Fig. 4f), supporting their role in cancer progression and immune evasion 50,51. 

These data revealed microenvironmental remodeling from a small, therapy-naïve carcinoma to a 

resistant secondary tumor. To evaluate the consequences of these cell type-specific changes on 

spatial tissue architecture, we performed cell neighborhood analysis. Using scimap's spatialLDA 

algorithm, we identified seven recurring CNs with distinct cell proportions (CN0-6, Fig. 4g). CN0, 

CN1, and CN6 showed strongest abundance differences between the two samples (Fig. 4g-i). 

Proximity analysis revealed CD68+ macrophages were more distant to tumor cells in the primary 

sample compared to the relapse, while B and CD8+ T cells were in higher proximity (Fig. 4j). 

This demonstrated spatial reorganization from an initial lymphocyte-rich infiltrate surrounding the 

emerging tumor in the primary sample towards a macrophage rich infiltrate located inside the large 

relapsed tumor. These phenotypic differences prompted us to investigate the underlying biological 

processes associated with treatment resistance and tumor recurrence. 
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Fig. 4. Image acquisition and analysis of primary and recurrent triple-negative breast cancer (TNBC). 
(a) FFPE 5 µm sections from primary tumor and same-patient post-chemotherapy relapse sample were mounted on 
PPS frame slides. (b) Slides underwent multiplex immunofluorescence (mIF) staining and processing using 
MCMICRO pipeline with SOPA. (c) Whole-slide mIF images of samples with zoomed regions show overlaid cell 
phenotype information. (d) UMAP embeddings of segmented cells from each slide, based on morphology and marker 
intensity (excluding nuclear stains and background); unidentified cells excluded; n_neighbors = 25. (e) Heatmap of z-
scored mean marker intensities across phenotyped cells. Phenotyping performed by thresholding markers per slide, 
rescaling intensities, and scimap phenotype function. (f) Fold change in cell type counts between recurrent and primary 
samples. (g) Relative composition of cellular neighborhoods per sample excluding unidentified cells. h) Selected 
regions with cellular neighborhoods overlaid. (i) Stacked bar plots showing cellular neighborhood frequency in each 
sample, calculated using scimap's spatialLDA function. (j) Boxen plots of minimum distance from cells to nearest 
cancer cell; each level of boxes corresponds to half the previous number of datapoints. 

 
Cellular neighborhood guided proteomics delineates spatial tumor 
heterogeneity and putative molecular drivers of disease progression 
 
We leveraged CN information to guide LMD sampling for exploratory proteomics (Fig. 5a) and 

selected CNs 0, 5, and 6, representing tumor, tumor-immune, and immune specific regions, 

respectively (Suppl. Fig. 4). For both samples, we distributed ROIs across tissue sections to assess 

spatial proteomic heterogeneity in a cell neighborhood resolved fashion. For CN0, we collected a 

single 25,000 µm2 contour per replicate. For smaller immune-enriched CN5 and CN6, we pooled 

proximate contours to normalize tissue input (Fig. 5b). In total, we collected 203 samples and 

processed them using our low-input tissue proteomics workflow. Using the Evosep One system 

with the 80 samples-per-day (SPD) Whisper Zoom method and timsTOF Ultra 2 mass 

spectrometer in diaPASEF mode, all samples were prepared and measured in less than one week. 

Using DIA-NN, we quantified 4,800 proteins for the tumor-specific CN0 and 3,500-4,000 for 

immune-enriched niches (Suppl. Fig. 5a-b). Proteomes showed CN-specific patterns, with 2,500 

proteins quantified across all CNs, 750 unique to tumor-enriched and 250 unique to immune-

enriched niches (Fig. 5c). Through SpatialData15 integration and publicly available breast cancer 

scRNA-seq data 52, we confirmed that the tumor-specific CN0 showed epithelial cancer specific 

signatures, while immune-enriched CN6 featured strong T-cell signatures (Fig. 5d). As expected, 

the tumor-immune interface (CN5) showed signatures of both cell types. Principal component 

analysis revealed tissue-specific proteomes (PC1=29.3% variance) and spatial niche-specific 

profiles (PC2=17.3% variance) (Fig. 5e-f). Clustering of all proteomes identified three main 

clusters (Fig. 5g): Cluster 1 characterized the primary tumor-enriched CN0, enriched for protein 

transport and mitochondrial proteins; Cluster 2 featured proteins high in the relapse sample CN0, 
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showing high RNA processing and translation; and Cluster 3 proteins were abundant both in 

immune and tumor-immune CNs, featuring immune processes and extracellular matrix 

organization (Fig. 5g, h). 

The strong proteomic differences in the tumor-specific CN, separating the primary and relapse 

sample, were intriguing (Fig. 5d, g), prompting further investigation in the context of spatial tissue 

organization. Overall, the DCIS proteome of the primary tumor showed higher heterogeneity 

compared to relapse sample, demonstrated by lower global proteome correlation (mean Pearson r 

= 0.91 versus 0.95, Mann-Whitney-U test p-value: 1.6E-46, Fig. 5i) and higher protein level 

variability (CV, Suppl. Fig 5d). Bootstrap analysis with 1000 resampling iterations across subset 

sizes showed that protein CVs plateaued at approximately 30 tumor ROIs and overall confirmed 

higher proteomic heterogeneity in the primary sample (Suppl. Fig. 5c). These results could be 

explained by clonal selection after chemotherapy, reducing clonal diversity and hence proteomic 

heterogeneity. Recent studies have identified spatial clonal niches in breast cancer tissues with 

distinct transcriptional and histological features 53,54. We also found higher spatial autocorrelation 

values (Moran's I) in the DCIS-enriched primary tumor, indicating protein levels were more 

similar for neighboring tumor samples compared to distant ones (Fig. 5j). 

To examine biological processes underlying chemoresistance and tumor progression in the relapse 

sample, we performed CN-guided pairwise proteomic comparisons. Both niches revealed 

pronounced quantitative differences (Fig. 5k, m). In the immune niche (CN6), pathway analysis 

identified interferon (IFN) gamma pathway as top upregulated in relapse, followed by 

complement/coagulation and heme metabolism (Fig. 5l). Consistent with imaging data showing 

CD68+ macrophage increase in relapse-associated immune niches (Fig. 4f-g), 

myeloid/macrophage gene expression programs were strongly enriched in the immune-niche 

specific proteome (Suppl. Fig. 5e). The relapse-associated tumor niche indicated a metabolic 

switch from oxidative phosphorylation to glycolysis, coinciding with higher EMT and MYC 

oncogenic programs (Fig. 5n), key features of chemoresistance and progressive disease 55,56. These 

changes could be related to reduced oxygen and nutrient access in the core of the large relapse 

tumor. The interferon alpha pathway was the most upregulated pathway in the tumor-specific niche 

of relapse (Fig. 5n). Collectively, these niche-resolved data indicated both type I and II interferon 

signaling as overactive in relapse. Using SpatialData, we mapped the interferon pathway levels 

onto the IF image, which revealed that the IFN-high tumor-cell phenotype was present across 
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tissue section (Fig. 5o). The primary tumor instead showed high interferon alpha levels only in 

one central ROI. Notably, overactive IFN has been described as molecular driver of triple-negative 

inflammatory breast cancer (TN-IBC), a highly metastatic and chemoresistant subtype 

characterized by an immunosuppressive TME with high M1-like macrophages and reduced T 

lymphocyte infiltration compared to non-IBC 57. These results were in excellent agreement with 

our data, suggesting that the relapse tumor represented TN-IBC. 

In conclusion, our openDVP pipeline uncovered large-scale tissue microenvironmental and 

proteomic remodeling associated with tumor relapse and discovered tumor-intrinsic IFN signaling 

as a potential driver of chemoresistance and tumor progression in this patient 58.  
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Figure 5. Spatial proteomic analysis of triple-negative breast cancer (TNBC) samples comparing primary and 
recurrent tumors. (a) Whole-slide overlay of cellular neighborhood (CN) annotations with contours for laser 
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microdissection-guided proteomics. Sample collection summaries are shown in boxes. (b) Three selected CNs for 
proteomics: Tumor Enriched, Immune Enriched, and Tumor-Immune. Regions were collected using laser 
microdissection and analyzed using a rapid (80 samples-per-day) LC-MS strategy. (c) UpSet plot showing protein 
identification overlap across CNs. (d) Heatmap showing signature markers from a recent RNAseq study 52. Protein 
levels were z-scored, averaged per CN, and subjected to unsupervised hierarchical clustering. (e) Principal component 
analysis (PCA) of all samples, colored by CN. (f) PCA embedding with samples as pie charts reflecting cell phenotype 
proportions derived from image analysis. Note, both PCA plots show clustering by sample type (primary vs. relapse), 
followed by CN.  (g) Heatmap displaying 4,570 proteins across 203 samples, clustered hierarchically (method: 
"average," distance metric: "cityblock"). Proteins filtered for 70% valid values in any CN group. (h) Protein clusters 
analyzed using EnrichR pathway enrichment using all identified proteins as background. (i) Violin plots showing 
pairwise intragroup correlations, highlighting greater proteomic variability in the primary tumor. (j) Density plot of 
Moran's I spatial autocorrelation for proteins across samples, showing greater spatial variability in the primary tissue. 
k) Volcano plot showing regulated proteins between immune-enriched CNs of primary and relapse tumors, FDR cut-
off of 5%. (l) Barplot showing enriched MsigDB hallmarks between primary and relapse immune-enriched samples. 
(m) Volcano plot showing regulated proteins between tumor-enriched CNs of primary and relapse samples, FDR cut-
off = 5%. (n) Barplot showing enriched MsigDB hallmarks between primary and relapse tumor enriched samples. (o) 
Overlay of interferon alpha response pathway (Hallmarks) showing z-scored pathway levels of tumor and immune-
enriched samples. Note, the relapse sample featured consistently higher IFN levels across tissue. 

Discussion 

OpenDVP is the first Python-based framework for accessible and community-driven deep visual 

proteomics. Built on the scverse ecosystem, it supports FAIR principles by ensuring processed 

data are findable, accessible, interoperable, and reusable. Its modular design enables integration of 

tools for image segmentation, cell phenotyping, and spatial analysis through compatibility with 

platforms like MCMICRO, QuPath, and Napari. For broad accessibility, openDVP offers two 

workflow options: a simplified 'annotate-collect-measure' strategy (termed ‘flashDVP’) and an AI-

powered pipeline optimized for high-performance computing and large image datasets. FlashDVP 

serves as a rapid spatial discovery platform based on manual sample annotation, particularly useful 

for the profiling of acellular regions like the extracellular matrix or cell types with more complex 

morphology, for which cell segmentation is more challenging. Applied to human placental tissue, 

we performed a comprehensive cell-type-resolved tissue proteomic analysis, identifying key 

proteins and pathways critical for placental biology. Additionally, in an aggressive lung cancer 

previously profiled by spatial transcriptomics in 3D, we confirmed differentially expressed genes 

and discovered additional niche-specific drug target candidates, highlighting the complementarity 

of multimodal spatial omics data.  

 

The second workflow option represents an AI-powered DVP pipeline equipped with state-of-the-

art tools for memory-efficient single cell and spatial analyses. Our breast cancer relapse study 
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showed how this pipeline performs accurate cell segmentation and neighborhood analyses to guide 

deep proteomic profiling. While single-cell laser microdissection provides highest biological 

granularity critical for single-cell applications 59 and mixed cell populations 60, this approach is 

generally more challenging due electrostatic forces, more difficult contour alignments, and 

potential cell-type admixing from imprecise laser microdissection. We therefore developed an 

alternative strategy that provides an excellent balance between biological resolution, efficiency 

and speed of tissue collection, and reproducibility of proteomic analysis. Instead of excising single 

cells, cellular neighborhood (CN)-guided proteome profiling represents a more robust and 

streamlined approach for phenotype-resolved discovery proteomics. Cellular neighborhoods 

combine cell phenotype and spatial information, offering a higher-level depiction of tissue 

architecture to pinpoint critical pathophysiological changes. As their proteomic profiles can be 

directly integrated with image-based phenotypes, this strategy allows for seamless cell-type 

deconvolution. We applied this approach to investigate the proteomic changes associated with 

tumor relapse in a triple-negative breast cancer patient. Based on multiplex immunofluorescence 

imaging, we uncovered substantial TME remodeling and quantitative proteomic changes between 

the primary and relapse tumor. We found that the primary DCIS-associated tumor featured higher 

intratumoral spatial proteomic heterogeneity compared to the more homogenous relapse sample, 

suggesting clonal selection associated with chemotherapy resistance and tumor recurrence. Our 

results further revealed elevated interferon signaling, EMT and glycolysis as dominant proteomic 

features of the relapse tumor, potentially targetable by JAK/STAT inhibitors or strategies to 

redirect glucose metabolism 38,61,62. Looking ahead, we envision cellular neighborhood-guided 

proteome profiling particularly powerful in combination with higher plex DVP assays 63 (e.g., 20 

- 30 markers), thereby significantly reducing the fraction of unknown phenotypes and providing 

much higher biological resolution to illuminate pathophysiological changes. 

 

In conclusion, openDVP represents a significant advancement in making deep visual proteomics 

broadly accessible. Its open architecture provides a foundation for future innovations in spatial 

biology and serves as a platform for researchers as spatial discovery proteomics continues to 

evolve. While further progress in AI could enhance imaging and proteomic workflows for 

improved scalability, the adoption of openDVP across tissues and diseases could yield new 

biological insights, biomarkers, and drug targets. These efforts will also provide an important basis 
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for centralized spatial proteomics databases, integrating antibody and mass spectrometry-based 

data. We envision such community efforts to be essential for unlocking the full potential of spatial 

proteomics to transform our understanding of tissue biology in health and disease. 
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Methods 

Data availability 

Mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via 

the PRIDE partner repository 64. RNA-seq data were obtained from GEPIA 39, an interactive web 

server for analyzing RNA sequencing expression data from the TCGA and GTEx projects, using 

a standard processing pipeline. The LUAD RNA-Seq dataset GEPIA used was based on the UCSC 

Xena project (http://xena.ucsc.edu).  

 

Code availability 

The source code of openDVP is fully opened and accessible on GitHub, including example 

tutorials: https://github.com/CosciaLab/openDVP, including the QuPath-to-LMD workflow 

https://github.com/CosciaLab/Qupath_to_LMD. The napari-cell-gater can be found at 

https://github.com/CosciaLab/napari-cell-gater. 

 

Sample collection and patient cohort 

Placenta samples 

Placental tissue was collected from electively terminated pregnancies (gestational age, 7 – 11 

weeks) with informed consent. Exclusion criteria were maternal age under 18 years, BMI >25 

kg/m2, and maternal pathologies. Ethical approval was obtained from Medical University Graz 

Ethics Committee (31-019 ex18/19). After surgical extraction, tissue was stored at 4°C in culture 

medium (DMEM/F12 1:1, 1 g/dL glucose) and processed within 4 h. Villous tissue was rinsed in 

cold (4°C) 0.9% NaCl solution to remove blood, fixed with 10% formalin, paraffin embedded 

(FFPE), and dehydrated per standard protocols.  

 

Lung cancer sample 

We analyzed the primary tumor of a non-small cell lung cancer (NSCLC) patient. The patient,	a 

63-year-old woman with a 40 pack-year smoking history and no physical limitations (ECOG 

performance status 0), was diagnosed in March 2020 with a metabolically active tumor at the apex 

of the right upper lobe on positron emission tomography (PET) imaging. A transbronchial lung 

biopsy confirmed a TTF1-positive lung adenocarcinoma (LUAD) with acinar growth pattern. Two 
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months after diagnosis, the patient underwent right upper lobectomy. Gross examination was 

performed according to standardized protocols. The specimen was fixed in 10% buffered formalin 

and paraffin-embedded (FFPE). Histological examination, including diagnosis, tumor grading, 

pTNM classification, angioinvasion, lymphatic invasion, and tumor stage, was performed 

according to the 8th edition of the TNM classification (AJCC). Following diagnosis, the FFPE 

tissue block was stored at room temperature in the archive of the Institute of Pathology at the 

Charité University Hospital, Campus Mitte. The study was performed according to the ethical 

principles for medical research of the Declaration of Helsinki, and approval was approved by the 

Ethics Committee of the Charité University Medical Department in Berlin (EA4/243/21). 

A comprehensive 3D spatial transcriptomic analysis of this tumor has been described recently 

based on 34 5-μm-thick consecutive sections (sections 4, 10, 16, 22, 28, and 34)  35 and a section-

to-section distance of 30 μm. From the same tumor block, we profiled section 36 using proteomics 

after image registration in QuPath. 

 
Triple negative breast cancer samples 

Archival leftover diagnostic tissue from the tumor resection specimen and a specimen obtained 

two years later after relapse was selected from the archives of the Institute of Pathology, Charité 

Universitätsmedizin Berlin. At the time of diagnosis and primary resection, the patient had 

carcinoma in situ (DCIS), 38 mm in diameter, with multifocal stromal invasion. The multifocal 

invasive tumor had a total diameter of 9 mm, lacked expression of estrogen and progesterone 

receptors, and had an Her2-score of 1+, considered equivalent to a lack of HER2-gene 

amplification. The diagnosis was multifocal invasive triple-negative breast cancer (stage pT1b 

(m)). In 2022, the patient experienced a relapse with a diameter of 34 mm and ulceration of the 

skin (stage yrpT4b). The patient provided written consent for the use of leftover diagnostic material 

for research purposes. The project was approved by the IRB of Charité (“Ethics Committee”), 

project number EA1/253/19. 

 

Immunofluorescence staining and imaging 

Placenta tissue sections (5 µm) were mounted on metal frame PPS membrane slides, dried 

overnight, deparaffinized, and subjected to antigen retrieval in Tris/EDTA (pH 9) at 93 °C for 20 

min. After cooling (20 min), slides were placed in warm distilled water (5 min) and cooled again 
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(5 min). Sections were washed with PBST (PBS + 0.1% Tween 20) and blocked with Ultra V 

Block (20 min, RT). For triple staining (CD163, CD31, E-cadherin), primary antibodies (Table 1) 

were diluted in PBST + 1% normal goat serum (NGS) and incubated overnight at 4°C. fter 

washing, secondary antibodies in PBST + 1% NGS (mouse IgG-AF647 and rabbit IgG-AF488, 

Table 1) were incubated for 1 h at RT in dark. Slides were washed and mounted with SlowFade 

Diamond containing DAPI. Rabbit immunoglobulin and mouse IgG controls showed no stains. 

Imaging was performed using Zeiss Axioscan 7. Cell phenotypes were manually annotated in 

QuPath following the flashDVP workflow (v0.4.2). Regions of interest (~50,000 μm²) were 

collected using Leica LMD7 (63x, brightfield) microscope into 384-well plates. 

  

Cyclic immunofluorescence staining and imaging 

Breast cancer tissue sections were incubated at 60 °C for 30 min and then deparaffinized and 

rehydrated (2x 5 min in Neo-Clear, 2x 2 min in 99% EtOH, 1x 2 min in 80% EtOH, 1x 2 min in 

70% EtOH, 3x 1 min in 1x PBS). For decrosslinking, heat-mediated antigen retrieval was 

performed in pH 9 Tris buffer (Dako, #K800421-2, 1:50 in ddH2O) in a steamer for 30min. 

Sections were washed in 1x PBS and pre-quenched in 4.5% H2O2 (in 25mM NaOH in PBS) for 

2x 30 min. Cover glasses were mounted with 10% glycerol (in PBS) and the first image acquisition 

for background subtraction was performed using the Zeiss Axioscan 7 Slidescanner with a 

20x/0.5NA objective at 2 × 2 binning. Slides were soaked in PBS for cover glass detachment for 

5 min and then washed 3x 5 min in PBS to remove residual glycerol. Tissues were then blocked 

for 30 min in 3% BSA (in PBS, Serva #11948.01) at room temperature, followed by antibody 

staining in a humid chamber at 4 °C overnight. Antibodies are listed in the table below, all diluted 

1:50 in the blocking buffer. The next day, sections were washed in PBS, mounted, and imaged 

with similar settings, while exposure times were adjusted to the fluorescent signal. Cover glasses 

were removed as before, sections were washed, and fluorescent signal was bleached as previously 

described for 30 min. For multiplexed immunofluorescence, tissue sections were washed 3x 5 min 

in PBS, and the second cycle of antibody staining was performed. Afterwards, sections were 

incubated for 3 min in hematoxylin, 10 min in tap water, dipped twice in ddH2O, 30sec in eosin, 

dipped twice in ddH2O, and dehydrated by dipping in increasing concentrations of EtOH (70-99%) 

for visible staining.  
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Antibody 
target 

protein 
Vendor Catalog no. Clone Fluorophore 

Research 
resource 
identifier 

Dilution 

α-SMA Abcam ab184675 1A4 Alexa Fluor® 
488 AB_2832195 1:50 

CD3E NovusBio NBP2-
54392AF647 C3e/1308 Alexa Fluor® 

647 AB_3095415 1:50 

CD8A 
Thermo 
Fisher 

Scientific 
53-0008-80 AMC908 Alexa Fluor® 

488 AB_2574412 1:50 

CD20 eBioscience 53-0202-80 L26 Alexa Fluor® 
488 

AB_1073435
7 1:50 

CD68 CST 79594 D4B9C PE AB_2799935 1:50 

E-cadherin CST 3199 24E10 Alexa Fluor® 
488 

AB_1069145
7 1:50 

Pan 
Cytokeratin 

Thermo 
Fisher 

Scientific 
41-9003-80 AE1/AE3 eFluor™ 570 AB_1121870

4 1:50 

Vimentin NovusBio NBP1-
97670AF750 V9 Alexa Fluor® 

750 
AB_1001374

3 1:50 

COL1A1 NovusBio NB600-
408AF750 Polyclonal Alexa Fluor® 

750 
AB_1000051

1 1:50 

Ki67 CST 11882 D3B5 Alexa Fluor® 
488 AB_2687824 1:50 

CD163 Miltenyi 130-127-908 REA1309 PE AB_2928274 1:50 

E-cadherin Cell 
Signalling 3195 24E10 - AB_2291471 1:200 

HLA-G EXBIO 11-291-C100 MEM-G/1 - AB_1073435
3 1:200 

Anti-goat 
Ms IgG 

Thermo 
Fisher 

Scientific 
A21235 - Alexa Fluor® 

647 AB_2535804 1:1000 

Anti-goat 
Rb IgG 

Thermo 
Fisher 

Scientific 
A11008 - Alexa Fluor® 

488 AB_143165 1:1000 

 

Image analysis and contour export for laser microdissection 

Triple negative breast cancer 

Triple-negative breast cancer whole slide images were processed with MCMICRO: Tiles were 

illumination corrected with BASIC v1.1.1, then stitched and registered with ASHLAR v1.17.1. 

Channels were background-subtracted from autofluorescence images using Backsub v0.4.1. The 

image stack was processed using a modified SOPA snakemake pipeline. The nuclear signal from 

the first cycle was segmented using cellpose v2's "nuclei" model, with parameters: diameter 25, 

flow_threshold 0.8, cellprob_threshold –8, min_area 250, clip_limit 0.2, gaussian_sigma 1. For 

whole-slide images, we used SOPA's patchify function to tile images into 5000 pixels tall/wide 

squares with 100 pixel overlap to distribute segmentation tasks across HPC. Segmentation masks 
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were expanded by five pixels and used to quantify mean, standard deviation, and three quantiles 

(25% 50% 75%) of marker signal per cell. For quality control, image stacks were scaled to 8-bit 

and pyramidized with tile-size 4096. Analysis of quantified files applied these filtering steps with 

visual quality control: (1) removal of manually labelled artifact regions, (2) removal of cells with 

too low/high nuclear signal, (3) removal of cells with too small/large areas, (4) removal of dropout 

cells where DAPI ratio between first and last cycle was not between 0.15-1.05. Cell phenotyping 

used napari-cell-gater (github.com/CosciaLab/napari-cell-gater) to determine marker thresholds 

and scale marker signals for binomial distribution. Scimap's phenotype function with a phenotype-

matrix labeled the cells. Manually labelled artifacts for one channel reduced signal for all cells in 

the annotation. For cellular neighborhood analysis, datasets were merged by concatenating adata 

objects, analyzed by scimap's spatial_lda function with knn=30 and k=7. 

 

Laser microdissection and proteomic sample preparation 

First trimester placenta 

Samples were pooled at the bottom of each well with acetonitrile (2 × 10 μL) and vacuum-dried 

(30 min). Cell lysis was performed with 4 μL of 60 mM TEAB, followed by brief centrifugation 

(2,000 RCF, 1 min) and heating at 95 °C for 60 min in a Bio-Rad thermal cycler (384-well module, 

lid at 110 °C). ACN (1 μL; 20% final) was added, and the samples were incubated at 75 °C for 

60 min. After cooling, 2 μL LysC (2 ng/μL in LC-MS grade H2O) was added and digestion was 

performed at 37 °C for 4 h. Trypsin (2 μL, 2 ng/μL; Promega Trypsin Gold) was added for 

overnight digestion at 37 °C. Digestion was stopped with 1% TFA (v/v), and samples were 

vacuum-dried (~60 min, 60 °C) and stored at –20 °C. Before LC-MS, 4.2 μL MS loading buffer 

(3% ACN, 0.2% TFA) was added; the plate was vortexed (10 s), centrifuged (5 min, 2,000 RCF) 

and 4μL injected into the EASY-nLC-1200 system. 

 

Triple negative breast cancer  

For laser microdissection, slides were stained with H&E on PPS-Membrane Frame Slides. A total 

of 210 annotations were made in QuPath with a cellular neighborhood overlay. The total sample 

area for each sample was 25,000 µm2. We used the Leica LMD 7 system with Leica Laser 

Microdissection software v. 8.3.0.08259. Tissue was collected using the 20x objective (HC PL FL 

L 20x/0.40 CORR) in brightfield with laser settings: power 55, aperture 1, speed 20, middle pulse 
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count 1, final pulse –1, Head current 35-45% (adjusted based on tissue thickness), pulse frequency 

~2000. Contours were collected in low-binding 384-well plates (Eppendorf 0030129547). To 

ensure tissue settling at the bottom of wells, 20μL of acetonitrile was added, followed by vortexing 

and vacuum drying for 10 min at 60 °C. Wells were inspected to confirm collection. Protein 

extraction and digestion used a DDM-based protocol. A lysis buffer containing 0.025% DDM, 5 

mM TCEP, 20 mM CAA, and 0.1 M TEAB in water was dispensed into wells (4 μL per sample) 

using a MANTIS Liquid Dispenser. Plates were sealed with PCR ComfortLid seals and incubated 

at 95 °C for 60 min. After cooling, 2μL of LysC (4 ng/μL in 0.1 M TEAB [pH 8.5] with 30% 

acetonitrile) was added, and samples were digested for 4 h at 37 °C in a thermal cycler. 

Subsequently, 3μL of trypsin (2ng/μL in 0.1 M TEAB [pH 8.5] with 10% acetonitrile) was added, 

and digestion proceeded overnight at 37 °C. Samples were vacuum dried for peptide cleanup. 

Peptides were purified using Evotips (Evosep) following manufacturer's instructions, and samples 

were kept with Buffer A until measurement. 

 

Liquid chromatography and mass spectrometry (LC-MS) 

First trimester placenta 

Peptides were analyzed using an EASY-nLC 1200 (Thermo Fisher) coupled to a trapped ion 

mobility spectrometry quadrupole time-of-flight mass spectrometer (timsTOF SCP, Bruker 

Daltonik) with a CaptiveSpray nano-electrospray source. Samples were loaded onto a 20 cm in-

house packed C18 column (75 μm ID, 1.9 μm ReproSilPur C18-AQ silica beads, Dr. Maisch, 

Germany) and separated at 250 nL/min with a gradient of increasing concentrations of buffer B 

(0.1% formic acid, 90% ACN in LC-MS grade H2O) to 60% buffer A (3% ACN, 0.1% formic 

acid in LC-MS grade H2O). The gradient duration was 21 min, and the column temperature was 

maintained at 40 °C. MS acquisition was performed in diaPASEF mode with a 1.8 s cycle time. 

Ion accumulation and ramp times in the dual TIMS analyzer were 100 ms each; the ion mobility 

range was 1/K₀ = 1.6–0.6 Vs cm⁻² and the m/z range 100–1,700. The collision energy decreased 

linearly from 59 eV (1/K₀ = 1.6) to 20 eV (1/K₀ = 0.6). Singly charged precursors were excluded 

using a polygon filter (timsControl, Bruker). 
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Triple negative breast cancer 

Liquid chromatography was performed using the Evosep One LC system connected to a trapped 

ion mobility spectrometer with a quadrupole time-of-flight mass spectrometer (timsTOF Ultra, 

Bruker Daltonik). Separation was performed using an Evosep 80SPD gradient with an IonOpticks 

Aurora Rapid column. The solvents were Buffer A (LC-MS grade water with 0.1% formic acid) 

and Buffer B (acetonitrile with 0.1% formic acid). Samples were measured in dia-PASEF 

acquisition mode. DIA-NN (version 1.9) analyzed the dia-PASEF raw data and generated spectral 

libraries. A human reference proteome FASTA file (UniProt, release 2022, UP000005640_9606) 

was downloaded on April 8, 2022, and supplemented with common contaminants. In silico 

libraries were generated using deep learning predictions of MS/MS spectra, retention times (RT), 

and ion mobilities (IM) across a 300–1200 m/z range. Fixed modifications included N-terminal 

methionine excision and cysteine carbamidomethylation. Digestion settings allowed up to two 

missed cleavages, with precursor charge states restricted to 2–4. DIA-NN was executed in default 

mode with adjustments: MS1 and MS2 mass accuracies set to 15.0 ppm, scan windows assigned 

automatically (set to 0), and isotopologue detection enabled. Settings included match-between-

runs, heuristic protein inference (restricted to gene-level annotation), and exclusion of shared 

spectra. The neural network classifier ran in single-pass mode. Quantification used the QuantUMS 

strategy, cross-run normalization was RT-dependent, and spectral library generation used smart 

profiling. 

 

Proteomic data analysis 

First trimester placenta 

Raw data were acquired using timsControl (v3.1, Bruker) and processed in DIA-NN (v1.8.1) in 

library-free mode using a predicted human spectral library (UniProt, 2021). Default settings were 

used with adjustments: mass range 100–1,700 m/z, precursor charge states 2–4, max 2 

miscleavages, MS1/MS2 mass accuracy 15 ppm, match-between-runs enabled, and quantification 

set to ‘Robust LC’. Protein-level outputs (pg_matrix.tsv and unique_genes_matrix.tsv) were 

analysed in Perseus 65(v.1.16.0.5). Missing values were imputed from a normal distribution 

(width = 0.3, downshift = 1.8) after filtering for ≥70% quantified values per cell type group. 

Matrices were further analyzed in R (v4.1.2). To identify phenotype-specific protein markers, 

highly variable proteins were selected based on an ANOVA F-values greater than four. Differential 
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abundance was assessed using Welch's two-sided t-test followed by Benjamini–Hochberg FDR 

correction. Identified marker proteins (FDR < 0.05) overlapping with public transcriptomic 

datasets were visualized using DiVenn 66. 

Receptor ligand communication analysis was done using CellChat and included receptors and 

ligands indexed as "secreted,” "cell-cell contact" or "ECM-receptor" in their database. We used 

standard parameters (excluding per-protein smoothing) of 1000 permutations for the probabilistic 

inference of each cell pair and transmitter-receiver interaction, considering heterometric structures 

and interactor mediator proteins.  

 

Triple negative breast cancer 

Proteomic data analysis was performed in Python v3.12.8, using AnnData v0.11.2 and SpatialData 

v0.4.0 as the main data formats. Analysis was performed using opendvp functions with geopandas 

v1.0.1 and pandas v2.2.3 in the background. Plotting was performed using matplotlib v3.10.0, 

seaborn v0.13.2, and pycomplexheatmap. The DIA-NN output was processed and adapted to the 

AnnData object using the opendvp.DIANN_to_adata function, and quality control samples were 

filtered out. Proteins that did not have at least 70% valid values in any cellular neighborhood were 

filtered out. The remaining NaN values were imputed by low-abundance normal distribution per 

protein (width=0.3, downshift=1.8). Scanpy v1.11.0 was used to perform PCA dimensionality 

reduction and plotting. Hierarchical clustering and plotting of heatmap took place with 

pycomplexheatmap v1.8.1, using method "average,” and metric "cityblock.” T-tests and ANOVA 

were performed using pingouin v0.5.5. Spearman’s correlation was calculated using scipy v1.16. 

 

Declaration of generative AI and AI-assisted technologies in the writing process 

During the preparation of this manuscript, the authors used Paperpal to improve the readability 

and language of the text. After using this tool, the authors reviewed and edited the content as 

needed and take full responsibility for the content of the publication  
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Supplementary Figures 
 
 

 
Supplementary Fig. 1, related to Fig 1.  
Diagram showing how openDVP harnesses the scverse’s SpatialData data format to integrate antibody-based imaging, 
the image analysis matrix, and LC-MS-based spatial proteomics. This allows users to overlay various information 
layers to best guide laser microdissection and spatial proteomics analysis. 
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Supplementary Fig. 2, related to Fig. 2. (a) Box plots showing the number of proteins (blue) and precursors (pink) 
identified per cell type; each dot represents a sample. (b) Rankplot showing the dynamic range of proteins measured 
with labelled canonical markers and their rank for each cell type. (c) Unsupervised hierarchical clustering of 3,994 
proteins, showing three distinct cell-type specific protein clusters used in Fig. 2h. Canonical markers of each cell type 
are labelled. The metric for clustering is “cityblock,” and the mode is “average.” Clustering was performed by splitting 
the dendrogram into three largest groups. CTB, cytotrophoblast; STB, syncytiotrophoblast; HBC, Hofbauer cell. 
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Supplementary Fig. 3, related to Fig. 3. (a) Imaging modalities (H&E and IF) used to guide laser microdissection. 
Yellow annotations show ROIs used for proteomic profiling.  Left: Multiplex immunofluorescence used to locate 
tumor and stromal niches identified by spatial transcriptomics. H&E staining showing ROIs before (middle panel) and 
after LMD collection (right panel). (b) Boxplot showing the number of identified precursors per sample type. (c) 
Pearson’s correlation heatmap for all analyzed samples. (d) Scatterplot comparing fold changes between tumor cells 
inside and outside the EMT niche, for both spatial proteomics and spatial transcriptomics. (e) Volcano plot showing 
differentially abundant proteins between tumor cells inside and outside the EMT niche as defined by CosMx spatial 
transcriptomics. (f) Heatmap showing clusters of proteins between tumor cells inside the EMT niche, outside the EMT 
niche, and in the desmoplastic stroma. The dot plot shows enriched Hallmarks and WikiPathways pathways for the 
different clusters using ClusterProfiler R package 67. (g) Dot plot of SLC2A1 expression across all cell types (left) and 
in tumor cells distributed in different niches (right). Dot size indicates the percentage of gene-expressing cells; color 
represents average expression (log-normalized and scaled). 
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Supplementary Fig. 4, related to Fig. 4. (a) H&E image of the primary tissue. (b) H&E image of the relapse tissue. 
Both tissues showed minor tissue losses due to cyclic imaging on PPS frame slides. (c) Zoom-in of the primary tissue. 
The white color shows DAPI as the nuclear counterstain. (d) Segmentation masks coloured by assigned phenotype 
labels. (e) Exemplary images for each IF marker used, overlaid with segmentation mask. Colors represent phenotyped 
cells for each marker (not for Ki67). (f) Barplots with cellular neighborhood compositions for each sample, showing 
the proportion of unclassified cells in grey. Related to Fig. 4g. 
 
 

 
 
Supplementary Fig. 5, related to Fig. 5. (a) Boxplot showing proteins and precursors identified per group of cellular 
neighborhoods. (b) Rankplot showing the dynamic range of protein abundance for each neighborhood. Vimentin 
(VIM) and RAC2 show the highest abundance in the immune-enriched samples, and IRF6 in tumor-enriched samples. 
(c) Line plot showing the spread of the mean CV of 1000 bootstrap simulations, repeated across different subset sizes 
for both samples. Note, plateauing was observed around 30-40 samples. (d) Scatterplot of intra-tissue protein level 
variability (CV) comparing the primary and relapse sample. Only samples of the tumor-specific CN0 were used 
analysis. Note, the primary tumor showed overall higher proteome variability. (e) Barplot of enriched cell type 
signatures between the primary and relapse sample. Only samples of the immune enriched CN6 were used for analysis. 
Breast cancer-specific cell type signatures were obtained from publicly available scRNAseq data described in Wu et 
al. 52. Note, the primary sample showed higher T cell signatures (e.g., CD4+, CD8+), whereas the relapsed immune 
niche featured higher myeloid/macrophage scores. 
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