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Abstract

Background Differentiation between saltwater and freshwater immersion as well as estimating the corpse’s time in
water can be challenging. We aimed to establish and examine the feasibility of a novel approach based on sodium
magnetic resonance imaging (23Na MRI) of the eye to facilitate noninvasive sodium quantification.

Methods Enucleated porcine eyes were immersed in NaCl 0.9%, NaCl 3.0%, NaCl 5.85%, distilled water (DW) or lake
water (LW) at different time intervals, followed by 23Na 7-T MRI sodium quantification.

Results After 6 h of immersion, a significant difference in vitreous body (VB) sodium concentration was found for NaCl
5.85% versus DW or LW (p ≤ 0.019). After 24 and 48 h of immersion, a significant difference in VB sodium concentration
was found for NaCl 5.85% versus DW, LW, NaCl 3.0% or NaCl 0.9%, as well as for NaCl 3.0% versus DW, LW or NaCl 0.9%
(p ≤ 0.001). After 24 h of immersion, lens sodium concentration showed a significant difference for NaCl 5.85% versus
DW, LW, NaCl 3.0% or NaCl 0.9% (p ≤ 0.009); after 48 h of immersion, for NaCl 5.85% versus DW, LW, NaCl 3.0% or NaCl
0.9% (p ≤ 0.001), as well as for NaCl 3.0% versus DW, LW or NaCl 0.9% (p ≤ 0.007). For VB, sodium concentration changes
over immersion time, and exponential curves were fitted to the data.

Conclusion Using 23Na MRI in ex vivo porcine eyes with different immersion times in various saltwater concentrations
and freshwater equivalents allowed noninvasive quantification of VB and lens sodium concentrations.

Relevance statement Although not a substitute for autopsy, 23Na MRI assessment of VB and lens sodium
concentrations may provide biochemical support in suspected drowning, especially in cases where an internal
examination of the body is not authorized or where objections to autopsy are upheld.

Key Points
● Postmortem porcine eyes with different immersion times in saltwater and freshwater.
● Noninvasive quantification of vitreous body and lens sodium concentrations with 23Na MRI.
● Exponential time course of vitreous body sodium concentration in saltwater and freshwater.

Keywords Drowning, Forensic medicine, Lens (crystalline), Post-mortem examination, Vitreous body
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Graphical Abstract

Postmortem porcine eyes with different immersion 
times in salt- and freshwater
Quantification of vitreous body and lens sodium 
content non-invasively with 23Na MRI. 
Exponential time course of vitreous body sodium 
concentration:
c(t)=(coutside-cVB )∙(1-et⁄τ)+coutside

223Na MRI based differentiation between salt- and freshwater drowning and for time in water 
determination. 

23Na MRI quantification of sodium content in porcine 
eyes after immersion in saltwater and freshwater en
route to time in water estimation

Eur Radiol Exp (2025) Lindner T, Luyken AK, Lappe C et al; 
DOI: 10.1186/s41747-025-00605-x

Calculated sodium concentration maps of a representative porcine eye at base level (t 
= 0 h) and after immersion for 1h, 6h, 24h and 48h in NaCl 5.85%. Anatomical 1H-MRI 
images are shown in the upper row (A). The corresponding 23Na sodium 
concentration maps are presented in the lower row (B). 

Background
Drowning, defined as a “process of experiencing respira-
tory impairment from submersion/immersion in liquid”
by the World Health Organization [1], is one of the
leading causes of unintentional death worldwide [2].
Death by drowning commonly entails a challenging
diagnostic task, resulting in a comprehensive medicolegal
investigation being performed [3, 4]. Multidisciplinary
efforts are often required to provide context of the actual
reason for and mode of death in drowning cases, since not
all corpses found in water perished from drowning. The
corpse’s time in the water continues to be one of the main
concerns, which aids in determining the time of death and
is therefore crucial to any medicolegal investigation [5].
For this purpose, diverse methods have been developed
[5–9]; however, an accurate time in water estimation is
still difficult to obtain.
The vitreous humor has been thoroughly studied as a

biofluid for forensic purposes via chemical, biochemical,
toxicological, and metabolomic approaches to address not
only the cause but also the time since death. The post-
mortem modifications in vitreous potassium concentra-
tion have probably been the most studied biological
parameter to determine the time since death [10]. Some
previous studies using bovine eyes as an animal model

have established that vitreous electrolyte levels, including
sodium, can change in seawater immersion, assisting in
estimating the time of immersion of bodies found in water
[11, 12]. Previous studies also demonstrated that the
vitreous body (VB) sodium level alone was useful to dif-
ferentiate between saltwater and freshwater immersion
[13, 14]. However, in all previous studies, the samples of
vitreous humor had to be collected via syringe aspiration.
The use of imaging for quantification of VB sodium
content and for differentiation between saltwater and
freshwater immersion is unexplored so far.
Sodium magnetic resonance imaging (23Na MRI) con-

stitutes a valuable approach for in vivo measurement of
tissue Na+ concentrations [15, 16]. Increased availability
and sensitivity of high-field MRI scanners, advanced MR
scanner hardware and improved imaging methodology
tailored for 23Na MRI have facilitated assessment of tissue
sodium content in a broad spectrum of applications
[17–26]. The feasibility of submillimeter spatial resolution
23Na MRI of the human eye in vivo facilitated clear dis-
tinctions of sodium concentration between the lens,
vitreous and aqueous humor [27].
Recognizing this opportunity, this study examines the

feasibility of 23Na MRI for the quantification of VB
sodium concentrations in postmortem porcine eyes
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en route to a novel approach for differentiation between
saltwater and freshwater immersion and for time in water
estimation.

Methods
Ex vivo porcine eye model and immersion solution
Enucleated porcine eyes (German Landrace Swine lat. sus
scrofa domesticus; age: 3 to 6 months; weight: 40 to 90 kg;
≤ 36 h after sacrificing animals) were obtained from the
Research Institute for Farm Animal Biology (FBN). Fol-
lowing enucleation, the eyes were incubated at 8 °C in a
chamber containing different immersion solutions for a
fixed period of time (1 h, 3 h, 6 h, 24 h, or 48 h). For
incubation, the study design involved six groups (each
with n= 3 porcine eyes for each time point): baseline with
no immersion, immersion in NaCl 0.9%, NaCl 3.0%, NaCl
5.85%, distilled water or lake water (Sildemower See). On
average, ocean water salinity equals approximately 3.5%
[28]. However, the salt content at the water surface differs
from sea to sea and depends on tide, flow and weather
conditions, e.g., the salinity of an intertidal beach can vary
over a large range between 24 and up to 220 g/L [29].
NaCl 3.0% was therefore used as a standardized, com-
mercially available seawater equivalent, similar to average
ocean water salinity and NaCl 0.9% and NaCl 5.85% to
account for variations. Lake water typically has about 1%
of the salt content of ocean water, but is also subject to
fluctuations and only reflects the sodium concentrations
of the local area [30]. Therefore, distilled water was
additionally used as a standardized solution to represent
an immersion fluid with low sodium concentration.

Ethical statement
The pigs were slaughtered according to the standard pro-
cedure for the food chain and then supplied to the com-
mercial food market. The slaughterhouse is approved in
accordance with the directives of the European Union and
certified by QS (Quality and Security GmbH). It has been a
member of the Animal Welfare Initiative (Gesellschaft zur
Förderung des Tierwohls in der Nutztierhaltung mbH)
since 2016. According to the Mecklenburg-Western
Pomerania State Office for Agriculture, Food Safety and
Fisheries (LALLF), Rostock, Germany, this study is not an
animal experiment within the meaning of Section 7 (2) of
the Animal Welfare Act, and, consequently, does not
require approval (LALLF file number: 7221.3-18057_25_1).

MRI
MRI was performed on a 7-T scanner (BioSpec 70/30, max-
imum gradient amplitude 200 mT/m, Bruker BioSpin MRI
GmbH) operating at 300.33MHz for 1H MRI and 79.44MHz
for 23Na MRI. A dual 1H/23Na radiofrequency volume reso-
nator (T20118V3, Bruker, diameter= 40mm) was used for

transmission and signal reception. 23Na MRI of the eyes was
performed using a two-dimensional low flip angle gradient
echo technique: repetition time= 40ms; echo time= 2.35ms;
excitation flip angle= 90°; matrix size= 32× 32; field of
view= 40 × 40mm2; slice thickness= 5mm; in-plane spatial
resolution= 1.25 × 1.25mm2; number of excitations 2,000;
receiver bandwidth 25 kHz; total acquisition time= 42min.
Corresponding 1H MRI of the eyes was performed for ana-
tomical imaging using a two-dimensional low flip angle gra-
dient echo technique: repetition time= 50ms; echo
time= 2.3ms; flip angle= 40°; matrix size= 256 × 256; field
of view= 40 × 40mm2; slice thickness= 5mm; in-plane spa-
tial resolution= 0.156 × 0.156mm2; number of excitations 6;
total acquisition time = 95 s. MRI was performed at room
temperature within the bore of the scanner (19–21 °C). For
sodium quantification, an external NaCl standard was
deployed. For this purpose, two vials with different solutions
(NaCl 0.9% with a sodium concentration of 154mmol/L, as
well as distilled water with a conductivity of 3.38 μS/cm, which
corresponds to approximately 0.0272mmol/L) were used as
reference solutions (Fig. 1a). The eyeball and phantoms were
positioned at the center of the RF coil along the x-, y-, and
z-axis.

Data analysis
Quantitative image analysis was performed blinded to the
experimental setting. Region-of-interest-based measure-
ments were drawn on the 23Na images in the VB, lens and
both phantoms. Additionally, a region-of-interest was
placed in the image background outside the eye and
reference solutions for signal-to-noise estimation. For
correct placement of the regions of interest, the anato-
mical 1H images were used for the identification of the
described anatomical structures (Fig. 1). The signal
intensities in the areas of the phantoms with known
sodium concentrations were used as control points to
assign a sodium concentration to the signal intensity in
the vitreous and lens of the eye using linear fitting.
Sodium concentration maps were calculated on a pixel-
by-pixel basis using an in-house MATLAB script based on
the calculations of Grist et al [31].

Statistical analysis
Sodium concentrations of VB and lens were determined
as median ± range, as well as their 95% confidence
intervals (CIs) were calculated. To compare the differ-
ences of VB and lens sodium concentrations between
different immersion solutions at different time points,
one-way ANOVA, followed by Bonferroni corrections for
multiple comparisons, was used. Normality of data was
tested according to the Shapiro–Wilk test. p-values ≤ 0.05
were considered significant. All statistical analysis was
performed using GraphPad Prism 10.
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Results
VB and lens sodium concentration depending on the
immersion solution
No statistical difference was observed after 1 h of
immersion time for VB or lens sodium concentration
between different immersion solutions, including distilled
water, lake water, NaCl 0.9%, NaCl 3.0% or NaCl 5.85%.
After 6 h of immersion, a significant difference for VB
sodium concentration was found between distilled water

and NaCl 5.85% (p= 0.019) as well as lake water and NaCl
5.85% (p= 0.013) but no significant difference regarding
lens sodium concentration (p > 0.05). After 24 h, a sig-
nificant difference for VB sodium concentration was
measured between NaCl 5.85% and distilled water, lake
water, NaCl 3.0% or NaCl 0.9%, as well as NaCl 3.0% and
distilled water, lake water or 0.9% (p ≤ 0.001). Similar
results were found for VB sodium concentration after 48 h
of immersion time (Fig. 2). Lens sodium concentration

Fig. 2 Sodium concentration maps visualize the differences in the sodium concentration in the vitreous after 48 h of immersion in different solutions.
Representative example of five porcine eyes immersed for 48 h in distilled water, lake water, NaCl 0.9%, NaCl 3.0% or NaCl 5.85% with their 1H-MRI
anatomical images shown in the upper row (a) and 23Na sodium concentration maps shown in the lower row (b). MRI, Magnetic resonance imaging

Fig. 1 Representative example of 1H-MRI (a) and 23Na-MRI (b) of an enucleated porcine eye after incubation for 48 h in distilled water. Measurements of
mean signal intensity were performed with ROIs placed in the vitreous humor (1), lens (2), NaCl 0.9% external standard (3), and distilled water reference
(4, not visible in 23Na-MRI). Noise was obtained from the standard deviation of the background (5). For correct ROI placement, anatomical 1H images (a)
were used to identify the corresponding anatomical structures. MRI, Magnetic resonance imaging; ROI, Region of interest
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showed a significant difference between NaCl 5.85% and
distilled water (p= 0.002), lake water (p= 0.001), NaCl
0.9% (p= 0.003) or NaCl 3.0% (p= 0.009) after 24 h of
immersion and between NaCl 5.85% and distilled water,
lake water, NaCl 3.0% or NaCl 0.9% (p ≤ 0.001, each), as
well as NaCl 3.0% and distilled water (p= 0.003), lake
water (p= 0.004) or NaCl 0.9% (p= 0.007) after 48 h of
immersion. No significant difference was observed for VB
and lens sodium concentration between distilled water,
lake water and NaCl 0.9% after 1, 6, 24 or 48 h of
immersion (p > 0.05) (Fig. 3).

VB and lens sodium concentration over immersion time
As shown in Fig. 5, VB sodium concentration over
immersion time seems to follow an exponential time
course. Therefore, a simple phenomenological approach
was used to describe the time dependent change of the
sodium concentration in the vitreous:

cðtÞ ¼ ðcoutside � cVBÞ � ð1� e�t=τÞ þ cVB ð1Þ

where coutside represents the sodium concentration of the
immersion solution, cVB represents the initial sodium

concentration within the vitreous body and the time constant
τ incorporating the properties of the underlying diffusion
process. The most significant changes of VB sodium
concentration within 48 h were observed for the NaCl
5.85% immersion solution (Fig. 4). Hence, data of all other
VB sodium concentration changes were fitted with fixed τ
taken from the NaCl 5.85% immersion solution fit ðτ ¼
ð21 ± 4ÞhÞ, assuming normal diffusion, which does not
depend on concentration differences. The fitting coefficients
obtained for each immersion solution are provided in Table 1.
Figure 5 displays the fitted exponential curves showing an
increase of median sodium concentration in the vitreous body
over 48 h when immersed in NaCl 3.0% and NaCl 5.85%, and
a decrease when immersed in NaCl 0.9%, distilled water and
lake water. Assessment of the lens sodium concentration
revealed no clear exponential increase or decrease and only
small changes in median sodium concentration within 48 h
compared to vitreous body sodium concentration (Fig. 5).

Discussion
Our study demonstrates the feasibility of 23Na MRI-based
quantification of VB and lens sodium concentrations in

Fig. 3 Differences between postmortem vitreous body (VB; upper row) and lens sodium concentrations (lower row) depending on the immersion
solutions (distilled water (DW), lake water (LW), NaCl 0.9%, NaCl 3.0% and NaCl 5.85%), and time interval of immersion (1, 6, 24, and 48 h); p < 0.05 is
labeled as *, p < 0.01 as **, and p < 0.001 as ***
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ex vivo porcine eyes. Our results show major differences
in vitreous and lens sodium concentrations obtained for
immersion in saltwater and freshwater equivalents. We
also detected changes in the vitreous and lens sodium
concentrations as a function of the immersion time.
These findings provide an important foundation en route
to differentiation between saltwater and freshwater
immersion and for time in water estimation of bodies
found in water using 23Na MRI.
State-of-the-art imaging is of increasing interest for

forensic and legal medicine in postmortem investigations
[32]. Although widely used in clinical medicine, routine
application of MRI in forensic medicine is limited so far
due to longer acquisition times and higher costs, when
compared to computed tomography, resulting in missed
vital opportunities. MRI excels in longitudinal studies
with exquisite anatomical detail. The use of postmortem,
whole-body proton MRI has been emerging as a powerful
forensic tool with good performance regarding determi-
nation of time and cause of death as well as depiction of
traumatic findings in corpses [33–36]. Recent technology
allows, even on standard clinical, proton-only MRI scan-
ners, the additional implementation, of non-proton MRI,
which is based on the detection of the nuclei of atoms in
the body other than 1H (X-nuclei), such as sodium (23Na),
phosphorus (31P), chlorine (35Cl), potassium (39K), deu-
terium (2H), oxygen (17O), lithium (7Li), and fluorine (19F)
[37]. In forensic medicine, especially 23Na quantification,
in addition to conventional proton MRI, might be an
intriguing unexplored frontier because sodium ions are

one of the most important electrolytes in the human body
and play a critical role in osmoregulation and cell phy-
siology. Furthermore, disorders of plasma sodium are the
most common electrolyte disturbances in clinical medi-
cine, and severe hypo- and hypernatremia are associated
with considerable morbidity and mortality [38].
While an autopsy affords external and internal access to

the target anatomy for the investigation of drowning, post-
mortem MRI can be useful for nondestructive documenta-
tion of these findings [1]. However, it has to be noted, due to
limited access to MRI scanners for medicolegal institutes in
practice, the classic fluid sampling by means of biopsy and
subsequent analysis of the fluid is more easily applied, which
includes flame photometry [39, 40], ion selective electrode
analysis [11, 13, 41], or atomic absorption spectro-
photometry [42, 43] and benchtop nuclear magnetic reso-
nance spectroscopy [44]. Nevertheless, all of these
applications are limited due to invasive tissue acquisition and
sample measurements, unlike 23Na MRI, which can be
implemented on clinical whole-body MRI scanners and not
only allows noninvasive determination of the sodium con-
centration in the vitreous body, but also has the potential to
measure sodium concentration maps of other body parts
[45]. For example, 23Na MRI of ischemic stroke has been
proposed as a noninvasive tool for estimation of time after
onset of tissue death [46, 47].
In our study, the median sodium concentration in the

porcine vitreous was 144.5 mmol/L at base level, which is
similar to sodium concentrations derived from biochem-
ical and histological assessment of postmortem changes to

Fig. 4 Calculated sodium concentration maps of a representative porcine eye at base level (t= 0) and after immersion for 1, 6, 24, and 48 h in NaCl 5.85%.
Anatomical 1H-MRI images are shown in the upper row (a). The corresponding 23Na sodium concentration maps are presented in the lower row (b)
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the eyes of domestic swine (about 146mmol/L) [48].
However, the median lens sodium concentration derived
from our study was 5.2 mmol/L, whereas a previous study
measured a mean sodium concentration of 23.6 mmol/kg
in the swine lens using atomic absorption spectro-
photometry [49]. These differences could be due to our
measurements being centered in the lens nucleus to avoid
overlap with the vitreous and the lens nucleus being less
hydrated than the lens cortex [50, 51].
Our study showed that swine vitreous and lens sodium

levels, when immersed in saltwater equivalents (NaCl
3.0% and 5.85%), appear to follow an exponential func-
tion. Previous studies, using bovine eyeballs as surrogates,

compared the changes in bovine vitreous sodium levels
when immersed in saltwater with a sodium concentration
of 480 mmol/L [12] or 551mmol/L [11]. These studies
showed that bovine vitreous sodium levels were steady
[12] or only showed a change per hour of 5.7 mmol/L in
the first hour and increased significantly after 1 h, with an
hourly increase of 16.3 mmol/L [11]. A similar experi-
mental setting was chosen in our study when immersing
in NaCl 3.0%, which has a sodium concentration of
513mmol/L. However, we measured a change of the
vitreous sodium level of 5.6 mmol/L in the first hour and
of 4.5 to 5.1 mmol/L per hour after 1 h. This could be due
to a lower incubation temperature of 8 °C in our study

Fig. 5 VB (upper row) and lens sodium concentration (lower row) at base level and at different time points of immersion in NaCl 0.9%, NaCl 3.0%, NaCl
5.85%, distilled water, or lake water. The exponential curves were fitted to the data according to Eq. 1 (see text). VB, Vitreous body
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compared to 19 °C [11] and between 15 and 25 °C [12],
which results in slower diffusion activity [52]. Another
reason could be due to using a different specimen model
with different features regarding the vitreous, e.g., bovine
vitreous humor having a higher diffusion coefficient
compared to porcine vitreous humor [53].
The diagnosis of drowning and differentiating the

drowning medium (freshwater and saltwater) constitutes
a challenge in forensic medicine and is largely based on
the autopsy results, which exclude other causes of death
and are interpreted in relation to the circumstances of
death [1, 9, 54]. Also, assessment of time in water of the
dead body can be challenging since changes of decom-
position generally occur more slowly in water than on
land and are affected, inter alia, by salinity, temperature,
marine life, bacterial composition, currents, absence of
flies and fly larvae, and contact with underwater objects.
In addition, decomposition in saltwater is slower than in
freshwater, as bacterial growth is delayed due to the
higher salt content [1]. Similar to our study, previous

studies have shown that vitreous sodium levels can be
used to differentiate the drowning medium since they are
increased in cases of saltwater drownings and decreased
in freshwater drownings [13, 14, 55]. Nevertheless, there is
no consensus regarding whether this results from hemo-
dilution or hemoconcentration following inhalation/
swallowing of water or if it is due to postmortem diffusion
between the vitreous and surrounding water [12, 13, 55].
However, Zilg et al found that long immersion time was
associated with lower sodium levels in freshwater
drownings and additionally found no decrease in sodium
levels in cases with a very short immersion time, sug-
gesting that there is no effect on vitreous sodium con-
centration of hemodilution due to water inhalation [55].
Even if serum electrolyte imbalances occur, it is unlikely
that they would show in the vitreous after circulatory
arrest, as it also takes some time for the sodium blood
levels to equilibrate with the vitreous levels [56]. In
addition to that, the effect of hemodilution due to water
inhalation can quite certainly be ruled out in the lens,

Table 1 Sodium concentrations in the lens and vitreous body

Immersion solution Time (h) Sodium concentration (mmol/L) Fit coefficients

(mmol/L)

Lens VB coutside cVB

Control group 0 5.2 (3.1–9.3), (95% CI, -2.0 to 13.7) 144.5 (137.5–151.2), (95% CI, 137.5–151.2)

NaCl 0.9% 1 6.6 (3.3–7.1), (95% CI, 0.6–10.9) 142.9 (136.5–149.1), (95% CI, 127.2–158.5) 113 ± 13 147 ± 9

3 6.1 (-2.1 to -11.2), (95% CI, -11.7 to -21.8) 160.9 (115.5–166.5), (95% CI, 78.1–217.2)

6 14.2 (7.4–19.4), (95% CI, -1.2 to 28.6) 143.7 (116.5–184.2), (95% CI, 63.5–232.8)

12 5.7 (3.9–18.5), (95% CI, -10.5 to -29.2) 105.7 (97.0–125.3), (95% CI, 73.3–145.3)

24 12.4 (3.7–13.2), (95% CI, -3.3 to -22.8) 122.3 (113.0–139.7), (95% CI, 91.4–158.6)

48 15.9 (11.1–16.1), (95% CI, 7.3–21.4) 126.5 (124.5–132.1), (95% CI, 117.9–137.5)

NaCl 3% 1 5.2 (3.7–8.2), (95% CI, 0.01–11.4) 150.1 (123.6–152.9), (95% CI, 123.6–152.9) 358 ± 28 132 ± 20

6 7.7 (2.4–10.1), (95% CI, -3.1 to 16.6) 172.7 (150.6–233.6), (95% CI, 150.6–233.6)

24 17.6 (12.8–21.6), (95% CI, 6.5–28.2) 249.2 (228.3–285.7), (95% CI, 228.3–285.7)

48 57.6 (45.2–61.2), (95% CI, 33.8–75.5) 367.5 (327.7–430.4), (95% CI, 327.7–430.4)

NaCl 5.85% 1 10.2 (5.3–11.6), (95% CI, 0.9–17.2) 161.3 (152.0–243.2), (95% CI, 60.8–310.2) 741 ± 36 135 ± 12

6 6.7 (-0.6 to -9.0), (95% CI, -7.4 to -17.5) 271.3 (231.9–441.4), (95% CI, 38.3–591.5)

24 50.3 (39.4–83.0), (95% CI, 1.2–113.9) 562.3 (528.6–562.6), (95% CI, 502.7–599.6)

48 110.3 (105.5–144.3), (95% CI, 67.5–172.6) 675.5 (640.3–776.4), (95% CI, 522.0–872.9)

Distilled water 1 6.1 (4.1–12.9), (95% CI, -3.7 to -19.1) 137.3 (130.2–149.5), (95% CI, 114.8–163.2) 62 ± 7 143 ± 5

6 1.4 (-0.6 to -11.2), (95% CI, -11.7 to -19.7) 125.4 (100.0–126.5), (95% CI, 59.9–183.0)

24 6.2 (7.8–9.5), (95% CI, 3.8–11.9) 78.1 (70.0–81.3), (95% CI, 62.0–91.0)

48 7.9 (7.6–11.3), (95% CI, 3.8–14.1) 76.5 (65.1–80.0), (95% CI, 54.5–93.2)

Lake water 1 1.8 (0.9–3.0), (95% CI, 0.9–3.0) 129.1 (128.9–130.5), (95% CI, 127.4–131.6) 61 ± 9 134 ± 6

6 3.9 (1.9–10.9), (95% CI, 1.9–10.9) 103.6 (102.2–124.2), (95% CI, 79.2–140.7)

24 5.3 (5.1–5.4), (95% CI, 5.1–5.4) 85.7 (56.1–95.3), (95% CI, 28.3–129.8)

48 10.5 (9.8–10.8), (95% CI, 9.8–10.8) 71.2 (62.5–80.2), (95% CI, 49.2–93.4)

Median (range) of sodium concentrations in the lens and vitreous body of enucleated pig eyes at base level and after different time points of incubation in NaCl 0.9%,
3%, 5.85%, distilled water or lake water. Data of vitreous body sodium concentration were fitted according to Eq. 1 to determine coutside and cVB
c Concentration, CI Confidence interval, h Hour, VB Vitreous body
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since it is usually an avascular organ [57]. Therefore,
measurements of postmortem VB and also lens sodium
concentrations might provide a potentially useful ancillary
test in differentiating saltwater and freshwater immersion,
as well as the period between entry into the water and
recovery of the dead body [58].
This study involved limitations that warrant acknowl-

edgment. Despite the small number of samples per group,
this study showed that 23Na MRI is sensitive to changes of
sodium concentration in the vitreous and eye lens and that
it is worth consideration and warrants further research.
Future studies should involve a larger number of samples
and 23Na MRI investigations at different temperatures and
time points to evaluate the applicability of the method to
daily forensic practice. Furthermore, the limits in time
range for this method should be noted, since the sodium
concentration approaches an equilibrium with time, due to
its nonlinear nature, at which retrospective fit may be very
inaccurate. This challenge has been previously worked out
for stroke and 23Na MRI by others [47, 59]. However, 23Na
MRI of the postmortem VB for time in water estimation
may work very well within a 24 to 48-h period, as our data
suggest. Another limitation is that we obtained our data for
porcine eyes and not for human eyes. However, literature
data shows that the porcine eye closely resembles the
human eye [60, 61], so we can suppose that our results can
be considered predictive of postmortem 23Na MRI of the
human eye. Our study and previous similar studies [11, 12]
used enucleated eyes, therefore having large areas of
exposed sclera immersed, compared to most probably less
than half of the surface in real water corpses. Of course, this
might lead to overestimation of sodium permeability in
total, making this experimental setting only very partially
indicative. To perform a more realistic analysis of the
immersion process, the presence of an eye socket and
eyelids could provide a more impermeable interface
between the immersion solution and the vitreous or lens,
rendering a more delayed change in sodium concentration.
General technical challenges of 23Na MRI include low
spatial resolutions, as well as lower gyromagnetic ratio and
significantly lower biological concentrations of sodium
relative to hydrogen [62]. They also include partial volume
effects due to tissue mixing in relatively low-resolution
voxels and curved surfaces. These might especially affect
the sodium measurements of the eye lens due to its ana-
tomical features and overall low biological concentration of
sodium in comparison to the vitreous.
In conclusion, 23Na MRI has the potential to evaluate

changes of sodium concentration in the VB and lens of
dead bodies found in water and therefore could be
included in a postmortem multidisciplinary scenario in
which, integrating data from various medical branches, a
differentiation between saltwater and freshwater

immersion as well as reliable estimation of time in water
could be obtained. Although not a substitute for autopsy,
23Na MRI assessment of vitreous and lens sodium con-
centrations may provide biochemical support in suspected
drowning, especially in cases where an internal exam-
ination of the body is not authorized or where objections
to autopsy are upheld. In this light, our preliminary study
provides an important contribution en route to 23Na MRI-
based differentiation between saltwater and freshwater
immersion and for time in water determination.
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